linux/drivers/iio/inkern.c

960 lines
22 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* The industrial I/O core in kernel channel mapping
*
* Copyright (c) 2011 Jonathan Cameron
*/
#include <linux/err.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/iio/iio.h>
#include "iio_core.h"
#include <linux/iio/machine.h>
#include <linux/iio/driver.h>
#include <linux/iio/consumer.h>
struct iio_map_internal {
struct iio_dev *indio_dev;
struct iio_map *map;
struct list_head l;
};
static LIST_HEAD(iio_map_list);
static DEFINE_MUTEX(iio_map_list_lock);
static int iio_map_array_unregister_locked(struct iio_dev *indio_dev)
{
int ret = -ENODEV;
struct iio_map_internal *mapi, *next;
list_for_each_entry_safe(mapi, next, &iio_map_list, l) {
if (indio_dev == mapi->indio_dev) {
list_del(&mapi->l);
kfree(mapi);
ret = 0;
}
}
return ret;
}
int iio_map_array_register(struct iio_dev *indio_dev, struct iio_map *maps)
{
int i = 0, ret = 0;
struct iio_map_internal *mapi;
if (maps == NULL)
return 0;
mutex_lock(&iio_map_list_lock);
while (maps[i].consumer_dev_name != NULL) {
mapi = kzalloc(sizeof(*mapi), GFP_KERNEL);
if (mapi == NULL) {
ret = -ENOMEM;
goto error_ret;
}
mapi->map = &maps[i];
mapi->indio_dev = indio_dev;
list_add_tail(&mapi->l, &iio_map_list);
i++;
}
error_ret:
if (ret)
iio_map_array_unregister_locked(indio_dev);
mutex_unlock(&iio_map_list_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_map_array_register);
/*
* Remove all map entries associated with the given iio device
*/
int iio_map_array_unregister(struct iio_dev *indio_dev)
{
int ret;
mutex_lock(&iio_map_list_lock);
ret = iio_map_array_unregister_locked(indio_dev);
mutex_unlock(&iio_map_list_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_map_array_unregister);
static const struct iio_chan_spec
*iio_chan_spec_from_name(const struct iio_dev *indio_dev, const char *name)
{
int i;
const struct iio_chan_spec *chan = NULL;
for (i = 0; i < indio_dev->num_channels; i++)
if (indio_dev->channels[i].datasheet_name &&
strcmp(name, indio_dev->channels[i].datasheet_name) == 0) {
chan = &indio_dev->channels[i];
break;
}
return chan;
}
#ifdef CONFIG_OF
bus_find_device: Unify the match callback with class_find_device There is an arbitrary difference between the prototypes of bus_find_device() and class_find_device() preventing their callers from passing the same pair of data and match() arguments to both of them, which is the const qualifier used in the prototype of class_find_device(). If that qualifier is also used in the bus_find_device() prototype, it will be possible to pass the same match() callback function to both bus_find_device() and class_find_device(), which will allow some optimizations to be made in order to avoid code duplication going forward. Also with that, constify the "data" parameter as it is passed as a const to the match function. For this reason, change the prototype of bus_find_device() to match the prototype of class_find_device() and adjust its callers to use the const qualifier in accordance with the new prototype of it. Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Corey Minyard <minyard@acm.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David Kershner <david.kershner@unisys.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Airlie <airlied@linux.ie> Cc: Felipe Balbi <balbi@kernel.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Harald Freudenberger <freude@linux.ibm.com> Cc: Hartmut Knaack <knaack.h@gmx.de> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Cameron <jic23@kernel.org> Cc: "James E.J. Bottomley" <jejb@linux.ibm.com> Cc: Len Brown <lenb@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michael Jamet <michael.jamet@intel.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Peter Oberparleiter <oberpar@linux.ibm.com> Cc: Sebastian Ott <sebott@linux.ibm.com> Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Cc: Yehezkel Bernat <YehezkelShB@gmail.com> Cc: rafael@kernel.org Acked-by: Corey Minyard <minyard@acm.org> Acked-by: David Kershner <david.kershner@unisys.com> Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Acked-by: Wolfram Sang <wsa@the-dreams.de> # for the I2C parts Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-14 18:53:59 +01:00
static int iio_dev_node_match(struct device *dev, const void *data)
{
return dev->of_node == data && dev->type == &iio_device_type;
}
/**
* __of_iio_simple_xlate - translate iiospec to the IIO channel index
* @indio_dev: pointer to the iio_dev structure
* @iiospec: IIO specifier as found in the device tree
*
* This is simple translation function, suitable for the most 1:1 mapped
* channels in IIO chips. This function performs only one sanity check:
* whether IIO index is less than num_channels (that is specified in the
* iio_dev).
*/
static int __of_iio_simple_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
if (!iiospec->args_count)
return 0;
if (iiospec->args[0] >= indio_dev->num_channels) {
dev_err(&indio_dev->dev, "invalid channel index %u\n",
iiospec->args[0]);
return -EINVAL;
}
return iiospec->args[0];
}
static int __of_iio_channel_get(struct iio_channel *channel,
struct device_node *np, int index)
{
struct device *idev;
struct iio_dev *indio_dev;
int err;
struct of_phandle_args iiospec;
err = of_parse_phandle_with_args(np, "io-channels",
"#io-channel-cells",
index, &iiospec);
if (err)
return err;
idev = bus_find_device(&iio_bus_type, NULL, iiospec.np,
iio_dev_node_match);
of_node_put(iiospec.np);
if (idev == NULL)
return -EPROBE_DEFER;
indio_dev = dev_to_iio_dev(idev);
channel->indio_dev = indio_dev;
if (indio_dev->info->of_xlate)
index = indio_dev->info->of_xlate(indio_dev, &iiospec);
else
index = __of_iio_simple_xlate(indio_dev, &iiospec);
if (index < 0)
goto err_put;
channel->channel = &indio_dev->channels[index];
return 0;
err_put:
iio_device_put(indio_dev);
return index;
}
static struct iio_channel *of_iio_channel_get(struct device_node *np, int index)
{
struct iio_channel *channel;
int err;
if (index < 0)
return ERR_PTR(-EINVAL);
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
if (channel == NULL)
return ERR_PTR(-ENOMEM);
err = __of_iio_channel_get(channel, np, index);
if (err)
goto err_free_channel;
return channel;
err_free_channel:
kfree(channel);
return ERR_PTR(err);
}
struct iio_channel *of_iio_channel_get_by_name(struct device_node *np,
const char *name)
{
struct iio_channel *chan = NULL;
/* Walk up the tree of devices looking for a matching iio channel */
while (np) {
int index = 0;
/*
* For named iio channels, first look up the name in the
* "io-channel-names" property. If it cannot be found, the
* index will be an error code, and of_iio_channel_get()
* will fail.
*/
if (name)
index = of_property_match_string(np, "io-channel-names",
name);
chan = of_iio_channel_get(np, index);
if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
break;
else if (name && index >= 0) {
pr_err("ERROR: could not get IIO channel %pOF:%s(%i)\n",
np, name ? name : "", index);
return NULL;
}
/*
* No matching IIO channel found on this node.
* If the parent node has a "io-channel-ranges" property,
* then we can try one of its channels.
*/
np = np->parent;
if (np && !of_get_property(np, "io-channel-ranges", NULL))
return NULL;
}
return chan;
}
EXPORT_SYMBOL_GPL(of_iio_channel_get_by_name);
static struct iio_channel *of_iio_channel_get_all(struct device *dev)
{
struct iio_channel *chans;
int i, mapind, nummaps = 0;
int ret;
do {
ret = of_parse_phandle_with_args(dev->of_node,
"io-channels",
"#io-channel-cells",
nummaps, NULL);
if (ret < 0)
break;
} while (++nummaps);
if (nummaps == 0) /* no error, return NULL to search map table */
return NULL;
/* NULL terminated array to save passing size */
chans = kcalloc(nummaps + 1, sizeof(*chans), GFP_KERNEL);
if (chans == NULL)
return ERR_PTR(-ENOMEM);
/* Search for OF matches */
for (mapind = 0; mapind < nummaps; mapind++) {
ret = __of_iio_channel_get(&chans[mapind], dev->of_node,
mapind);
if (ret)
goto error_free_chans;
}
return chans;
error_free_chans:
for (i = 0; i < mapind; i++)
iio_device_put(chans[i].indio_dev);
kfree(chans);
return ERR_PTR(ret);
}
#else /* CONFIG_OF */
static inline struct iio_channel *of_iio_channel_get_all(struct device *dev)
{
return NULL;
}
#endif /* CONFIG_OF */
static struct iio_channel *iio_channel_get_sys(const char *name,
const char *channel_name)
{
struct iio_map_internal *c_i = NULL, *c = NULL;
struct iio_channel *channel;
int err;
if (name == NULL && channel_name == NULL)
return ERR_PTR(-ENODEV);
/* first find matching entry the channel map */
mutex_lock(&iio_map_list_lock);
list_for_each_entry(c_i, &iio_map_list, l) {
if ((name && strcmp(name, c_i->map->consumer_dev_name) != 0) ||
(channel_name &&
strcmp(channel_name, c_i->map->consumer_channel) != 0))
continue;
c = c_i;
iio_device_get(c->indio_dev);
break;
}
mutex_unlock(&iio_map_list_lock);
if (c == NULL)
return ERR_PTR(-ENODEV);
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
if (channel == NULL) {
err = -ENOMEM;
goto error_no_mem;
}
channel->indio_dev = c->indio_dev;
if (c->map->adc_channel_label) {
channel->channel =
iio_chan_spec_from_name(channel->indio_dev,
c->map->adc_channel_label);
if (channel->channel == NULL) {
err = -EINVAL;
goto error_no_chan;
}
}
return channel;
error_no_chan:
kfree(channel);
error_no_mem:
iio_device_put(c->indio_dev);
return ERR_PTR(err);
}
struct iio_channel *iio_channel_get(struct device *dev,
const char *channel_name)
{
const char *name = dev ? dev_name(dev) : NULL;
struct iio_channel *channel;
if (dev) {
channel = of_iio_channel_get_by_name(dev->of_node,
channel_name);
if (channel != NULL)
return channel;
}
return iio_channel_get_sys(name, channel_name);
}
EXPORT_SYMBOL_GPL(iio_channel_get);
void iio_channel_release(struct iio_channel *channel)
{
if (!channel)
return;
iio_device_put(channel->indio_dev);
kfree(channel);
}
EXPORT_SYMBOL_GPL(iio_channel_release);
static void devm_iio_channel_free(struct device *dev, void *res)
{
struct iio_channel *channel = *(struct iio_channel **)res;
iio_channel_release(channel);
}
struct iio_channel *devm_iio_channel_get(struct device *dev,
const char *channel_name)
{
struct iio_channel **ptr, *channel;
ptr = devres_alloc(devm_iio_channel_free, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
channel = iio_channel_get(dev, channel_name);
if (IS_ERR(channel)) {
devres_free(ptr);
return channel;
}
*ptr = channel;
devres_add(dev, ptr);
return channel;
}
EXPORT_SYMBOL_GPL(devm_iio_channel_get);
struct iio_channel *devm_of_iio_channel_get_by_name(struct device *dev,
struct device_node *np,
const char *channel_name)
{
struct iio_channel **ptr, *channel;
ptr = devres_alloc(devm_iio_channel_free, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
channel = of_iio_channel_get_by_name(np, channel_name);
if (IS_ERR(channel)) {
devres_free(ptr);
return channel;
}
*ptr = channel;
devres_add(dev, ptr);
return channel;
}
EXPORT_SYMBOL_GPL(devm_of_iio_channel_get_by_name);
struct iio_channel *iio_channel_get_all(struct device *dev)
{
const char *name;
struct iio_channel *chans;
struct iio_map_internal *c = NULL;
int nummaps = 0;
int mapind = 0;
int i, ret;
if (dev == NULL)
return ERR_PTR(-EINVAL);
chans = of_iio_channel_get_all(dev);
if (chans)
return chans;
name = dev_name(dev);
mutex_lock(&iio_map_list_lock);
/* first count the matching maps */
list_for_each_entry(c, &iio_map_list, l)
if (name && strcmp(name, c->map->consumer_dev_name) != 0)
continue;
else
nummaps++;
if (nummaps == 0) {
ret = -ENODEV;
goto error_ret;
}
/* NULL terminated array to save passing size */
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:03:40 -07:00
chans = kcalloc(nummaps + 1, sizeof(*chans), GFP_KERNEL);
if (chans == NULL) {
ret = -ENOMEM;
goto error_ret;
}
/* for each map fill in the chans element */
list_for_each_entry(c, &iio_map_list, l) {
if (name && strcmp(name, c->map->consumer_dev_name) != 0)
continue;
chans[mapind].indio_dev = c->indio_dev;
chans[mapind].data = c->map->consumer_data;
chans[mapind].channel =
iio_chan_spec_from_name(chans[mapind].indio_dev,
c->map->adc_channel_label);
if (chans[mapind].channel == NULL) {
ret = -EINVAL;
goto error_free_chans;
}
iio_device_get(chans[mapind].indio_dev);
mapind++;
}
if (mapind == 0) {
ret = -ENODEV;
goto error_free_chans;
}
mutex_unlock(&iio_map_list_lock);
return chans;
error_free_chans:
for (i = 0; i < nummaps; i++)
iio_device_put(chans[i].indio_dev);
kfree(chans);
error_ret:
mutex_unlock(&iio_map_list_lock);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(iio_channel_get_all);
void iio_channel_release_all(struct iio_channel *channels)
{
struct iio_channel *chan = &channels[0];
while (chan->indio_dev) {
iio_device_put(chan->indio_dev);
chan++;
}
kfree(channels);
}
EXPORT_SYMBOL_GPL(iio_channel_release_all);
static void devm_iio_channel_free_all(struct device *dev, void *res)
{
struct iio_channel *channels = *(struct iio_channel **)res;
iio_channel_release_all(channels);
}
struct iio_channel *devm_iio_channel_get_all(struct device *dev)
{
struct iio_channel **ptr, *channels;
ptr = devres_alloc(devm_iio_channel_free_all, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
channels = iio_channel_get_all(dev);
if (IS_ERR(channels)) {
devres_free(ptr);
return channels;
}
*ptr = channels;
devres_add(dev, ptr);
return channels;
}
EXPORT_SYMBOL_GPL(devm_iio_channel_get_all);
static int iio_channel_read(struct iio_channel *chan, int *val, int *val2,
enum iio_chan_info_enum info)
{
int unused;
int vals[INDIO_MAX_RAW_ELEMENTS];
int ret;
int val_len = 2;
if (val2 == NULL)
val2 = &unused;
if (!iio_channel_has_info(chan->channel, info))
return -EINVAL;
if (chan->indio_dev->info->read_raw_multi) {
ret = chan->indio_dev->info->read_raw_multi(chan->indio_dev,
chan->channel, INDIO_MAX_RAW_ELEMENTS,
vals, &val_len, info);
*val = vals[0];
*val2 = vals[1];
} else
ret = chan->indio_dev->info->read_raw(chan->indio_dev,
chan->channel, val, val2, info);
return ret;
}
int iio_read_channel_raw(struct iio_channel *chan, int *val)
{
int ret;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (chan->indio_dev->info == NULL) {
ret = -ENODEV;
goto err_unlock;
}
ret = iio_channel_read(chan, val, NULL, IIO_CHAN_INFO_RAW);
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_read_channel_raw);
int iio_read_channel_average_raw(struct iio_channel *chan, int *val)
{
int ret;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (chan->indio_dev->info == NULL) {
ret = -ENODEV;
goto err_unlock;
}
ret = iio_channel_read(chan, val, NULL, IIO_CHAN_INFO_AVERAGE_RAW);
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_read_channel_average_raw);
static int iio_convert_raw_to_processed_unlocked(struct iio_channel *chan,
int raw, int *processed, unsigned int scale)
{
int scale_type, scale_val, scale_val2, offset;
s64 raw64 = raw;
int ret;
ret = iio_channel_read(chan, &offset, NULL, IIO_CHAN_INFO_OFFSET);
if (ret >= 0)
raw64 += offset;
scale_type = iio_channel_read(chan, &scale_val, &scale_val2,
IIO_CHAN_INFO_SCALE);
if (scale_type < 0) {
/*
* Just pass raw values as processed if no scaling is
* available.
*/
*processed = raw;
return 0;
}
switch (scale_type) {
case IIO_VAL_INT:
*processed = raw64 * scale_val;
break;
case IIO_VAL_INT_PLUS_MICRO:
if (scale_val2 < 0)
*processed = -raw64 * scale_val;
else
*processed = raw64 * scale_val;
*processed += div_s64(raw64 * (s64)scale_val2 * scale,
1000000LL);
break;
case IIO_VAL_INT_PLUS_NANO:
if (scale_val2 < 0)
*processed = -raw64 * scale_val;
else
*processed = raw64 * scale_val;
*processed += div_s64(raw64 * (s64)scale_val2 * scale,
1000000000LL);
break;
case IIO_VAL_FRACTIONAL:
*processed = div_s64(raw64 * (s64)scale_val * scale,
scale_val2);
break;
case IIO_VAL_FRACTIONAL_LOG2:
*processed = (raw64 * (s64)scale_val * scale) >> scale_val2;
break;
default:
return -EINVAL;
}
return 0;
}
int iio_convert_raw_to_processed(struct iio_channel *chan, int raw,
int *processed, unsigned int scale)
{
int ret;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (chan->indio_dev->info == NULL) {
ret = -ENODEV;
goto err_unlock;
}
ret = iio_convert_raw_to_processed_unlocked(chan, raw, processed,
scale);
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_convert_raw_to_processed);
int iio_read_channel_attribute(struct iio_channel *chan, int *val, int *val2,
enum iio_chan_info_enum attribute)
{
int ret;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (chan->indio_dev->info == NULL) {
ret = -ENODEV;
goto err_unlock;
}
ret = iio_channel_read(chan, val, val2, attribute);
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_read_channel_attribute);
int iio_read_channel_offset(struct iio_channel *chan, int *val, int *val2)
{
return iio_read_channel_attribute(chan, val, val2, IIO_CHAN_INFO_OFFSET);
}
EXPORT_SYMBOL_GPL(iio_read_channel_offset);
int iio_read_channel_processed_scale(struct iio_channel *chan, int *val,
unsigned int scale)
{
int ret;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (chan->indio_dev->info == NULL) {
ret = -ENODEV;
goto err_unlock;
}
if (iio_channel_has_info(chan->channel, IIO_CHAN_INFO_PROCESSED)) {
ret = iio_channel_read(chan, val, NULL,
IIO_CHAN_INFO_PROCESSED);
if (ret < 0)
goto err_unlock;
*val *= scale;
} else {
ret = iio_channel_read(chan, val, NULL, IIO_CHAN_INFO_RAW);
if (ret < 0)
goto err_unlock;
ret = iio_convert_raw_to_processed_unlocked(chan, *val, val,
scale);
}
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_read_channel_processed_scale);
int iio_read_channel_processed(struct iio_channel *chan, int *val)
{
/* This is just a special case with scale factor 1 */
return iio_read_channel_processed_scale(chan, val, 1);
}
EXPORT_SYMBOL_GPL(iio_read_channel_processed);
int iio_read_channel_scale(struct iio_channel *chan, int *val, int *val2)
{
return iio_read_channel_attribute(chan, val, val2, IIO_CHAN_INFO_SCALE);
}
EXPORT_SYMBOL_GPL(iio_read_channel_scale);
static int iio_channel_read_avail(struct iio_channel *chan,
const int **vals, int *type, int *length,
enum iio_chan_info_enum info)
{
if (!iio_channel_has_available(chan->channel, info))
return -EINVAL;
return chan->indio_dev->info->read_avail(chan->indio_dev, chan->channel,
vals, type, length, info);
}
int iio_read_avail_channel_attribute(struct iio_channel *chan,
const int **vals, int *type, int *length,
enum iio_chan_info_enum attribute)
{
int ret;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (!chan->indio_dev->info) {
ret = -ENODEV;
goto err_unlock;
}
ret = iio_channel_read_avail(chan, vals, type, length, attribute);
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_read_avail_channel_attribute);
int iio_read_avail_channel_raw(struct iio_channel *chan,
const int **vals, int *length)
{
int ret;
int type;
ret = iio_read_avail_channel_attribute(chan, vals, &type, length,
IIO_CHAN_INFO_RAW);
if (ret >= 0 && type != IIO_VAL_INT)
/* raw values are assumed to be IIO_VAL_INT */
ret = -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(iio_read_avail_channel_raw);
static int iio_channel_read_max(struct iio_channel *chan,
int *val, int *val2, int *type,
enum iio_chan_info_enum info)
{
int unused;
const int *vals;
int length;
int ret;
if (!val2)
val2 = &unused;
ret = iio_channel_read_avail(chan, &vals, type, &length, info);
switch (ret) {
case IIO_AVAIL_RANGE:
switch (*type) {
case IIO_VAL_INT:
*val = vals[2];
break;
default:
*val = vals[4];
*val2 = vals[5];
}
return 0;
case IIO_AVAIL_LIST:
if (length <= 0)
return -EINVAL;
switch (*type) {
case IIO_VAL_INT:
*val = vals[--length];
while (length) {
if (vals[--length] > *val)
*val = vals[length];
}
break;
default:
/* FIXME: learn about max for other iio values */
return -EINVAL;
}
return 0;
default:
return ret;
}
}
int iio_read_max_channel_raw(struct iio_channel *chan, int *val)
{
int ret;
int type;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (!chan->indio_dev->info) {
ret = -ENODEV;
goto err_unlock;
}
ret = iio_channel_read_max(chan, val, NULL, &type, IIO_CHAN_INFO_RAW);
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_read_max_channel_raw);
int iio_get_channel_type(struct iio_channel *chan, enum iio_chan_type *type)
{
int ret = 0;
/* Need to verify underlying driver has not gone away */
mutex_lock(&chan->indio_dev->info_exist_lock);
if (chan->indio_dev->info == NULL) {
ret = -ENODEV;
goto err_unlock;
}
*type = chan->channel->type;
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_get_channel_type);
static int iio_channel_write(struct iio_channel *chan, int val, int val2,
enum iio_chan_info_enum info)
{
return chan->indio_dev->info->write_raw(chan->indio_dev,
chan->channel, val, val2, info);
}
int iio_write_channel_attribute(struct iio_channel *chan, int val, int val2,
enum iio_chan_info_enum attribute)
{
int ret;
mutex_lock(&chan->indio_dev->info_exist_lock);
if (chan->indio_dev->info == NULL) {
ret = -ENODEV;
goto err_unlock;
}
ret = iio_channel_write(chan, val, val2, attribute);
err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret;
}
EXPORT_SYMBOL_GPL(iio_write_channel_attribute);
int iio_write_channel_raw(struct iio_channel *chan, int val)
{
return iio_write_channel_attribute(chan, val, 0, IIO_CHAN_INFO_RAW);
}
EXPORT_SYMBOL_GPL(iio_write_channel_raw);
unsigned int iio_get_channel_ext_info_count(struct iio_channel *chan)
{
const struct iio_chan_spec_ext_info *ext_info;
unsigned int i = 0;
if (!chan->channel->ext_info)
return i;
for (ext_info = chan->channel->ext_info; ext_info->name; ext_info++)
++i;
return i;
}
EXPORT_SYMBOL_GPL(iio_get_channel_ext_info_count);
static const struct iio_chan_spec_ext_info *iio_lookup_ext_info(
const struct iio_channel *chan,
const char *attr)
{
const struct iio_chan_spec_ext_info *ext_info;
if (!chan->channel->ext_info)
return NULL;
for (ext_info = chan->channel->ext_info; ext_info->name; ++ext_info) {
if (!strcmp(attr, ext_info->name))
return ext_info;
}
return NULL;
}
ssize_t iio_read_channel_ext_info(struct iio_channel *chan,
const char *attr, char *buf)
{
const struct iio_chan_spec_ext_info *ext_info;
ext_info = iio_lookup_ext_info(chan, attr);
if (!ext_info)
return -EINVAL;
return ext_info->read(chan->indio_dev, ext_info->private,
chan->channel, buf);
}
EXPORT_SYMBOL_GPL(iio_read_channel_ext_info);
ssize_t iio_write_channel_ext_info(struct iio_channel *chan, const char *attr,
const char *buf, size_t len)
{
const struct iio_chan_spec_ext_info *ext_info;
ext_info = iio_lookup_ext_info(chan, attr);
if (!ext_info)
return -EINVAL;
return ext_info->write(chan->indio_dev, ext_info->private,
chan->channel, buf, len);
}
EXPORT_SYMBOL_GPL(iio_write_channel_ext_info);