linux/arch/mips/kernel/mips-r2-to-r6-emul.c

2391 lines
55 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2014 Imagination Technologies Ltd.
* Author: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
* Author: Markos Chandras <markos.chandras@imgtec.com>
*
* MIPS R2 user space instruction emulator for MIPS R6
*
*/
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <asm/asm.h>
#include <asm/branch.h>
#include <asm/break.h>
#include <asm/debug.h>
#include <asm/fpu.h>
#include <asm/fpu_emulator.h>
#include <asm/inst.h>
#include <asm/mips-r2-to-r6-emul.h>
#include <asm/local.h>
#include <asm/mipsregs.h>
#include <asm/ptrace.h>
#include <asm/uaccess.h>
#ifdef CONFIG_64BIT
#define ADDIU "daddiu "
#define INS "dins "
#define EXT "dext "
#else
#define ADDIU "addiu "
#define INS "ins "
#define EXT "ext "
#endif /* CONFIG_64BIT */
#define SB "sb "
#define LB "lb "
#define LL "ll "
#define SC "sc "
DEFINE_PER_CPU(struct mips_r2_emulator_stats, mipsr2emustats);
DEFINE_PER_CPU(struct mips_r2_emulator_stats, mipsr2bdemustats);
DEFINE_PER_CPU(struct mips_r2br_emulator_stats, mipsr2bremustats);
extern const unsigned int fpucondbit[8];
#define MIPS_R2_EMUL_TOTAL_PASS 10
int mipsr2_emulation = 0;
static int __init mipsr2emu_enable(char *s)
{
mipsr2_emulation = 1;
pr_info("MIPS R2-to-R6 Emulator Enabled!");
return 1;
}
__setup("mipsr2emu", mipsr2emu_enable);
/**
* mipsr6_emul - Emulate some frequent R2/R5/R6 instructions in delay slot
* for performance instead of the traditional way of using a stack trampoline
* which is rather slow.
* @regs: Process register set
* @ir: Instruction
*/
static inline int mipsr6_emul(struct pt_regs *regs, u32 ir)
{
switch (MIPSInst_OPCODE(ir)) {
case addiu_op:
if (MIPSInst_RT(ir))
regs->regs[MIPSInst_RT(ir)] =
(s32)regs->regs[MIPSInst_RS(ir)] +
(s32)MIPSInst_SIMM(ir);
return 0;
case daddiu_op:
if (config_enabled(CONFIG_32BIT))
break;
if (MIPSInst_RT(ir))
regs->regs[MIPSInst_RT(ir)] =
(s64)regs->regs[MIPSInst_RS(ir)] +
(s64)MIPSInst_SIMM(ir);
return 0;
case lwc1_op:
case swc1_op:
case cop1_op:
case cop1x_op:
/* FPU instructions in delay slot */
return -SIGFPE;
case spec_op:
switch (MIPSInst_FUNC(ir)) {
case or_op:
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
regs->regs[MIPSInst_RS(ir)] |
regs->regs[MIPSInst_RT(ir)];
return 0;
case sll_op:
if (MIPSInst_RS(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(s32)(((u32)regs->regs[MIPSInst_RT(ir)]) <<
MIPSInst_FD(ir));
return 0;
case srl_op:
if (MIPSInst_RS(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(s32)(((u32)regs->regs[MIPSInst_RT(ir)]) >>
MIPSInst_FD(ir));
return 0;
case addu_op:
if (MIPSInst_FD(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(s32)((u32)regs->regs[MIPSInst_RS(ir)] +
(u32)regs->regs[MIPSInst_RT(ir)]);
return 0;
case subu_op:
if (MIPSInst_FD(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(s32)((u32)regs->regs[MIPSInst_RS(ir)] -
(u32)regs->regs[MIPSInst_RT(ir)]);
return 0;
case dsll_op:
if (config_enabled(CONFIG_32BIT) || MIPSInst_RS(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(s64)(((u64)regs->regs[MIPSInst_RT(ir)]) <<
MIPSInst_FD(ir));
return 0;
case dsrl_op:
if (config_enabled(CONFIG_32BIT) || MIPSInst_RS(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(s64)(((u64)regs->regs[MIPSInst_RT(ir)]) >>
MIPSInst_FD(ir));
return 0;
case daddu_op:
if (config_enabled(CONFIG_32BIT) || MIPSInst_FD(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(u64)regs->regs[MIPSInst_RS(ir)] +
(u64)regs->regs[MIPSInst_RT(ir)];
return 0;
case dsubu_op:
if (config_enabled(CONFIG_32BIT) || MIPSInst_FD(ir))
break;
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] =
(s64)((u64)regs->regs[MIPSInst_RS(ir)] -
(u64)regs->regs[MIPSInst_RT(ir)]);
return 0;
}
break;
default:
pr_debug("No fastpath BD emulation for instruction 0x%08x (op: %02x)\n",
ir, MIPSInst_OPCODE(ir));
}
return SIGILL;
}
/**
* movf_func - Emulate a MOVF instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int movf_func(struct pt_regs *regs, u32 ir)
{
u32 csr;
u32 cond;
csr = current->thread.fpu.fcr31;
cond = fpucondbit[MIPSInst_RT(ir) >> 2];
if (((csr & cond) == 0) && MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)];
MIPS_R2_STATS(movs);
return 0;
}
/**
* movt_func - Emulate a MOVT instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int movt_func(struct pt_regs *regs, u32 ir)
{
u32 csr;
u32 cond;
csr = current->thread.fpu.fcr31;
cond = fpucondbit[MIPSInst_RT(ir) >> 2];
if (((csr & cond) != 0) && MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)];
MIPS_R2_STATS(movs);
return 0;
}
/**
* jr_func - Emulate a JR instruction.
* @pt_regs: Process register set
* @ir: Instruction
*
* Returns SIGILL if JR was in delay slot, SIGEMT if we
* can't compute the EPC, SIGSEGV if we can't access the
* userland instruction or 0 on success.
*/
static int jr_func(struct pt_regs *regs, u32 ir)
{
int err;
unsigned long cepc, epc, nepc;
u32 nir;
if (delay_slot(regs))
return SIGILL;
/* EPC after the RI/JR instruction */
nepc = regs->cp0_epc;
/* Roll back to the reserved R2 JR instruction */
regs->cp0_epc -= 4;
epc = regs->cp0_epc;
err = __compute_return_epc(regs);
if (err < 0)
return SIGEMT;
/* Computed EPC */
cepc = regs->cp0_epc;
/* Get DS instruction */
err = __get_user(nir, (u32 __user *)nepc);
if (err)
return SIGSEGV;
MIPS_R2BR_STATS(jrs);
/* If nir == 0(NOP), then nothing else to do */
if (nir) {
/*
* Negative err means FPU instruction in BD-slot,
* Zero err means 'BD-slot emulation done'
* For anything else we go back to trampoline emulation.
*/
err = mipsr6_emul(regs, nir);
if (err > 0) {
regs->cp0_epc = nepc;
err = mips_dsemul(regs, nir, cepc);
if (err == SIGILL)
err = SIGEMT;
MIPS_R2_STATS(dsemul);
}
}
return err;
}
/**
* movz_func - Emulate a MOVZ instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int movz_func(struct pt_regs *regs, u32 ir)
{
if (((regs->regs[MIPSInst_RT(ir)]) == 0) && MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)];
MIPS_R2_STATS(movs);
return 0;
}
/**
* movn_func - Emulate a MOVZ instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int movn_func(struct pt_regs *regs, u32 ir)
{
if (((regs->regs[MIPSInst_RT(ir)]) != 0) && MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)];
MIPS_R2_STATS(movs);
return 0;
}
/**
* mfhi_func - Emulate a MFHI instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int mfhi_func(struct pt_regs *regs, u32 ir)
{
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] = regs->hi;
MIPS_R2_STATS(hilo);
return 0;
}
/**
* mthi_func - Emulate a MTHI instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int mthi_func(struct pt_regs *regs, u32 ir)
{
regs->hi = regs->regs[MIPSInst_RS(ir)];
MIPS_R2_STATS(hilo);
return 0;
}
/**
* mflo_func - Emulate a MFLO instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int mflo_func(struct pt_regs *regs, u32 ir)
{
if (MIPSInst_RD(ir))
regs->regs[MIPSInst_RD(ir)] = regs->lo;
MIPS_R2_STATS(hilo);
return 0;
}
/**
* mtlo_func - Emulate a MTLO instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int mtlo_func(struct pt_regs *regs, u32 ir)
{
regs->lo = regs->regs[MIPSInst_RS(ir)];
MIPS_R2_STATS(hilo);
return 0;
}
/**
* mult_func - Emulate a MULT instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int mult_func(struct pt_regs *regs, u32 ir)
{
s64 res;
s32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = (s64)rt * (s64)rs;
rs = res;
regs->lo = (s64)rs;
rt = res >> 32;
res = (s64)rt;
regs->hi = res;
MIPS_R2_STATS(muls);
return 0;
}
/**
* multu_func - Emulate a MULTU instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int multu_func(struct pt_regs *regs, u32 ir)
{
u64 res;
u32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = (u64)rt * (u64)rs;
rt = res;
regs->lo = (s64)rt;
regs->hi = (s64)(res >> 32);
MIPS_R2_STATS(muls);
return 0;
}
/**
* div_func - Emulate a DIV instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int div_func(struct pt_regs *regs, u32 ir)
{
s32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
regs->lo = (s64)(rs / rt);
regs->hi = (s64)(rs % rt);
MIPS_R2_STATS(divs);
return 0;
}
/**
* divu_func - Emulate a DIVU instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int divu_func(struct pt_regs *regs, u32 ir)
{
u32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
regs->lo = (s64)(rs / rt);
regs->hi = (s64)(rs % rt);
MIPS_R2_STATS(divs);
return 0;
}
/**
* dmult_func - Emulate a DMULT instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 on success or SIGILL for 32-bit kernels.
*/
static int dmult_func(struct pt_regs *regs, u32 ir)
{
s64 res;
s64 rt, rs;
if (config_enabled(CONFIG_32BIT))
return SIGILL;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = rt * rs;
regs->lo = res;
__asm__ __volatile__(
"dmuh %0, %1, %2\t\n"
: "=r"(res)
: "r"(rt), "r"(rs));
regs->hi = res;
MIPS_R2_STATS(muls);
return 0;
}
/**
* dmultu_func - Emulate a DMULTU instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 on success or SIGILL for 32-bit kernels.
*/
static int dmultu_func(struct pt_regs *regs, u32 ir)
{
u64 res;
u64 rt, rs;
if (config_enabled(CONFIG_32BIT))
return SIGILL;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = rt * rs;
regs->lo = res;
__asm__ __volatile__(
"dmuhu %0, %1, %2\t\n"
: "=r"(res)
: "r"(rt), "r"(rs));
regs->hi = res;
MIPS_R2_STATS(muls);
return 0;
}
/**
* ddiv_func - Emulate a DDIV instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 on success or SIGILL for 32-bit kernels.
*/
static int ddiv_func(struct pt_regs *regs, u32 ir)
{
s64 rt, rs;
if (config_enabled(CONFIG_32BIT))
return SIGILL;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
regs->lo = rs / rt;
regs->hi = rs % rt;
MIPS_R2_STATS(divs);
return 0;
}
/**
* ddivu_func - Emulate a DDIVU instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 on success or SIGILL for 32-bit kernels.
*/
static int ddivu_func(struct pt_regs *regs, u32 ir)
{
u64 rt, rs;
if (config_enabled(CONFIG_32BIT))
return SIGILL;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
regs->lo = rs / rt;
regs->hi = rs % rt;
MIPS_R2_STATS(divs);
return 0;
}
/* R6 removed instructions for the SPECIAL opcode */
static struct r2_decoder_table spec_op_table[] = {
{ 0xfc1ff83f, 0x00000008, jr_func },
{ 0xfc00ffff, 0x00000018, mult_func },
{ 0xfc00ffff, 0x00000019, multu_func },
{ 0xfc00ffff, 0x0000001c, dmult_func },
{ 0xfc00ffff, 0x0000001d, dmultu_func },
{ 0xffff07ff, 0x00000010, mfhi_func },
{ 0xfc1fffff, 0x00000011, mthi_func },
{ 0xffff07ff, 0x00000012, mflo_func },
{ 0xfc1fffff, 0x00000013, mtlo_func },
{ 0xfc0307ff, 0x00000001, movf_func },
{ 0xfc0307ff, 0x00010001, movt_func },
{ 0xfc0007ff, 0x0000000a, movz_func },
{ 0xfc0007ff, 0x0000000b, movn_func },
{ 0xfc00ffff, 0x0000001a, div_func },
{ 0xfc00ffff, 0x0000001b, divu_func },
{ 0xfc00ffff, 0x0000001e, ddiv_func },
{ 0xfc00ffff, 0x0000001f, ddivu_func },
{}
};
/**
* madd_func - Emulate a MADD instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int madd_func(struct pt_regs *regs, u32 ir)
{
s64 res;
s32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = (s64)rt * (s64)rs;
rt = regs->hi;
rs = regs->lo;
res += ((((s64)rt) << 32) | (u32)rs);
rt = res;
regs->lo = (s64)rt;
rs = res >> 32;
regs->hi = (s64)rs;
MIPS_R2_STATS(dsps);
return 0;
}
/**
* maddu_func - Emulate a MADDU instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int maddu_func(struct pt_regs *regs, u32 ir)
{
u64 res;
u32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = (u64)rt * (u64)rs;
rt = regs->hi;
rs = regs->lo;
res += ((((s64)rt) << 32) | (u32)rs);
rt = res;
regs->lo = (s64)rt;
rs = res >> 32;
regs->hi = (s64)rs;
MIPS_R2_STATS(dsps);
return 0;
}
/**
* msub_func - Emulate a MSUB instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int msub_func(struct pt_regs *regs, u32 ir)
{
s64 res;
s32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = (s64)rt * (s64)rs;
rt = regs->hi;
rs = regs->lo;
res = ((((s64)rt) << 32) | (u32)rs) - res;
rt = res;
regs->lo = (s64)rt;
rs = res >> 32;
regs->hi = (s64)rs;
MIPS_R2_STATS(dsps);
return 0;
}
/**
* msubu_func - Emulate a MSUBU instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int msubu_func(struct pt_regs *regs, u32 ir)
{
u64 res;
u32 rt, rs;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = (u64)rt * (u64)rs;
rt = regs->hi;
rs = regs->lo;
res = ((((s64)rt) << 32) | (u32)rs) - res;
rt = res;
regs->lo = (s64)rt;
rs = res >> 32;
regs->hi = (s64)rs;
MIPS_R2_STATS(dsps);
return 0;
}
/**
* mul_func - Emulate a MUL instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int mul_func(struct pt_regs *regs, u32 ir)
{
s64 res;
s32 rt, rs;
if (!MIPSInst_RD(ir))
return 0;
rt = regs->regs[MIPSInst_RT(ir)];
rs = regs->regs[MIPSInst_RS(ir)];
res = (s64)rt * (s64)rs;
rs = res;
regs->regs[MIPSInst_RD(ir)] = (s64)rs;
MIPS_R2_STATS(muls);
return 0;
}
/**
* clz_func - Emulate a CLZ instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int clz_func(struct pt_regs *regs, u32 ir)
{
u32 res;
u32 rs;
if (!MIPSInst_RD(ir))
return 0;
rs = regs->regs[MIPSInst_RS(ir)];
__asm__ __volatile__("clz %0, %1" : "=r"(res) : "r"(rs));
regs->regs[MIPSInst_RD(ir)] = res;
MIPS_R2_STATS(bops);
return 0;
}
/**
* clo_func - Emulate a CLO instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int clo_func(struct pt_regs *regs, u32 ir)
{
u32 res;
u32 rs;
if (!MIPSInst_RD(ir))
return 0;
rs = regs->regs[MIPSInst_RS(ir)];
__asm__ __volatile__("clo %0, %1" : "=r"(res) : "r"(rs));
regs->regs[MIPSInst_RD(ir)] = res;
MIPS_R2_STATS(bops);
return 0;
}
/**
* dclz_func - Emulate a DCLZ instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int dclz_func(struct pt_regs *regs, u32 ir)
{
u64 res;
u64 rs;
if (config_enabled(CONFIG_32BIT))
return SIGILL;
if (!MIPSInst_RD(ir))
return 0;
rs = regs->regs[MIPSInst_RS(ir)];
__asm__ __volatile__("dclz %0, %1" : "=r"(res) : "r"(rs));
regs->regs[MIPSInst_RD(ir)] = res;
MIPS_R2_STATS(bops);
return 0;
}
/**
* dclo_func - Emulate a DCLO instruction
* @regs: Process register set
* @ir: Instruction
*
* Returns 0 since it always succeeds.
*/
static int dclo_func(struct pt_regs *regs, u32 ir)
{
u64 res;
u64 rs;
if (config_enabled(CONFIG_32BIT))
return SIGILL;
if (!MIPSInst_RD(ir))
return 0;
rs = regs->regs[MIPSInst_RS(ir)];
__asm__ __volatile__("dclo %0, %1" : "=r"(res) : "r"(rs));
regs->regs[MIPSInst_RD(ir)] = res;
MIPS_R2_STATS(bops);
return 0;
}
/* R6 removed instructions for the SPECIAL2 opcode */
static struct r2_decoder_table spec2_op_table[] = {
{ 0xfc00ffff, 0x70000000, madd_func },
{ 0xfc00ffff, 0x70000001, maddu_func },
{ 0xfc0007ff, 0x70000002, mul_func },
{ 0xfc00ffff, 0x70000004, msub_func },
{ 0xfc00ffff, 0x70000005, msubu_func },
{ 0xfc0007ff, 0x70000020, clz_func },
{ 0xfc0007ff, 0x70000021, clo_func },
{ 0xfc0007ff, 0x70000024, dclz_func },
{ 0xfc0007ff, 0x70000025, dclo_func },
{ }
};
static inline int mipsr2_find_op_func(struct pt_regs *regs, u32 inst,
struct r2_decoder_table *table)
{
struct r2_decoder_table *p;
int err;
for (p = table; p->func; p++) {
if ((inst & p->mask) == p->code) {
err = (p->func)(regs, inst);
return err;
}
}
return SIGILL;
}
/**
* mipsr2_decoder: Decode and emulate a MIPS R2 instruction
* @regs: Process register set
* @inst: Instruction to decode and emulate
* @fcr31: Floating Point Control and Status Register returned
*/
int mipsr2_decoder(struct pt_regs *regs, u32 inst, unsigned long *fcr31)
{
int err = 0;
unsigned long vaddr;
u32 nir;
unsigned long cpc, epc, nepc, r31, res, rs, rt;
void __user *fault_addr = NULL;
int pass = 0;
repeat:
r31 = regs->regs[31];
epc = regs->cp0_epc;
err = compute_return_epc(regs);
if (err < 0) {
BUG();
return SIGEMT;
}
pr_debug("Emulating the 0x%08x R2 instruction @ 0x%08lx (pass=%d))\n",
inst, epc, pass);
switch (MIPSInst_OPCODE(inst)) {
case spec_op:
err = mipsr2_find_op_func(regs, inst, spec_op_table);
if (err < 0) {
/* FPU instruction under JR */
regs->cp0_cause |= CAUSEF_BD;
goto fpu_emul;
}
break;
case spec2_op:
err = mipsr2_find_op_func(regs, inst, spec2_op_table);
break;
case bcond_op:
rt = MIPSInst_RT(inst);
rs = MIPSInst_RS(inst);
switch (rt) {
case tgei_op:
if ((long)regs->regs[rs] >= MIPSInst_SIMM(inst))
do_trap_or_bp(regs, 0, 0, "TGEI");
MIPS_R2_STATS(traps);
break;
case tgeiu_op:
if (regs->regs[rs] >= MIPSInst_UIMM(inst))
do_trap_or_bp(regs, 0, 0, "TGEIU");
MIPS_R2_STATS(traps);
break;
case tlti_op:
if ((long)regs->regs[rs] < MIPSInst_SIMM(inst))
do_trap_or_bp(regs, 0, 0, "TLTI");
MIPS_R2_STATS(traps);
break;
case tltiu_op:
if (regs->regs[rs] < MIPSInst_UIMM(inst))
do_trap_or_bp(regs, 0, 0, "TLTIU");
MIPS_R2_STATS(traps);
break;
case teqi_op:
if (regs->regs[rs] == MIPSInst_SIMM(inst))
do_trap_or_bp(regs, 0, 0, "TEQI");
MIPS_R2_STATS(traps);
break;
case tnei_op:
if (regs->regs[rs] != MIPSInst_SIMM(inst))
do_trap_or_bp(regs, 0, 0, "TNEI");
MIPS_R2_STATS(traps);
break;
case bltzl_op:
case bgezl_op:
case bltzall_op:
case bgezall_op:
if (delay_slot(regs)) {
err = SIGILL;
break;
}
regs->regs[31] = r31;
regs->cp0_epc = epc;
err = __compute_return_epc(regs);
if (err < 0)
return SIGEMT;
if (err != BRANCH_LIKELY_TAKEN)
break;
cpc = regs->cp0_epc;
nepc = epc + 4;
err = __get_user(nir, (u32 __user *)nepc);
if (err) {
err = SIGSEGV;
break;
}
/*
* This will probably be optimized away when
* CONFIG_DEBUG_FS is not enabled
*/
switch (rt) {
case bltzl_op:
MIPS_R2BR_STATS(bltzl);
break;
case bgezl_op:
MIPS_R2BR_STATS(bgezl);
break;
case bltzall_op:
MIPS_R2BR_STATS(bltzall);
break;
case bgezall_op:
MIPS_R2BR_STATS(bgezall);
break;
}
switch (MIPSInst_OPCODE(nir)) {
case cop1_op:
case cop1x_op:
case lwc1_op:
case swc1_op:
regs->cp0_cause |= CAUSEF_BD;
goto fpu_emul;
}
if (nir) {
err = mipsr6_emul(regs, nir);
if (err > 0) {
err = mips_dsemul(regs, nir, cpc);
if (err == SIGILL)
err = SIGEMT;
MIPS_R2_STATS(dsemul);
}
}
break;
case bltzal_op:
case bgezal_op:
if (delay_slot(regs)) {
err = SIGILL;
break;
}
regs->regs[31] = r31;
regs->cp0_epc = epc;
err = __compute_return_epc(regs);
if (err < 0)
return SIGEMT;
cpc = regs->cp0_epc;
nepc = epc + 4;
err = __get_user(nir, (u32 __user *)nepc);
if (err) {
err = SIGSEGV;
break;
}
/*
* This will probably be optimized away when
* CONFIG_DEBUG_FS is not enabled
*/
switch (rt) {
case bltzal_op:
MIPS_R2BR_STATS(bltzal);
break;
case bgezal_op:
MIPS_R2BR_STATS(bgezal);
break;
}
switch (MIPSInst_OPCODE(nir)) {
case cop1_op:
case cop1x_op:
case lwc1_op:
case swc1_op:
regs->cp0_cause |= CAUSEF_BD;
goto fpu_emul;
}
if (nir) {
err = mipsr6_emul(regs, nir);
if (err > 0) {
err = mips_dsemul(regs, nir, cpc);
if (err == SIGILL)
err = SIGEMT;
MIPS_R2_STATS(dsemul);
}
}
break;
default:
regs->regs[31] = r31;
regs->cp0_epc = epc;
err = SIGILL;
break;
}
break;
case beql_op:
case bnel_op:
case blezl_op:
case bgtzl_op:
if (delay_slot(regs)) {
err = SIGILL;
break;
}
regs->regs[31] = r31;
regs->cp0_epc = epc;
err = __compute_return_epc(regs);
if (err < 0)
return SIGEMT;
if (err != BRANCH_LIKELY_TAKEN)
break;
cpc = regs->cp0_epc;
nepc = epc + 4;
err = __get_user(nir, (u32 __user *)nepc);
if (err) {
err = SIGSEGV;
break;
}
/*
* This will probably be optimized away when
* CONFIG_DEBUG_FS is not enabled
*/
switch (MIPSInst_OPCODE(inst)) {
case beql_op:
MIPS_R2BR_STATS(beql);
break;
case bnel_op:
MIPS_R2BR_STATS(bnel);
break;
case blezl_op:
MIPS_R2BR_STATS(blezl);
break;
case bgtzl_op:
MIPS_R2BR_STATS(bgtzl);
break;
}
switch (MIPSInst_OPCODE(nir)) {
case cop1_op:
case cop1x_op:
case lwc1_op:
case swc1_op:
regs->cp0_cause |= CAUSEF_BD;
goto fpu_emul;
}
if (nir) {
err = mipsr6_emul(regs, nir);
if (err > 0) {
err = mips_dsemul(regs, nir, cpc);
if (err == SIGILL)
err = SIGEMT;
MIPS_R2_STATS(dsemul);
}
}
break;
case lwc1_op:
case swc1_op:
case cop1_op:
case cop1x_op:
fpu_emul:
regs->regs[31] = r31;
regs->cp0_epc = epc;
if (!used_math()) { /* First time FPU user. */
err = init_fpu();
set_used_math();
}
lose_fpu(1); /* Save FPU state for the emulator. */
err = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
&fault_addr);
*fcr31 = current->thread.fpu.fcr31;
/*
* We can't allow the emulated instruction to leave any of
* the cause bits set in $fcr31.
*/
current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
/*
* this is a tricky issue - lose_fpu() uses LL/SC atomics
* if FPU is owned and effectively cancels user level LL/SC.
* So, it could be logical to don't restore FPU ownership here.
* But the sequence of multiple FPU instructions is much much
* more often than LL-FPU-SC and I prefer loop here until
* next scheduler cycle cancels FPU ownership
*/
own_fpu(1); /* Restore FPU state. */
if (err)
current->thread.cp0_baduaddr = (unsigned long)fault_addr;
MIPS_R2_STATS(fpus);
break;
case lwl_op:
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_READ, vaddr, 4)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
"1:" LB "%1, 0(%2)\n"
INS "%0, %1, 24, 8\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
"2:" LB "%1, 0(%2)\n"
INS "%0, %1, 16, 8\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
"3:" LB "%1, 0(%2)\n"
INS "%0, %1, 8, 8\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
"4:" LB "%1, 0(%2)\n"
INS "%0, %1, 0, 8\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
"1:" LB "%1, 0(%2)\n"
INS "%0, %1, 24, 8\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
"2:" LB "%1, 0(%2)\n"
INS "%0, %1, 16, 8\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
"3:" LB "%1, 0(%2)\n"
INS "%0, %1, 8, 8\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
"4:" LB "%1, 0(%2)\n"
INS "%0, %1, 0, 8\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9: sll %0, %0, 0\n"
"10:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 10b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV));
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = rt;
MIPS_R2_STATS(loads);
break;
case lwr_op:
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_READ, vaddr, 4)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
"1:" LB "%1, 0(%2)\n"
INS "%0, %1, 0, 8\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
"2:" LB "%1, 0(%2)\n"
INS "%0, %1, 8, 8\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
"3:" LB "%1, 0(%2)\n"
INS "%0, %1, 16, 8\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
"4:" LB "%1, 0(%2)\n"
INS "%0, %1, 24, 8\n"
" sll %0, %0, 0\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
"1:" LB "%1, 0(%2)\n"
INS "%0, %1, 0, 8\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
"2:" LB "%1, 0(%2)\n"
INS "%0, %1, 8, 8\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
"3:" LB "%1, 0(%2)\n"
INS "%0, %1, 16, 8\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
"4:" LB "%1, 0(%2)\n"
INS "%0, %1, 24, 8\n"
" sll %0, %0, 0\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9:\n"
"10:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 10b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV));
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = rt;
MIPS_R2_STATS(loads);
break;
case swl_op:
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_WRITE, vaddr, 4)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
EXT "%1, %0, 24, 8\n"
"1:" SB "%1, 0(%2)\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
EXT "%1, %0, 16, 8\n"
"2:" SB "%1, 0(%2)\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
EXT "%1, %0, 8, 8\n"
"3:" SB "%1, 0(%2)\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
EXT "%1, %0, 0, 8\n"
"4:" SB "%1, 0(%2)\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
EXT "%1, %0, 24, 8\n"
"1:" SB "%1, 0(%2)\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
EXT "%1, %0, 16, 8\n"
"2:" SB "%1, 0(%2)\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
EXT "%1, %0, 8, 8\n"
"3:" SB "%1, 0(%2)\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
EXT "%1, %0, 0, 8\n"
"4:" SB "%1, 0(%2)\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 9b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV)
: "memory");
MIPS_R2_STATS(stores);
break;
case swr_op:
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_WRITE, vaddr, 4)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
EXT "%1, %0, 0, 8\n"
"1:" SB "%1, 0(%2)\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
EXT "%1, %0, 8, 8\n"
"2:" SB "%1, 0(%2)\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
EXT "%1, %0, 16, 8\n"
"3:" SB "%1, 0(%2)\n"
ADDIU "%2, %2, 1\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
EXT "%1, %0, 24, 8\n"
"4:" SB "%1, 0(%2)\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
EXT "%1, %0, 0, 8\n"
"1:" SB "%1, 0(%2)\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
EXT "%1, %0, 8, 8\n"
"2:" SB "%1, 0(%2)\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
EXT "%1, %0, 16, 8\n"
"3:" SB "%1, 0(%2)\n"
" andi %1, %2, 0x3\n"
" beq $0, %1, 9f\n"
ADDIU "%2, %2, -1\n"
EXT "%1, %0, 24, 8\n"
"4:" SB "%1, 0(%2)\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 9b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV)
: "memory");
MIPS_R2_STATS(stores);
break;
case ldl_op:
if (config_enabled(CONFIG_32BIT)) {
err = SIGILL;
break;
}
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_READ, vaddr, 8)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
"1: lb %1, 0(%2)\n"
" dinsu %0, %1, 56, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"2: lb %1, 0(%2)\n"
" dinsu %0, %1, 48, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"3: lb %1, 0(%2)\n"
" dinsu %0, %1, 40, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"4: lb %1, 0(%2)\n"
" dinsu %0, %1, 32, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"5: lb %1, 0(%2)\n"
" dins %0, %1, 24, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"6: lb %1, 0(%2)\n"
" dins %0, %1, 16, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"7: lb %1, 0(%2)\n"
" dins %0, %1, 8, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"0: lb %1, 0(%2)\n"
" dins %0, %1, 0, 8\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
"1: lb %1, 0(%2)\n"
" dinsu %0, %1, 56, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"2: lb %1, 0(%2)\n"
" dinsu %0, %1, 48, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"3: lb %1, 0(%2)\n"
" dinsu %0, %1, 40, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"4: lb %1, 0(%2)\n"
" dinsu %0, %1, 32, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"5: lb %1, 0(%2)\n"
" dins %0, %1, 24, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"6: lb %1, 0(%2)\n"
" dins %0, %1, 16, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"7: lb %1, 0(%2)\n"
" dins %0, %1, 8, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"0: lb %1, 0(%2)\n"
" dins %0, %1, 0, 8\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 9b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
STR(PTR) " 5b,8b\n"
STR(PTR) " 6b,8b\n"
STR(PTR) " 7b,8b\n"
STR(PTR) " 0b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV));
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = rt;
MIPS_R2_STATS(loads);
break;
case ldr_op:
if (config_enabled(CONFIG_32BIT)) {
err = SIGILL;
break;
}
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_READ, vaddr, 8)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
"1: lb %1, 0(%2)\n"
" dins %0, %1, 0, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"2: lb %1, 0(%2)\n"
" dins %0, %1, 8, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"3: lb %1, 0(%2)\n"
" dins %0, %1, 16, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"4: lb %1, 0(%2)\n"
" dins %0, %1, 24, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"5: lb %1, 0(%2)\n"
" dinsu %0, %1, 32, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"6: lb %1, 0(%2)\n"
" dinsu %0, %1, 40, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"7: lb %1, 0(%2)\n"
" dinsu %0, %1, 48, 8\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
"0: lb %1, 0(%2)\n"
" dinsu %0, %1, 56, 8\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
"1: lb %1, 0(%2)\n"
" dins %0, %1, 0, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"2: lb %1, 0(%2)\n"
" dins %0, %1, 8, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"3: lb %1, 0(%2)\n"
" dins %0, %1, 16, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"4: lb %1, 0(%2)\n"
" dins %0, %1, 24, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"5: lb %1, 0(%2)\n"
" dinsu %0, %1, 32, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"6: lb %1, 0(%2)\n"
" dinsu %0, %1, 40, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"7: lb %1, 0(%2)\n"
" dinsu %0, %1, 48, 8\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
"0: lb %1, 0(%2)\n"
" dinsu %0, %1, 56, 8\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 9b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
STR(PTR) " 5b,8b\n"
STR(PTR) " 6b,8b\n"
STR(PTR) " 7b,8b\n"
STR(PTR) " 0b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV));
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = rt;
MIPS_R2_STATS(loads);
break;
case sdl_op:
if (config_enabled(CONFIG_32BIT)) {
err = SIGILL;
break;
}
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_WRITE, vaddr, 8)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
" dextu %1, %0, 56, 8\n"
"1: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dextu %1, %0, 48, 8\n"
"2: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dextu %1, %0, 40, 8\n"
"3: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dextu %1, %0, 32, 8\n"
"4: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dext %1, %0, 24, 8\n"
"5: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dext %1, %0, 16, 8\n"
"6: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dext %1, %0, 8, 8\n"
"7: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dext %1, %0, 0, 8\n"
"0: sb %1, 0(%2)\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
" dextu %1, %0, 56, 8\n"
"1: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dextu %1, %0, 48, 8\n"
"2: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dextu %1, %0, 40, 8\n"
"3: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dextu %1, %0, 32, 8\n"
"4: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dext %1, %0, 24, 8\n"
"5: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dext %1, %0, 16, 8\n"
"6: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dext %1, %0, 8, 8\n"
"7: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dext %1, %0, 0, 8\n"
"0: sb %1, 0(%2)\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 9b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
STR(PTR) " 5b,8b\n"
STR(PTR) " 6b,8b\n"
STR(PTR) " 7b,8b\n"
STR(PTR) " 0b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV)
: "memory");
MIPS_R2_STATS(stores);
break;
case sdr_op:
if (config_enabled(CONFIG_32BIT)) {
err = SIGILL;
break;
}
rt = regs->regs[MIPSInst_RT(inst)];
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (!access_ok(VERIFY_WRITE, vaddr, 8)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGSEGV;
break;
}
__asm__ __volatile__(
" .set push\n"
" .set reorder\n"
#ifdef CONFIG_CPU_LITTLE_ENDIAN
" dext %1, %0, 0, 8\n"
"1: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dext %1, %0, 8, 8\n"
"2: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dext %1, %0, 16, 8\n"
"3: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dext %1, %0, 24, 8\n"
"4: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dextu %1, %0, 32, 8\n"
"5: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dextu %1, %0, 40, 8\n"
"6: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dextu %1, %0, 48, 8\n"
"7: sb %1, 0(%2)\n"
" daddiu %2, %2, 1\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" dextu %1, %0, 56, 8\n"
"0: sb %1, 0(%2)\n"
#else /* !CONFIG_CPU_LITTLE_ENDIAN */
" dext %1, %0, 0, 8\n"
"1: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dext %1, %0, 8, 8\n"
"2: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dext %1, %0, 16, 8\n"
"3: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dext %1, %0, 24, 8\n"
"4: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dextu %1, %0, 32, 8\n"
"5: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dextu %1, %0, 40, 8\n"
"6: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dextu %1, %0, 48, 8\n"
"7: sb %1, 0(%2)\n"
" andi %1, %2, 0x7\n"
" beq $0, %1, 9f\n"
" daddiu %2, %2, -1\n"
" dextu %1, %0, 56, 8\n"
"0: sb %1, 0(%2)\n"
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
"9:\n"
" .insn\n"
" .section .fixup,\"ax\"\n"
"8: li %3,%4\n"
" j 9b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
STR(PTR) " 1b,8b\n"
STR(PTR) " 2b,8b\n"
STR(PTR) " 3b,8b\n"
STR(PTR) " 4b,8b\n"
STR(PTR) " 5b,8b\n"
STR(PTR) " 6b,8b\n"
STR(PTR) " 7b,8b\n"
STR(PTR) " 0b,8b\n"
" .previous\n"
" .set pop\n"
: "+&r"(rt), "=&r"(rs),
"+&r"(vaddr), "+&r"(err)
: "i"(SIGSEGV)
: "memory");
MIPS_R2_STATS(stores);
break;
case ll_op:
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (vaddr & 0x3) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!access_ok(VERIFY_READ, vaddr, 4)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!cpu_has_rw_llb) {
/*
* An LL/SC block can't be safely emulated without
* a Config5/LLB availability. So it's probably time to
* kill our process before things get any worse. This is
* because Config5/LLB allows us to use ERETNC so that
* the LLAddr/LLB bit is not cleared when we return from
* an exception. MIPS R2 LL/SC instructions trap with an
* RI exception so once we emulate them here, we return
* back to userland with ERETNC. That preserves the
* LLAddr/LLB so the subsequent SC instruction will
* succeed preserving the atomic semantics of the LL/SC
* block. Without that, there is no safe way to emulate
* an LL/SC block in MIPSR2 userland.
*/
pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n");
err = SIGKILL;
break;
}
__asm__ __volatile__(
"1:\n"
"ll %0, 0(%2)\n"
"2:\n"
".insn\n"
".section .fixup,\"ax\"\n"
"3:\n"
"li %1, %3\n"
"j 2b\n"
".previous\n"
".section __ex_table,\"a\"\n"
STR(PTR) " 1b,3b\n"
".previous\n"
: "=&r"(res), "+&r"(err)
: "r"(vaddr), "i"(SIGSEGV)
: "memory");
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = res;
MIPS_R2_STATS(llsc);
break;
case sc_op:
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (vaddr & 0x3) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!access_ok(VERIFY_WRITE, vaddr, 4)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!cpu_has_rw_llb) {
/*
* An LL/SC block can't be safely emulated without
* a Config5/LLB availability. So it's probably time to
* kill our process before things get any worse. This is
* because Config5/LLB allows us to use ERETNC so that
* the LLAddr/LLB bit is not cleared when we return from
* an exception. MIPS R2 LL/SC instructions trap with an
* RI exception so once we emulate them here, we return
* back to userland with ERETNC. That preserves the
* LLAddr/LLB so the subsequent SC instruction will
* succeed preserving the atomic semantics of the LL/SC
* block. Without that, there is no safe way to emulate
* an LL/SC block in MIPSR2 userland.
*/
pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n");
err = SIGKILL;
break;
}
res = regs->regs[MIPSInst_RT(inst)];
__asm__ __volatile__(
"1:\n"
"sc %0, 0(%2)\n"
"2:\n"
".insn\n"
".section .fixup,\"ax\"\n"
"3:\n"
"li %1, %3\n"
"j 2b\n"
".previous\n"
".section __ex_table,\"a\"\n"
STR(PTR) " 1b,3b\n"
".previous\n"
: "+&r"(res), "+&r"(err)
: "r"(vaddr), "i"(SIGSEGV));
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = res;
MIPS_R2_STATS(llsc);
break;
case lld_op:
if (config_enabled(CONFIG_32BIT)) {
err = SIGILL;
break;
}
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (vaddr & 0x7) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!access_ok(VERIFY_READ, vaddr, 8)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!cpu_has_rw_llb) {
/*
* An LL/SC block can't be safely emulated without
* a Config5/LLB availability. So it's probably time to
* kill our process before things get any worse. This is
* because Config5/LLB allows us to use ERETNC so that
* the LLAddr/LLB bit is not cleared when we return from
* an exception. MIPS R2 LL/SC instructions trap with an
* RI exception so once we emulate them here, we return
* back to userland with ERETNC. That preserves the
* LLAddr/LLB so the subsequent SC instruction will
* succeed preserving the atomic semantics of the LL/SC
* block. Without that, there is no safe way to emulate
* an LL/SC block in MIPSR2 userland.
*/
pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n");
err = SIGKILL;
break;
}
__asm__ __volatile__(
"1:\n"
"lld %0, 0(%2)\n"
"2:\n"
".insn\n"
".section .fixup,\"ax\"\n"
"3:\n"
"li %1, %3\n"
"j 2b\n"
".previous\n"
".section __ex_table,\"a\"\n"
STR(PTR) " 1b,3b\n"
".previous\n"
: "=&r"(res), "+&r"(err)
: "r"(vaddr), "i"(SIGSEGV)
: "memory");
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = res;
MIPS_R2_STATS(llsc);
break;
case scd_op:
if (config_enabled(CONFIG_32BIT)) {
err = SIGILL;
break;
}
vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst);
if (vaddr & 0x7) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!access_ok(VERIFY_WRITE, vaddr, 8)) {
current->thread.cp0_baduaddr = vaddr;
err = SIGBUS;
break;
}
if (!cpu_has_rw_llb) {
/*
* An LL/SC block can't be safely emulated without
* a Config5/LLB availability. So it's probably time to
* kill our process before things get any worse. This is
* because Config5/LLB allows us to use ERETNC so that
* the LLAddr/LLB bit is not cleared when we return from
* an exception. MIPS R2 LL/SC instructions trap with an
* RI exception so once we emulate them here, we return
* back to userland with ERETNC. That preserves the
* LLAddr/LLB so the subsequent SC instruction will
* succeed preserving the atomic semantics of the LL/SC
* block. Without that, there is no safe way to emulate
* an LL/SC block in MIPSR2 userland.
*/
pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n");
err = SIGKILL;
break;
}
res = regs->regs[MIPSInst_RT(inst)];
__asm__ __volatile__(
"1:\n"
"scd %0, 0(%2)\n"
"2:\n"
".insn\n"
".section .fixup,\"ax\"\n"
"3:\n"
"li %1, %3\n"
"j 2b\n"
".previous\n"
".section __ex_table,\"a\"\n"
STR(PTR) " 1b,3b\n"
".previous\n"
: "+&r"(res), "+&r"(err)
: "r"(vaddr), "i"(SIGSEGV));
if (MIPSInst_RT(inst) && !err)
regs->regs[MIPSInst_RT(inst)] = res;
MIPS_R2_STATS(llsc);
break;
case pref_op:
/* skip it */
break;
default:
err = SIGILL;
}
/*
* Let's not return to userland just yet. It's costly and
* it's likely we have more R2 instructions to emulate
*/
if (!err && (pass++ < MIPS_R2_EMUL_TOTAL_PASS)) {
regs->cp0_cause &= ~CAUSEF_BD;
err = get_user(inst, (u32 __user *)regs->cp0_epc);
if (!err)
goto repeat;
if (err < 0)
err = SIGSEGV;
}
if (err && (err != SIGEMT)) {
regs->regs[31] = r31;
regs->cp0_epc = epc;
}
/* Likely a MIPS R6 compatible instruction */
if (pass && (err == SIGILL))
err = 0;
return err;
}
#ifdef CONFIG_DEBUG_FS
static int mipsr2_stats_show(struct seq_file *s, void *unused)
{
seq_printf(s, "Instruction\tTotal\tBDslot\n------------------------------\n");
seq_printf(s, "movs\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.movs),
(unsigned long)__this_cpu_read(mipsr2bdemustats.movs));
seq_printf(s, "hilo\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.hilo),
(unsigned long)__this_cpu_read(mipsr2bdemustats.hilo));
seq_printf(s, "muls\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.muls),
(unsigned long)__this_cpu_read(mipsr2bdemustats.muls));
seq_printf(s, "divs\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.divs),
(unsigned long)__this_cpu_read(mipsr2bdemustats.divs));
seq_printf(s, "dsps\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.dsps),
(unsigned long)__this_cpu_read(mipsr2bdemustats.dsps));
seq_printf(s, "bops\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.bops),
(unsigned long)__this_cpu_read(mipsr2bdemustats.bops));
seq_printf(s, "traps\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.traps),
(unsigned long)__this_cpu_read(mipsr2bdemustats.traps));
seq_printf(s, "fpus\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.fpus),
(unsigned long)__this_cpu_read(mipsr2bdemustats.fpus));
seq_printf(s, "loads\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.loads),
(unsigned long)__this_cpu_read(mipsr2bdemustats.loads));
seq_printf(s, "stores\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.stores),
(unsigned long)__this_cpu_read(mipsr2bdemustats.stores));
seq_printf(s, "llsc\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.llsc),
(unsigned long)__this_cpu_read(mipsr2bdemustats.llsc));
seq_printf(s, "dsemul\t\t%ld\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2emustats.dsemul),
(unsigned long)__this_cpu_read(mipsr2bdemustats.dsemul));
seq_printf(s, "jr\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.jrs));
seq_printf(s, "bltzl\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bltzl));
seq_printf(s, "bgezl\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bgezl));
seq_printf(s, "bltzll\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bltzll));
seq_printf(s, "bgezll\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bgezll));
seq_printf(s, "bltzal\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bltzal));
seq_printf(s, "bgezal\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bgezal));
seq_printf(s, "beql\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.beql));
seq_printf(s, "bnel\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bnel));
seq_printf(s, "blezl\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.blezl));
seq_printf(s, "bgtzl\t\t%ld\n",
(unsigned long)__this_cpu_read(mipsr2bremustats.bgtzl));
return 0;
}
static int mipsr2_stats_clear_show(struct seq_file *s, void *unused)
{
mipsr2_stats_show(s, unused);
__this_cpu_write((mipsr2emustats).movs, 0);
__this_cpu_write((mipsr2bdemustats).movs, 0);
__this_cpu_write((mipsr2emustats).hilo, 0);
__this_cpu_write((mipsr2bdemustats).hilo, 0);
__this_cpu_write((mipsr2emustats).muls, 0);
__this_cpu_write((mipsr2bdemustats).muls, 0);
__this_cpu_write((mipsr2emustats).divs, 0);
__this_cpu_write((mipsr2bdemustats).divs, 0);
__this_cpu_write((mipsr2emustats).dsps, 0);
__this_cpu_write((mipsr2bdemustats).dsps, 0);
__this_cpu_write((mipsr2emustats).bops, 0);
__this_cpu_write((mipsr2bdemustats).bops, 0);
__this_cpu_write((mipsr2emustats).traps, 0);
__this_cpu_write((mipsr2bdemustats).traps, 0);
__this_cpu_write((mipsr2emustats).fpus, 0);
__this_cpu_write((mipsr2bdemustats).fpus, 0);
__this_cpu_write((mipsr2emustats).loads, 0);
__this_cpu_write((mipsr2bdemustats).loads, 0);
__this_cpu_write((mipsr2emustats).stores, 0);
__this_cpu_write((mipsr2bdemustats).stores, 0);
__this_cpu_write((mipsr2emustats).llsc, 0);
__this_cpu_write((mipsr2bdemustats).llsc, 0);
__this_cpu_write((mipsr2emustats).dsemul, 0);
__this_cpu_write((mipsr2bdemustats).dsemul, 0);
__this_cpu_write((mipsr2bremustats).jrs, 0);
__this_cpu_write((mipsr2bremustats).bltzl, 0);
__this_cpu_write((mipsr2bremustats).bgezl, 0);
__this_cpu_write((mipsr2bremustats).bltzll, 0);
__this_cpu_write((mipsr2bremustats).bgezll, 0);
__this_cpu_write((mipsr2bremustats).bltzal, 0);
__this_cpu_write((mipsr2bremustats).bgezal, 0);
__this_cpu_write((mipsr2bremustats).beql, 0);
__this_cpu_write((mipsr2bremustats).bnel, 0);
__this_cpu_write((mipsr2bremustats).blezl, 0);
__this_cpu_write((mipsr2bremustats).bgtzl, 0);
return 0;
}
static int mipsr2_stats_open(struct inode *inode, struct file *file)
{
return single_open(file, mipsr2_stats_show, inode->i_private);
}
static int mipsr2_stats_clear_open(struct inode *inode, struct file *file)
{
return single_open(file, mipsr2_stats_clear_show, inode->i_private);
}
static const struct file_operations mipsr2_emul_fops = {
.open = mipsr2_stats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations mipsr2_clear_fops = {
.open = mipsr2_stats_clear_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init mipsr2_init_debugfs(void)
{
struct dentry *mipsr2_emul;
if (!mips_debugfs_dir)
return -ENODEV;
mipsr2_emul = debugfs_create_file("r2_emul_stats", S_IRUGO,
mips_debugfs_dir, NULL,
&mipsr2_emul_fops);
if (!mipsr2_emul)
return -ENOMEM;
mipsr2_emul = debugfs_create_file("r2_emul_stats_clear", S_IRUGO,
mips_debugfs_dir, NULL,
&mipsr2_clear_fops);
if (!mipsr2_emul)
return -ENOMEM;
return 0;
}
device_initcall(mipsr2_init_debugfs);
#endif /* CONFIG_DEBUG_FS */