linux/fs/bcachefs/six.c

888 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include <linux/export.h>
#include <linux/log2.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/sched/rt.h>
#include <linux/slab.h>
#include "six.h"
#ifdef DEBUG
#define EBUG_ON(cond) BUG_ON(cond)
#else
#define EBUG_ON(cond) do {} while (0)
#endif
#define six_acquire(l, t, r, ip) lock_acquire(l, 0, t, r, 1, NULL, ip)
#define six_release(l, ip) lock_release(l, ip)
static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type);
/*
* bits 0-26 reader count
* bits 26-27 write_locking (a thread is trying to get a write lock,
* but does not have one yet)
* bits 27-28 held for intent
* bits 28-29 nospin - optimistic spinning has timed out
* bits 29-30 has read waiters
* bits 30-31 has intent waiters
* bits 31-32 has write waiters
* bits 32-64 sequence number: incremented on every write lock or
* unlock, thus bit 33 (sequence number odd) indicates
* lock is currently held for write
*/
#define SIX_STATE_READ_OFFSET 0
#define SIX_STATE_READ_BITS 26
#define SIX_STATE_READ_LOCK ~(~0ULL << 26)
#define SIX_STATE_WRITE_LOCKING (1ULL << 26)
#define SIX_STATE_INTENT_HELD (1ULL << 27)
#define SIX_STATE_NOSPIN (1ULL << 28)
#define SIX_STATE_WAITING_READ (1ULL << (29 + SIX_LOCK_read))
#define SIX_STATE_WAITING_INTENT (1ULL << (29 + SIX_LOCK_intent))
#define SIX_STATE_WAITING_WRITE (1ULL << (29 + SIX_LOCK_write))
#define SIX_STATE_SEQ_OFFSET 32
#define SIX_STATE_SEQ_BITS 32
#define SIX_STATE_SEQ (~0ULL << 32)
#define SIX_LOCK_HELD_read SIX_STATE_READ_LOCK
#define SIX_LOCK_HELD_intent SIX_STATE_INTENT_HELD
#define SIX_LOCK_HELD_write (1ULL << SIX_STATE_SEQ_OFFSET)
struct six_lock_vals {
/* Value we add to the lock in order to take the lock: */
u64 lock_val;
/* If the lock has this value (used as a mask), taking the lock fails: */
u64 lock_fail;
/* Value we add to the lock in order to release the lock: */
u64 unlock_val;
/* Mask that indicates lock is held for this type: */
u64 held_mask;
/* Waitlist we wakeup when releasing the lock: */
enum six_lock_type unlock_wakeup;
};
#define LOCK_VALS { \
[SIX_LOCK_read] = { \
.lock_val = 1ULL << SIX_STATE_READ_OFFSET, \
.lock_fail = SIX_LOCK_HELD_write|SIX_STATE_WRITE_LOCKING,\
.unlock_val = -(1ULL << SIX_STATE_READ_OFFSET), \
.held_mask = SIX_LOCK_HELD_read, \
.unlock_wakeup = SIX_LOCK_write, \
}, \
[SIX_LOCK_intent] = { \
.lock_val = SIX_STATE_INTENT_HELD, \
.lock_fail = SIX_LOCK_HELD_intent, \
.unlock_val = -SIX_STATE_INTENT_HELD, \
.held_mask = SIX_LOCK_HELD_intent, \
.unlock_wakeup = SIX_LOCK_intent, \
}, \
[SIX_LOCK_write] = { \
.lock_val = SIX_LOCK_HELD_write, \
.lock_fail = SIX_LOCK_HELD_read, \
.unlock_val = SIX_LOCK_HELD_write, \
.held_mask = SIX_LOCK_HELD_write, \
.unlock_wakeup = SIX_LOCK_read, \
}, \
}
static inline u32 six_state_seq(u64 state)
{
return state >> SIX_STATE_SEQ_OFFSET;
}
#ifdef CONFIG_GENERIC_ATOMIC64
static inline void six_set_bitmask(struct six_lock *lock, u64 mask)
{
u64 old, new, v = atomic64_read(&lock->state);
do {
old = new = v;
if ((old & mask) == mask)
break;
new |= mask;
} while ((v = atomic64_cmpxchg(&lock->state, old, new)) != old);
}
static inline void six_clear_bitmask(struct six_lock *lock, u64 mask)
{
u64 old, new, v = atomic64_read(&lock->state);
do {
old = new = v;
if (!(old & mask))
break;
new &= ~mask;
} while ((v = atomic64_cmpxchg(&lock->state, old, new)) != old);
}
#else
/*
* Returns the index of the first set bit, treating @mask as an array of ulongs:
* that is, a bit index that can be passed to test_bit()/set_bit().
*
* Assumes the set bit we want is in the low 4 bytes:
*/
static inline unsigned u64_mask_to_ulong_bitnr(u64 mask)
{
#if BITS_PER_LONG == 64
return ilog2(mask);
#else
#if defined(__LITTLE_ENDIAN)
return ilog2((u32) mask);
#elif defined(__BIG_ENDIAN)
return ilog2((u32) mask) + 32;
#else
#error Unknown byteorder
#endif
#endif
}
static inline void six_set_bitmask(struct six_lock *lock, u64 mask)
{
unsigned bitnr = u64_mask_to_ulong_bitnr(mask);
if (!test_bit(bitnr, (unsigned long *) &lock->state))
set_bit(bitnr, (unsigned long *) &lock->state);
}
static inline void six_clear_bitmask(struct six_lock *lock, u64 mask)
{
unsigned bitnr = u64_mask_to_ulong_bitnr(mask);
if (test_bit(bitnr, (unsigned long *) &lock->state))
clear_bit(bitnr, (unsigned long *) &lock->state);
}
#endif
static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
u64 old, struct task_struct *owner)
{
if (type != SIX_LOCK_intent)
return;
if (!(old & SIX_LOCK_HELD_intent)) {
EBUG_ON(lock->owner);
lock->owner = owner;
} else {
EBUG_ON(lock->owner != current);
}
}
static inline unsigned pcpu_read_count(struct six_lock *lock)
{
unsigned read_count = 0;
int cpu;
for_each_possible_cpu(cpu)
read_count += *per_cpu_ptr(lock->readers, cpu);
return read_count;
}
static int __do_six_trylock_type(struct six_lock *lock,
enum six_lock_type type,
struct task_struct *task,
bool try)
{
const struct six_lock_vals l[] = LOCK_VALS;
int ret;
u64 old, new, v;
EBUG_ON(type == SIX_LOCK_write && lock->owner != task);
EBUG_ON(type == SIX_LOCK_write &&
(atomic64_read(&lock->state) & SIX_LOCK_HELD_write));
EBUG_ON(type == SIX_LOCK_write &&
(try != !(atomic64_read(&lock->state) & SIX_STATE_WRITE_LOCKING)));
/*
* Percpu reader mode:
*
* The basic idea behind this algorithm is that you can implement a lock
* between two threads without any atomics, just memory barriers:
*
* For two threads you'll need two variables, one variable for "thread a
* has the lock" and another for "thread b has the lock".
*
* To take the lock, a thread sets its variable indicating that it holds
* the lock, then issues a full memory barrier, then reads from the
* other thread's variable to check if the other thread thinks it has
* the lock. If we raced, we backoff and retry/sleep.
*/
if (type == SIX_LOCK_read && lock->readers) {
preempt_disable();
this_cpu_inc(*lock->readers); /* signal that we own lock */
smp_mb();
old = atomic64_read(&lock->state);
ret = !(old & l[type].lock_fail);
this_cpu_sub(*lock->readers, !ret);
preempt_enable();
/*
* If we failed because a writer was trying to take the
* lock, issue a wakeup because we might have caused a
* spurious trylock failure:
*/
if (old & SIX_STATE_WRITE_LOCKING)
ret = -1 - SIX_LOCK_write;
} else if (type == SIX_LOCK_write && lock->readers) {
if (try) {
atomic64_add(SIX_STATE_WRITE_LOCKING,
&lock->state);
smp_mb__after_atomic();
}
ret = !pcpu_read_count(lock);
/*
* On success, we increment lock->seq; also we clear
* write_locking unless we failed from the lock path:
*/
v = 0;
if (ret)
v += SIX_LOCK_HELD_write;
if (ret || try)
v -= SIX_STATE_WRITE_LOCKING;
if (try && !ret) {
old = atomic64_add_return(v, &lock->state);
if (old & SIX_STATE_WAITING_READ)
ret = -1 - SIX_LOCK_read;
} else {
atomic64_add(v, &lock->state);
}
} else {
v = atomic64_read(&lock->state);
do {
new = old = v;
if (!(old & l[type].lock_fail)) {
new += l[type].lock_val;
if (type == SIX_LOCK_write)
new &= ~SIX_STATE_WRITE_LOCKING;
} else {
break;
}
} while ((v = atomic64_cmpxchg_acquire(&lock->state, old, new)) != old);
ret = !(old & l[type].lock_fail);
EBUG_ON(ret && !(atomic64_read(&lock->state) & l[type].held_mask));
}
if (ret > 0)
six_set_owner(lock, type, old, task);
EBUG_ON(type == SIX_LOCK_write && (try || ret > 0) &&
(atomic64_read(&lock->state) & SIX_STATE_WRITE_LOCKING));
return ret;
}
static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type)
{
struct six_lock_waiter *w, *next;
struct task_struct *task;
bool saw_one;
int ret;
again:
ret = 0;
saw_one = false;
raw_spin_lock(&lock->wait_lock);
list_for_each_entry_safe(w, next, &lock->wait_list, list) {
if (w->lock_want != lock_type)
continue;
if (saw_one && lock_type != SIX_LOCK_read)
goto unlock;
saw_one = true;
ret = __do_six_trylock_type(lock, lock_type, w->task, false);
if (ret <= 0)
goto unlock;
__list_del(w->list.prev, w->list.next);
task = w->task;
/*
* Do no writes to @w besides setting lock_acquired - otherwise
* we would need a memory barrier:
*/
barrier();
w->lock_acquired = true;
wake_up_process(task);
}
six_clear_bitmask(lock, SIX_STATE_WAITING_READ << lock_type);
unlock:
raw_spin_unlock(&lock->wait_lock);
if (ret < 0) {
lock_type = -ret - 1;
goto again;
}
}
__always_inline
static void six_lock_wakeup(struct six_lock *lock, u64 state,
enum six_lock_type lock_type)
{
if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read))
return;
if (!(state & (SIX_STATE_WAITING_READ << lock_type)))
return;
__six_lock_wakeup(lock, lock_type);
}
__always_inline
static bool do_six_trylock_type(struct six_lock *lock,
enum six_lock_type type,
bool try)
{
int ret;
ret = __do_six_trylock_type(lock, type, current, try);
if (ret < 0)
__six_lock_wakeup(lock, -ret - 1);
return ret > 0;
}
bool six_trylock_ip_type(struct six_lock *lock, enum six_lock_type type,
unsigned long ip)
{
if (!do_six_trylock_type(lock, type, true))
return false;
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
return true;
}
bool six_relock_ip_type(struct six_lock *lock, enum six_lock_type type,
unsigned seq, unsigned long ip)
{
const struct six_lock_vals l[] = LOCK_VALS;
u64 old, v;
EBUG_ON(type == SIX_LOCK_write);
if (type == SIX_LOCK_read &&
lock->readers) {
bool ret;
preempt_disable();
this_cpu_inc(*lock->readers);
smp_mb();
old = atomic64_read(&lock->state);
ret = !(old & l[type].lock_fail) && six_state_seq(old) == seq;
this_cpu_sub(*lock->readers, !ret);
preempt_enable();
/*
* Similar to the lock path, we may have caused a spurious write
* lock fail and need to issue a wakeup:
*/
if (ret)
six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
else if (old & SIX_STATE_WRITE_LOCKING)
six_lock_wakeup(lock, old, SIX_LOCK_write);
return ret;
}
v = atomic64_read(&lock->state);
do {
old = v;
if ((old & l[type].lock_fail) || six_state_seq(old) != seq)
return false;
} while ((v = atomic64_cmpxchg_acquire(&lock->state,
old,
old + l[type].lock_val)) != old);
six_set_owner(lock, type, old, current);
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
return true;
}
EXPORT_SYMBOL_GPL(six_relock_ip_type);
#ifdef CONFIG_SIX_LOCK_SPIN_ON_OWNER
static inline bool six_can_spin_on_owner(struct six_lock *lock)
{
struct task_struct *owner;
bool ret;
if (need_resched())
return false;
rcu_read_lock();
owner = READ_ONCE(lock->owner);
ret = !owner || owner_on_cpu(owner);
rcu_read_unlock();
return ret;
}
static inline bool six_spin_on_owner(struct six_lock *lock,
struct task_struct *owner,
u64 end_time)
{
bool ret = true;
unsigned loop = 0;
rcu_read_lock();
while (lock->owner == owner) {
/*
* Ensure we emit the owner->on_cpu, dereference _after_
* checking lock->owner still matches owner. If that fails,
* owner might point to freed memory. If it still matches,
* the rcu_read_lock() ensures the memory stays valid.
*/
barrier();
if (!owner_on_cpu(owner) || need_resched()) {
ret = false;
break;
}
if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) {
six_set_bitmask(lock, SIX_STATE_NOSPIN);
ret = false;
break;
}
cpu_relax();
}
rcu_read_unlock();
return ret;
}
static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
{
struct task_struct *task = current;
u64 end_time;
if (type == SIX_LOCK_write)
return false;
preempt_disable();
if (!six_can_spin_on_owner(lock))
goto fail;
if (!osq_lock(&lock->osq))
goto fail;
end_time = sched_clock() + 10 * NSEC_PER_USEC;
while (1) {
struct task_struct *owner;
/*
* If there's an owner, wait for it to either
* release the lock or go to sleep.
*/
owner = READ_ONCE(lock->owner);
if (owner && !six_spin_on_owner(lock, owner, end_time))
break;
if (do_six_trylock_type(lock, type, false)) {
osq_unlock(&lock->osq);
preempt_enable();
return true;
}
/*
* When there's no owner, we might have preempted between the
* owner acquiring the lock and setting the owner field. If
* we're an RT task that will live-lock because we won't let
* the owner complete.
*/
if (!owner && (need_resched() || rt_task(task)))
break;
/*
* The cpu_relax() call is a compiler barrier which forces
* everything in this loop to be re-loaded. We don't need
* memory barriers as we'll eventually observe the right
* values at the cost of a few extra spins.
*/
cpu_relax();
}
osq_unlock(&lock->osq);
fail:
preempt_enable();
/*
* If we fell out of the spin path because of need_resched(),
* reschedule now, before we try-lock again. This avoids getting
* scheduled out right after we obtained the lock.
*/
if (need_resched())
schedule();
return false;
}
#else /* CONFIG_SIX_LOCK_SPIN_ON_OWNER */
static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
{
return false;
}
#endif
noinline
static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type type,
struct six_lock_waiter *wait,
six_lock_should_sleep_fn should_sleep_fn, void *p,
unsigned long ip)
{
u64 old;
int ret = 0;
if (type == SIX_LOCK_write) {
EBUG_ON(atomic64_read(&lock->state) & SIX_STATE_WRITE_LOCKING);
atomic64_add(SIX_STATE_WRITE_LOCKING, &lock->state);
smp_mb__after_atomic();
}
if (six_optimistic_spin(lock, type))
goto out;
lock_contended(&lock->dep_map, ip);
wait->task = current;
wait->lock_want = type;
wait->lock_acquired = false;
raw_spin_lock(&lock->wait_lock);
six_set_bitmask(lock, SIX_STATE_WAITING_READ << type);
/*
* Retry taking the lock after taking waitlist lock, have raced with an
* unlock:
*/
ret = __do_six_trylock_type(lock, type, current, false);
if (ret <= 0) {
wait->start_time = local_clock();
if (!list_empty(&lock->wait_list)) {
struct six_lock_waiter *last =
list_last_entry(&lock->wait_list,
struct six_lock_waiter, list);
if (time_before_eq64(wait->start_time, last->start_time))
wait->start_time = last->start_time + 1;
}
list_add_tail(&wait->list, &lock->wait_list);
}
raw_spin_unlock(&lock->wait_lock);
if (unlikely(ret > 0)) {
ret = 0;
goto out;
}
if (unlikely(ret < 0)) {
__six_lock_wakeup(lock, -ret - 1);
ret = 0;
}
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (wait->lock_acquired)
break;
ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
if (unlikely(ret)) {
raw_spin_lock(&lock->wait_lock);
if (!wait->lock_acquired)
list_del(&wait->list);
raw_spin_unlock(&lock->wait_lock);
if (wait->lock_acquired)
do_six_unlock_type(lock, type);
break;
}
schedule();
}
__set_current_state(TASK_RUNNING);
out:
if (ret && type == SIX_LOCK_write) {
six_clear_bitmask(lock, SIX_STATE_WRITE_LOCKING);
six_lock_wakeup(lock, old, SIX_LOCK_read);
}
return ret;
}
int six_lock_type_ip_waiter(struct six_lock *lock, enum six_lock_type type,
struct six_lock_waiter *wait,
six_lock_should_sleep_fn should_sleep_fn, void *p,
unsigned long ip)
{
int ret;
wait->start_time = 0;
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip);
ret = do_six_trylock_type(lock, type, true) ? 0
: __six_lock_type_slowpath(lock, type, wait, should_sleep_fn, p, ip);
if (ret && type != SIX_LOCK_write)
six_release(&lock->dep_map, ip);
if (!ret)
lock_acquired(&lock->dep_map, ip);
return ret;
}
EXPORT_SYMBOL_GPL(six_lock_type_ip_waiter);
__always_inline
static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type)
{
const struct six_lock_vals l[] = LOCK_VALS;
u64 state;
if (type == SIX_LOCK_intent)
lock->owner = NULL;
if (type == SIX_LOCK_read &&
lock->readers) {
smp_mb(); /* unlock barrier */
this_cpu_dec(*lock->readers);
smp_mb(); /* between unlocking and checking for waiters */
state = atomic64_read(&lock->state);
} else {
u64 v = l[type].unlock_val;
if (type != SIX_LOCK_read)
v -= atomic64_read(&lock->state) & SIX_STATE_NOSPIN;
EBUG_ON(!(atomic64_read(&lock->state) & l[type].held_mask));
state = atomic64_add_return_release(v, &lock->state);
}
six_lock_wakeup(lock, state, l[type].unlock_wakeup);
}
void six_unlock_ip_type(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
{
EBUG_ON(type == SIX_LOCK_write &&
!(atomic64_read(&lock->state) & SIX_LOCK_HELD_intent));
EBUG_ON((type == SIX_LOCK_write ||
type == SIX_LOCK_intent) &&
lock->owner != current);
if (type != SIX_LOCK_write)
six_release(&lock->dep_map, ip);
if (type == SIX_LOCK_intent &&
lock->intent_lock_recurse) {
--lock->intent_lock_recurse;
return;
}
do_six_unlock_type(lock, type);
}
EXPORT_SYMBOL_GPL(six_unlock_ip_type);
/* Convert from intent to read: */
void six_lock_downgrade(struct six_lock *lock)
{
six_lock_increment(lock, SIX_LOCK_read);
six_unlock_intent(lock);
}
EXPORT_SYMBOL_GPL(six_lock_downgrade);
bool six_lock_tryupgrade(struct six_lock *lock)
{
const struct six_lock_vals l[] = LOCK_VALS;
u64 old, new, v = atomic64_read(&lock->state);
do {
new = old = v;
if (new & SIX_LOCK_HELD_intent)
return false;
if (!lock->readers) {
EBUG_ON(!(new & SIX_LOCK_HELD_read));
new += l[SIX_LOCK_read].unlock_val;
}
new |= SIX_LOCK_HELD_intent;
} while ((v = atomic64_cmpxchg_acquire(&lock->state, old, new)) != old);
if (lock->readers)
this_cpu_dec(*lock->readers);
six_set_owner(lock, SIX_LOCK_intent, old, current);
return true;
}
EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
bool six_trylock_convert(struct six_lock *lock,
enum six_lock_type from,
enum six_lock_type to)
{
EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
if (to == from)
return true;
if (to == SIX_LOCK_read) {
six_lock_downgrade(lock);
return true;
} else {
return six_lock_tryupgrade(lock);
}
}
EXPORT_SYMBOL_GPL(six_trylock_convert);
/*
* Increment read/intent lock count, assuming we already have it read or intent
* locked:
*/
void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
{
const struct six_lock_vals l[] = LOCK_VALS;
six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_);
/* XXX: assert already locked, and that we don't overflow: */
switch (type) {
case SIX_LOCK_read:
if (lock->readers) {
this_cpu_inc(*lock->readers);
} else {
EBUG_ON(!(atomic64_read(&lock->state) &
(SIX_LOCK_HELD_read|
SIX_LOCK_HELD_intent)));
atomic64_add(l[type].lock_val, &lock->state);
}
break;
case SIX_LOCK_intent:
EBUG_ON(!(atomic64_read(&lock->state) & SIX_LOCK_HELD_intent));
lock->intent_lock_recurse++;
break;
case SIX_LOCK_write:
BUG();
break;
}
}
EXPORT_SYMBOL_GPL(six_lock_increment);
void six_lock_wakeup_all(struct six_lock *lock)
{
u64 state = atomic64_read(&lock->state);
struct six_lock_waiter *w;
six_lock_wakeup(lock, state, SIX_LOCK_read);
six_lock_wakeup(lock, state, SIX_LOCK_intent);
six_lock_wakeup(lock, state, SIX_LOCK_write);
raw_spin_lock(&lock->wait_lock);
list_for_each_entry(w, &lock->wait_list, list)
wake_up_process(w->task);
raw_spin_unlock(&lock->wait_lock);
}
EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
/*
* Returns lock held counts, for both read and intent
*/
struct six_lock_count six_lock_counts(struct six_lock *lock)
{
struct six_lock_count ret;
ret.n[SIX_LOCK_read] = !lock->readers
? atomic64_read(&lock->state) & SIX_STATE_READ_LOCK
: pcpu_read_count(lock);
ret.n[SIX_LOCK_intent] = !!(atomic64_read(&lock->state) & SIX_LOCK_HELD_intent) +
lock->intent_lock_recurse;
ret.n[SIX_LOCK_write] = !!(atomic64_read(&lock->state) & SIX_LOCK_HELD_write);
return ret;
}
EXPORT_SYMBOL_GPL(six_lock_counts);
void six_lock_readers_add(struct six_lock *lock, int nr)
{
if (lock->readers)
this_cpu_add(*lock->readers, nr);
else /* reader count starts at bit 0 */
atomic64_add(nr, &lock->state);
}
EXPORT_SYMBOL_GPL(six_lock_readers_add);
void six_lock_exit(struct six_lock *lock)
{
WARN_ON(lock->readers && pcpu_read_count(lock));
WARN_ON(atomic64_read(&lock->state) & SIX_LOCK_HELD_read);
free_percpu(lock->readers);
lock->readers = NULL;
}
EXPORT_SYMBOL_GPL(six_lock_exit);
void __six_lock_init(struct six_lock *lock, const char *name,
struct lock_class_key *key, enum six_lock_init_flags flags)
{
atomic64_set(&lock->state, 0);
raw_spin_lock_init(&lock->wait_lock);
INIT_LIST_HEAD(&lock->wait_list);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
debug_check_no_locks_freed((void *) lock, sizeof(*lock));
lockdep_init_map(&lock->dep_map, name, key, 0);
#endif
if (flags & SIX_LOCK_INIT_PCPU) {
/*
* We don't return an error here on memory allocation failure
* since percpu is an optimization, and locks will work with the
* same semantics in non-percpu mode: callers can check for
* failure if they wish by checking lock->readers, but generally
* will not want to treat it as an error.
*/
lock->readers = alloc_percpu(unsigned);
}
}
EXPORT_SYMBOL_GPL(__six_lock_init);