linux/mm/khugepaged.c

2809 lines
72 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/kthread.h>
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/mman.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
#include <linux/page_idle.h>
mm/page_table_check: check entries at pmd levels syzbot detected a case where the page table counters were not properly updated. syzkaller login: ------------[ cut here ]------------ kernel BUG at mm/page_table_check.c:162! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 3099 Comm: pasha Not tainted 5.16.0+ #48 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIO4 RIP: 0010:__page_table_check_zero+0x159/0x1a0 Call Trace: free_pcp_prepare+0x3be/0xaa0 free_unref_page+0x1c/0x650 free_compound_page+0xec/0x130 free_transhuge_page+0x1be/0x260 __put_compound_page+0x90/0xd0 release_pages+0x54c/0x1060 __pagevec_release+0x7c/0x110 shmem_undo_range+0x85e/0x1250 ... The repro involved having a huge page that is split due to uprobe event temporarily replacing one of the pages in the huge page. Later the huge page was combined again, but the counters were off, as the PTE level was not properly updated. Make sure that when PMD is cleared and prior to freeing the level the PTEs are updated. Link: https://lkml.kernel.org/r/20220131203249.2832273-5-pasha.tatashin@soleen.com Fixes: df4e817b7108 ("mm: page table check") Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Paul Turner <pjt@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Will Deacon <will@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-02-03 20:49:24 -08:00
#include <linux/page_table_check.h>
#include <linux/rcupdate_wait.h>
#include <linux/swapops.h>
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
#include <linux/shmem_fs.h>
#include <linux/ksm.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
#include "mm_slot.h"
enum scan_result {
SCAN_FAIL,
SCAN_SUCCEED,
SCAN_PMD_NULL,
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
SCAN_PMD_NONE,
mm/khugepaged: record SCAN_PMD_MAPPED when scan_pmd() finds hugepage When scanning an anon pmd to see if it's eligible for collapse, return SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the file-collapse path, since the latter might identify pte-mapped compound pages. This is required by MADV_COLLAPSE which necessarily needs to know what hugepage-aligned/sized regions are already pmd-mapped. In order to determine if a pmd already maps a hugepage, refactor mm_find_pmd(): Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") behavior. ksm was the only caller that explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic there (pmd_present() and pmd_trans_huge() checks). Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") that open-coded split_huge_pmd_address() pmd lookup and use mm_find_pmd() instead. Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:26 -07:00
SCAN_PMD_MAPPED,
SCAN_EXCEED_NONE_PTE,
SCAN_EXCEED_SWAP_PTE,
SCAN_EXCEED_SHARED_PTE,
SCAN_PTE_NON_PRESENT,
2020-04-06 20:06:04 -07:00
SCAN_PTE_UFFD_WP,
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
SCAN_PTE_MAPPED_HUGEPAGE,
SCAN_PAGE_RO,
SCAN_LACK_REFERENCED_PAGE,
SCAN_PAGE_NULL,
SCAN_SCAN_ABORT,
SCAN_PAGE_COUNT,
SCAN_PAGE_LRU,
SCAN_PAGE_LOCK,
SCAN_PAGE_ANON,
SCAN_PAGE_COMPOUND,
SCAN_ANY_PROCESS,
SCAN_VMA_NULL,
SCAN_VMA_CHECK,
SCAN_ADDRESS_RANGE,
SCAN_DEL_PAGE_LRU,
SCAN_ALLOC_HUGE_PAGE_FAIL,
SCAN_CGROUP_CHARGE_FAIL,
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
SCAN_TRUNCATED,
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
SCAN_PAGE_HAS_PRIVATE,
mm: khugepaged: fix kernel BUG in hpage_collapse_scan_file() Syzkaller reported the following issue: kernel BUG at mm/khugepaged.c:1823! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 5097 Comm: syz-executor220 Not tainted 6.2.0-syzkaller-13154-g857f1268a591 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/16/2023 RIP: 0010:collapse_file mm/khugepaged.c:1823 [inline] RIP: 0010:hpage_collapse_scan_file+0x67c8/0x7580 mm/khugepaged.c:2233 Code: 00 00 89 de e8 c9 66 a3 ff 31 ff 89 de e8 c0 66 a3 ff 45 84 f6 0f 85 28 0d 00 00 e8 22 64 a3 ff e9 dc f7 ff ff e8 18 64 a3 ff <0f> 0b f3 0f 1e fa e8 0d 64 a3 ff e9 93 f6 ff ff f3 0f 1e fa 4c 89 RSP: 0018:ffffc90003dff4e0 EFLAGS: 00010093 RAX: ffffffff81e95988 RBX: 00000000000001c1 RCX: ffff8880205b3a80 RDX: 0000000000000000 RSI: 00000000000001c0 RDI: 00000000000001c1 RBP: ffffc90003dff830 R08: ffffffff81e90e67 R09: fffffbfff1a433c3 R10: 0000000000000000 R11: dffffc0000000001 R12: 0000000000000000 R13: ffffc90003dff6c0 R14: 00000000000001c0 R15: 0000000000000000 FS: 00007fdbae5ee700(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fdbae6901e0 CR3: 000000007b2dd000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> madvise_collapse+0x721/0xf50 mm/khugepaged.c:2693 madvise_vma_behavior mm/madvise.c:1086 [inline] madvise_walk_vmas mm/madvise.c:1260 [inline] do_madvise+0x9e5/0x4680 mm/madvise.c:1439 __do_sys_madvise mm/madvise.c:1452 [inline] __se_sys_madvise mm/madvise.c:1450 [inline] __x64_sys_madvise+0xa5/0xb0 mm/madvise.c:1450 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The xas_store() call during page cache scanning can potentially translate 'xas' into the error state (with the reproducer provided by the syzkaller the error code is -ENOMEM). However, there are no further checks after the 'xas_store', and the next call of 'xas_next' at the start of the scanning cycle doesn't increase the xa_index, and the issue occurs. This patch will add the xarray state error checking after the xas_store() and the corresponding result error code. Tested via syzbot. [akpm@linux-foundation.org: update include/trace/events/huge_memory.h's SCAN_STATUS] Link: https://lkml.kernel.org/r/20230329145330.23191-1-ivan.orlov0322@gmail.com Link: https://syzkaller.appspot.com/bug?id=7d6bb3760e026ece7524500fe44fb024a0e959fc Signed-off-by: Ivan Orlov <ivan.orlov0322@gmail.com> Reported-by: syzbot+9578faa5475acb35fa50@syzkaller.appspotmail.com Tested-by: Zach O'Keefe <zokeefe@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Himadri Pandya <himadrispandya@gmail.com> Cc: Ivan Orlov <ivan.orlov0322@gmail.com> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Song Liu <songliubraving@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 18:53:30 +04:00
SCAN_STORE_FAILED,
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
SCAN_COPY_MC,
mm/khugepaged: skip shmem with userfaultfd Make sure that collapse_file respects any userfaultfds registered with MODE_MISSING. If userspace has any such userfaultfds registered, then for any page which it knows to be missing, it may expect a UFFD_EVENT_PAGEFAULT. This means collapse_file needs to be careful when collapsing a shmem range would result in replacing an empty page with a THP, to avoid breaking userfaultfd. Synchronization when checking for userfaultfds in collapse_file is tricky because the mmap locks can't be used to prevent races with the registration of new userfaultfds. Instead, we provide synchronization by ensuring that userspace cannot observe the fact that pages are missing before we check for userfaultfds. Although this allows registration of a userfaultfd to race with collapse_file, it ensures that userspace cannot observe any pages transition from missing to present after such a race occurs. This makes such a race indistinguishable to the collapse occurring immediately before the userfaultfd registration. The first step to provide this synchronization is to stop filling gaps during the loop iterating over the target range, since the page cache lock can be dropped during that loop. The second step is to fill the gaps with XA_RETRY_ENTRY after the page cache lock is acquired the final time, to avoid races with accesses to the page cache that only take the RCU read lock. The fact that we don't fill holes during the initial iteration means that collapse_file now has to handle faults occurring during the collapse. This is done by re-validating the number of missing pages after acquiring the page cache lock for the final time. This fix is targeted at khugepaged, but the change also applies to MADV_COLLAPSE. MADV_COLLAPSE on a range with a userfaultfd will now return EBUSY if there are any missing pages (instead of succeeding on shmem and returning EINVAL on anonymous memory). There is also now a window during MADV_COLLAPSE where a fault on a missing page will cause the syscall to fail with EAGAIN. The fact that intermediate page cache state can no longer be observed before the rollback of a failed collapse is also technically a userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is exceedingly unlikely that anything relies on being able to observe that transient state. Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com Signed-off-by: David Stevens <stevensd@chromium.org> Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:16 +09:00
SCAN_PAGE_FILLED,
};
#define CREATE_TRACE_POINTS
#include <trace/events/huge_memory.h>
static struct task_struct *khugepaged_thread __read_mostly;
static DEFINE_MUTEX(khugepaged_mutex);
/* default scan 8*512 pte (or vmas) every 30 second */
static unsigned int khugepaged_pages_to_scan __read_mostly;
static unsigned int khugepaged_pages_collapsed;
static unsigned int khugepaged_full_scans;
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
/* during fragmentation poll the hugepage allocator once every minute */
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
static unsigned long khugepaged_sleep_expire;
static DEFINE_SPINLOCK(khugepaged_mm_lock);
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
/*
* default collapse hugepages if there is at least one pte mapped like
* it would have happened if the vma was large enough during page
* fault.
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
*
* Note that these are only respected if collapse was initiated by khugepaged.
*/
static unsigned int khugepaged_max_ptes_none __read_mostly;
static unsigned int khugepaged_max_ptes_swap __read_mostly;
static unsigned int khugepaged_max_ptes_shared __read_mostly;
#define MM_SLOTS_HASH_BITS 10
static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
static struct kmem_cache *mm_slot_cache __ro_after_init;
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
struct collapse_control {
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
bool is_khugepaged;
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
/* Num pages scanned per node */
u32 node_load[MAX_NUMNODES];
mm: khugepaged: allow page allocation fallback to eligible nodes Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") to satisfy "numactl --interleave=all". But interleaving is a mere hint rather than something that has hard requirements. So use nodemask to record the nodes which have the same hit record, the hugepage allocation could fallback to those nodes. And remove __GFP_THISNODE since it does disallow fallback. And if the nodemask just has one node set, it means there is one single node has the most hit record, the nodemask approach actually behaves like __GFP_THISNODE. Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Yang Shi <shy828301@gmail.com> Suggested-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 10:43:56 -08:00
/* nodemask for allocation fallback */
nodemask_t alloc_nmask;
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
};
/**
* struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
* @slot: hash lookup from mm to mm_slot
*/
struct khugepaged_mm_slot {
struct mm_slot slot;
};
/**
* struct khugepaged_scan - cursor for scanning
* @mm_head: the head of the mm list to scan
* @mm_slot: the current mm_slot we are scanning
* @address: the next address inside that to be scanned
*
* There is only the one khugepaged_scan instance of this cursor structure.
*/
struct khugepaged_scan {
struct list_head mm_head;
struct khugepaged_mm_slot *mm_slot;
unsigned long address;
};
static struct khugepaged_scan khugepaged_scan = {
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
};
#ifdef CONFIG_SYSFS
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
}
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
unsigned int msecs;
int err;
err = kstrtouint(buf, 10, &msecs);
if (err)
return -EINVAL;
khugepaged_scan_sleep_millisecs = msecs;
khugepaged_sleep_expire = 0;
wake_up_interruptible(&khugepaged_wait);
return count;
}
static struct kobj_attribute scan_sleep_millisecs_attr =
__ATTR_RW(scan_sleep_millisecs);
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
}
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
unsigned int msecs;
int err;
err = kstrtouint(buf, 10, &msecs);
if (err)
return -EINVAL;
khugepaged_alloc_sleep_millisecs = msecs;
khugepaged_sleep_expire = 0;
wake_up_interruptible(&khugepaged_wait);
return count;
}
static struct kobj_attribute alloc_sleep_millisecs_attr =
__ATTR_RW(alloc_sleep_millisecs);
static ssize_t pages_to_scan_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
}
static ssize_t pages_to_scan_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
unsigned int pages;
int err;
err = kstrtouint(buf, 10, &pages);
if (err || !pages)
return -EINVAL;
khugepaged_pages_to_scan = pages;
return count;
}
static struct kobj_attribute pages_to_scan_attr =
__ATTR_RW(pages_to_scan);
static ssize_t pages_collapsed_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
}
static struct kobj_attribute pages_collapsed_attr =
__ATTR_RO(pages_collapsed);
static ssize_t full_scans_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
}
static struct kobj_attribute full_scans_attr =
__ATTR_RO(full_scans);
static ssize_t defrag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_hugepage_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static ssize_t defrag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return single_hugepage_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static struct kobj_attribute khugepaged_defrag_attr =
__ATTR_RW(defrag);
/*
* max_ptes_none controls if khugepaged should collapse hugepages over
* any unmapped ptes in turn potentially increasing the memory
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
* reduce the available free memory in the system as it
* runs. Increasing max_ptes_none will instead potentially reduce the
* free memory in the system during the khugepaged scan.
*/
static ssize_t max_ptes_none_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
}
static ssize_t max_ptes_none_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int err;
unsigned long max_ptes_none;
err = kstrtoul(buf, 10, &max_ptes_none);
if (err || max_ptes_none > HPAGE_PMD_NR - 1)
return -EINVAL;
khugepaged_max_ptes_none = max_ptes_none;
return count;
}
static struct kobj_attribute khugepaged_max_ptes_none_attr =
__ATTR_RW(max_ptes_none);
static ssize_t max_ptes_swap_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
}
static ssize_t max_ptes_swap_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int err;
unsigned long max_ptes_swap;
err = kstrtoul(buf, 10, &max_ptes_swap);
if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
return -EINVAL;
khugepaged_max_ptes_swap = max_ptes_swap;
return count;
}
static struct kobj_attribute khugepaged_max_ptes_swap_attr =
__ATTR_RW(max_ptes_swap);
static ssize_t max_ptes_shared_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
}
static ssize_t max_ptes_shared_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int err;
unsigned long max_ptes_shared;
err = kstrtoul(buf, 10, &max_ptes_shared);
if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
return -EINVAL;
khugepaged_max_ptes_shared = max_ptes_shared;
return count;
}
static struct kobj_attribute khugepaged_max_ptes_shared_attr =
__ATTR_RW(max_ptes_shared);
static struct attribute *khugepaged_attr[] = {
&khugepaged_defrag_attr.attr,
&khugepaged_max_ptes_none_attr.attr,
&khugepaged_max_ptes_swap_attr.attr,
&khugepaged_max_ptes_shared_attr.attr,
&pages_to_scan_attr.attr,
&pages_collapsed_attr.attr,
&full_scans_attr.attr,
&scan_sleep_millisecs_attr.attr,
&alloc_sleep_millisecs_attr.attr,
NULL,
};
struct attribute_group khugepaged_attr_group = {
.attrs = khugepaged_attr,
.name = "khugepaged",
};
#endif /* CONFIG_SYSFS */
int hugepage_madvise(struct vm_area_struct *vma,
unsigned long *vm_flags, int advice)
{
switch (advice) {
case MADV_HUGEPAGE:
#ifdef CONFIG_S390
/*
* qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
* can't handle this properly after s390_enable_sie, so we simply
* ignore the madvise to prevent qemu from causing a SIGSEGV.
*/
if (mm_has_pgste(vma->vm_mm))
return 0;
#endif
*vm_flags &= ~VM_NOHUGEPAGE;
*vm_flags |= VM_HUGEPAGE;
/*
* If the vma become good for khugepaged to scan,
* register it here without waiting a page fault that
* may not happen any time soon.
*/
khugepaged_enter_vma(vma, *vm_flags);
break;
case MADV_NOHUGEPAGE:
*vm_flags &= ~VM_HUGEPAGE;
*vm_flags |= VM_NOHUGEPAGE;
/*
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
* this vma even if we leave the mm registered in khugepaged if
* it got registered before VM_NOHUGEPAGE was set.
*/
break;
}
return 0;
}
int __init khugepaged_init(void)
{
mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
sizeof(struct khugepaged_mm_slot),
__alignof__(struct khugepaged_mm_slot),
0, NULL);
if (!mm_slot_cache)
return -ENOMEM;
khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
return 0;
}
void __init khugepaged_destroy(void)
{
kmem_cache_destroy(mm_slot_cache);
}
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
static inline int hpage_collapse_test_exit(struct mm_struct *mm)
{
return atomic_read(&mm->mm_users) == 0;
}
void __khugepaged_enter(struct mm_struct *mm)
{
struct khugepaged_mm_slot *mm_slot;
struct mm_slot *slot;
int wakeup;
/* __khugepaged_exit() must not run from under us */
VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
return;
mm_slot = mm_slot_alloc(mm_slot_cache);
if (!mm_slot)
return;
slot = &mm_slot->slot;
spin_lock(&khugepaged_mm_lock);
mm_slot_insert(mm_slots_hash, mm, slot);
/*
* Insert just behind the scanning cursor, to let the area settle
* down a little.
*/
wakeup = list_empty(&khugepaged_scan.mm_head);
list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
spin_unlock(&khugepaged_mm_lock);
mmgrab(mm);
if (wakeup)
wake_up_interruptible(&khugepaged_wait);
}
void khugepaged_enter_vma(struct vm_area_struct *vma,
unsigned long vm_flags)
{
if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
hugepage_flags_enabled()) {
mm: thp: introduce multi-size THP sysfs interface In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 16:12:04 +00:00
if (thp_vma_allowable_order(vma, vm_flags, false, false, true,
PMD_ORDER))
__khugepaged_enter(vma->vm_mm);
}
}
void __khugepaged_exit(struct mm_struct *mm)
{
struct khugepaged_mm_slot *mm_slot;
struct mm_slot *slot;
int free = 0;
spin_lock(&khugepaged_mm_lock);
slot = mm_slot_lookup(mm_slots_hash, mm);
mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
hash_del(&slot->hash);
list_del(&slot->mm_node);
free = 1;
}
spin_unlock(&khugepaged_mm_lock);
if (free) {
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
mm_slot_free(mm_slot_cache, mm_slot);
mmdrop(mm);
} else if (mm_slot) {
/*
* This is required to serialize against
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
* hpage_collapse_test_exit() (which is guaranteed to run
* under mmap sem read mode). Stop here (after we return all
* pagetables will be destroyed) until khugepaged has finished
* working on the pagetables under the mmap_lock.
*/
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_write_lock(mm);
mmap_write_unlock(mm);
}
}
static void release_pte_folio(struct folio *folio)
{
node_stat_mod_folio(folio,
NR_ISOLATED_ANON + folio_is_file_lru(folio),
-folio_nr_pages(folio));
folio_unlock(folio);
folio_putback_lru(folio);
}
static void release_pte_pages(pte_t *pte, pte_t *_pte,
struct list_head *compound_pagelist)
{
struct folio *folio, *tmp;
while (--_pte >= pte) {
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
pte_t pteval = ptep_get(_pte);
unsigned long pfn;
if (pte_none(pteval))
continue;
pfn = pte_pfn(pteval);
if (is_zero_pfn(pfn))
continue;
folio = pfn_folio(pfn);
if (folio_test_large(folio))
continue;
release_pte_folio(folio);
}
list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
list_del(&folio->lru);
release_pte_folio(folio);
}
}
static bool is_refcount_suitable(struct folio *folio)
khugepaged: allow to collapse a page shared across fork The page can be included into collapse as long as it doesn't have extra pins (from GUP or otherwise). Logic to check the refcount is moved to a separate function. For pages in swap cache, add compound_nr(page) to the expected refcount, in order to handle the compound page case. This is in preparation for the following patch. VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the invariant it checks is no longer valid: the source can be mapped multiple times now. [yang.shi@linux.alibaba.com: remove error message when checking external pins] Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 16:00:20 -07:00
{
int expected_refcount;
expected_refcount = folio_mapcount(folio);
if (folio_test_swapcache(folio))
expected_refcount += folio_nr_pages(folio);
khugepaged: allow to collapse a page shared across fork The page can be included into collapse as long as it doesn't have extra pins (from GUP or otherwise). Logic to check the refcount is moved to a separate function. For pages in swap cache, add compound_nr(page) to the expected refcount, in order to handle the compound page case. This is in preparation for the following patch. VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the invariant it checks is no longer valid: the source can be mapped multiple times now. [yang.shi@linux.alibaba.com: remove error message when checking external pins] Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 16:00:20 -07:00
return folio_ref_count(folio) == expected_refcount;
khugepaged: allow to collapse a page shared across fork The page can be included into collapse as long as it doesn't have extra pins (from GUP or otherwise). Logic to check the refcount is moved to a separate function. For pages in swap cache, add compound_nr(page) to the expected refcount, in order to handle the compound page case. This is in preparation for the following patch. VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the invariant it checks is no longer valid: the source can be mapped multiple times now. [yang.shi@linux.alibaba.com: remove error message when checking external pins] Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 16:00:20 -07:00
}
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
unsigned long address,
pte_t *pte,
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
struct collapse_control *cc,
struct list_head *compound_pagelist)
{
struct page *page = NULL;
struct folio *folio = NULL;
pte_t *_pte;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
bool writable = false;
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
_pte++, address += PAGE_SIZE) {
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
pte_t pteval = ptep_get(_pte);
if (pte_none(pteval) || (pte_present(pteval) &&
is_zero_pfn(pte_pfn(pteval)))) {
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
++none_or_zero;
if (!userfaultfd_armed(vma) &&
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
(!cc->is_khugepaged ||
none_or_zero <= khugepaged_max_ptes_none)) {
continue;
} else {
result = SCAN_EXCEED_NONE_PTE;
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
goto out;
}
}
if (!pte_present(pteval)) {
result = SCAN_PTE_NON_PRESENT;
goto out;
}
mm/khugepaged: check again on anon uffd-wp during isolation Khugepaged collapse an anonymous thp in two rounds of scans. The 2nd round done in __collapse_huge_page_isolate() after hpage_collapse_scan_pmd(), during which all the locks will be released temporarily. It means the pgtable can change during this phase before 2nd round starts. It's logically possible some ptes got wr-protected during this phase, and we can errornously collapse a thp without noticing some ptes are wr-protected by userfault. e1e267c7928f wanted to avoid it but it only did that for the 1st phase, not the 2nd phase. Since __collapse_huge_page_isolate() happens after a round of small page swapins, we don't need to worry on any !present ptes - if it existed khugepaged will already bail out. So we only need to check present ptes with uffd-wp bit set there. This is something I found only but never had a reproducer, I thought it was one caused a bug in Muhammad's recent pagemap new ioctl work, but it turns out it's not the cause of that but an userspace bug. However this seems to still be a real bug even with a very small race window, still worth to have it fixed and copy stable. Link: https://lkml.kernel.org/r/20230405155120.3608140-1-peterx@redhat.com Fixes: e1e267c7928f ("khugepaged: skip collapse if uffd-wp detected") Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 11:51:20 -04:00
if (pte_uffd_wp(pteval)) {
result = SCAN_PTE_UFFD_WP;
goto out;
}
page = vm_normal_page(vma, address, pteval);
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
result = SCAN_PAGE_NULL;
goto out;
}
folio = page_folio(page);
VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
if (page_mapcount(page) > 1) {
++shared;
if (cc->is_khugepaged &&
shared > khugepaged_max_ptes_shared) {
result = SCAN_EXCEED_SHARED_PTE;
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
goto out;
}
}
if (folio_test_large(folio)) {
struct folio *f;
/*
* Check if we have dealt with the compound page
* already
*/
list_for_each_entry(f, compound_pagelist, lru) {
if (folio == f)
goto next;
}
}
/*
* We can do it before isolate_lru_page because the
* page can't be freed from under us. NOTE: PG_lock
* is needed to serialize against split_huge_page
* when invoked from the VM.
*/
if (!folio_trylock(folio)) {
result = SCAN_PAGE_LOCK;
goto out;
}
/*
khugepaged: allow to collapse a page shared across fork The page can be included into collapse as long as it doesn't have extra pins (from GUP or otherwise). Logic to check the refcount is moved to a separate function. For pages in swap cache, add compound_nr(page) to the expected refcount, in order to handle the compound page case. This is in preparation for the following patch. VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the invariant it checks is no longer valid: the source can be mapped multiple times now. [yang.shi@linux.alibaba.com: remove error message when checking external pins] Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 16:00:20 -07:00
* Check if the page has any GUP (or other external) pins.
*
* The page table that maps the page has been already unlinked
* from the page table tree and this process cannot get
* an additional pin on the page.
khugepaged: allow to collapse a page shared across fork The page can be included into collapse as long as it doesn't have extra pins (from GUP or otherwise). Logic to check the refcount is moved to a separate function. For pages in swap cache, add compound_nr(page) to the expected refcount, in order to handle the compound page case. This is in preparation for the following patch. VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the invariant it checks is no longer valid: the source can be mapped multiple times now. [yang.shi@linux.alibaba.com: remove error message when checking external pins] Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 16:00:20 -07:00
*
* New pins can come later if the page is shared across fork,
* but not from this process. The other process cannot write to
* the page, only trigger CoW.
*/
if (!is_refcount_suitable(folio)) {
folio_unlock(folio);
result = SCAN_PAGE_COUNT;
goto out;
}
/*
* Isolate the page to avoid collapsing an hugepage
* currently in use by the VM.
*/
if (!folio_isolate_lru(folio)) {
folio_unlock(folio);
result = SCAN_DEL_PAGE_LRU;
goto out;
}
node_stat_mod_folio(folio,
NR_ISOLATED_ANON + folio_is_file_lru(folio),
folio_nr_pages(folio));
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
if (folio_test_large(folio))
list_add_tail(&folio->lru, compound_pagelist);
next:
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
/*
* If collapse was initiated by khugepaged, check that there is
* enough young pte to justify collapsing the page
*/
if (cc->is_khugepaged &&
(pte_young(pteval) || folio_test_young(folio) ||
folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
address)))
referenced++;
if (pte_write(pteval))
writable = true;
}
if (unlikely(!writable)) {
result = SCAN_PAGE_RO;
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
} else if (unlikely(cc->is_khugepaged && !referenced)) {
result = SCAN_LACK_REFERENCED_PAGE;
} else {
result = SCAN_SUCCEED;
trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
referenced, writable, result);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
return result;
}
out:
release_pte_pages(pte, _pte, compound_pagelist);
trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
referenced, writable, result);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
return result;
}
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
static void __collapse_huge_page_copy_succeeded(pte_t *pte,
struct vm_area_struct *vma,
unsigned long address,
spinlock_t *ptl,
struct list_head *compound_pagelist)
{
struct folio *src_folio;
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
struct page *src_page;
struct page *tmp;
pte_t *_pte;
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
pte_t pteval;
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
_pte++, address += PAGE_SIZE) {
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
pteval = ptep_get(_pte);
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
if (is_zero_pfn(pte_pfn(pteval))) {
/*
* ptl mostly unnecessary.
*/
spin_lock(ptl);
mm: ptep_clear() page table helper We have ptep_get_and_clear() and ptep_get_and_clear_full() helpers to clear PTE from user page tables, but there is no variant for simple clear of a present PTE from user page tables without using a low level pte_clear() which can be either native or para-virtualised. Add a new ptep_clear() that can be used in common code to clear PTEs from page table. We will need this call later in order to add a hook for page table check. Link: https://lkml.kernel.org/r/20211221154650.1047963-3-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Xu <weixugc@google.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:06:33 -08:00
ptep_clear(vma->vm_mm, address, _pte);
spin_unlock(ptl);
ksm_might_unmap_zero_page(vma->vm_mm, pteval);
}
} else {
src_page = pte_page(pteval);
src_folio = page_folio(src_page);
if (!folio_test_large(src_folio))
release_pte_folio(src_folio);
/*
* ptl mostly unnecessary, but preempt has to
* be disabled to update the per-cpu stats
* inside folio_remove_rmap_pte().
*/
spin_lock(ptl);
mm: ptep_clear() page table helper We have ptep_get_and_clear() and ptep_get_and_clear_full() helpers to clear PTE from user page tables, but there is no variant for simple clear of a present PTE from user page tables without using a low level pte_clear() which can be either native or para-virtualised. Add a new ptep_clear() that can be used in common code to clear PTEs from page table. We will need this call later in order to add a hook for page table check. Link: https://lkml.kernel.org/r/20211221154650.1047963-3-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Xu <weixugc@google.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:06:33 -08:00
ptep_clear(vma->vm_mm, address, _pte);
folio_remove_rmap_pte(src_folio, src_page, vma);
spin_unlock(ptl);
free_page_and_swap_cache(src_page);
}
}
list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
list_del(&src_page->lru);
mod_node_page_state(page_pgdat(src_page),
NR_ISOLATED_ANON + page_is_file_lru(src_page),
-compound_nr(src_page));
unlock_page(src_page);
free_swap_cache(src_page);
putback_lru_page(src_page);
}
}
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
static void __collapse_huge_page_copy_failed(pte_t *pte,
pmd_t *pmd,
pmd_t orig_pmd,
struct vm_area_struct *vma,
struct list_head *compound_pagelist)
{
spinlock_t *pmd_ptl;
/*
* Re-establish the PMD to point to the original page table
* entry. Restoring PMD needs to be done prior to releasing
* pages. Since pages are still isolated and locked here,
* acquiring anon_vma_lock_write is unnecessary.
*/
pmd_ptl = pmd_lock(vma->vm_mm, pmd);
pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
spin_unlock(pmd_ptl);
/*
* Release both raw and compound pages isolated
* in __collapse_huge_page_isolate.
*/
release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
}
/*
* __collapse_huge_page_copy - attempts to copy memory contents from raw
* pages to a hugepage. Cleans up the raw pages if copying succeeds;
* otherwise restores the original page table and releases isolated raw pages.
* Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
*
* @pte: starting of the PTEs to copy from
* @page: the new hugepage to copy contents to
* @pmd: pointer to the new hugepage's PMD
* @orig_pmd: the original raw pages' PMD
* @vma: the original raw pages' virtual memory area
* @address: starting address to copy
* @ptl: lock on raw pages' PTEs
* @compound_pagelist: list that stores compound pages
*/
static int __collapse_huge_page_copy(pte_t *pte,
struct page *page,
pmd_t *pmd,
pmd_t orig_pmd,
struct vm_area_struct *vma,
unsigned long address,
spinlock_t *ptl,
struct list_head *compound_pagelist)
{
struct page *src_page;
pte_t *_pte;
pte_t pteval;
unsigned long _address;
int result = SCAN_SUCCEED;
/*
* Copying pages' contents is subject to memory poison at any iteration.
*/
for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
_pte++, page++, _address += PAGE_SIZE) {
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
pteval = ptep_get(_pte);
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
clear_user_highpage(page, _address);
continue;
}
src_page = pte_page(pteval);
if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
result = SCAN_COPY_MC;
break;
}
}
if (likely(result == SCAN_SUCCEED))
__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
compound_pagelist);
else
__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
compound_pagelist);
return result;
}
static void khugepaged_alloc_sleep(void)
{
DEFINE_WAIT(wait);
add_wait_queue(&khugepaged_wait, &wait);
freezer,sched: Rewrite core freezer logic Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
2022-08-22 13:18:22 +02:00
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
remove_wait_queue(&khugepaged_wait, &wait);
}
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
struct collapse_control khugepaged_collapse_control = {
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
.is_khugepaged = true,
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
};
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
{
int i;
/*
* If node_reclaim_mode is disabled, then no extra effort is made to
* allocate memory locally.
*/
if (!node_reclaim_enabled())
return false;
/* If there is a count for this node already, it must be acceptable */
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
if (cc->node_load[nid])
return false;
for (i = 0; i < MAX_NUMNODES; i++) {
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
if (!cc->node_load[i])
continue;
sched/topology: Improve load balancing on AMD EPYC systems SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init() for any sched domains with a NUMA distance greater than 2 hops (RECLAIM_DISTANCE). The idea being that it's expensive to balance across domains that far apart. However, as is rather unfortunately explained in: commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30") the value for RECLAIM_DISTANCE is based on node distance tables from 2011-era hardware. Current AMD EPYC machines have the following NUMA node distances: node distances: node 0 1 2 3 4 5 6 7 0: 10 16 16 16 32 32 32 32 1: 16 10 16 16 32 32 32 32 2: 16 16 10 16 32 32 32 32 3: 16 16 16 10 32 32 32 32 4: 32 32 32 32 10 16 16 16 5: 32 32 32 32 16 10 16 16 6: 32 32 32 32 16 16 10 16 7: 32 32 32 32 16 16 16 10 where 2 hops is 32. The result is that the scheduler fails to load balance properly across NUMA nodes on different sockets -- 2 hops apart. For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4 (CPUs 32-39) like so, $ numactl -C 0-7,32-39 ./spinner 16 causes all threads to fork and remain on node 0 until the active balancer kicks in after a few seconds and forcibly moves some threads to node 4. Override node_reclaim_distance for AMD Zen. Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suravee.Suthikulpanit@amd.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas.Lendacky@amd.com Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-08-08 20:53:01 +01:00
if (node_distance(nid, i) > node_reclaim_distance)
return true;
}
return false;
}
#define khugepaged_defrag() \
(transparent_hugepage_flags & \
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
{
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 15:49:25 -07:00
return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
}
#ifdef CONFIG_NUMA
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
static int hpage_collapse_find_target_node(struct collapse_control *cc)
{
int nid, target_node = 0, max_value = 0;
/* find first node with max normal pages hit */
for (nid = 0; nid < MAX_NUMNODES; nid++)
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
if (cc->node_load[nid] > max_value) {
max_value = cc->node_load[nid];
target_node = nid;
}
mm: khugepaged: allow page allocation fallback to eligible nodes Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") to satisfy "numactl --interleave=all". But interleaving is a mere hint rather than something that has hard requirements. So use nodemask to record the nodes which have the same hit record, the hugepage allocation could fallback to those nodes. And remove __GFP_THISNODE since it does disallow fallback. And if the nodemask just has one node set, it means there is one single node has the most hit record, the nodemask approach actually behaves like __GFP_THISNODE. Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Yang Shi <shy828301@gmail.com> Suggested-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 10:43:56 -08:00
for_each_online_node(nid) {
if (max_value == cc->node_load[nid])
node_set(nid, cc->alloc_nmask);
}
return target_node;
}
mm: khugepaged: don't carry huge page to the next loop for !CONFIG_NUMA Patch series "mm: userspace hugepage collapse", v7. Introduction -------------------------------- This series provides a mechanism for userspace to induce a collapse of eligible ranges of memory into transparent hugepages in process context, thus permitting users to more tightly control their own hugepage utilization policy at their own expense. This idea was introduced by David Rientjes[5]. Interface -------------------------------- The proposed interface adds a new madvise(2) mode, MADV_COLLAPSE, and leverages the new process_madvise(2) call. process_madvise(2) Performs a synchronous collapse of the native pages mapped by the list of iovecs into transparent hugepages. This operation is independent of the system THP sysfs settings, but attempts to collapse VMAs marked VM_NOHUGEPAGE will still fail. THP allocation may enter direct reclaim and/or compaction. When a range spans multiple VMAs, the semantics of the collapse over of each VMA is independent from the others. Caller must have CAP_SYS_ADMIN if not acting on self. Return value follows existing process_madvise(2) conventions. A “success” indicates that all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already pmd-mapped THPs. madvise(2) Equivalent to process_madvise(2) on self, with 0 returned on “success”. Current Use-Cases -------------------------------- (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. Note that subsequent support for file-backed memory is required here. (2) malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[6]. A prior study of Google internal workloads during evaluation of Temeraire, a hugepage-aware enhancement to TCMalloc, showed that nearly 20% of all cpu cycles were spent in dTLB stalls, and that increasing hugepage coverage by even small amount can help with that[7]. (3) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Note that subsequent support for file/shmem-backed memory is required here. (4) HugeTLB high-granularity mapping allows HugeTLB a HugeTLB page to be mapped at different levels in the page tables[8]. As it's not "transparent" like THP, HugeTLB high-granularity mappings require an explicit user API. It is intended that MADV_COLLAPSE be co-opted for this use case[9]. Note that subsequent support for HugeTLB memory is required here. Future work -------------------------------- Only private anonymous memory is supported by this series. File and shmem memory support will be added later. One possible user of this functionality is a userspace agent that attempts to optimize THP utilization system-wide by allocating THPs based on, for example, task priority, task performance requirements, or heatmaps. For the latter, one idea that has already surfaced is using DAMON to identify hot regions, and driving THP collapse through a new DAMOS_COLLAPSE scheme[10]. This patch (of 17): The khugepaged has optimization to reduce huge page allocation calls for !CONFIG_NUMA by carrying the allocated but failed to collapse huge page to the next loop. CONFIG_NUMA doesn't do so since the next loop may try to collapse huge page from a different node, so it doesn't make too much sense to carry it. But when NUMA=n, the huge page is allocated by khugepaged_prealloc_page() before scanning the address space, so it means huge page may be allocated even though there is no suitable range for collapsing. Then the page would be just freed if khugepaged already made enough progress. This could make NUMA=n run have 5 times as much thp_collapse_alloc as NUMA=y run. This problem actually makes things worse due to the way more pointless THP allocations and makes the optimization pointless. This could be fixed by carrying the huge page across scans, but it will complicate the code further and the huge page may be carried indefinitely. But if we take one step back, the optimization itself seems not worth keeping nowadays since: * Not too many users build NUMA=n kernel nowadays even though the kernel is actually running on a non-NUMA machine. Some small devices may run NUMA=n kernel, but I don't think they actually use THP. * Since commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists"), THP could be cached by pcp. This actually somehow does the job done by the optimization. Link: https://lkml.kernel.org/r/20220706235936.2197195-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-3-zokeefe@google.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Zach O'Keefe <zokeefe@google.com> Co-developed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:20 -07:00
#else
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
static int hpage_collapse_find_target_node(struct collapse_control *cc)
{
mm: khugepaged: don't carry huge page to the next loop for !CONFIG_NUMA Patch series "mm: userspace hugepage collapse", v7. Introduction -------------------------------- This series provides a mechanism for userspace to induce a collapse of eligible ranges of memory into transparent hugepages in process context, thus permitting users to more tightly control their own hugepage utilization policy at their own expense. This idea was introduced by David Rientjes[5]. Interface -------------------------------- The proposed interface adds a new madvise(2) mode, MADV_COLLAPSE, and leverages the new process_madvise(2) call. process_madvise(2) Performs a synchronous collapse of the native pages mapped by the list of iovecs into transparent hugepages. This operation is independent of the system THP sysfs settings, but attempts to collapse VMAs marked VM_NOHUGEPAGE will still fail. THP allocation may enter direct reclaim and/or compaction. When a range spans multiple VMAs, the semantics of the collapse over of each VMA is independent from the others. Caller must have CAP_SYS_ADMIN if not acting on self. Return value follows existing process_madvise(2) conventions. A “success” indicates that all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already pmd-mapped THPs. madvise(2) Equivalent to process_madvise(2) on self, with 0 returned on “success”. Current Use-Cases -------------------------------- (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. Note that subsequent support for file-backed memory is required here. (2) malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[6]. A prior study of Google internal workloads during evaluation of Temeraire, a hugepage-aware enhancement to TCMalloc, showed that nearly 20% of all cpu cycles were spent in dTLB stalls, and that increasing hugepage coverage by even small amount can help with that[7]. (3) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Note that subsequent support for file/shmem-backed memory is required here. (4) HugeTLB high-granularity mapping allows HugeTLB a HugeTLB page to be mapped at different levels in the page tables[8]. As it's not "transparent" like THP, HugeTLB high-granularity mappings require an explicit user API. It is intended that MADV_COLLAPSE be co-opted for this use case[9]. Note that subsequent support for HugeTLB memory is required here. Future work -------------------------------- Only private anonymous memory is supported by this series. File and shmem memory support will be added later. One possible user of this functionality is a userspace agent that attempts to optimize THP utilization system-wide by allocating THPs based on, for example, task priority, task performance requirements, or heatmaps. For the latter, one idea that has already surfaced is using DAMON to identify hot regions, and driving THP collapse through a new DAMOS_COLLAPSE scheme[10]. This patch (of 17): The khugepaged has optimization to reduce huge page allocation calls for !CONFIG_NUMA by carrying the allocated but failed to collapse huge page to the next loop. CONFIG_NUMA doesn't do so since the next loop may try to collapse huge page from a different node, so it doesn't make too much sense to carry it. But when NUMA=n, the huge page is allocated by khugepaged_prealloc_page() before scanning the address space, so it means huge page may be allocated even though there is no suitable range for collapsing. Then the page would be just freed if khugepaged already made enough progress. This could make NUMA=n run have 5 times as much thp_collapse_alloc as NUMA=y run. This problem actually makes things worse due to the way more pointless THP allocations and makes the optimization pointless. This could be fixed by carrying the huge page across scans, but it will complicate the code further and the huge page may be carried indefinitely. But if we take one step back, the optimization itself seems not worth keeping nowadays since: * Not too many users build NUMA=n kernel nowadays even though the kernel is actually running on a non-NUMA machine. Some small devices may run NUMA=n kernel, but I don't think they actually use THP. * Since commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists"), THP could be cached by pcp. This actually somehow does the job done by the optimization. Link: https://lkml.kernel.org/r/20220706235936.2197195-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-3-zokeefe@google.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Zach O'Keefe <zokeefe@google.com> Co-developed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:20 -07:00
return 0;
}
mm: khugepaged: don't carry huge page to the next loop for !CONFIG_NUMA Patch series "mm: userspace hugepage collapse", v7. Introduction -------------------------------- This series provides a mechanism for userspace to induce a collapse of eligible ranges of memory into transparent hugepages in process context, thus permitting users to more tightly control their own hugepage utilization policy at their own expense. This idea was introduced by David Rientjes[5]. Interface -------------------------------- The proposed interface adds a new madvise(2) mode, MADV_COLLAPSE, and leverages the new process_madvise(2) call. process_madvise(2) Performs a synchronous collapse of the native pages mapped by the list of iovecs into transparent hugepages. This operation is independent of the system THP sysfs settings, but attempts to collapse VMAs marked VM_NOHUGEPAGE will still fail. THP allocation may enter direct reclaim and/or compaction. When a range spans multiple VMAs, the semantics of the collapse over of each VMA is independent from the others. Caller must have CAP_SYS_ADMIN if not acting on self. Return value follows existing process_madvise(2) conventions. A “success” indicates that all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already pmd-mapped THPs. madvise(2) Equivalent to process_madvise(2) on self, with 0 returned on “success”. Current Use-Cases -------------------------------- (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. Note that subsequent support for file-backed memory is required here. (2) malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[6]. A prior study of Google internal workloads during evaluation of Temeraire, a hugepage-aware enhancement to TCMalloc, showed that nearly 20% of all cpu cycles were spent in dTLB stalls, and that increasing hugepage coverage by even small amount can help with that[7]. (3) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Note that subsequent support for file/shmem-backed memory is required here. (4) HugeTLB high-granularity mapping allows HugeTLB a HugeTLB page to be mapped at different levels in the page tables[8]. As it's not "transparent" like THP, HugeTLB high-granularity mappings require an explicit user API. It is intended that MADV_COLLAPSE be co-opted for this use case[9]. Note that subsequent support for HugeTLB memory is required here. Future work -------------------------------- Only private anonymous memory is supported by this series. File and shmem memory support will be added later. One possible user of this functionality is a userspace agent that attempts to optimize THP utilization system-wide by allocating THPs based on, for example, task priority, task performance requirements, or heatmaps. For the latter, one idea that has already surfaced is using DAMON to identify hot regions, and driving THP collapse through a new DAMOS_COLLAPSE scheme[10]. This patch (of 17): The khugepaged has optimization to reduce huge page allocation calls for !CONFIG_NUMA by carrying the allocated but failed to collapse huge page to the next loop. CONFIG_NUMA doesn't do so since the next loop may try to collapse huge page from a different node, so it doesn't make too much sense to carry it. But when NUMA=n, the huge page is allocated by khugepaged_prealloc_page() before scanning the address space, so it means huge page may be allocated even though there is no suitable range for collapsing. Then the page would be just freed if khugepaged already made enough progress. This could make NUMA=n run have 5 times as much thp_collapse_alloc as NUMA=y run. This problem actually makes things worse due to the way more pointless THP allocations and makes the optimization pointless. This could be fixed by carrying the huge page across scans, but it will complicate the code further and the huge page may be carried indefinitely. But if we take one step back, the optimization itself seems not worth keeping nowadays since: * Not too many users build NUMA=n kernel nowadays even though the kernel is actually running on a non-NUMA machine. Some small devices may run NUMA=n kernel, but I don't think they actually use THP. * Since commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists"), THP could be cached by pcp. This actually somehow does the job done by the optimization. Link: https://lkml.kernel.org/r/20220706235936.2197195-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-3-zokeefe@google.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Zach O'Keefe <zokeefe@google.com> Co-developed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:20 -07:00
#endif
static bool hpage_collapse_alloc_folio(struct folio **folio, gfp_t gfp, int node,
mm: khugepaged: allow page allocation fallback to eligible nodes Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") to satisfy "numactl --interleave=all". But interleaving is a mere hint rather than something that has hard requirements. So use nodemask to record the nodes which have the same hit record, the hugepage allocation could fallback to those nodes. And remove __GFP_THISNODE since it does disallow fallback. And if the nodemask just has one node set, it means there is one single node has the most hit record, the nodemask approach actually behaves like __GFP_THISNODE. Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Yang Shi <shy828301@gmail.com> Suggested-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 10:43:56 -08:00
nodemask_t *nmask)
{
*folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, nmask);
if (unlikely(!*folio)) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
return false;
}
count_vm_event(THP_COLLAPSE_ALLOC);
return true;
}
/*
* If mmap_lock temporarily dropped, revalidate vma
* before taking mmap_lock.
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
* Returns enum scan_result value.
*/
khugepaged: fix use-after-free in collapse_huge_page() hugepage_vma_revalidate() tries to re-check if we still should try to collapse small pages into huge one after the re-acquiring mmap_sem. The problem Dmitry Vyukov reported[1] is that the vma found by hugepage_vma_revalidate() can be suitable for huge pages, but not the same vma we had before dropping mmap_sem. And dereferencing original vma can lead to fun results.. Let's use vma hugepage_vma_revalidate() found instead of assuming it's the same as what we had before the lock was dropped. [1] http://lkml.kernel.org/r/CACT4Y+Z3gigBvhca9kRJFcjX0G70V_nRhbwKBU+yGoESBDKi9Q@mail.gmail.com Link: http://lkml.kernel.org/r/20160907122559.GA6542@black.fi.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Sasha Levin <levinsasha928@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Alexander Potapenko <glider@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 14:44:01 -07:00
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
bool expect_anon,
mm/thp: add flag to enforce sysfs THP in hugepage_vma_check() MADV_COLLAPSE is not coupled to the kernel-oriented sysfs THP settings[1]. hugepage_vma_check() is the authority on determining if a VMA is eligible for THP allocation/collapse, and currently enforces the sysfs THP settings. Add a flag to disable these checks. For now, only apply this arg to anon and file, which use /sys/kernel/transparent_hugepage/enabled. We can expand this to shmem, which uses /sys/kernel/transparent_hugepage/shmem_enabled, later. Use this flag in collapse_pte_mapped_thp() where previously the VMA flags passed to hugepage_vma_check() were OR'd with VM_HUGEPAGE to elide the VM_HUGEPAGE check in "madvise" THP mode. Prior to "mm: khugepaged: check THP flag in hugepage_vma_check()", this check also didn't check "never" THP mode. As such, this restores the previous behavior of collapse_pte_mapped_thp() where sysfs THP settings are ignored. See comment in code for justification why this is OK. [1] https://lore.kernel.org/linux-mm/CAAa6QmQxay1_=Pmt8oCX2-Va18t44FV-Vs-WsQt_6+qBks4nZA@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-8-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:25 -07:00
struct vm_area_struct **vmap,
struct collapse_control *cc)
{
struct vm_area_struct *vma;
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
if (unlikely(hpage_collapse_test_exit(mm)))
return SCAN_ANY_PROCESS;
khugepaged: fix use-after-free in collapse_huge_page() hugepage_vma_revalidate() tries to re-check if we still should try to collapse small pages into huge one after the re-acquiring mmap_sem. The problem Dmitry Vyukov reported[1] is that the vma found by hugepage_vma_revalidate() can be suitable for huge pages, but not the same vma we had before dropping mmap_sem. And dereferencing original vma can lead to fun results.. Let's use vma hugepage_vma_revalidate() found instead of assuming it's the same as what we had before the lock was dropped. [1] http://lkml.kernel.org/r/CACT4Y+Z3gigBvhca9kRJFcjX0G70V_nRhbwKBU+yGoESBDKi9Q@mail.gmail.com Link: http://lkml.kernel.org/r/20160907122559.GA6542@black.fi.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Sasha Levin <levinsasha928@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Alexander Potapenko <glider@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 14:44:01 -07:00
*vmap = vma = find_vma(mm, address);
if (!vma)
return SCAN_VMA_NULL;
mm: thp: introduce multi-size THP sysfs interface In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 16:12:04 +00:00
if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
return SCAN_ADDRESS_RANGE;
mm: thp: introduce multi-size THP sysfs interface In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 16:12:04 +00:00
if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
cc->is_khugepaged, PMD_ORDER))
return SCAN_VMA_CHECK;
/*
* Anon VMA expected, the address may be unmapped then
* remapped to file after khugepaged reaquired the mmap_lock.
*
mm: thp: introduce multi-size THP sysfs interface In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 16:12:04 +00:00
* thp_vma_allowable_order may return true for qualified file
* vmas.
*/
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
return SCAN_PAGE_ANON;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
return SCAN_SUCCEED;
}
mm/khugepaged: record SCAN_PMD_MAPPED when scan_pmd() finds hugepage When scanning an anon pmd to see if it's eligible for collapse, return SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the file-collapse path, since the latter might identify pte-mapped compound pages. This is required by MADV_COLLAPSE which necessarily needs to know what hugepage-aligned/sized regions are already pmd-mapped. In order to determine if a pmd already maps a hugepage, refactor mm_find_pmd(): Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") behavior. ksm was the only caller that explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic there (pmd_present() and pmd_trans_huge() checks). Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") that open-coded split_huge_pmd_address() pmd lookup and use mm_find_pmd() instead. Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:26 -07:00
static int find_pmd_or_thp_or_none(struct mm_struct *mm,
unsigned long address,
pmd_t **pmd)
{
pmd_t pmde;
*pmd = mm_find_pmd(mm, address);
if (!*pmd)
return SCAN_PMD_NULL;
pmde = pmdp_get_lockless(*pmd);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
if (pmd_none(pmde))
return SCAN_PMD_NONE;
mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups In commit 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none(): - if (!pmd_present(pmde)) - return SCAN_PMD_NULL; + if (pmd_none(pmde)) + return SCAN_PMD_NONE; This was for-use by MADV_COLLAPSE file/shmem codepaths, where MADV_COLLAPSE might identify a pte-mapped hugepage, only to have khugepaged race-in, free the pte table, and clear the pmd. Such codepaths include: A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER already in the pagecache. B) In retract_page_tables(), if we fail to grab mmap_lock for the target mm/address. In these cases, collapse_pte_mapped_thp() really does expect a none (not just !present) pmd, and we want to suitably identify that case separate from the case where no pmd is found, or it's a bad-pmd (of course, many things could happen once we drop mmap_lock, and the pmd could plausibly undergo multiple transitions due to intervening fault, split, etc). Regardless, the code is prepared install a huge-pmd only when the existing pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd. However, the commit introduces a logical hole; namely, that we've allowed !none- && !huge- && !bad-pmds to be classified as genuine pte-table-mapping-pmds. One such example that could leak through are swap entries. The pmd values aren't checked again before use in pte_offset_map_lock(), which is expecting nothing less than a genuine pte-table-mapping-pmd. We want to put back the !pmd_present() check (below the pmd_none() check), but need to be careful to deal with subtleties in pmd transitions and treatments by various arch. The issue is that __split_huge_pmd_locked() temporarily clears the present bit (or otherwise marks the entry as invalid), but pmd_present() and pmd_trans_huge() still need to return true while the pmd is in this transitory state. For example, x86's pmd_present() also checks the _PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also checks a PMD_PRESENT_INVALID bit. Covering all 4 cases for x86 (all checks done on the same pmd value): 1) pmd_present() && pmd_trans_huge() All we actually know here is that the PSE bit is set. Either: a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE is set. => huge-pmd b) We are currently racing with __split_huge_page(). The danger here is that we proceed as-if we have a huge-pmd, but really we are looking at a pte-mapping-pmd. So, what is the risk of this danger? The only relevant path is: madvise_collapse() -> collapse_pte_mapped_thp() Where we might just incorrectly report back "success", when really the memory isn't pmd-backed. This is fine, since split could happen immediately after (actually) successful madvise_collapse(). So, it should be safe to just assume huge-pmd here. 2) pmd_present() && !pmd_trans_huge() Either: a) PSE not set and either PRESENT or PROTNONE is. => pte-table-mapping pmd (or PROT_NONE) b) devmap. This routine can be called immediately after unlocking/locking mmap_lock -- or called with no locks held (see khugepaged_scan_mm_slot()), so previous VMA checks have since been invalidated. 3) !pmd_present() && pmd_trans_huge() Not possible. 4) !pmd_present() && !pmd_trans_huge() Neither PRESENT nor PROTNONE set => not present I've checked all archs that implement pmd_trans_huge() (arm64, riscv, powerpc, longarch, x86, mips, s390) and this logic roughly translates (though devmap treatment is unique to x86 and powerpc, and (3) doesn't necessarily hold in general -- but that doesn't matter since !pmd_present() always takes failure path). Also, add a comment above find_pmd_or_thp_or_none() to help future travelers reason about the validity of the code; namely, the possible mutations that might happen out from under us, depending on how mmap_lock is held (if at all). Link: https://lkml.kernel.org/r/20230125225358.2576151-1-zokeefe@google.com Fixes: 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE") Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reported-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-25 14:53:58 -08:00
if (!pmd_present(pmde))
return SCAN_PMD_NULL;
mm/khugepaged: record SCAN_PMD_MAPPED when scan_pmd() finds hugepage When scanning an anon pmd to see if it's eligible for collapse, return SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the file-collapse path, since the latter might identify pte-mapped compound pages. This is required by MADV_COLLAPSE which necessarily needs to know what hugepage-aligned/sized regions are already pmd-mapped. In order to determine if a pmd already maps a hugepage, refactor mm_find_pmd(): Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") behavior. ksm was the only caller that explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic there (pmd_present() and pmd_trans_huge() checks). Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") that open-coded split_huge_pmd_address() pmd lookup and use mm_find_pmd() instead. Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:26 -07:00
if (pmd_trans_huge(pmde))
return SCAN_PMD_MAPPED;
mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups In commit 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none(): - if (!pmd_present(pmde)) - return SCAN_PMD_NULL; + if (pmd_none(pmde)) + return SCAN_PMD_NONE; This was for-use by MADV_COLLAPSE file/shmem codepaths, where MADV_COLLAPSE might identify a pte-mapped hugepage, only to have khugepaged race-in, free the pte table, and clear the pmd. Such codepaths include: A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER already in the pagecache. B) In retract_page_tables(), if we fail to grab mmap_lock for the target mm/address. In these cases, collapse_pte_mapped_thp() really does expect a none (not just !present) pmd, and we want to suitably identify that case separate from the case where no pmd is found, or it's a bad-pmd (of course, many things could happen once we drop mmap_lock, and the pmd could plausibly undergo multiple transitions due to intervening fault, split, etc). Regardless, the code is prepared install a huge-pmd only when the existing pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd. However, the commit introduces a logical hole; namely, that we've allowed !none- && !huge- && !bad-pmds to be classified as genuine pte-table-mapping-pmds. One such example that could leak through are swap entries. The pmd values aren't checked again before use in pte_offset_map_lock(), which is expecting nothing less than a genuine pte-table-mapping-pmd. We want to put back the !pmd_present() check (below the pmd_none() check), but need to be careful to deal with subtleties in pmd transitions and treatments by various arch. The issue is that __split_huge_pmd_locked() temporarily clears the present bit (or otherwise marks the entry as invalid), but pmd_present() and pmd_trans_huge() still need to return true while the pmd is in this transitory state. For example, x86's pmd_present() also checks the _PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also checks a PMD_PRESENT_INVALID bit. Covering all 4 cases for x86 (all checks done on the same pmd value): 1) pmd_present() && pmd_trans_huge() All we actually know here is that the PSE bit is set. Either: a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE is set. => huge-pmd b) We are currently racing with __split_huge_page(). The danger here is that we proceed as-if we have a huge-pmd, but really we are looking at a pte-mapping-pmd. So, what is the risk of this danger? The only relevant path is: madvise_collapse() -> collapse_pte_mapped_thp() Where we might just incorrectly report back "success", when really the memory isn't pmd-backed. This is fine, since split could happen immediately after (actually) successful madvise_collapse(). So, it should be safe to just assume huge-pmd here. 2) pmd_present() && !pmd_trans_huge() Either: a) PSE not set and either PRESENT or PROTNONE is. => pte-table-mapping pmd (or PROT_NONE) b) devmap. This routine can be called immediately after unlocking/locking mmap_lock -- or called with no locks held (see khugepaged_scan_mm_slot()), so previous VMA checks have since been invalidated. 3) !pmd_present() && pmd_trans_huge() Not possible. 4) !pmd_present() && !pmd_trans_huge() Neither PRESENT nor PROTNONE set => not present I've checked all archs that implement pmd_trans_huge() (arm64, riscv, powerpc, longarch, x86, mips, s390) and this logic roughly translates (though devmap treatment is unique to x86 and powerpc, and (3) doesn't necessarily hold in general -- but that doesn't matter since !pmd_present() always takes failure path). Also, add a comment above find_pmd_or_thp_or_none() to help future travelers reason about the validity of the code; namely, the possible mutations that might happen out from under us, depending on how mmap_lock is held (if at all). Link: https://lkml.kernel.org/r/20230125225358.2576151-1-zokeefe@google.com Fixes: 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE") Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reported-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-25 14:53:58 -08:00
if (pmd_devmap(pmde))
return SCAN_PMD_NULL;
mm/khugepaged: record SCAN_PMD_MAPPED when scan_pmd() finds hugepage When scanning an anon pmd to see if it's eligible for collapse, return SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the file-collapse path, since the latter might identify pte-mapped compound pages. This is required by MADV_COLLAPSE which necessarily needs to know what hugepage-aligned/sized regions are already pmd-mapped. In order to determine if a pmd already maps a hugepage, refactor mm_find_pmd(): Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") behavior. ksm was the only caller that explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic there (pmd_present() and pmd_trans_huge() checks). Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") that open-coded split_huge_pmd_address() pmd lookup and use mm_find_pmd() instead. Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:26 -07:00
if (pmd_bad(pmde))
return SCAN_PMD_NULL;
return SCAN_SUCCEED;
}
static int check_pmd_still_valid(struct mm_struct *mm,
unsigned long address,
pmd_t *pmd)
{
pmd_t *new_pmd;
int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
if (result != SCAN_SUCCEED)
return result;
if (new_pmd != pmd)
return SCAN_FAIL;
return SCAN_SUCCEED;
}
/*
* Bring missing pages in from swap, to complete THP collapse.
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
* Only done if hpage_collapse_scan_pmd believes it is worthwhile.
*
* Called and returns without pte mapped or spinlocks held.
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
* Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
*/
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
static int __collapse_huge_page_swapin(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd,
int referenced)
{
int swapped_in = 0;
vm_fault_t ret = 0;
unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
int result;
pte_t *pte = NULL;
mm/memory: handle_pte_fault() use pte_offset_map_nolock() handle_pte_fault() use pte_offset_map_nolock() to get the vmf.ptl which corresponds to vmf.pte, instead of pte_lockptr() being used later, when there's a chance that the pmd entry might have changed, perhaps to none, or to a huge pmd, with no split ptlock in its struct page. Remove its pmd_devmap_trans_unstable() call: pte_offset_map_nolock() will handle that case by failing. Update the "morph" comment above, looking forward to when shmem or file collapse to THP may not take mmap_lock for write (or not at all). do_numa_page() use the vmf->ptl from handle_pte_fault() at first, but refresh it when refreshing vmf->pte. do_swap_page()'s pte_unmap_same() (the thing that takes ptl to verify a two-part PAE orig_pte) use the vmf->ptl from handle_pte_fault() too; but do_swap_page() is also used by anon THP's __collapse_huge_page_swapin(), so adjust that to set vmf->ptl by pte_offset_map_nolock(). Link: https://lkml.kernel.org/r/c1107654-3929-60ac-223e-6877cbb86065@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:45:05 -07:00
spinlock_t *ptl;
for (address = haddr; address < end; address += PAGE_SIZE) {
struct vm_fault vmf = {
.vma = vma,
.address = address,
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
.pgoff = linear_page_index(vma, address),
.flags = FAULT_FLAG_ALLOW_RETRY,
.pmd = pmd,
};
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
if (!pte++) {
mm/memory: handle_pte_fault() use pte_offset_map_nolock() handle_pte_fault() use pte_offset_map_nolock() to get the vmf.ptl which corresponds to vmf.pte, instead of pte_lockptr() being used later, when there's a chance that the pmd entry might have changed, perhaps to none, or to a huge pmd, with no split ptlock in its struct page. Remove its pmd_devmap_trans_unstable() call: pte_offset_map_nolock() will handle that case by failing. Update the "morph" comment above, looking forward to when shmem or file collapse to THP may not take mmap_lock for write (or not at all). do_numa_page() use the vmf->ptl from handle_pte_fault() at first, but refresh it when refreshing vmf->pte. do_swap_page()'s pte_unmap_same() (the thing that takes ptl to verify a two-part PAE orig_pte) use the vmf->ptl from handle_pte_fault() too; but do_swap_page() is also used by anon THP's __collapse_huge_page_swapin(), so adjust that to set vmf->ptl by pte_offset_map_nolock(). Link: https://lkml.kernel.org/r/c1107654-3929-60ac-223e-6877cbb86065@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:45:05 -07:00
pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
if (!pte) {
mmap_read_unlock(mm);
result = SCAN_PMD_NULL;
goto out;
}
}
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
mm/memory: handle_pte_fault() use pte_offset_map_nolock() handle_pte_fault() use pte_offset_map_nolock() to get the vmf.ptl which corresponds to vmf.pte, instead of pte_lockptr() being used later, when there's a chance that the pmd entry might have changed, perhaps to none, or to a huge pmd, with no split ptlock in its struct page. Remove its pmd_devmap_trans_unstable() call: pte_offset_map_nolock() will handle that case by failing. Update the "morph" comment above, looking forward to when shmem or file collapse to THP may not take mmap_lock for write (or not at all). do_numa_page() use the vmf->ptl from handle_pte_fault() at first, but refresh it when refreshing vmf->pte. do_swap_page()'s pte_unmap_same() (the thing that takes ptl to verify a two-part PAE orig_pte) use the vmf->ptl from handle_pte_fault() too; but do_swap_page() is also used by anon THP's __collapse_huge_page_swapin(), so adjust that to set vmf->ptl by pte_offset_map_nolock(). Link: https://lkml.kernel.org/r/c1107654-3929-60ac-223e-6877cbb86065@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:45:05 -07:00
vmf.orig_pte = ptep_get_lockless(pte);
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
if (!is_swap_pte(vmf.orig_pte))
continue;
vmf.pte = pte;
mm/memory: handle_pte_fault() use pte_offset_map_nolock() handle_pte_fault() use pte_offset_map_nolock() to get the vmf.ptl which corresponds to vmf.pte, instead of pte_lockptr() being used later, when there's a chance that the pmd entry might have changed, perhaps to none, or to a huge pmd, with no split ptlock in its struct page. Remove its pmd_devmap_trans_unstable() call: pte_offset_map_nolock() will handle that case by failing. Update the "morph" comment above, looking forward to when shmem or file collapse to THP may not take mmap_lock for write (or not at all). do_numa_page() use the vmf->ptl from handle_pte_fault() at first, but refresh it when refreshing vmf->pte. do_swap_page()'s pte_unmap_same() (the thing that takes ptl to verify a two-part PAE orig_pte) use the vmf->ptl from handle_pte_fault() too; but do_swap_page() is also used by anon THP's __collapse_huge_page_swapin(), so adjust that to set vmf->ptl by pte_offset_map_nolock(). Link: https://lkml.kernel.org/r/c1107654-3929-60ac-223e-6877cbb86065@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:45:05 -07:00
vmf.ptl = ptl;
ret = do_swap_page(&vmf);
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
/* Which unmaps pte (after perhaps re-checking the entry) */
pte = NULL;
/*
* do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
* Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
* we do not retry here and swap entry will remain in pagetable
* resulting in later failure.
*/
if (ret & VM_FAULT_RETRY) {
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
/* Likely, but not guaranteed, that page lock failed */
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
result = SCAN_PAGE_LOCK;
goto out;
}
if (ret & VM_FAULT_ERROR) {
mmap_read_unlock(mm);
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
result = SCAN_FAIL;
goto out;
}
swapped_in++;
}
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
if (pte)
pte_unmap(pte);
/* Drain LRU cache to remove extra pin on the swapped in pages */
if (swapped_in)
lru_add_drain();
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
result = SCAN_SUCCEED;
out:
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
return result;
}
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
struct collapse_control *cc)
{
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
mm: khugepaged: allow page allocation fallback to eligible nodes Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") to satisfy "numactl --interleave=all". But interleaving is a mere hint rather than something that has hard requirements. So use nodemask to record the nodes which have the same hit record, the hugepage allocation could fallback to those nodes. And remove __GFP_THISNODE since it does disallow fallback. And if the nodemask just has one node set, it means there is one single node has the most hit record, the nodemask approach actually behaves like __GFP_THISNODE. Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Yang Shi <shy828301@gmail.com> Suggested-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 10:43:56 -08:00
GFP_TRANSHUGE);
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
int node = hpage_collapse_find_target_node(cc);
struct folio *folio;
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
if (!hpage_collapse_alloc_folio(&folio, gfp, node, &cc->alloc_nmask)) {
*hpage = NULL;
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
return SCAN_ALLOC_HUGE_PAGE_FAIL;
}
if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
folio_put(folio);
*hpage = NULL;
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
return SCAN_CGROUP_CHARGE_FAIL;
}
count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
*hpage = folio_page(folio, 0);
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
return SCAN_SUCCEED;
}
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
int referenced, int unmapped,
struct collapse_control *cc)
{
LIST_HEAD(compound_pagelist);
pmd_t *pmd, _pmd;
pte_t *pte;
pgtable_t pgtable;
struct folio *folio;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
struct page *hpage;
spinlock_t *pmd_ptl, *pte_ptl;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
int result = SCAN_FAIL;
khugepaged: fix use-after-free in collapse_huge_page() hugepage_vma_revalidate() tries to re-check if we still should try to collapse small pages into huge one after the re-acquiring mmap_sem. The problem Dmitry Vyukov reported[1] is that the vma found by hugepage_vma_revalidate() can be suitable for huge pages, but not the same vma we had before dropping mmap_sem. And dereferencing original vma can lead to fun results.. Let's use vma hugepage_vma_revalidate() found instead of assuming it's the same as what we had before the lock was dropped. [1] http://lkml.kernel.org/r/CACT4Y+Z3gigBvhca9kRJFcjX0G70V_nRhbwKBU+yGoESBDKi9Q@mail.gmail.com Link: http://lkml.kernel.org/r/20160907122559.GA6542@black.fi.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Sasha Levin <levinsasha928@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Alexander Potapenko <glider@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 14:44:01 -07:00
struct vm_area_struct *vma;
struct mmu_notifier_range range;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
/*
* Before allocating the hugepage, release the mmap_lock read lock.
* The allocation can take potentially a long time if it involves
* sync compaction, and we do not need to hold the mmap_lock during
* that. We will recheck the vma after taking it again in write mode.
*/
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_read_unlock(mm);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
result = alloc_charge_hpage(&hpage, mm, cc);
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
if (result != SCAN_SUCCEED)
goto out_nolock;
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_read_lock(mm);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
if (result != SCAN_SUCCEED) {
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_read_unlock(mm);
goto out_nolock;
}
mm/khugepaged: record SCAN_PMD_MAPPED when scan_pmd() finds hugepage When scanning an anon pmd to see if it's eligible for collapse, return SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the file-collapse path, since the latter might identify pte-mapped compound pages. This is required by MADV_COLLAPSE which necessarily needs to know what hugepage-aligned/sized regions are already pmd-mapped. In order to determine if a pmd already maps a hugepage, refactor mm_find_pmd(): Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") behavior. ksm was the only caller that explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic there (pmd_present() and pmd_trans_huge() checks). Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") that open-coded split_huge_pmd_address() pmd lookup and use mm_find_pmd() instead. Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:26 -07:00
result = find_pmd_or_thp_or_none(mm, address, &pmd);
if (result != SCAN_SUCCEED) {
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_read_unlock(mm);
goto out_nolock;
}
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
if (unmapped) {
/*
* __collapse_huge_page_swapin will return with mmap_lock
* released when it fails. So we jump out_nolock directly in
* that case. Continuing to collapse causes inconsistency.
*/
result = __collapse_huge_page_swapin(mm, vma, address, pmd,
referenced);
if (result != SCAN_SUCCEED)
goto out_nolock;
}
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_read_unlock(mm);
/*
* Prevent all access to pagetables with the exception of
* gup_fast later handled by the ptep_clear_flush and the VM
* handled by the anon_vma lock + PG_lock.
userfaultfd: UFFDIO_MOVE uABI Implement the uABI of UFFDIO_MOVE ioctl. UFFDIO_COPY performs ~20% better than UFFDIO_MOVE when the application needs pages to be allocated [1]. However, with UFFDIO_MOVE, if pages are available (in userspace) for recycling, as is usually the case in heap compaction algorithms, then we can avoid the page allocation and memcpy (done by UFFDIO_COPY). Also, since the pages are recycled in the userspace, we avoid the need to release (via madvise) the pages back to the kernel [2]. We see over 40% reduction (on a Google pixel 6 device) in the compacting thread's completion time by using UFFDIO_MOVE vs. UFFDIO_COPY. This was measured using a benchmark that emulates a heap compaction implementation using userfaultfd (to allow concurrent accesses by application threads). More details of the usecase are explained in [2]. Furthermore, UFFDIO_MOVE enables moving swapped-out pages without touching them within the same vma. Today, it can only be done by mremap, however it forces splitting the vma. [1] https://lore.kernel.org/all/1425575884-2574-1-git-send-email-aarcange@redhat.com/ [2] https://lore.kernel.org/linux-mm/CA+EESO4uO84SSnBhArH4HvLNhaUQ5nZKNKXqxRCyjniNVjp0Aw@mail.gmail.com/ Update for the ioctl_userfaultfd(2) manpage: UFFDIO_MOVE (Since Linux xxx) Move a continuous memory chunk into the userfault registered range and optionally wake up the blocked thread. The source and destination addresses and the number of bytes to move are specified by the src, dst, and len fields of the uffdio_move structure pointed to by argp: struct uffdio_move { __u64 dst; /* Destination of move */ __u64 src; /* Source of move */ __u64 len; /* Number of bytes to move */ __u64 mode; /* Flags controlling behavior of move */ __s64 move; /* Number of bytes moved, or negated error */ }; The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_MOVE operation: UFFDIO_MOVE_MODE_DONTWAKE Do not wake up the thread that waits for page-fault resolution UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES Allow holes in the source virtual range that is being moved. When not specified, the holes will result in ENOENT error. When specified, the holes will be accounted as successfully moved memory. This is mostly useful to move hugepage aligned virtual regions without knowing if there are transparent hugepages in the regions or not, but preventing the risk of having to split the hugepage during the operation. The move field is used by the kernel to return the number of bytes that was actually moved, or an error (a negated errno- style value). If the value returned in move doesn't match the value that was specified in len, the operation fails with the error EAGAIN. The move field is output-only; it is not read by the UFFDIO_MOVE operation. The operation may fail for various reasons. Usually, remapping of pages that are not exclusive to the given process fail; once KSM might deduplicate pages or fork() COW-shares pages during fork() with child processes, they are no longer exclusive. Further, the kernel might only perform lightweight checks for detecting whether the pages are exclusive, and return -EBUSY in case that check fails. To make the operation more likely to succeed, KSM should be disabled, fork() should be avoided or MADV_DONTFORK should be configured for the source VMA before fork(). This ioctl(2) operation returns 0 on success. In this case, the entire area was moved. On error, -1 is returned and errno is set to indicate the error. Possible errors include: EAGAIN The number of bytes moved (i.e., the value returned in the move field) does not equal the value that was specified in the len field. EINVAL Either dst or len was not a multiple of the system page size, or the range specified by src and len or dst and len was invalid. EINVAL An invalid bit was specified in the mode field. ENOENT The source virtual memory range has unmapped holes and UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES is not set. EEXIST The destination virtual memory range is fully or partially mapped. EBUSY The pages in the source virtual memory range are either pinned or not exclusive to the process. The kernel might only perform lightweight checks for detecting whether the pages are exclusive. To make the operation more likely to succeed, KSM should be disabled, fork() should be avoided or MADV_DONTFORK should be configured for the source virtual memory area before fork(). ENOMEM Allocating memory needed for the operation failed. ESRCH The target process has exited at the time of a UFFDIO_MOVE operation. Link: https://lkml.kernel.org/r/20231206103702.3873743-3-surenb@google.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Nicolas Geoffray <ngeoffray@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: ZhangPeng <zhangpeng362@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06 02:36:56 -08:00
*
* UFFDIO_MOVE is prevented to race as well thanks to the
* mmap_lock.
*/
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_write_lock(mm);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
if (result != SCAN_SUCCEED)
goto out_up_write;
/* check if the pmd is still valid */
mm/khugepaged: record SCAN_PMD_MAPPED when scan_pmd() finds hugepage When scanning an anon pmd to see if it's eligible for collapse, return SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the file-collapse path, since the latter might identify pte-mapped compound pages. This is required by MADV_COLLAPSE which necessarily needs to know what hugepage-aligned/sized regions are already pmd-mapped. In order to determine if a pmd already maps a hugepage, refactor mm_find_pmd(): Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") behavior. ksm was the only caller that explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic there (pmd_present() and pmd_trans_huge() checks). Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") that open-coded split_huge_pmd_address() pmd lookup and use mm_find_pmd() instead. Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:26 -07:00
result = check_pmd_still_valid(mm, address, pmd);
if (result != SCAN_SUCCEED)
goto out_up_write;
vma_start_write(vma);
anon_vma_lock_write(vma->anon_vma);
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
address + HPAGE_PMD_SIZE);
mmu_notifier_invalidate_range_start(&range);
mm/khugepaged: fix might_sleep() warn with CONFIG_HIGHPTE=y I got some khugepaged spew on a 32bit x86: BUG: sleeping function called from invalid context at include/linux/mmu_notifier.h:346 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 25, name: khugepaged INFO: lockdep is turned off. CPU: 1 PID: 25 Comm: khugepaged Not tainted 5.4.0-rc5-elk+ #206 Hardware name: System manufacturer P5Q-EM/P5Q-EM, BIOS 2203 07/08/2009 Call Trace: dump_stack+0x66/0x8e ___might_sleep.cold.96+0x95/0xa6 __might_sleep+0x2e/0x80 collapse_huge_page.isra.51+0x5ac/0x1360 khugepaged+0x9a9/0x20f0 kthread+0xf5/0x110 ret_from_fork+0x2e/0x38 Looks like it's due to CONFIG_HIGHPTE=y pte_offset_map()->kmap_atomic() vs. mmu_notifier_invalidate_range_start(). Let's do the naive approach and just reorder the two operations. Link: http://lkml.kernel.org/r/20191029201513.GG1208@intel.com Fixes: 810e24e009cf71 ("mm/mmu_notifiers: annotate with might_sleep()") Signed-off-by: Ville Syrjl <ville.syrjala@linux.intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-05 21:16:48 -08:00
pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
/*
mm: gup: fix the fast GUP race against THP collapse Since general RCU GUP fast was introduced in commit 2667f50e8b81 ("mm: introduce a general RCU get_user_pages_fast()"), a TLB flush is no longer sufficient to handle concurrent GUP-fast in all cases, it only handles traditional IPI-based GUP-fast correctly. On architectures that send an IPI broadcast on TLB flush, it works as expected. But on the architectures that do not use IPI to broadcast TLB flush, it may have the below race: CPU A CPU B THP collapse fast GUP gup_pmd_range() <-- see valid pmd gup_pte_range() <-- work on pte pmdp_collapse_flush() <-- clear pmd and flush __collapse_huge_page_isolate() check page pinned <-- before GUP bump refcount pin the page check PTE <-- no change __collapse_huge_page_copy() copy data to huge page ptep_clear() install huge pmd for the huge page return the stale page discard the stale page The race can be fixed by checking whether PMD is changed or not after taking the page pin in fast GUP, just like what it does for PTE. If the PMD is changed it means there may be parallel THP collapse, so GUP should back off. Also update the stale comment about serializing against fast GUP in khugepaged. Link: https://lkml.kernel.org/r/20220907180144.555485-1-shy828301@gmail.com Fixes: 2667f50e8b81 ("mm: introduce a general RCU get_user_pages_fast()") Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Peter Xu <peterx@redhat.com> Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-07 11:01:43 -07:00
* This removes any huge TLB entry from the CPU so we won't allow
* huge and small TLB entries for the same virtual address to
* avoid the risk of CPU bugs in that area.
*
* Parallel fast GUP is fine since fast GUP will back off when
* it detects PMD is changed.
*/
_pmd = pmdp_collapse_flush(vma, address, pmd);
spin_unlock(pmd_ptl);
mmu_notifier_invalidate_range_end(&range);
tlb_remove_table_sync_one();
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
if (pte) {
result = __collapse_huge_page_isolate(vma, address, pte, cc,
&compound_pagelist);
spin_unlock(pte_ptl);
} else {
result = SCAN_PMD_NULL;
}
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
if (unlikely(result != SCAN_SUCCEED)) {
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
if (pte)
pte_unmap(pte);
spin_lock(pmd_ptl);
BUG_ON(!pmd_none(*pmd));
/*
* We can only use set_pmd_at when establishing
* hugepmds and never for establishing regular pmds that
* points to regular pagetables. Use pmd_populate for that
*/
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
spin_unlock(pmd_ptl);
anon_vma_unlock_write(vma->anon_vma);
goto out_up_write;
}
/*
* All pages are isolated and locked so anon_vma rmap
* can't run anymore.
*/
anon_vma_unlock_write(vma->anon_vma);
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
vma, address, pte_ptl,
&compound_pagelist);
pte_unmap(pte);
mm/khugepaged: recover from poisoned anonymous memory Problem ======= Memory DIMMs are subject to multi-bit flips, i.e. memory errors. As memory size and density increase, the chances of and number of memory errors increase. The increasing size and density of server RAM in the data center and cloud have shown increased uncorrectable memory errors. There are already mechanisms in the kernel to recover from uncorrectable memory errors. This series of patches provides the recovery mechanism for the particular kernel agent khugepaged when it collapses memory pages. Impact ====== The main reason we chose to make khugepaged collapsing tolerant of memory failures was its high possibility of accessing poisoned memory while performing functionally optional compaction actions. Standard applications typically don't have strict requirements on the size of its pages. So they are given 4K pages by the kernel. The kernel is able to improve application performance by either 1) giving applications 2M pages to begin with, or 2) collapsing 4K pages into 2M pages when possible. This collapsing operation is done by khugepaged, a kernel agent that is constantly scanning memory. When collapsing 4K pages into a 2M page, it must copy the data from the 4K pages into a physically contiguous 2M page. Therefore, as long as there exists one poisoned cache line in collapsible 4K pages, khugepaged will eventually access it. The current impact to users is a machine check exception triggered kernel panic. However, khugepaged’s compaction operations are not functionally required kernel actions. Therefore making khugepaged tolerant to poisoned memory will greatly improve user experience. This patch series is for cases where khugepaged is the first guy that detects the memory errors on the poisoned pages. IOW, the pages are not known to have memory errors when khugepaged collapsing gets to them. In our observation, this happens frequently when the huge page ratio of the system is relatively low, which is fairly common in virtual machines running on cloud. Solution ======== As stated before, it is less desirable to crash the system only because khugepaged accesses poisoned pages while it is collapsing 4K pages. The high level idea of this patch series is to skip the group of pages (usually 512 4K-size pages) once khugepaged finds one of them is poisoned, as these pages have become ineligible to be collapsed. We are also careful to unwind operations khuagepaged has performed before it detects memory failures. For example, before copying and collapsing a group of anonymous pages into a huge page, the source pages will be isolated and their page table is unlinked from their PMD. These operations need to be undone in order to ensure these pages are not changed/lost from the perspective of other threads (both user and kernel space). As for file backed memory pages, there already exists a rollback case. This patch just extends it so that khugepaged also correctly rolls back when it fails to copy poisoned 4K pages. This patch (of 3): Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:19 -07:00
if (unlikely(result != SCAN_SUCCEED))
goto out_up_write;
folio = page_folio(hpage);
/*
* The smp_wmb() inside __folio_mark_uptodate() ensures the
* copy_huge_page writes become visible before the set_pmd_at()
* write.
*/
__folio_mark_uptodate(folio);
pgtable = pmd_pgtable(_pmd);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
spin_lock(pmd_ptl);
BUG_ON(!pmd_none(*pmd));
folio_add_new_anon_rmap(folio, vma, address);
folio_add_lru_vma(folio, vma);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, address, pmd, _pmd);
update_mmu_cache_pmd(vma, address, pmd);
spin_unlock(pmd_ptl);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
hpage = NULL;
result = SCAN_SUCCEED;
out_up_write:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_write_unlock(mm);
out_nolock:
if (hpage)
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
put_page(hpage);
trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
return result;
}
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
static int hpage_collapse_scan_pmd(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long address, bool *mmap_locked,
struct collapse_control *cc)
{
pmd_t *pmd;
pte_t *pte, *_pte;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
int result = SCAN_FAIL, referenced = 0;
int none_or_zero = 0, shared = 0;
struct page *page = NULL;
struct folio *folio = NULL;
unsigned long _address;
spinlock_t *ptl;
int node = NUMA_NO_NODE, unmapped = 0;
bool writable = false;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
mm/khugepaged: record SCAN_PMD_MAPPED when scan_pmd() finds hugepage When scanning an anon pmd to see if it's eligible for collapse, return SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the file-collapse path, since the latter might identify pte-mapped compound pages. This is required by MADV_COLLAPSE which necessarily needs to know what hugepage-aligned/sized regions are already pmd-mapped. In order to determine if a pmd already maps a hugepage, refactor mm_find_pmd(): Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") behavior. ksm was the only caller that explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic there (pmd_present() and pmd_trans_huge() checks). Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy race with THP fault") that open-coded split_huge_pmd_address() pmd lookup and use mm_find_pmd() instead. Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:26 -07:00
result = find_pmd_or_thp_or_none(mm, address, &pmd);
if (result != SCAN_SUCCEED)
goto out;
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
memset(cc->node_load, 0, sizeof(cc->node_load));
mm: khugepaged: allow page allocation fallback to eligible nodes Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") to satisfy "numactl --interleave=all". But interleaving is a mere hint rather than something that has hard requirements. So use nodemask to record the nodes which have the same hit record, the hugepage allocation could fallback to those nodes. And remove __GFP_THISNODE since it does disallow fallback. And if the nodemask just has one node set, it means there is one single node has the most hit record, the nodemask approach actually behaves like __GFP_THISNODE. Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Yang Shi <shy828301@gmail.com> Suggested-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 10:43:56 -08:00
nodes_clear(cc->alloc_nmask);
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
if (!pte) {
result = SCAN_PMD_NULL;
goto out;
}
for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
_pte++, _address += PAGE_SIZE) {
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
pte_t pteval = ptep_get(_pte);
if (is_swap_pte(pteval)) {
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
++unmapped;
if (!cc->is_khugepaged ||
unmapped <= khugepaged_max_ptes_swap) {
2020-04-06 20:06:04 -07:00
/*
* Always be strict with uffd-wp
* enabled swap entries. Please see
* comment below for pte_uffd_wp().
*/
mm/uffd: UFFD_FEATURE_WP_UNPOPULATED Patch series "mm/uffd: Add feature bit UFFD_FEATURE_WP_UNPOPULATED", v4. The new feature bit makes anonymous memory acts the same as file memory on userfaultfd-wp in that it'll also wr-protect none ptes. It can be useful in two cases: (1) Uffd-wp app that needs to wr-protect none ptes like QEMU snapshot, so pre-fault can be replaced by enabling this flag and speed up protections (2) It helps to implement async uffd-wp mode that Muhammad is working on [1] It's debatable whether this is the most ideal solution because with the new feature bit set, wr-protect none pte needs to pre-populate the pgtables to the last level (PAGE_SIZE). But it seems fine so far to service either purpose above, so we can leave optimizations for later. The series brings pte markers to anonymous memory too. There's some change in the common mm code path in the 1st patch, great to have some eye looking at it, but hopefully they're still relatively straightforward. This patch (of 2): This is a new feature that controls how uffd-wp handles none ptes. When it's set, the kernel will handle anonymous memory the same way as file memory, by allowing the user to wr-protect unpopulated ptes. File memories handles none ptes consistently by allowing wr-protecting of none ptes because of the unawareness of page cache being exist or not. For anonymous it was not as persistent because we used to assume that we don't need protections on none ptes or known zero pages. One use case of such a feature bit was VM live snapshot, where if without wr-protecting empty ptes the snapshot can contain random rubbish in the holes of the anonymous memory, which can cause misbehave of the guest when the guest OS assumes the pages should be all zeros. QEMU worked it around by pre-populate the section with reads to fill in zero page entries before starting the whole snapshot process [1]. Recently there's another need raised on using userfaultfd wr-protect for detecting dirty pages (to replace soft-dirty in some cases) [2]. In that case if without being able to wr-protect none ptes by default, the dirty info can get lost, since we cannot treat every none pte to be dirty (the current design is identify a page dirty based on uffd-wp bit being cleared). In general, we want to be able to wr-protect empty ptes too even for anonymous. This patch implements UFFD_FEATURE_WP_UNPOPULATED so that it'll make uffd-wp handling on none ptes being consistent no matter what the memory type is underneath. It doesn't have any impact on file memories so far because we already have pte markers taking care of that. So it only affects anonymous. The feature bit is by default off, so the old behavior will be maintained. Sometimes it may be wanted because the wr-protect of none ptes will contain overheads not only during UFFDIO_WRITEPROTECT (by applying pte markers to anonymous), but also on creating the pgtables to store the pte markers. So there's potentially less chance of using thp on the first fault for a none pmd or larger than a pmd. The major implementation part is teaching the whole kernel to understand pte markers even for anonymously mapped ranges, meanwhile allowing the UFFDIO_WRITEPROTECT ioctl to apply pte markers for anonymous too when the new feature bit is set. Note that even if the patch subject starts with mm/uffd, there're a few small refactors to major mm path of handling anonymous page faults. But they should be straightforward. With WP_UNPOPUATED, application like QEMU can avoid pre-read faults all the memory before wr-protect during taking a live snapshot. Quotting from Muhammad's test result here [3] based on a simple program [4]: (1) With huge page disabled echo madvise > /sys/kernel/mm/transparent_hugepage/enabled ./uffd_wp_perf Test DEFAULT: 4 Test PRE-READ: 1111453 (pre-fault 1101011) Test MADVISE: 278276 (pre-fault 266378) Test WP-UNPOPULATE: 11712 (2) With Huge page enabled echo always > /sys/kernel/mm/transparent_hugepage/enabled ./uffd_wp_perf Test DEFAULT: 4 Test PRE-READ: 22521 (pre-fault 22348) Test MADVISE: 4909 (pre-fault 4743) Test WP-UNPOPULATE: 14448 There'll be a great perf boost for no-thp case, while for thp enabled with extreme case of all-thp-zero WP_UNPOPULATED can be slower than MADVISE, but that's low possibility in reality, also the overhead was not reduced but postponed until a follow up write on any huge zero thp, so potentially it is faster by making the follow up writes slower. [1] https://lore.kernel.org/all/20210401092226.102804-4-andrey.gruzdev@virtuozzo.com/ [2] https://lore.kernel.org/all/Y+v2HJ8+3i%2FKzDBu@x1n/ [3] https://lore.kernel.org/all/d0eb0a13-16dc-1ac1-653a-78b7273781e3@collabora.com/ [4] https://github.com/xzpeter/clibs/blob/master/uffd-test/uffd-wp-perf.c [peterx@redhat.com: comment changes, oneliner fix to khugepaged] Link: https://lkml.kernel.org/r/ZB2/8jPhD3fpx5U8@x1n Link: https://lkml.kernel.org/r/20230309223711.823547-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20230309223711.823547-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Paul Gofman <pgofman@codeweavers.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-09 17:37:10 -05:00
if (pte_swp_uffd_wp_any(pteval)) {
2020-04-06 20:06:04 -07:00
result = SCAN_PTE_UFFD_WP;
goto out_unmap;
}
continue;
} else {
result = SCAN_EXCEED_SWAP_PTE;
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
goto out_unmap;
}
}
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
++none_or_zero;
if (!userfaultfd_armed(vma) &&
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
(!cc->is_khugepaged ||
none_or_zero <= khugepaged_max_ptes_none)) {
continue;
} else {
result = SCAN_EXCEED_NONE_PTE;
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
goto out_unmap;
}
}
2020-04-06 20:06:04 -07:00
if (pte_uffd_wp(pteval)) {
/*
* Don't collapse the page if any of the small
* PTEs are armed with uffd write protection.
* Here we can also mark the new huge pmd as
* write protected if any of the small ones is
* marked but that could bring unknown
2020-04-06 20:06:04 -07:00
* userfault messages that falls outside of
* the registered range. So, just be simple.
*/
result = SCAN_PTE_UFFD_WP;
goto out_unmap;
}
if (pte_write(pteval))
writable = true;
page = vm_normal_page(vma, _address, pteval);
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
result = SCAN_PAGE_NULL;
goto out_unmap;
}
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
if (page_mapcount(page) > 1) {
++shared;
if (cc->is_khugepaged &&
shared > khugepaged_max_ptes_shared) {
result = SCAN_EXCEED_SHARED_PTE;
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
goto out_unmap;
}
}
folio = page_folio(page);
/*
* Record which node the original page is from and save this
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
* information to cc->node_load[].
* Khugepaged will allocate hugepage from the node has the max
* hit record.
*/
node = folio_nid(folio);
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
if (hpage_collapse_scan_abort(node, cc)) {
result = SCAN_SCAN_ABORT;
goto out_unmap;
}
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
cc->node_load[node]++;
if (!folio_test_lru(folio)) {
result = SCAN_PAGE_LRU;
goto out_unmap;
}
if (folio_test_locked(folio)) {
result = SCAN_PAGE_LOCK;
goto out_unmap;
}
if (!folio_test_anon(folio)) {
result = SCAN_PAGE_ANON;
goto out_unmap;
}
/*
khugepaged: allow to collapse a page shared across fork The page can be included into collapse as long as it doesn't have extra pins (from GUP or otherwise). Logic to check the refcount is moved to a separate function. For pages in swap cache, add compound_nr(page) to the expected refcount, in order to handle the compound page case. This is in preparation for the following patch. VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the invariant it checks is no longer valid: the source can be mapped multiple times now. [yang.shi@linux.alibaba.com: remove error message when checking external pins] Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 16:00:20 -07:00
* Check if the page has any GUP (or other external) pins.
*
mm,thp,rmap: simplify compound page mapcount handling Compound page (folio) mapcount calculations have been different for anon and file (or shmem) THPs, and involved the obscure PageDoubleMap flag. And each huge mapping and unmapping of a file (or shmem) THP involved atomically incrementing and decrementing the mapcount of every subpage of that huge page, dirtying many struct page cachelines. Add subpages_mapcount field to the struct folio and first tail page, so that the total of subpage mapcounts is available in one place near the head: then page_mapcount() and total_mapcount() and page_mapped(), and their folio equivalents, are so quick that anon and file and hugetlb don't need to be optimized differently. Delete the unloved PageDoubleMap. page_add and page_remove rmap functions must now maintain the subpages_mapcount as well as the subpage _mapcount, when dealing with pte mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and NR_FILE_MAPPED statistics still needs reading through the subpages, using nr_subpages_unmapped() - but only when first or last pmd mapping finds subpages_mapcount raised (double-map case, not the common case). But are those counts (used to decide when to split an anon THP, and in vmscan's pagecache_reclaimable heuristic) correctly maintained? Not quite: since page_remove_rmap() (and also split_huge_pmd()) is often called without page lock, there can be races when a subpage pte mapcount 0<->1 while compound pmd mapcount 0<->1 is scanning - races which the previous implementation had prevented. The statistics might become inaccurate, and even drift down until they underflow through 0. That is not good enough, but is better dealt with in a followup patch. Update a few comments on first and second tail page overlaid fields. hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but subpages_mapcount and compound_pincount are already correctly at 0, so delete its reinitialization of compound_pincount. A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took 18 seconds on small pages, and used to take 1 second on huge pages, but now takes 119 milliseconds on huge pages. Mapping by pmds a second time used to take 860ms and now takes 92ms; mapping by pmds after mapping by ptes (when the scan is needed) used to take 870ms and now takes 495ms. But there might be some benchmarks which would show a slowdown, because tail struct pages now fall out of cache until final freeing checks them. Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Peter Xu <peterx@redhat.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zach O'Keefe <zokeefe@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-02 18:51:38 -07:00
* Here the check may be racy:
* it may see total_mapcount > refcount in some cases?
khugepaged: allow to collapse a page shared across fork The page can be included into collapse as long as it doesn't have extra pins (from GUP or otherwise). Logic to check the refcount is moved to a separate function. For pages in swap cache, add compound_nr(page) to the expected refcount, in order to handle the compound page case. This is in preparation for the following patch. VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the invariant it checks is no longer valid: the source can be mapped multiple times now. [yang.shi@linux.alibaba.com: remove error message when checking external pins] Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 16:00:20 -07:00
* But such case is ephemeral we could always retry collapse
* later. However it may report false positive if the page
* has excessive GUP pins (i.e. 512). Anyway the same check
* will be done again later the risk seems low.
*/
if (!is_refcount_suitable(folio)) {
result = SCAN_PAGE_COUNT;
goto out_unmap;
}
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
/*
* If collapse was initiated by khugepaged, check that there is
* enough young pte to justify collapsing the page
*/
if (cc->is_khugepaged &&
(pte_young(pteval) || folio_test_young(folio) ||
folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
address)))
referenced++;
}
if (!writable) {
result = SCAN_PAGE_RO;
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
} else if (cc->is_khugepaged &&
(!referenced ||
(unmapped && referenced < HPAGE_PMD_NR / 2))) {
result = SCAN_LACK_REFERENCED_PAGE;
} else {
result = SCAN_SUCCEED;
}
out_unmap:
pte_unmap_unlock(pte, ptl);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
if (result == SCAN_SUCCEED) {
result = collapse_huge_page(mm, address, referenced,
unmapped, cc);
/* collapse_huge_page will return with the mmap_lock released */
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
*mmap_locked = false;
}
out:
trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
none_or_zero, result, unmapped);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
return result;
}
static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
{
struct mm_slot *slot = &mm_slot->slot;
struct mm_struct *mm = slot->mm;
lockdep_assert_held(&khugepaged_mm_lock);
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
if (hpage_collapse_test_exit(mm)) {
/* free mm_slot */
hash_del(&slot->hash);
list_del(&slot->mm_node);
/*
* Not strictly needed because the mm exited already.
*
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
*/
/* khugepaged_mm_lock actually not necessary for the below */
mm_slot_free(mm_slot_cache, mm_slot);
mmdrop(mm);
}
}
#ifdef CONFIG_SHMEM
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
/* hpage must be locked, and mmap_lock must be held */
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmdp, struct page *hpage)
{
struct vm_fault vmf = {
.vma = vma,
.address = addr,
.flags = 0,
.pmd = pmdp,
};
VM_BUG_ON(!PageTransHuge(hpage));
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
mmap_assert_locked(vma->vm_mm);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
if (do_set_pmd(&vmf, hpage))
return SCAN_FAIL;
get_page(hpage);
return SCAN_SUCCEED;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
}
/**
* collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
* address haddr.
*
* @mm: process address space where collapse happens
* @addr: THP collapse address
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
* @install_pmd: If a huge PMD should be installed
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
*
* This function checks whether all the PTEs in the PMD are pointing to the
* right THP. If so, retract the page table so the THP can refault in with
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
* as pmd-mapped. Possibly install a huge PMD mapping the THP.
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
*/
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
bool install_pmd)
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
{
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
struct mmu_notifier_range range;
bool notified = false;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
unsigned long haddr = addr & HPAGE_PMD_MASK;
struct vm_area_struct *vma = vma_lookup(mm, haddr);
struct folio *folio;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
pte_t *start_pte, *pte;
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
pmd_t *pmd, pgt_pmd;
mm/khugepaged: fix collapse_pte_mapped_thp() versus uffd Jann Horn demonstrated how userfaultfd ioctl UFFDIO_COPY into a private shmem mapping can add valid PTEs to page table collapse_pte_mapped_thp() thought it had emptied: page lock on the huge page is enough to protect against WP faults (which find the PTE has been cleared), but not enough to protect against userfaultfd. "BUG: Bad rss-counter state" followed. retract_page_tables() protects against this by checking !vma->anon_vma; but we know that MADV_COLLAPSE needs to be able to work on private shmem mappings, even those with an anon_vma prepared for another part of the mapping; and we know that MADV_COLLAPSE needs to work on shared shmem mappings which are userfaultfd_armed(). Whether it needs to work on private shmem mappings which are userfaultfd_armed(), I'm not so sure: but assume that it does. Just for this case, take the pmd_lock() two steps earlier: not because it gives any protection against this case itself, but because ptlock nests inside it, and it's the dropping of ptlock which let the bug in. In other cases, continue to minimize the pmd_lock() hold time. Link: https://lkml.kernel.org/r/4d31abf5-56c0-9f3d-d12f-c9317936691@google.com Fixes: 1043173eb5eb ("mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/linux-mm/CAG48ez0FxiRC4d3VTu_a9h=rg5FW-kYD5Rg5xo_RDBM0LTTqZQ@mail.gmail.com/ Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 12:51:20 -07:00
spinlock_t *pml = NULL, *ptl;
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
int nr_ptes = 0, result = SCAN_FAIL;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
int i;
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
mmap_assert_locked(mm);
/* First check VMA found, in case page tables are being torn down */
if (!vma || !vma->vm_file ||
!range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
return SCAN_VMA_CHECK;
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
/* Fast check before locking page if already PMD-mapped */
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
if (result == SCAN_PMD_MAPPED)
return result;
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
/*
mm/thp: add flag to enforce sysfs THP in hugepage_vma_check() MADV_COLLAPSE is not coupled to the kernel-oriented sysfs THP settings[1]. hugepage_vma_check() is the authority on determining if a VMA is eligible for THP allocation/collapse, and currently enforces the sysfs THP settings. Add a flag to disable these checks. For now, only apply this arg to anon and file, which use /sys/kernel/transparent_hugepage/enabled. We can expand this to shmem, which uses /sys/kernel/transparent_hugepage/shmem_enabled, later. Use this flag in collapse_pte_mapped_thp() where previously the VMA flags passed to hugepage_vma_check() were OR'd with VM_HUGEPAGE to elide the VM_HUGEPAGE check in "madvise" THP mode. Prior to "mm: khugepaged: check THP flag in hugepage_vma_check()", this check also didn't check "never" THP mode. As such, this restores the previous behavior of collapse_pte_mapped_thp() where sysfs THP settings are ignored. See comment in code for justification why this is OK. [1] https://lore.kernel.org/linux-mm/CAAa6QmQxay1_=Pmt8oCX2-Va18t44FV-Vs-WsQt_6+qBks4nZA@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-8-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:25 -07:00
* If we are here, we've succeeded in replacing all the native pages
* in the page cache with a single hugepage. If a mm were to fault-in
* this memory (mapped by a suitably aligned VMA), we'd get the hugepage
* and map it by a PMD, regardless of sysfs THP settings. As such, let's
* analogously elide sysfs THP settings here.
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
*/
mm: thp: introduce multi-size THP sysfs interface In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 16:12:04 +00:00
if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
PMD_ORDER))
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
return SCAN_VMA_CHECK;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
mm/khugepaged: don't recycle vma pgtable if uffd-wp registered When we're trying to collapse a 2M huge shmem page, don't retract pgtable pmd page if it's registered with uffd-wp, because that pgtable could have pte markers installed. Recycling of that pgtable means we'll lose the pte markers. That could cause data loss for an uffd-wp enabled application on shmem. Instead of disabling khugepaged on these files, simply skip retracting these special VMAs, then the page cache can still be merged into a huge thp, and other mm/vma can still map the range of file with a huge thp when proper. Note that checking VM_UFFD_WP needs to be done with mmap_sem held for write, that avoids race like: khugepaged user thread ========== =========== check VM_UFFD_WP, not set UFFDIO_REGISTER with uffd-wp on shmem wr-protect some pages (install markers) take mmap_sem write lock erase pmd and free pmd page --> pte markers are dropped unnoticed! Link: https://lkml.kernel.org/r/20220405014921.14994-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-12 20:22:55 -07:00
/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
if (userfaultfd_wp(vma))
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
return SCAN_PTE_UFFD_WP;
mm/khugepaged: don't recycle vma pgtable if uffd-wp registered When we're trying to collapse a 2M huge shmem page, don't retract pgtable pmd page if it's registered with uffd-wp, because that pgtable could have pte markers installed. Recycling of that pgtable means we'll lose the pte markers. That could cause data loss for an uffd-wp enabled application on shmem. Instead of disabling khugepaged on these files, simply skip retracting these special VMAs, then the page cache can still be merged into a huge thp, and other mm/vma can still map the range of file with a huge thp when proper. Note that checking VM_UFFD_WP needs to be done with mmap_sem held for write, that avoids race like: khugepaged user thread ========== =========== check VM_UFFD_WP, not set UFFDIO_REGISTER with uffd-wp on shmem wr-protect some pages (install markers) take mmap_sem write lock erase pmd and free pmd page --> pte markers are dropped unnoticed! Link: https://lkml.kernel.org/r/20220405014921.14994-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-12 20:22:55 -07:00
folio = filemap_lock_folio(vma->vm_file->f_mapping,
khugepaged: collapse_pte_mapped_thp() protect the pmd lock When retract_page_tables() removes a page table to make way for a huge pmd, it holds huge page lock, i_mmap_lock_write, mmap_write_trylock and pmd lock; but when collapse_pte_mapped_thp() does the same (to handle the case when the original mmap_write_trylock had failed), only mmap_write_trylock and pmd lock are held. That's not enough. One machine has twice crashed under load, with "BUG: spinlock bad magic" and GPF on 6b6b6b6b6b6b6b6b. Examining the second crash, page_vma_mapped_walk_done()'s spin_unlock of pvmw->ptl (serving page_referenced() on a file THP, that had found a page table at *pmd) discovers that the page table page and its lock have already been freed by the time it comes to unlock. Follow the example of retract_page_tables(), but we only need one of huge page lock or i_mmap_lock_write to secure against this: because it's the narrower lock, and because it simplifies collapse_pte_mapped_thp() to know the hpage earlier, choose to rely on huge page lock here. Fixes: 27e1f8273113 ("khugepaged: enable collapse pmd for pte-mapped THP") Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Song Liu <songliubraving@fb.com> Cc: <stable@vger.kernel.org> [5.4+] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021213070.27773@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:26:18 -07:00
linear_page_index(vma, haddr));
if (IS_ERR(folio))
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
return SCAN_PAGE_NULL;
khugepaged: collapse_pte_mapped_thp() protect the pmd lock When retract_page_tables() removes a page table to make way for a huge pmd, it holds huge page lock, i_mmap_lock_write, mmap_write_trylock and pmd lock; but when collapse_pte_mapped_thp() does the same (to handle the case when the original mmap_write_trylock had failed), only mmap_write_trylock and pmd lock are held. That's not enough. One machine has twice crashed under load, with "BUG: spinlock bad magic" and GPF on 6b6b6b6b6b6b6b6b. Examining the second crash, page_vma_mapped_walk_done()'s spin_unlock of pvmw->ptl (serving page_referenced() on a file THP, that had found a page table at *pmd) discovers that the page table page and its lock have already been freed by the time it comes to unlock. Follow the example of retract_page_tables(), but we only need one of huge page lock or i_mmap_lock_write to secure against this: because it's the narrower lock, and because it simplifies collapse_pte_mapped_thp() to know the hpage earlier, choose to rely on huge page lock here. Fixes: 27e1f8273113 ("khugepaged: enable collapse pmd for pte-mapped THP") Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Song Liu <songliubraving@fb.com> Cc: <stable@vger.kernel.org> [5.4+] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021213070.27773@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:26:18 -07:00
if (folio_order(folio) != HPAGE_PMD_ORDER) {
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = SCAN_PAGE_COMPOUND;
goto drop_folio;
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
}
khugepaged: collapse_pte_mapped_thp() protect the pmd lock When retract_page_tables() removes a page table to make way for a huge pmd, it holds huge page lock, i_mmap_lock_write, mmap_write_trylock and pmd lock; but when collapse_pte_mapped_thp() does the same (to handle the case when the original mmap_write_trylock had failed), only mmap_write_trylock and pmd lock are held. That's not enough. One machine has twice crashed under load, with "BUG: spinlock bad magic" and GPF on 6b6b6b6b6b6b6b6b. Examining the second crash, page_vma_mapped_walk_done()'s spin_unlock of pvmw->ptl (serving page_referenced() on a file THP, that had found a page table at *pmd) discovers that the page table page and its lock have already been freed by the time it comes to unlock. Follow the example of retract_page_tables(), but we only need one of huge page lock or i_mmap_lock_write to secure against this: because it's the narrower lock, and because it simplifies collapse_pte_mapped_thp() to know the hpage earlier, choose to rely on huge page lock here. Fixes: 27e1f8273113 ("khugepaged: enable collapse pmd for pte-mapped THP") Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Song Liu <songliubraving@fb.com> Cc: <stable@vger.kernel.org> [5.4+] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021213070.27773@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:26:18 -07:00
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
switch (result) {
case SCAN_SUCCEED:
break;
case SCAN_PMD_NONE:
/*
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
* All pte entries have been removed and pmd cleared.
* Skip all the pte checks and just update the pmd mapping.
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
*/
goto maybe_install_pmd;
default:
goto drop_folio;
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
}
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = SCAN_FAIL;
mm/khugepaged: allow pte_offset_map[_lock]() to fail __collapse_huge_page_swapin(): don't drop the map after every pte, it only has to be dropped by do_swap_page(); give up if pte_offset_map() fails; trace_mm_collapse_huge_page_swapin() at the end, with result; fix comment on returned result; fix vmf.pgoff, though it's not used. collapse_huge_page(): use pte_offset_map_lock() on the _pmd returned from clearing; allow failure, but it should be impossible there. hpage_collapse_scan_pmd() and collapse_pte_mapped_thp() allow for pte_offset_map_lock() failure. Link: https://lkml.kernel.org/r/6513e85-d798-34ec-3762-7c24ffb9329@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08 18:42:40 -07:00
start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
if (!start_pte) /* mmap_lock + page lock should prevent this */
goto drop_folio;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
/* step 1: check all mapped PTEs are to the right huge page */
for (i = 0, addr = haddr, pte = start_pte;
i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
struct page *page;
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
pte_t ptent = ptep_get(pte);
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
/* empty pte, skip */
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
if (pte_none(ptent))
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
continue;
/* page swapped out, abort */
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
if (!pte_present(ptent)) {
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = SCAN_PTE_NON_PRESENT;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
goto abort;
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
}
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
page = vm_normal_page(vma, addr, ptent);
if (WARN_ON_ONCE(page && is_zone_device_page(page)))
page = NULL;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
/*
khugepaged: collapse_pte_mapped_thp() protect the pmd lock When retract_page_tables() removes a page table to make way for a huge pmd, it holds huge page lock, i_mmap_lock_write, mmap_write_trylock and pmd lock; but when collapse_pte_mapped_thp() does the same (to handle the case when the original mmap_write_trylock had failed), only mmap_write_trylock and pmd lock are held. That's not enough. One machine has twice crashed under load, with "BUG: spinlock bad magic" and GPF on 6b6b6b6b6b6b6b6b. Examining the second crash, page_vma_mapped_walk_done()'s spin_unlock of pvmw->ptl (serving page_referenced() on a file THP, that had found a page table at *pmd) discovers that the page table page and its lock have already been freed by the time it comes to unlock. Follow the example of retract_page_tables(), but we only need one of huge page lock or i_mmap_lock_write to secure against this: because it's the narrower lock, and because it simplifies collapse_pte_mapped_thp() to know the hpage earlier, choose to rely on huge page lock here. Fixes: 27e1f8273113 ("khugepaged: enable collapse pmd for pte-mapped THP") Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Song Liu <songliubraving@fb.com> Cc: <stable@vger.kernel.org> [5.4+] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021213070.27773@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:26:18 -07:00
* Note that uprobe, debugger, or MAP_PRIVATE may change the
* page table, but the new page will not be a subpage of hpage.
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
*/
if (folio_page(folio, i) != page)
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
goto abort;
}
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
pte_unmap_unlock(start_pte, ptl);
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
haddr, haddr + HPAGE_PMD_SIZE);
mmu_notifier_invalidate_range_start(&range);
notified = true;
mm/khugepaged: fix collapse_pte_mapped_thp() versus uffd Jann Horn demonstrated how userfaultfd ioctl UFFDIO_COPY into a private shmem mapping can add valid PTEs to page table collapse_pte_mapped_thp() thought it had emptied: page lock on the huge page is enough to protect against WP faults (which find the PTE has been cleared), but not enough to protect against userfaultfd. "BUG: Bad rss-counter state" followed. retract_page_tables() protects against this by checking !vma->anon_vma; but we know that MADV_COLLAPSE needs to be able to work on private shmem mappings, even those with an anon_vma prepared for another part of the mapping; and we know that MADV_COLLAPSE needs to work on shared shmem mappings which are userfaultfd_armed(). Whether it needs to work on private shmem mappings which are userfaultfd_armed(), I'm not so sure: but assume that it does. Just for this case, take the pmd_lock() two steps earlier: not because it gives any protection against this case itself, but because ptlock nests inside it, and it's the dropping of ptlock which let the bug in. In other cases, continue to minimize the pmd_lock() hold time. Link: https://lkml.kernel.org/r/4d31abf5-56c0-9f3d-d12f-c9317936691@google.com Fixes: 1043173eb5eb ("mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/linux-mm/CAG48ez0FxiRC4d3VTu_a9h=rg5FW-kYD5Rg5xo_RDBM0LTTqZQ@mail.gmail.com/ Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 12:51:20 -07:00
/*
* pmd_lock covers a wider range than ptl, and (if split from mm's
* page_table_lock) ptl nests inside pml. The less time we hold pml,
* the better; but userfaultfd's mfill_atomic_pte() on a private VMA
* inserts a valid as-if-COWed PTE without even looking up page cache.
* So page lock of folio does not protect from it, so we must not drop
mm/khugepaged: fix collapse_pte_mapped_thp() versus uffd Jann Horn demonstrated how userfaultfd ioctl UFFDIO_COPY into a private shmem mapping can add valid PTEs to page table collapse_pte_mapped_thp() thought it had emptied: page lock on the huge page is enough to protect against WP faults (which find the PTE has been cleared), but not enough to protect against userfaultfd. "BUG: Bad rss-counter state" followed. retract_page_tables() protects against this by checking !vma->anon_vma; but we know that MADV_COLLAPSE needs to be able to work on private shmem mappings, even those with an anon_vma prepared for another part of the mapping; and we know that MADV_COLLAPSE needs to work on shared shmem mappings which are userfaultfd_armed(). Whether it needs to work on private shmem mappings which are userfaultfd_armed(), I'm not so sure: but assume that it does. Just for this case, take the pmd_lock() two steps earlier: not because it gives any protection against this case itself, but because ptlock nests inside it, and it's the dropping of ptlock which let the bug in. In other cases, continue to minimize the pmd_lock() hold time. Link: https://lkml.kernel.org/r/4d31abf5-56c0-9f3d-d12f-c9317936691@google.com Fixes: 1043173eb5eb ("mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/linux-mm/CAG48ez0FxiRC4d3VTu_a9h=rg5FW-kYD5Rg5xo_RDBM0LTTqZQ@mail.gmail.com/ Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 12:51:20 -07:00
* ptl before pgt_pmd is removed, so uffd private needs pml taken now.
*/
if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
pml = pmd_lock(mm, pmd);
start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
if (!start_pte) /* mmap_lock + page lock should prevent this */
goto abort;
mm/khugepaged: fix collapse_pte_mapped_thp() versus uffd Jann Horn demonstrated how userfaultfd ioctl UFFDIO_COPY into a private shmem mapping can add valid PTEs to page table collapse_pte_mapped_thp() thought it had emptied: page lock on the huge page is enough to protect against WP faults (which find the PTE has been cleared), but not enough to protect against userfaultfd. "BUG: Bad rss-counter state" followed. retract_page_tables() protects against this by checking !vma->anon_vma; but we know that MADV_COLLAPSE needs to be able to work on private shmem mappings, even those with an anon_vma prepared for another part of the mapping; and we know that MADV_COLLAPSE needs to work on shared shmem mappings which are userfaultfd_armed(). Whether it needs to work on private shmem mappings which are userfaultfd_armed(), I'm not so sure: but assume that it does. Just for this case, take the pmd_lock() two steps earlier: not because it gives any protection against this case itself, but because ptlock nests inside it, and it's the dropping of ptlock which let the bug in. In other cases, continue to minimize the pmd_lock() hold time. Link: https://lkml.kernel.org/r/4d31abf5-56c0-9f3d-d12f-c9317936691@google.com Fixes: 1043173eb5eb ("mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/linux-mm/CAG48ez0FxiRC4d3VTu_a9h=rg5FW-kYD5Rg5xo_RDBM0LTTqZQ@mail.gmail.com/ Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 12:51:20 -07:00
if (!pml)
spin_lock(ptl);
else if (ptl != pml)
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
/* step 2: clear page table and adjust rmap */
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
for (i = 0, addr = haddr, pte = start_pte;
i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
struct page *page;
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
pte_t ptent = ptep_get(pte);
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
if (pte_none(ptent))
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
continue;
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
/*
* We dropped ptl after the first scan, to do the mmu_notifier:
* page lock stops more PTEs of the folio being faulted in, but
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
* does not stop write faults COWing anon copies from existing
* PTEs; and does not stop those being swapped out or migrated.
*/
if (!pte_present(ptent)) {
result = SCAN_PTE_NON_PRESENT;
goto abort;
}
mm: ptep_get() conversion Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
page = vm_normal_page(vma, addr, ptent);
if (folio_page(folio, i) != page)
goto abort;
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
/*
* Must clear entry, or a racing truncate may re-remove it.
* TLB flush can be left until pmdp_collapse_flush() does it.
* PTE dirty? Shmem page is already dirty; file is read-only.
*/
ptep_clear(mm, addr, pte);
folio_remove_rmap_pte(folio, page, vma);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
nr_ptes++;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
}
mm/khugepaged: fix collapse_pte_mapped_thp() versus uffd Jann Horn demonstrated how userfaultfd ioctl UFFDIO_COPY into a private shmem mapping can add valid PTEs to page table collapse_pte_mapped_thp() thought it had emptied: page lock on the huge page is enough to protect against WP faults (which find the PTE has been cleared), but not enough to protect against userfaultfd. "BUG: Bad rss-counter state" followed. retract_page_tables() protects against this by checking !vma->anon_vma; but we know that MADV_COLLAPSE needs to be able to work on private shmem mappings, even those with an anon_vma prepared for another part of the mapping; and we know that MADV_COLLAPSE needs to work on shared shmem mappings which are userfaultfd_armed(). Whether it needs to work on private shmem mappings which are userfaultfd_armed(), I'm not so sure: but assume that it does. Just for this case, take the pmd_lock() two steps earlier: not because it gives any protection against this case itself, but because ptlock nests inside it, and it's the dropping of ptlock which let the bug in. In other cases, continue to minimize the pmd_lock() hold time. Link: https://lkml.kernel.org/r/4d31abf5-56c0-9f3d-d12f-c9317936691@google.com Fixes: 1043173eb5eb ("mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/linux-mm/CAG48ez0FxiRC4d3VTu_a9h=rg5FW-kYD5Rg5xo_RDBM0LTTqZQ@mail.gmail.com/ Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 12:51:20 -07:00
pte_unmap(start_pte);
if (!pml)
spin_unlock(ptl);
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
/* step 3: set proper refcount and mm_counters. */
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
if (nr_ptes) {
folio_ref_sub(folio, nr_ptes);
add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
}
mm/khugepaged: fix collapse_pte_mapped_thp() versus uffd Jann Horn demonstrated how userfaultfd ioctl UFFDIO_COPY into a private shmem mapping can add valid PTEs to page table collapse_pte_mapped_thp() thought it had emptied: page lock on the huge page is enough to protect against WP faults (which find the PTE has been cleared), but not enough to protect against userfaultfd. "BUG: Bad rss-counter state" followed. retract_page_tables() protects against this by checking !vma->anon_vma; but we know that MADV_COLLAPSE needs to be able to work on private shmem mappings, even those with an anon_vma prepared for another part of the mapping; and we know that MADV_COLLAPSE needs to work on shared shmem mappings which are userfaultfd_armed(). Whether it needs to work on private shmem mappings which are userfaultfd_armed(), I'm not so sure: but assume that it does. Just for this case, take the pmd_lock() two steps earlier: not because it gives any protection against this case itself, but because ptlock nests inside it, and it's the dropping of ptlock which let the bug in. In other cases, continue to minimize the pmd_lock() hold time. Link: https://lkml.kernel.org/r/4d31abf5-56c0-9f3d-d12f-c9317936691@google.com Fixes: 1043173eb5eb ("mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/linux-mm/CAG48ez0FxiRC4d3VTu_a9h=rg5FW-kYD5Rg5xo_RDBM0LTTqZQ@mail.gmail.com/ Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 12:51:20 -07:00
/* step 4: remove empty page table */
if (!pml) {
pml = pmd_lock(mm, pmd);
if (ptl != pml)
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
}
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
pmdp_get_lockless_sync();
if (ptl != pml)
spin_unlock(ptl);
spin_unlock(pml);
mm/khugepaged: fix collapse_pte_mapped_thp() to allow anon_vma uprobe_write_opcode() uses collapse_pte_mapped_thp() to restore huge pmd, when removing a breakpoint from hugepage text: vma->anon_vma is always set in that case, so undo the prohibition. And MADV_COLLAPSE ought to be able to collapse some page tables in a vma which happens to have anon_vma set from CoWing elsewhere. Is anon_vma lock required? Almost not: if any page other than expected subpage of the non-anon huge page is found in the page table, collapse is aborted without making any change. However, it is possible that an anon page was CoWed from this extent in another mm or vma, in which case a concurrent lookup might look here: so keep it away while clearing pmd (but perhaps we shall go back to using pmd_lock() there in future). Note that collapse_pte_mapped_thp() is exceptional in freeing a page table without having cleared its ptes: I'm uneasy about that, and had thought pte_clear()ing appropriate; but exclusive i_mmap lock does fix the problem, and we would have to move the mmu_notification if clearing those ptes. What this fixes is not a dangerous instability. But I suggest Cc stable because uprobes "healing" has regressed in that way, so this should follow 8d3c106e19e8 into those stable releases where it was backported (and may want adjustment there - I'll supply backports as needed). Link: https://lkml.kernel.org/r/b740c9fb-edba-92ba-59fb-7a5592e5dfc@google.com Fixes: 8d3c106e19e8 ("mm/khugepaged: take the right locks for page table retraction") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zach O'Keefe <zokeefe@google.com> Cc: Song Liu <songliubraving@fb.com> Cc: <stable@vger.kernel.org> [5.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-22 12:41:50 -08:00
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
mmu_notifier_invalidate_range_end(&range);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
mm_dec_nr_ptes(mm);
page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
mm/khugepaged: take the right locks for page table retraction pagetable walks on address ranges mapped by VMAs can be done under the mmap lock, the lock of an anon_vma attached to the VMA, or the lock of the VMA's address_space. Only one of these needs to be held, and it does not need to be held in exclusive mode. Under those circumstances, the rules for concurrent access to page table entries are: - Terminal page table entries (entries that don't point to another page table) can be arbitrarily changed under the page table lock, with the exception that they always need to be consistent for hardware page table walks and lockless_pages_from_mm(). This includes that they can be changed into non-terminal entries. - Non-terminal page table entries (which point to another page table) can not be modified; readers are allowed to READ_ONCE() an entry, verify that it is non-terminal, and then assume that its value will stay as-is. Retracting a page table involves modifying a non-terminal entry, so page-table-level locks are insufficient to protect against concurrent page table traversal; it requires taking all the higher-level locks under which it is possible to start a page walk in the relevant range in exclusive mode. The collapse_huge_page() path for anonymous THP already follows this rule, but the shmem/file THP path was getting it wrong, making it possible for concurrent rmap-based operations to cause corruption. Link: https://lkml.kernel.org/r/20221129154730.2274278-1-jannh@google.com Link: https://lkml.kernel.org/r/20221128180252.1684965-1-jannh@google.com Link: https://lkml.kernel.org/r/20221125213714.4115729-1-jannh@google.com Fixes: 27e1f8273113 ("khugepaged: enable collapse pmd for pte-mapped THP") Signed-off-by: Jann Horn <jannh@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-25 22:37:12 +01:00
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
maybe_install_pmd:
/* step 5: install pmd entry */
result = install_pmd
? set_huge_pmd(vma, haddr, pmd, &folio->page)
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
: SCAN_SUCCEED;
goto drop_folio;
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
abort:
if (nr_ptes) {
flush_tlb_mm(mm);
folio_ref_sub(folio, nr_ptes);
add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
}
if (start_pte)
pte_unmap_unlock(start_pte, ptl);
mm/khugepaged: fix collapse_pte_mapped_thp() versus uffd Jann Horn demonstrated how userfaultfd ioctl UFFDIO_COPY into a private shmem mapping can add valid PTEs to page table collapse_pte_mapped_thp() thought it had emptied: page lock on the huge page is enough to protect against WP faults (which find the PTE has been cleared), but not enough to protect against userfaultfd. "BUG: Bad rss-counter state" followed. retract_page_tables() protects against this by checking !vma->anon_vma; but we know that MADV_COLLAPSE needs to be able to work on private shmem mappings, even those with an anon_vma prepared for another part of the mapping; and we know that MADV_COLLAPSE needs to work on shared shmem mappings which are userfaultfd_armed(). Whether it needs to work on private shmem mappings which are userfaultfd_armed(), I'm not so sure: but assume that it does. Just for this case, take the pmd_lock() two steps earlier: not because it gives any protection against this case itself, but because ptlock nests inside it, and it's the dropping of ptlock which let the bug in. In other cases, continue to minimize the pmd_lock() hold time. Link: https://lkml.kernel.org/r/4d31abf5-56c0-9f3d-d12f-c9317936691@google.com Fixes: 1043173eb5eb ("mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/linux-mm/CAG48ez0FxiRC4d3VTu_a9h=rg5FW-kYD5Rg5xo_RDBM0LTTqZQ@mail.gmail.com/ Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 12:51:20 -07:00
if (pml && pml != ptl)
spin_unlock(pml);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
if (notified)
mmu_notifier_invalidate_range_end(&range);
drop_folio:
folio_unlock(folio);
folio_put(folio);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
return result;
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
}
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
{
struct vm_area_struct *vma;
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
i_mmap_lock_read(mapping);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
struct mmu_notifier_range range;
struct mm_struct *mm;
unsigned long addr;
pmd_t *pmd, pgt_pmd;
spinlock_t *pml;
spinlock_t *ptl;
bool skipped_uffd = false;
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
/*
* Check vma->anon_vma to exclude MAP_PRIVATE mappings that
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
* got written to. These VMAs are likely not worth removing
* page tables from, as PMD-mapping is likely to be split later.
khugepaged: enable collapse pmd for pte-mapped THP khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:30 -07:00
*/
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
if (READ_ONCE(vma->anon_vma))
continue;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
if (addr & ~HPAGE_PMD_MASK ||
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
vma->vm_end < addr + HPAGE_PMD_SIZE)
continue;
khugepaged: retract_page_tables() remember to test exit Only once have I seen this scenario (and forgot even to notice what forced the eventual crash): a sequence of "BUG: Bad page map" alerts from vm_normal_page(), from zap_pte_range() servicing exit_mmap(); pmd:00000000, pte values corresponding to data in physical page 0. The pte mappings being zapped in this case were supposed to be from a huge page of ext4 text (but could as well have been shmem): my belief is that it was racing with collapse_file()'s retract_page_tables(), found *pmd pointing to a page table, locked it, but *pmd had become 0 by the time start_pte was decided. In most cases, that possibility is excluded by holding mmap lock; but exit_mmap() proceeds without mmap lock. Most of what's run by khugepaged checks khugepaged_test_exit() after acquiring mmap lock: khugepaged_collapse_pte_mapped_thps() and hugepage_vma_revalidate() do so, for example. But retract_page_tables() did not: fix that. The fix is for retract_page_tables() to check khugepaged_test_exit(), after acquiring mmap lock, before doing anything to the page table. Getting the mmap lock serializes with __mmput(), which briefly takes and drops it in __khugepaged_exit(); then the khugepaged_test_exit() check on mm_users makes sure we don't touch the page table once exit_mmap() might reach it, since exit_mmap() will be proceeding without mmap lock, not expecting anyone to be racing with it. Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Song Liu <songliubraving@fb.com> Cc: <stable@vger.kernel.org> [4.8+] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021215400.27773@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:26:22 -07:00
mm = vma->vm_mm;
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
continue;
if (hpage_collapse_test_exit(mm))
continue;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
/*
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
* When a vma is registered with uffd-wp, we cannot recycle
* the page table because there may be pte markers installed.
* Other vmas can still have the same file mapped hugely, but
* skip this one: it will always be mapped in small page size
* for uffd-wp registered ranges.
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
*/
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
if (userfaultfd_wp(vma))
continue;
/* PTEs were notified when unmapped; but now for the PMD? */
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
addr, addr + HPAGE_PMD_SIZE);
mmu_notifier_invalidate_range_start(&range);
pml = pmd_lock(mm, pmd);
ptl = pte_lockptr(mm, pmd);
if (ptl != pml)
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
/*
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
* Huge page lock is still held, so normally the page table
* must remain empty; and we have already skipped anon_vma
* and userfaultfd_wp() vmas. But since the mmap_lock is not
* held, it is still possible for a racing userfaultfd_ioctl()
* to have inserted ptes or markers. Now that we hold ptlock,
* repeating the anon_vma check protects from one category,
* and repeating the userfaultfd_wp() check from another.
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
*/
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
skipped_uffd = true;
} else {
pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
pmdp_get_lockless_sync();
}
if (ptl != pml)
spin_unlock(ptl);
spin_unlock(pml);
mmu_notifier_invalidate_range_end(&range);
if (!skipped_uffd) {
mm_dec_nr_ptes(mm);
page_table_check_pte_clear_range(mm, addr, pgt_pmd);
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
}
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
i_mmap_unlock_read(mapping);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
/**
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
* collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
*
* @mm: process address space where collapse happens
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
* @addr: virtual collapse start address
* @file: file that collapse on
* @start: collapse start address
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
* @cc: collapse context and scratchpad
*
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
* Basic scheme is simple, details are more complex:
mm/khugepaged: collapse_shmem() without freezing new_page khugepaged's collapse_shmem() does almost all of its work, to assemble the huge new_page from 512 scattered old pages, with the new_page's refcount frozen to 0 (and refcounts of all old pages so far also frozen to 0). Including shmem_getpage() to read in any which were out on swap, memory reclaim if necessary to allocate their intermediate pages, and copying over all the data from old to new. Imagine the frozen refcount as a spinlock held, but without any lock debugging to highlight the abuse: it's not good, and under serious load heads into lockups - speculative getters of the page are not expecting to spin while khugepaged is rescheduled. One can get a little further under load by hacking around elsewhere; but fortunately, freezing the new_page turns out to have been entirely unnecessary, with no hacks needed elsewhere. The huge new_page lock is already held throughout, and guards all its subpages as they are brought one by one into the page cache tree; and anything reading the data in that page, without the lock, before it has been marked PageUptodate, would already be in the wrong. So simply eliminate the freezing of the new_page. Each of the old pages remains frozen with refcount 0 after it has been replaced by a new_page subpage in the page cache tree, until they are all unfrozen on success or failure: just as before. They could be unfrozen sooner, but cause no problem once no longer visible to find_get_entry(), filemap_map_pages() and other speculative lookups. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261527570.2275@eggly.anvils Fixes: f3f0e1d2150b2 ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 14:10:43 -08:00
* - allocate and lock a new huge page;
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* - scan page cache, locking old pages
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
* + swap/gup in pages if necessary;
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* - copy data to new page
* - handle shmem holes
* + re-validate that holes weren't filled by someone else
* + check for userfaultfd
mm/khugepaged: skip shmem with userfaultfd Make sure that collapse_file respects any userfaultfds registered with MODE_MISSING. If userspace has any such userfaultfds registered, then for any page which it knows to be missing, it may expect a UFFD_EVENT_PAGEFAULT. This means collapse_file needs to be careful when collapsing a shmem range would result in replacing an empty page with a THP, to avoid breaking userfaultfd. Synchronization when checking for userfaultfds in collapse_file is tricky because the mmap locks can't be used to prevent races with the registration of new userfaultfds. Instead, we provide synchronization by ensuring that userspace cannot observe the fact that pages are missing before we check for userfaultfds. Although this allows registration of a userfaultfd to race with collapse_file, it ensures that userspace cannot observe any pages transition from missing to present after such a race occurs. This makes such a race indistinguishable to the collapse occurring immediately before the userfaultfd registration. The first step to provide this synchronization is to stop filling gaps during the loop iterating over the target range, since the page cache lock can be dropped during that loop. The second step is to fill the gaps with XA_RETRY_ENTRY after the page cache lock is acquired the final time, to avoid races with accesses to the page cache that only take the RCU read lock. The fact that we don't fill holes during the initial iteration means that collapse_file now has to handle faults occurring during the collapse. This is done by re-validating the number of missing pages after acquiring the page cache lock for the final time. This fix is targeted at khugepaged, but the change also applies to MADV_COLLAPSE. MADV_COLLAPSE on a range with a userfaultfd will now return EBUSY if there are any missing pages (instead of succeeding on shmem and returning EINVAL on anonymous memory). There is also now a window during MADV_COLLAPSE where a fault on a missing page will cause the syscall to fail with EAGAIN. The fact that intermediate page cache state can no longer be observed before the rollback of a failed collapse is also technically a userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is exceedingly unlikely that anything relies on being able to observe that transient state. Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com Signed-off-by: David Stevens <stevensd@chromium.org> Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:16 +09:00
* - finalize updates to the page cache;
* - if replacing succeeds:
mm/khugepaged: collapse_shmem() without freezing new_page khugepaged's collapse_shmem() does almost all of its work, to assemble the huge new_page from 512 scattered old pages, with the new_page's refcount frozen to 0 (and refcounts of all old pages so far also frozen to 0). Including shmem_getpage() to read in any which were out on swap, memory reclaim if necessary to allocate their intermediate pages, and copying over all the data from old to new. Imagine the frozen refcount as a spinlock held, but without any lock debugging to highlight the abuse: it's not good, and under serious load heads into lockups - speculative getters of the page are not expecting to spin while khugepaged is rescheduled. One can get a little further under load by hacking around elsewhere; but fortunately, freezing the new_page turns out to have been entirely unnecessary, with no hacks needed elsewhere. The huge new_page lock is already held throughout, and guards all its subpages as they are brought one by one into the page cache tree; and anything reading the data in that page, without the lock, before it has been marked PageUptodate, would already be in the wrong. So simply eliminate the freezing of the new_page. Each of the old pages remains frozen with refcount 0 after it has been replaced by a new_page subpage in the page cache tree, until they are all unfrozen on success or failure: just as before. They could be unfrozen sooner, but cause no problem once no longer visible to find_get_entry(), filemap_map_pages() and other speculative lookups. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261527570.2275@eggly.anvils Fixes: f3f0e1d2150b2 ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 14:10:43 -08:00
* + unlock huge page;
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* + free old pages;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
* - if replacing failed;
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* + unlock old pages
mm/khugepaged: collapse_shmem() without freezing new_page khugepaged's collapse_shmem() does almost all of its work, to assemble the huge new_page from 512 scattered old pages, with the new_page's refcount frozen to 0 (and refcounts of all old pages so far also frozen to 0). Including shmem_getpage() to read in any which were out on swap, memory reclaim if necessary to allocate their intermediate pages, and copying over all the data from old to new. Imagine the frozen refcount as a spinlock held, but without any lock debugging to highlight the abuse: it's not good, and under serious load heads into lockups - speculative getters of the page are not expecting to spin while khugepaged is rescheduled. One can get a little further under load by hacking around elsewhere; but fortunately, freezing the new_page turns out to have been entirely unnecessary, with no hacks needed elsewhere. The huge new_page lock is already held throughout, and guards all its subpages as they are brought one by one into the page cache tree; and anything reading the data in that page, without the lock, before it has been marked PageUptodate, would already be in the wrong. So simply eliminate the freezing of the new_page. Each of the old pages remains frozen with refcount 0 after it has been replaced by a new_page subpage in the page cache tree, until they are all unfrozen on success or failure: just as before. They could be unfrozen sooner, but cause no problem once no longer visible to find_get_entry(), filemap_map_pages() and other speculative lookups. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261527570.2275@eggly.anvils Fixes: f3f0e1d2150b2 ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 14:10:43 -08:00
* + unlock and free huge page;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
*/
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
static int collapse_file(struct mm_struct *mm, unsigned long addr,
struct file *file, pgoff_t start,
struct collapse_control *cc)
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
{
struct address_space *mapping = file->f_mapping;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
struct page *hpage;
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
struct page *page;
struct page *tmp;
struct folio *folio;
pgoff_t index = 0, end = start + HPAGE_PMD_NR;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
LIST_HEAD(pagelist);
XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
int nr_none = 0, result = SCAN_SUCCEED;
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
bool is_shmem = shmem_file(file);
int nr = 0;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
result = alloc_charge_hpage(&hpage, mm, cc);
mm/khugepaged: dedup and simplify hugepage alloc and charging The following code is duplicated in collapse_huge_page() and collapse_file(): gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); Also, "node" is passed as an argument to both collapse_huge_page() and collapse_file() and obtained the same way, via khugepaged_find_target_node(). Move all this into a new helper, alloc_charge_hpage(), and remove the duplicate code from collapse_huge_page() and collapse_file(). Also, simplify khugepaged_alloc_page() by returning a bool indicating allocation success instead of a copy of the allocated struct page *. Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:22 -07:00
if (result != SCAN_SUCCEED)
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
goto out;
__SetPageLocked(hpage);
if (is_shmem)
__SetPageSwapBacked(hpage);
hpage->index = start;
hpage->mapping = mapping;
/*
* Ensure we have slots for all the pages in the range. This is
* almost certainly a no-op because most of the pages must be present
*/
do {
xas_lock_irq(&xas);
xas_create_range(&xas);
if (!xas_error(&xas))
break;
xas_unlock_irq(&xas);
if (!xas_nomem(&xas, GFP_KERNEL)) {
result = SCAN_FAIL;
goto rollback;
}
} while (1);
for (index = start; index < end; index++) {
mm/khugepaged: fix regression in collapse_file() There is no xas_pause(&xas) in collapse_file()'s main loop, at the points where it does xas_unlock_irq(&xas) and then continues. That would explain why, once two weeks ago and twice yesterday, I have hit the VM_BUG_ON_PAGE(page != xas_load(&xas), page) since "mm/khugepaged: fix iteration in collapse_file" removed the xas_set(&xas, index) just before it: xas.xa_node could be left pointing to a stale node, if there was concurrent activity on the file which transformed its xarray. I tried inserting xas_pause()s, but then even bootup crashed on that VM_BUG_ON_PAGE(): there appears to be a subtle "nextness" implicit in xas_pause(). xas_next() and xas_pause() are good for use in simple loops, but not in this one: xas_set() worked well until now, so use xas_set(&xas, index) explicitly at the head of the loop; and change that VM_BUG_ON_PAGE() not to need its own xas_set(), and not to interfere with the xa_state (which would probably stop the crashes from xas_pause(), but I trust that less). The user-visible effects of this bug (if VM_BUG_ONs are configured out) would be data loss and data leak - potentially - though in practice I expect it is more likely that a subsequent check (e.g. on mapping or on nr_none) would notice an inconsistency, and just abandon the collapse. Link: https://lore.kernel.org/linux-mm/f18e4b64-3f88-a8ab-56cc-d1f5f9c58d4@google.com/ Fixes: c8a8f3b4a95a ("mm/khugepaged: fix iteration in collapse_file") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@kernel.org Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Stevens <stevensd@chromium.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-06-28 21:31:35 -07:00
xas_set(&xas, index);
page = xas_load(&xas);
VM_BUG_ON(index != xas.xa_index);
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
if (is_shmem) {
if (!page) {
/*
* Stop if extent has been truncated or
* hole-punched, and is now completely
* empty.
*/
if (index == start) {
if (!xas_next_entry(&xas, end - 1)) {
result = SCAN_TRUNCATED;
goto xa_locked;
}
}
nr_none++;
continue;
}
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
if (xa_is_value(page) || !PageUptodate(page)) {
xas_unlock_irq(&xas);
/* swap in or instantiate fallocated page */
if (shmem_get_folio(mapping->host, index,
&folio, SGP_NOALLOC)) {
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
result = SCAN_FAIL;
goto xa_unlocked;
}
/* drain lru cache to help isolate_lru_page() */
2023-04-04 21:01:14 +09:00
lru_add_drain();
page = folio_file_page(folio, index);
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
} else if (trylock_page(page)) {
get_page(page);
xas_unlock_irq(&xas);
} else {
result = SCAN_PAGE_LOCK;
goto xa_locked;
}
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
} else { /* !is_shmem */
if (!page || xa_is_value(page)) {
xas_unlock_irq(&xas);
page_cache_sync_readahead(mapping, &file->f_ra,
file, index,
end - index);
/* drain lru cache to help isolate_lru_page() */
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
lru_add_drain();
page = find_lock_page(mapping, index);
if (unlikely(page == NULL)) {
result = SCAN_FAIL;
goto xa_unlocked;
}
} else if (PageDirty(page)) {
/*
* khugepaged only works on read-only fd,
* so this page is dirty because it hasn't
* been flushed since first write. There
* won't be new dirty pages.
*
* Trigger async flush here and hope the
* writeback is done when khugepaged
* revisits this page.
*
* This is a one-off situation. We are not
* forcing writeback in loop.
*/
xas_unlock_irq(&xas);
filemap_flush(mapping);
result = SCAN_FAIL;
goto xa_unlocked;
mm, thp: bail out early in collapse_file for writeback page Currently collapse_file does not explicitly check PG_writeback, instead, page_has_private and try_to_release_page are used to filter writeback pages. This does not work for xfs with blocksize equal to or larger than pagesize, because in such case xfs has no page->private. This makes collapse_file bail out early for writeback page. Otherwise, xfs end_page_writeback will panic as follows. page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:ffff0003f88c86a8 index:0x0 pfn:0x84ef32 aops:xfs_address_space_operations [xfs] ino:30000b7 dentry name:"libtest.so" flags: 0x57fffe0000008027(locked|referenced|uptodate|active|writeback) raw: 57fffe0000008027 ffff80001b48bc28 ffff80001b48bc28 ffff0003f88c86a8 raw: 0000000000000000 0000000000000000 00000000ffffffff ffff0000c3e9a000 page dumped because: VM_BUG_ON_PAGE(((unsigned int) page_ref_count(page) + 127u <= 127u)) page->mem_cgroup:ffff0000c3e9a000 ------------[ cut here ]------------ kernel BUG at include/linux/mm.h:1212! Internal error: Oops - BUG: 0 [#1] SMP Modules linked in: BUG: Bad page state in process khugepaged pfn:84ef32 xfs(E) page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:0 index:0x0 pfn:0x84ef32 libcrc32c(E) rfkill(E) aes_ce_blk(E) crypto_simd(E) ... CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Tainted: ... pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--) Call trace: end_page_writeback+0x1c0/0x214 iomap_finish_page_writeback+0x13c/0x204 iomap_finish_ioend+0xe8/0x19c iomap_writepage_end_bio+0x38/0x50 bio_endio+0x168/0x1ec blk_update_request+0x278/0x3f0 blk_mq_end_request+0x34/0x15c virtblk_request_done+0x38/0x74 [virtio_blk] blk_done_softirq+0xc4/0x110 __do_softirq+0x128/0x38c __irq_exit_rcu+0x118/0x150 irq_exit+0x1c/0x30 __handle_domain_irq+0x8c/0xf0 gic_handle_irq+0x84/0x108 el1_irq+0xcc/0x180 arch_cpu_idle+0x18/0x40 default_idle_call+0x4c/0x1a0 cpuidle_idle_call+0x168/0x1e0 do_idle+0xb4/0x104 cpu_startup_entry+0x30/0x9c secondary_start_kernel+0x104/0x180 Code: d4210000 b0006161 910c8021 94013f4d (d4210000) ---[ end trace 4a88c6a074082f8c ]--- Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt Link: https://lkml.kernel.org/r/20211022023052.33114-1-rongwei.wang@linux.alibaba.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com> Signed-off-by: Xu Yu <xuyu@linux.alibaba.com> Suggested-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Song Liu <song@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-28 14:36:27 -07:00
} else if (PageWriteback(page)) {
xas_unlock_irq(&xas);
result = SCAN_FAIL;
goto xa_unlocked;
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
} else if (trylock_page(page)) {
get_page(page);
xas_unlock_irq(&xas);
} else {
result = SCAN_PAGE_LOCK;
goto xa_locked;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
}
/*
* The page must be locked, so we can drop the i_pages lock
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
* without racing with truncate.
*/
VM_BUG_ON_PAGE(!PageLocked(page), page);
mm,thp: recheck each page before collapsing file THP In collapse_file(), for !is_shmem case, current check cannot guarantee the locked page is up-to-date. Specifically, xas_unlock_irq() should not be called before lock_page() and get_page(); and it is necessary to recheck PageUptodate() after locking the page. With this bug and CONFIG_READ_ONLY_THP_FOR_FS=y, madvise(HUGE)'ed .text may contain corrupted data. This is because khugepaged mistakenly collapses some not up-to-date sub pages into a huge page, and assumes the huge page is up-to-date. This will NOT corrupt data in the disk, because the page is read-only and never written back. Fix this by properly checking PageUptodate() after locking the page. This check replaces "VM_BUG_ON_PAGE(!PageUptodate(page), page);". Also, move PageDirty() check after locking the page. Current khugepaged should not try to collapse dirty file THP, because it is limited to read-only .text. The only case we hit a dirty page here is when the page hasn't been written since write. Bail out and retry when this happens. syzbot reported bug on previous version of this patch. Link: http://lkml.kernel.org/r/20191106060930.2571389-2-songliubraving@fb.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: Song Liu <songliubraving@fb.com> Reported-by: syzbot+efb9e48b9fbdc49bb34a@syzkaller.appspotmail.com Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15 17:34:53 -08:00
/* make sure the page is up to date */
if (unlikely(!PageUptodate(page))) {
result = SCAN_FAIL;
goto out_unlock;
}
/*
* If file was truncated then extended, or hole-punched, before
* we locked the first page, then a THP might be there already.
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
* This will be discovered on the first iteration.
*/
if (PageTransCompound(page)) {
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
struct page *head = compound_head(page);
result = compound_order(head) == HPAGE_PMD_ORDER &&
head->index == start
/* Maybe PMD-mapped */
? SCAN_PTE_MAPPED_HUGEPAGE
: SCAN_PAGE_COMPOUND;
goto out_unlock;
}
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
folio = page_folio(page);
if (folio_mapping(folio) != mapping) {
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
result = SCAN_TRUNCATED;
goto out_unlock;
}
if (!is_shmem && (folio_test_dirty(folio) ||
folio_test_writeback(folio))) {
mm,thp: recheck each page before collapsing file THP In collapse_file(), for !is_shmem case, current check cannot guarantee the locked page is up-to-date. Specifically, xas_unlock_irq() should not be called before lock_page() and get_page(); and it is necessary to recheck PageUptodate() after locking the page. With this bug and CONFIG_READ_ONLY_THP_FOR_FS=y, madvise(HUGE)'ed .text may contain corrupted data. This is because khugepaged mistakenly collapses some not up-to-date sub pages into a huge page, and assumes the huge page is up-to-date. This will NOT corrupt data in the disk, because the page is read-only and never written back. Fix this by properly checking PageUptodate() after locking the page. This check replaces "VM_BUG_ON_PAGE(!PageUptodate(page), page);". Also, move PageDirty() check after locking the page. Current khugepaged should not try to collapse dirty file THP, because it is limited to read-only .text. The only case we hit a dirty page here is when the page hasn't been written since write. Bail out and retry when this happens. syzbot reported bug on previous version of this patch. Link: http://lkml.kernel.org/r/20191106060930.2571389-2-songliubraving@fb.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: Song Liu <songliubraving@fb.com> Reported-by: syzbot+efb9e48b9fbdc49bb34a@syzkaller.appspotmail.com Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15 17:34:53 -08:00
/*
* khugepaged only works on read-only fd, so this
* page is dirty because it hasn't been flushed
* since first write.
*/
result = SCAN_FAIL;
goto out_unlock;
}
mm: change to return bool for folio_isolate_lru() Patch series "Change the return value for page isolation functions", v3. Now the page isolation functions did not return a boolean to indicate success or not, instead it will return a negative error when failed to isolate a page. So below code used in most places seem a boolean success/failure thing, which can confuse people whether the isolation is successful. if (folio_isolate_lru(folio)) continue; Moreover the page isolation functions only return 0 or -EBUSY, and most users did not care about the negative error except for few users, thus we can convert all page isolation functions to return a boolean value, which can remove the confusion to make code more clear. No functional changes intended in this patch series. This patch (of 4): Now the folio_isolate_lru() did not return a boolean value to indicate isolation success or not, however below code checking the return value can make people think that it was a boolean success/failure thing, which makes people easy to make mistakes (see the fix patch[1]). if (folio_isolate_lru(folio)) continue; Thus it's better to check the negative error value expilictly returned by folio_isolate_lru(), which makes code more clear per Linus's suggestion[2]. Moreover Matthew suggested we can convert the isolation functions to return a boolean[3], since most users did not care about the negative error value, and can also remove the confusing of checking return value. So this patch converts the folio_isolate_lru() to return a boolean value, which means return 'true' to indicate the folio isolation is successful, and 'false' means a failure to isolation. Meanwhile changing all users' logic of checking the isolation state. No functional changes intended. [1] https://lore.kernel.org/all/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com/T/#u [2] https://lore.kernel.org/all/CAHk-=wiBrY+O-4=2mrbVyxR+hOqfdJ=Do6xoucfJ9_5az01L4Q@mail.gmail.com/ [3] https://lore.kernel.org/all/Y+sTFqwMNAjDvxw3@casper.infradead.org/ Link: https://lkml.kernel.org/r/cover.1676424378.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/8a4e3679ed4196168efadf7ea36c038f2f7d5aa9.1676424378.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: SeongJae Park <sj@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-15 18:39:34 +08:00
if (!folio_isolate_lru(folio)) {
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
result = SCAN_DEL_PAGE_LRU;
goto out_unlock;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
mm: merge folio_has_private()/filemap_release_folio() call pairs Patch series "mm, netfs, fscache: Stop read optimisation when folio removed from pagecache", v7. This fixes an optimisation in fscache whereby we don't read from the cache for a particular file until we know that there's data there that we don't have in the pagecache. The problem is that I'm no longer using PG_fscache (aka PG_private_2) to indicate that the page is cached and so I don't get a notification when a cached page is dropped from the pagecache. The first patch merges some folio_has_private() and filemap_release_folio() pairs and introduces a helper, folio_needs_release(), to indicate if a release is required. The second patch is the actual fix. Following Willy's suggestions[1], it adds an AS_RELEASE_ALWAYS flag to an address_space that will make filemap_release_folio() always call ->release_folio(), even if PG_private/PG_private_2 aren't set. folio_needs_release() is altered to add a check for this. This patch (of 2): Make filemap_release_folio() check folio_has_private(). Then, in most cases, where a call to folio_has_private() is immediately followed by a call to filemap_release_folio(), we can get rid of the test in the pair. There are a couple of sites in mm/vscan.c that this can't so easily be done. In shrink_folio_list(), there are actually three cases (something different is done for incompletely invalidated buffers), but filemap_release_folio() elides two of them. In shrink_active_list(), we don't have have the folio lock yet, so the check allows us to avoid locking the page unnecessarily. A wrapper function to check if a folio needs release is provided for those places that still need to do it in the mm/ directory. This will acquire additional parts to the condition in a future patch. After this, the only remaining caller of folio_has_private() outside of mm/ is a check in fuse. Link: https://lkml.kernel.org/r/20230628104852.3391651-1-dhowells@redhat.com Link: https://lkml.kernel.org/r/20230628104852.3391651-2-dhowells@redhat.com Reported-by: Rohith Surabattula <rohiths.msft@gmail.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Signed-off-by: David Howells <dhowells@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steve French <sfrench@samba.org> Cc: Shyam Prasad N <nspmangalore@gmail.com> Cc: Rohith Surabattula <rohiths.msft@gmail.com> Cc: Dave Wysochanski <dwysocha@redhat.com> Cc: Dominique Martinet <asmadeus@codewreck.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Xiubo Li <xiubli@redhat.com> Cc: Jingbo Xu <jefflexu@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-28 11:48:51 +01:00
if (!filemap_release_folio(folio, GFP_KERNEL)) {
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
result = SCAN_PAGE_HAS_PRIVATE;
folio_putback_lru(folio);
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
goto out_unlock;
}
if (folio_mapped(folio))
try_to_unmap(folio,
TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
xas_lock_irq(&xas);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
mm/khugepaged: fix regression in collapse_file() There is no xas_pause(&xas) in collapse_file()'s main loop, at the points where it does xas_unlock_irq(&xas) and then continues. That would explain why, once two weeks ago and twice yesterday, I have hit the VM_BUG_ON_PAGE(page != xas_load(&xas), page) since "mm/khugepaged: fix iteration in collapse_file" removed the xas_set(&xas, index) just before it: xas.xa_node could be left pointing to a stale node, if there was concurrent activity on the file which transformed its xarray. I tried inserting xas_pause()s, but then even bootup crashed on that VM_BUG_ON_PAGE(): there appears to be a subtle "nextness" implicit in xas_pause(). xas_next() and xas_pause() are good for use in simple loops, but not in this one: xas_set() worked well until now, so use xas_set(&xas, index) explicitly at the head of the loop; and change that VM_BUG_ON_PAGE() not to need its own xas_set(), and not to interfere with the xa_state (which would probably stop the crashes from xas_pause(), but I trust that less). The user-visible effects of this bug (if VM_BUG_ONs are configured out) would be data loss and data leak - potentially - though in practice I expect it is more likely that a subsequent check (e.g. on mapping or on nr_none) would notice an inconsistency, and just abandon the collapse. Link: https://lore.kernel.org/linux-mm/f18e4b64-3f88-a8ab-56cc-d1f5f9c58d4@google.com/ Fixes: c8a8f3b4a95a ("mm/khugepaged: fix iteration in collapse_file") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@kernel.org Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Stevens <stevensd@chromium.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-06-28 21:31:35 -07:00
VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
/*
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* We control three references to the page:
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
* - we hold a pin on it;
* - one reference from page cache;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
* - one from isolate_lru_page;
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* If those are the only references, then any new usage of the
* page will have to fetch it from the page cache. That requires
* locking the page to handle truncate, so any new usage will be
* blocked until we unlock page after collapse/during rollback.
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
*/
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
if (page_count(page) != 3) {
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
result = SCAN_PAGE_COUNT;
xas_unlock_irq(&xas);
putback_lru_page(page);
goto out_unlock;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
/*
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* Accumulate the pages that are being collapsed.
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
*/
list_add_tail(&page->lru, &pagelist);
continue;
out_unlock:
unlock_page(page);
put_page(page);
goto xa_unlocked;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
if (!is_shmem) {
filemap_nr_thps_inc(mapping);
mm, thp: relax the VM_DENYWRITE constraint on file-backed THPs Transparent huge pages are supported for read-only non-shmem files, but are only used for vmas with VM_DENYWRITE. This condition ensures that file THPs are protected from writes while an application is running (ETXTBSY). Any existing file THPs are then dropped from the page cache when a file is opened for write in do_dentry_open(). Since sys_mmap ignores MAP_DENYWRITE, this constrains the use of file THPs to vmas produced by execve(). Systems that make heavy use of shared libraries (e.g. Android) are unable to apply VM_DENYWRITE through the dynamic linker, preventing them from benefiting from the resultant reduced contention on the TLB. This patch reduces the constraint on file THPs allowing use with any executable mapping from a file not opened for write (see inode_is_open_for_write()). It also introduces additional conditions to ensure that files opened for write will never be backed by file THPs. Restricting the use of THPs to executable mappings eliminates the risk that a read-only file later opened for write would encounter significant latencies due to page cache truncation. The ld linker flag '-z max-page-size=(hugepage size)' can be used to produce executables with the necessary layout. The dynamic linker must map these file's segments at a hugepage size aligned vma for the mapping to be backed with THPs. Comparison of the performance characteristics of 4KB and 2MB-backed libraries follows; the Android dex2oat tool was used to AOT compile an example application on a single ARM core. 4KB Pages: ========== count event_name # count / runtime 598,995,035,942 cpu-cycles # 1.800861 GHz 81,195,620,851 raw-stall-frontend # 244.112 M/sec 347,754,466,597 iTLB-loads # 1.046 G/sec 2,970,248,900 iTLB-load-misses # 0.854122% miss rate Total test time: 332.854998 seconds. 2MB Pages: ========== count event_name # count / runtime 592,872,663,047 cpu-cycles # 1.800358 GHz 76,485,624,143 raw-stall-frontend # 232.261 M/sec 350,478,413,710 iTLB-loads # 1.064 G/sec 803,233,322 iTLB-load-misses # 0.229182% miss rate Total test time: 329.826087 seconds A check of /proc/$(pidof dex2oat64)/smaps shows THPs in use: /apex/com.android.art/lib64/libart.so FilePmdMapped: 4096 kB /apex/com.android.art/lib64/libart-compiler.so FilePmdMapped: 2048 kB Link: https://lkml.kernel.org/r/20210406000930.3455850-1-cfijalkovich@google.com Signed-off-by: Collin Fijalkovich <cfijalkovich@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Song Liu <song@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Hridya Valsaraju <hridya@google.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 18:51:32 -07:00
/*
* Paired with smp_mb() in do_dentry_open() to ensure
* i_writecount is up to date and the update to nr_thps is
* visible. Ensures the page cache will be truncated if the
* file is opened writable.
*/
smp_mb();
if (inode_is_open_for_write(mapping->host)) {
result = SCAN_FAIL;
filemap_nr_thps_dec(mapping);
}
}
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
xa_locked:
xas_unlock_irq(&xas);
xa_unlocked:
/*
* If collapse is successful, flush must be done now before copying.
* If collapse is unsuccessful, does flush actually need to be done?
* Do it anyway, to clear the state.
*/
try_to_unmap_flush();
shmem: fix quota lock nesting in huge hole handling i_pages lock nests inside i_lock, but shmem_charge() and shmem_uncharge() were being called from THP splitting or collapsing while i_pages lock was held, and now go on to call dquot_alloc_block_nodirty() which takes i_lock to update i_blocks. We may well want to take i_lock out of this path later, in the non-quota case even if it's left in the quota case (or perhaps use i_lock instead of shmem's info->lock throughout); but don't get into that at this time. Move the shmem_charge() and shmem_uncharge() calls out from under i_pages lock, accounting the full batch of holes in a single call. Still pass the pages argument to shmem_uncharge(), but it happens now to be unused: shmem_recalc_inode() is designed to account for clean pages freed behind shmem's back, so it gets the accounting right by itself; then the later call to shmem_inode_unacct_blocks() led to imbalance (that WARN_ON(inode->i_blocks) in shmem_evict_inode()). Reported-by: syzbot+38ca19393fb3344f57e6@syzkaller.appspotmail.com Closes: https://lore.kernel.org/lkml/0000000000008e62f40600bfe080@google.com/ Reported-by: syzbot+440ff8cca06ee7a1d4db@syzkaller.appspotmail.com Closes: https://lore.kernel.org/lkml/00000000000076a7840600bfb6e8@google.com/ Signed-off-by: Hugh Dickins <hughd@google.com> Tested-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Message-Id: <20230725144510.253763-8-cem@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-25 16:45:10 +02:00
if (result == SCAN_SUCCEED && nr_none &&
!shmem_charge(mapping->host, nr_none))
result = SCAN_FAIL;
if (result != SCAN_SUCCEED) {
nr_none = 0;
goto rollback;
shmem: fix quota lock nesting in huge hole handling i_pages lock nests inside i_lock, but shmem_charge() and shmem_uncharge() were being called from THP splitting or collapsing while i_pages lock was held, and now go on to call dquot_alloc_block_nodirty() which takes i_lock to update i_blocks. We may well want to take i_lock out of this path later, in the non-quota case even if it's left in the quota case (or perhaps use i_lock instead of shmem's info->lock throughout); but don't get into that at this time. Move the shmem_charge() and shmem_uncharge() calls out from under i_pages lock, accounting the full batch of holes in a single call. Still pass the pages argument to shmem_uncharge(), but it happens now to be unused: shmem_recalc_inode() is designed to account for clean pages freed behind shmem's back, so it gets the accounting right by itself; then the later call to shmem_inode_unacct_blocks() led to imbalance (that WARN_ON(inode->i_blocks) in shmem_evict_inode()). Reported-by: syzbot+38ca19393fb3344f57e6@syzkaller.appspotmail.com Closes: https://lore.kernel.org/lkml/0000000000008e62f40600bfe080@google.com/ Reported-by: syzbot+440ff8cca06ee7a1d4db@syzkaller.appspotmail.com Closes: https://lore.kernel.org/lkml/00000000000076a7840600bfb6e8@google.com/ Signed-off-by: Hugh Dickins <hughd@google.com> Tested-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Message-Id: <20230725144510.253763-8-cem@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-25 16:45:10 +02:00
}
/*
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
* The old pages are locked, so they won't change anymore.
*/
index = start;
list_for_each_entry(page, &pagelist, lru) {
while (index < page->index) {
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
clear_highpage(hpage + (index % HPAGE_PMD_NR));
index++;
}
if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
result = SCAN_COPY_MC;
goto rollback;
}
index++;
}
while (index < end) {
clear_highpage(hpage + (index % HPAGE_PMD_NR));
index++;
}
mm/khugepaged: skip shmem with userfaultfd Make sure that collapse_file respects any userfaultfds registered with MODE_MISSING. If userspace has any such userfaultfds registered, then for any page which it knows to be missing, it may expect a UFFD_EVENT_PAGEFAULT. This means collapse_file needs to be careful when collapsing a shmem range would result in replacing an empty page with a THP, to avoid breaking userfaultfd. Synchronization when checking for userfaultfds in collapse_file is tricky because the mmap locks can't be used to prevent races with the registration of new userfaultfds. Instead, we provide synchronization by ensuring that userspace cannot observe the fact that pages are missing before we check for userfaultfds. Although this allows registration of a userfaultfd to race with collapse_file, it ensures that userspace cannot observe any pages transition from missing to present after such a race occurs. This makes such a race indistinguishable to the collapse occurring immediately before the userfaultfd registration. The first step to provide this synchronization is to stop filling gaps during the loop iterating over the target range, since the page cache lock can be dropped during that loop. The second step is to fill the gaps with XA_RETRY_ENTRY after the page cache lock is acquired the final time, to avoid races with accesses to the page cache that only take the RCU read lock. The fact that we don't fill holes during the initial iteration means that collapse_file now has to handle faults occurring during the collapse. This is done by re-validating the number of missing pages after acquiring the page cache lock for the final time. This fix is targeted at khugepaged, but the change also applies to MADV_COLLAPSE. MADV_COLLAPSE on a range with a userfaultfd will now return EBUSY if there are any missing pages (instead of succeeding on shmem and returning EINVAL on anonymous memory). There is also now a window during MADV_COLLAPSE where a fault on a missing page will cause the syscall to fail with EAGAIN. The fact that intermediate page cache state can no longer be observed before the rollback of a failed collapse is also technically a userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is exceedingly unlikely that anything relies on being able to observe that transient state. Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com Signed-off-by: David Stevens <stevensd@chromium.org> Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:16 +09:00
if (nr_none) {
struct vm_area_struct *vma;
int nr_none_check = 0;
i_mmap_lock_read(mapping);
xas_lock_irq(&xas);
xas_set(&xas, start);
for (index = start; index < end; index++) {
if (!xas_next(&xas)) {
xas_store(&xas, XA_RETRY_ENTRY);
if (xas_error(&xas)) {
result = SCAN_STORE_FAILED;
goto immap_locked;
}
nr_none_check++;
}
}
if (nr_none != nr_none_check) {
result = SCAN_PAGE_FILLED;
goto immap_locked;
}
/*
* If userspace observed a missing page in a VMA with a MODE_MISSING
* userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
* page. If so, we need to roll back to avoid suppressing such an
* event. Since wp/minor userfaultfds don't give userspace any
* guarantees that the kernel doesn't fill a missing page with a zero
* page, so they don't matter here.
*
* Any userfaultfds registered after this point will not be able to
* observe any missing pages due to the previously inserted retry
* entries.
*/
vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
if (userfaultfd_missing(vma)) {
result = SCAN_EXCEED_NONE_PTE;
goto immap_locked;
}
}
immap_locked:
i_mmap_unlock_read(mapping);
if (result != SCAN_SUCCEED) {
xas_set(&xas, start);
for (index = start; index < end; index++) {
if (xas_next(&xas) == XA_RETRY_ENTRY)
xas_store(&xas, NULL);
}
xas_unlock_irq(&xas);
goto rollback;
}
} else {
xas_lock_irq(&xas);
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
}
folio = page_folio(hpage);
nr = folio_nr_pages(folio);
if (is_shmem)
__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
else
__lruvec_stat_mod_folio(folio, NR_FILE_THPS, nr);
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
if (nr_none) {
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_none);
/* nr_none is always 0 for non-shmem. */
__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_none);
}
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
/*
* Mark hpage as uptodate before inserting it into the page cache so
* that it isn't mistaken for an fallocated but unwritten page.
*/
folio_mark_uptodate(folio);
folio_ref_add(folio, HPAGE_PMD_NR - 1);
if (is_shmem)
folio_mark_dirty(folio);
folio_add_lru(folio);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
/* Join all the small entries into a single multi-index entry. */
xas_set_order(&xas, start, HPAGE_PMD_ORDER);
xas_store(&xas, folio);
mm/khugepaged: fix conflicting mods to collapse_file() Inserting Ivan Orlov's syzbot fix commit 2ce0bdfebc74 ("mm: khugepaged: fix kernel BUG in hpage_collapse_scan_file()") ahead of Jiaqi Yan's and David Stevens's commits 12904d953364 ("mm/khugepaged: recover from poisoned file-backed memory") cae106dd67b9 ("mm/khugepaged: refactor collapse_file control flow") ac492b9c70ca ("mm/khugepaged: skip shmem with userfaultfd") (all of which restructure collapse_file()) did not work out well. xfstests generic/086 on huge tmpfs (with accelerated khugepaged) freezes (if not on the first attempt, then the 2nd or 3rd) in find_lock_entries() while doing drop_caches: the file's xarray seems to have been corrupted, with find_get_entry() returning nonsense which makes no progress. Bisection led to ac492b9c70ca; and diff against earlier working linux-next suggested that it's probably down to an errant xas_store(), which does not belong with the later changes (and nor does the positioning of warnings). The later changes look as if they fix the syzbot issue independently. Remove most of what's left of 2ce0bdfebc74: just leave one WARN_ON_ONCE (xas_error) after the final xas_store() of the multi-index entry. Link: https://lkml.kernel.org/r/b6c881-c352-bb91-85a8-febeb09dfd71@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Ivan Orlov <ivan.orlov0322@gmail.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-22 21:47:20 -07:00
WARN_ON_ONCE(xas_error(&xas));
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
xas_unlock_irq(&xas);
/*
* Remove pte page tables, so we can re-fault the page as huge.
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
* If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
*/
mm/khugepaged: retract_page_tables() without mmap or vma lock Simplify shmem and file THP collapse's retract_page_tables(), and relax its locking: to improve its success rate and to lessen impact on others. Instead of its MADV_COLLAPSE case doing set_huge_pmd() at target_addr of target_mm, leave that part of the work to madvise_collapse() calling collapse_pte_mapped_thp() afterwards: just adjust collapse_file()'s result code to arrange for that. That spares retract_page_tables() four arguments; and since it will be successful in retracting all of the page tables expected of it, no need to track and return a result code itself. It needs i_mmap_lock_read(mapping) for traversing the vma interval tree, but it does not need i_mmap_lock_write() for that: page_vma_mapped_walk() allows for pte_offset_map_lock() etc to fail, and uses pmd_lock() for THPs. retract_page_tables() just needs to use those same spinlocks to exclude it briefly, while transitioning pmd from page table to none: so restore its use of pmd_lock() inside of which pte lock is nested. Users of pte_offset_map_lock() etc all now allow for them to fail: so retract_page_tables() now has no use for mmap_write_trylock() or vma_try_start_write(). In common with rmap and page_vma_mapped_walk(), it does not even need the mmap_read_lock(). But those users do expect the page table to remain a good page table, until they unlock and rcu_read_unlock(): so the page table cannot be freed immediately, but rather by the recently added pte_free_defer(). Use the (usually a no-op) pmdp_get_lockless_sync() to send an interrupt when PAE, and pmdp_collapse_flush() did not already do so: to make sure that the start,pmdp_get_lockless(),end sequence in __pte_offset_map() cannot pick up a pmd entry with mismatched pmd_low and pmd_high. retract_page_tables() can be enhanced to replace_page_tables(), which inserts the final huge pmd without mmap lock: going through an invalid state instead of pmd_none() followed by fault. But that enhancement does raise some more questions: leave it until a later release. Link: https://lkml.kernel.org/r/f88970d9-d347-9762-ae6d-da978e8a4df@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:41:04 -07:00
retract_page_tables(mapping, start);
if (cc && !cc->is_khugepaged)
result = SCAN_PTE_MAPPED_HUGEPAGE;
folio_unlock(folio);
mm/khugepaged: skip shmem with userfaultfd Make sure that collapse_file respects any userfaultfds registered with MODE_MISSING. If userspace has any such userfaultfds registered, then for any page which it knows to be missing, it may expect a UFFD_EVENT_PAGEFAULT. This means collapse_file needs to be careful when collapsing a shmem range would result in replacing an empty page with a THP, to avoid breaking userfaultfd. Synchronization when checking for userfaultfds in collapse_file is tricky because the mmap locks can't be used to prevent races with the registration of new userfaultfds. Instead, we provide synchronization by ensuring that userspace cannot observe the fact that pages are missing before we check for userfaultfds. Although this allows registration of a userfaultfd to race with collapse_file, it ensures that userspace cannot observe any pages transition from missing to present after such a race occurs. This makes such a race indistinguishable to the collapse occurring immediately before the userfaultfd registration. The first step to provide this synchronization is to stop filling gaps during the loop iterating over the target range, since the page cache lock can be dropped during that loop. The second step is to fill the gaps with XA_RETRY_ENTRY after the page cache lock is acquired the final time, to avoid races with accesses to the page cache that only take the RCU read lock. The fact that we don't fill holes during the initial iteration means that collapse_file now has to handle faults occurring during the collapse. This is done by re-validating the number of missing pages after acquiring the page cache lock for the final time. This fix is targeted at khugepaged, but the change also applies to MADV_COLLAPSE. MADV_COLLAPSE on a range with a userfaultfd will now return EBUSY if there are any missing pages (instead of succeeding on shmem and returning EINVAL on anonymous memory). There is also now a window during MADV_COLLAPSE where a fault on a missing page will cause the syscall to fail with EAGAIN. The fact that intermediate page cache state can no longer be observed before the rollback of a failed collapse is also technically a userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is exceedingly unlikely that anything relies on being able to observe that transient state. Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com Signed-off-by: David Stevens <stevensd@chromium.org> Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:16 +09:00
/*
* The collapse has succeeded, so free the old pages.
*/
list_for_each_entry_safe(page, tmp, &pagelist, lru) {
list_del(&page->lru);
page->mapping = NULL;
ClearPageActive(page);
ClearPageUnevictable(page);
unlock_page(page);
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
folio_put_refs(page_folio(page), 3);
mm/khugepaged: skip shmem with userfaultfd Make sure that collapse_file respects any userfaultfds registered with MODE_MISSING. If userspace has any such userfaultfds registered, then for any page which it knows to be missing, it may expect a UFFD_EVENT_PAGEFAULT. This means collapse_file needs to be careful when collapsing a shmem range would result in replacing an empty page with a THP, to avoid breaking userfaultfd. Synchronization when checking for userfaultfds in collapse_file is tricky because the mmap locks can't be used to prevent races with the registration of new userfaultfds. Instead, we provide synchronization by ensuring that userspace cannot observe the fact that pages are missing before we check for userfaultfds. Although this allows registration of a userfaultfd to race with collapse_file, it ensures that userspace cannot observe any pages transition from missing to present after such a race occurs. This makes such a race indistinguishable to the collapse occurring immediately before the userfaultfd registration. The first step to provide this synchronization is to stop filling gaps during the loop iterating over the target range, since the page cache lock can be dropped during that loop. The second step is to fill the gaps with XA_RETRY_ENTRY after the page cache lock is acquired the final time, to avoid races with accesses to the page cache that only take the RCU read lock. The fact that we don't fill holes during the initial iteration means that collapse_file now has to handle faults occurring during the collapse. This is done by re-validating the number of missing pages after acquiring the page cache lock for the final time. This fix is targeted at khugepaged, but the change also applies to MADV_COLLAPSE. MADV_COLLAPSE on a range with a userfaultfd will now return EBUSY if there are any missing pages (instead of succeeding on shmem and returning EINVAL on anonymous memory). There is also now a window during MADV_COLLAPSE where a fault on a missing page will cause the syscall to fail with EAGAIN. The fact that intermediate page cache state can no longer be observed before the rollback of a failed collapse is also technically a userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is exceedingly unlikely that anything relies on being able to observe that transient state. Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com Signed-off-by: David Stevens <stevensd@chromium.org> Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:16 +09:00
}
goto out;
rollback:
/* Something went wrong: roll back page cache changes */
if (nr_none) {
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
xas_lock_irq(&xas);
mapping->nrpages -= nr_none;
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
xas_unlock_irq(&xas);
shmem: fix quota lock nesting in huge hole handling i_pages lock nests inside i_lock, but shmem_charge() and shmem_uncharge() were being called from THP splitting or collapsing while i_pages lock was held, and now go on to call dquot_alloc_block_nodirty() which takes i_lock to update i_blocks. We may well want to take i_lock out of this path later, in the non-quota case even if it's left in the quota case (or perhaps use i_lock instead of shmem's info->lock throughout); but don't get into that at this time. Move the shmem_charge() and shmem_uncharge() calls out from under i_pages lock, accounting the full batch of holes in a single call. Still pass the pages argument to shmem_uncharge(), but it happens now to be unused: shmem_recalc_inode() is designed to account for clean pages freed behind shmem's back, so it gets the accounting right by itself; then the later call to shmem_inode_unacct_blocks() led to imbalance (that WARN_ON(inode->i_blocks) in shmem_evict_inode()). Reported-by: syzbot+38ca19393fb3344f57e6@syzkaller.appspotmail.com Closes: https://lore.kernel.org/lkml/0000000000008e62f40600bfe080@google.com/ Reported-by: syzbot+440ff8cca06ee7a1d4db@syzkaller.appspotmail.com Closes: https://lore.kernel.org/lkml/00000000000076a7840600bfb6e8@google.com/ Signed-off-by: Hugh Dickins <hughd@google.com> Tested-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Message-Id: <20230725144510.253763-8-cem@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-25 16:45:10 +02:00
shmem_uncharge(mapping->host, nr_none);
}
mm/khugepaged: fix crashes due to misaccounted holes Huge tmpfs testing on a shortish file mapped into a pmd-rounded extent hit shmem_evict_inode()'s WARN_ON(inode->i_blocks) followed by clear_inode()'s BUG_ON(inode->i_data.nrpages) when the file was later closed and unlinked. khugepaged's collapse_shmem() was forgetting to update mapping->nrpages on the rollback path, after it had added but then needs to undo some holes. There is indeed an irritating asymmetry between shmem_charge(), whose callers want it to increment nrpages after successfully accounting blocks, and shmem_uncharge(), when __delete_from_page_cache() already decremented nrpages itself: oh well, just add a comment on that to them both. And shmem_recalc_inode() is supposed to be called when the accounting is expected to be in balance (so it can deduce from imbalance that reclaim discarded some pages): so change shmem_charge() to update nrpages earlier (though it's rare for the difference to matter at all). Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261523450.2275@eggly.anvils Fixes: 800d8c63b2e98 ("shmem: add huge pages support") Fixes: f3f0e1d2150b2 ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 14:10:29 -08:00
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
list_for_each_entry_safe(page, tmp, &pagelist, lru) {
list_del(&page->lru);
unlock_page(page);
putback_lru_page(page);
mm/khugepaged: maintain page cache uptodate flag Make sure that collapse_file doesn't interfere with checking the uptodate flag in the page cache by only inserting hpage into the page cache after it has been updated and marked uptodate. This is achieved by simply not replacing present pages with hpage when iterating over the target range. The present pages are already locked, so replacing them with the locked hpage before the collapse is finalized is unnecessary. However, it is necessary to stop freezing the present pages after validating them, since leaving long-term frozen pages in the page cache can lead to deadlocks. Simply checking the reference count is sufficient to ensure that there are no long-term references hanging around that would the collapse would break. Similar to hpage, there is no reason that the present pages actually need to be frozen in addition to being locked. This fixes a race where folio_seek_hole_data would mistake hpage for an fallocated but unwritten page. This race is visible to userspace via data temporarily disappearing from SEEK_DATA/SEEK_HOLE. This also fixes a similar race where pages could temporarily disappear from mincore. Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages") Signed-off-by: David Stevens <stevensd@chromium.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:17 +09:00
put_page(page);
}
/*
* Undo the updates of filemap_nr_thps_inc for non-SHMEM
* file only. This undo is not needed unless failure is
* due to SCAN_COPY_MC.
*/
if (!is_shmem && result == SCAN_COPY_MC) {
filemap_nr_thps_dec(mapping);
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
/*
* Paired with smp_mb() in do_dentry_open() to
* ensure the update to nr_thps is visible.
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
*/
smp_mb();
}
mm/khugepaged: recover from poisoned file-backed memory Make collapse_file roll back when copying pages failed. More concretely: - extract copying operations into a separate loop - postpone the updates for nr_none until both scanning and copying succeeded - postpone joining small xarray entries until both scanning and copying succeeded - postpone the update operations to NR_XXX_THPS until both scanning and copying succeeded - for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but copying failed Tested manually: 0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk. 1. Start a two-thread application. Each thread allocates a chunk of non-huge memory buffer from /mnt/ramdisk. 2. Pick 4 random buffer address (2 in each thread) and inject uncorrectable memory errors at physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and then check kernel log: khugepaged is able to recover from poisoned pages by skipping them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Tong Tiangen <tongtiangen@huawei.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-29 08:11:21 -07:00
hpage->mapping = NULL;
unlock_page(hpage);
put_page(hpage);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
out:
VM_BUG_ON(!list_empty(&pagelist));
trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
return result;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
struct file *file, pgoff_t start,
struct collapse_control *cc)
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
{
struct page *page = NULL;
struct address_space *mapping = file->f_mapping;
XA_STATE(xas, &mapping->i_pages, start);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
int present, swap;
int node = NUMA_NO_NODE;
int result = SCAN_SUCCEED;
present = 0;
swap = 0;
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
memset(cc->node_load, 0, sizeof(cc->node_load));
mm: khugepaged: allow page allocation fallback to eligible nodes Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") to satisfy "numactl --interleave=all". But interleaving is a mere hint rather than something that has hard requirements. So use nodemask to record the nodes which have the same hit record, the hugepage allocation could fallback to those nodes. And remove __GFP_THISNODE since it does disallow fallback. And if the nodemask just has one node set, it means there is one single node has the most hit record, the nodemask approach actually behaves like __GFP_THISNODE. Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Yang Shi <shy828301@gmail.com> Suggested-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 10:43:56 -08:00
nodes_clear(cc->alloc_nmask);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
rcu_read_lock();
xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
if (xas_retry(&xas, page))
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
continue;
if (xa_is_value(page)) {
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
++swap;
if (cc->is_khugepaged &&
swap > khugepaged_max_ptes_swap) {
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
result = SCAN_EXCEED_SWAP_PTE;
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
break;
}
continue;
}
/*
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
* TODO: khugepaged should compact smaller compound pages
* into a PMD sized page
*/
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
if (PageTransCompound(page)) {
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
struct page *head = compound_head(page);
result = compound_order(head) == HPAGE_PMD_ORDER &&
head->index == start
/* Maybe PMD-mapped */
? SCAN_PTE_MAPPED_HUGEPAGE
: SCAN_PAGE_COMPOUND;
/*
* For SCAN_PTE_MAPPED_HUGEPAGE, further processing
* by the caller won't touch the page cache, and so
* it's safe to skip LRU and refcount checks before
* returning.
*/
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
break;
}
node = page_to_nid(page);
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
if (hpage_collapse_scan_abort(node, cc)) {
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
result = SCAN_SCAN_ABORT;
break;
}
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
cc->node_load[node]++;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
if (!PageLRU(page)) {
result = SCAN_PAGE_LRU;
break;
}
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
if (page_count(page) !=
1 + page_mapcount(page) + page_has_private(page)) {
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
result = SCAN_PAGE_COUNT;
break;
}
/*
* We probably should check if the page is referenced here, but
* nobody would transfer pte_young() to PageReferenced() for us.
* And rmap walk here is just too costly...
*/
present++;
if (need_resched()) {
xas_pause(&xas);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
cond_resched_rcu();
}
}
rcu_read_unlock();
if (result == SCAN_SUCCEED) {
mm/khugepaged: add flag to predicate khugepaged-only behavior Add .is_khugepaged flag to struct collapse_control so khugepaged-specific behavior can be elided by MADV_COLLAPSE context. Start by protecting khugepaged-specific heuristics by this flag. In MADV_COLLAPSE, the user presumably has reason to believe the collapse will be beneficial and khugepaged heuristics shouldn't prevent the user from doing so: 1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared] 2) requirement that some pages in region being collapsed be young or referenced [zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks] Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:24 -07:00
if (cc->is_khugepaged &&
present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
result = SCAN_EXCEED_NONE_PTE;
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
} else {
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = collapse_file(mm, addr, file, start, cc);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
}
trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
return result;
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
#else
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
struct file *file, pgoff_t start,
struct collapse_control *cc)
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
{
BUILD_BUG();
}
#endif
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
struct collapse_control *cc)
__releases(&khugepaged_mm_lock)
__acquires(&khugepaged_mm_lock)
{
struct vma_iterator vmi;
struct khugepaged_mm_slot *mm_slot;
struct mm_slot *slot;
struct mm_struct *mm;
struct vm_area_struct *vma;
int progress = 0;
VM_BUG_ON(!pages);
lockdep_assert_held(&khugepaged_mm_lock);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
*result = SCAN_FAIL;
if (khugepaged_scan.mm_slot) {
mm_slot = khugepaged_scan.mm_slot;
slot = &mm_slot->slot;
} else {
slot = list_entry(khugepaged_scan.mm_head.next,
struct mm_slot, mm_node);
mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
khugepaged_scan.address = 0;
khugepaged_scan.mm_slot = mm_slot;
}
spin_unlock(&khugepaged_mm_lock);
mm = slot->mm;
mm: thp: use down_read_trylock() in khugepaged to avoid long block In the current design, khugepaged needs to acquire mmap_sem before scanning an mm. But in some corner cases, khugepaged may scan a process which is modifying its memory mapping, so khugepaged blocks in uninterruptible state. But the process might hold the mmap_sem for a long time when modifying a huge memory space and it may trigger the below khugepaged hung issue: INFO: task khugepaged:270 blocked for more than 120 seconds. Tainted: G E 4.9.65-006.ali3000.alios7.x86_64 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. khugepaged D 0 270 2 0x00000000  ffff883f3deae4c0 0000000000000000 ffff883f610596c0 ffff883f7d359440 ffff883f63818000 ffffc90019adfc78 ffffffff817079a5 d67e5aa8c1860a64 0000000000000246 ffff883f7d359440 ffffc90019adfc88 ffff883f610596c0 Call Trace: schedule+0x36/0x80 rwsem_down_read_failed+0xf0/0x150 call_rwsem_down_read_failed+0x18/0x30 down_read+0x20/0x40 khugepaged+0x476/0x11d0 kthread+0xe6/0x100 ret_from_fork+0x25/0x30 So it sounds pointless to just block khugepaged waiting for the semaphore so replace down_read() with down_read_trylock() to move to scan the next mm quickly instead of just blocking on the semaphore so that other processes can get more chances to install THP. Then khugepaged can come back to scan the skipped mm when it has finished the current round full_scan. And it appears that the change can improve khugepaged efficiency a little bit. Below is the test result when running LTP on a 24 cores 4GB memory 2 nodes NUMA VM: pristine w/ trylock full_scan 197 187 pages_collapsed 21 26 thp_fault_alloc 40818 44466 thp_fault_fallback 18413 16679 thp_collapse_alloc 21 150 thp_collapse_alloc_failed 14 16 thp_file_alloc 369 369 [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: tweak comment] [arnd@arndb.de: avoid uninitialized variable use] Link: http://lkml.kernel.org/r/20171215125129.2948634-1-arnd@arndb.de Link: http://lkml.kernel.org/r/1513281203-54878-1-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 16:18:28 -08:00
/*
* Don't wait for semaphore (to avoid long wait times). Just move to
* the next mm on the list.
*/
vma = NULL;
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
if (unlikely(!mmap_read_trylock(mm)))
goto breakouterloop_mmap_lock;
progress++;
if (unlikely(hpage_collapse_test_exit(mm)))
goto breakouterloop;
vma_iter_init(&vmi, mm, khugepaged_scan.address);
for_each_vma(vmi, vma) {
unsigned long hstart, hend;
cond_resched();
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
if (unlikely(hpage_collapse_test_exit(mm))) {
progress++;
break;
}
mm: thp: introduce multi-size THP sysfs interface In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 16:12:04 +00:00
if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
true, PMD_ORDER)) {
skip:
progress++;
continue;
}
hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
if (khugepaged_scan.address > hend)
goto skip;
if (khugepaged_scan.address < hstart)
khugepaged_scan.address = hstart;
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
while (khugepaged_scan.address < hend) {
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
bool mmap_locked = true;
cond_resched();
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
if (unlikely(hpage_collapse_test_exit(mm)))
goto breakouterloop;
VM_BUG_ON(khugepaged_scan.address < hstart ||
khugepaged_scan.address + HPAGE_PMD_SIZE >
hend);
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
struct file *file = get_file(vma->vm_file);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
pgoff_t pgoff = linear_page_index(vma,
khugepaged_scan.address);
mm,thp: add read-only THP support for (non-shmem) FS This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 15:38:00 -07:00
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_read_unlock(mm);
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
mmap_locked = false;
mm/khugepaged: delete khugepaged_collapse_pte_mapped_thps() Now that retract_page_tables() can retract page tables reliably, without depending on trylocks, delete all the apparatus for khugepaged to try again later: khugepaged_collapse_pte_mapped_thps() etc; and free up the per-mm memory which was set aside for that in the khugepaged_mm_slot. But one part of that is worth keeping: when hpage_collapse_scan_file() found SCAN_PTE_MAPPED_HUGEPAGE, that address was noted in the mm_slot to be tried for retraction later - catching, for example, page tables where a reversible mprotect() of a portion had required splitting the pmd, but now it can be recollapsed. Call collapse_pte_mapped_thp() directly in this case (why was it deferred before? I assume an issue with needing mmap_lock for write, but now it's only needed for read). [hughd@google.com: fix mmap_locked handlng] Link: https://lkml.kernel.org/r/bfc6cab2-497f-32bf-dd5-98dc1987e4a9@google.com Link: https://lkml.kernel.org/r/a5dce57-6dfa-5559-4698-e817eb2f993@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:43:36 -07:00
*result = hpage_collapse_scan_file(mm,
khugepaged_scan.address, file, pgoff, cc);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
fput(file);
mm/khugepaged: delete khugepaged_collapse_pte_mapped_thps() Now that retract_page_tables() can retract page tables reliably, without depending on trylocks, delete all the apparatus for khugepaged to try again later: khugepaged_collapse_pte_mapped_thps() etc; and free up the per-mm memory which was set aside for that in the khugepaged_mm_slot. But one part of that is worth keeping: when hpage_collapse_scan_file() found SCAN_PTE_MAPPED_HUGEPAGE, that address was noted in the mm_slot to be tried for retraction later - catching, for example, page tables where a reversible mprotect() of a portion had required splitting the pmd, but now it can be recollapsed. Call collapse_pte_mapped_thp() directly in this case (why was it deferred before? I assume an issue with needing mmap_lock for write, but now it's only needed for read). [hughd@google.com: fix mmap_locked handlng] Link: https://lkml.kernel.org/r/bfc6cab2-497f-32bf-dd5-98dc1987e4a9@google.com Link: https://lkml.kernel.org/r/a5dce57-6dfa-5559-4698-e817eb2f993@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:43:36 -07:00
if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
mmap_read_lock(mm);
if (hpage_collapse_test_exit(mm))
goto breakouterloop;
*result = collapse_pte_mapped_thp(mm,
khugepaged_scan.address, false);
if (*result == SCAN_PMD_MAPPED)
*result = SCAN_SUCCEED;
mmap_read_unlock(mm);
}
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
} else {
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
*result = hpage_collapse_scan_pmd(mm, vma,
mm/khugepaged: delete khugepaged_collapse_pte_mapped_thps() Now that retract_page_tables() can retract page tables reliably, without depending on trylocks, delete all the apparatus for khugepaged to try again later: khugepaged_collapse_pte_mapped_thps() etc; and free up the per-mm memory which was set aside for that in the khugepaged_mm_slot. But one part of that is worth keeping: when hpage_collapse_scan_file() found SCAN_PTE_MAPPED_HUGEPAGE, that address was noted in the mm_slot to be tried for retraction later - catching, for example, page tables where a reversible mprotect() of a portion had required splitting the pmd, but now it can be recollapsed. Call collapse_pte_mapped_thp() directly in this case (why was it deferred before? I assume an issue with needing mmap_lock for write, but now it's only needed for read). [hughd@google.com: fix mmap_locked handlng] Link: https://lkml.kernel.org/r/bfc6cab2-497f-32bf-dd5-98dc1987e4a9@google.com Link: https://lkml.kernel.org/r/a5dce57-6dfa-5559-4698-e817eb2f993@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:43:36 -07:00
khugepaged_scan.address, &mmap_locked, cc);
khugepaged: add support of collapse for tmpfs/shmem pages This patch extends khugepaged to support collapse of tmpfs/shmem pages. We share fair amount of infrastructure with anon-THP collapse. Few design points: - First we are looking for VMA which can be suitable for mapping huge page; - If the VMA maps shmem file, the rest scan/collapse operations operates on page cache, not on page tables as in anon VMA case. - khugepaged_scan_shmem() finds a range which is suitable for huge page. The scan is lockless and shouldn't disturb system too much. - once the candidate for collapse is found, collapse_shmem() attempts to create a huge page: + scan over radix tree, making the range point to new huge page; + new huge page is not-uptodate, locked and freezed (refcount is 0), so nobody can touch them until we say so. + we swap in pages during the scan. khugepaged_scan_shmem() filters out ranges with more than khugepaged_max_ptes_swap swapped out pages. It's HPAGE_PMD_NR/8 by default. + old pages are isolated, unmapped and put to local list in case to be restored back if collapse failed. - if collapse succeed, we retract pte page tables from VMAs where huge pages mapping is possible. The huge page will be mapped as PMD on next minor fault into the range. Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 15:26:32 -07:00
}
mm/khugepaged: delete khugepaged_collapse_pte_mapped_thps() Now that retract_page_tables() can retract page tables reliably, without depending on trylocks, delete all the apparatus for khugepaged to try again later: khugepaged_collapse_pte_mapped_thps() etc; and free up the per-mm memory which was set aside for that in the khugepaged_mm_slot. But one part of that is worth keeping: when hpage_collapse_scan_file() found SCAN_PTE_MAPPED_HUGEPAGE, that address was noted in the mm_slot to be tried for retraction later - catching, for example, page tables where a reversible mprotect() of a portion had required splitting the pmd, but now it can be recollapsed. Call collapse_pte_mapped_thp() directly in this case (why was it deferred before? I assume an issue with needing mmap_lock for write, but now it's only needed for read). [hughd@google.com: fix mmap_locked handlng] Link: https://lkml.kernel.org/r/bfc6cab2-497f-32bf-dd5-98dc1987e4a9@google.com Link: https://lkml.kernel.org/r/a5dce57-6dfa-5559-4698-e817eb2f993@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:43:36 -07:00
if (*result == SCAN_SUCCEED)
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
++khugepaged_pages_collapsed;
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:38 -07:00
/* move to next address */
khugepaged_scan.address += HPAGE_PMD_SIZE;
progress += HPAGE_PMD_NR;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
if (!mmap_locked)
/*
* We released mmap_lock so break loop. Note
* that we drop mmap_lock before all hugepage
* allocations, so if allocation fails, we are
* guaranteed to break here and report the
* correct result back to caller.
*/
goto breakouterloop_mmap_lock;
if (progress >= pages)
goto breakouterloop;
}
}
breakouterloop:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:33:25 -07:00
mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
breakouterloop_mmap_lock:
spin_lock(&khugepaged_mm_lock);
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
/*
* Release the current mm_slot if this mm is about to die, or
* if we scanned all vmas of this mm.
*/
mm/khugepaged: rename prefix of shared collapse functions The following functions are shared between khugepaged and madvise collapse contexts. Replace the "khugepaged_" prefix with generic "hpage_collapse_" prefix in such cases: khugepaged_test_exit() -> hpage_collapse_test_exit() khugepaged_scan_abort() -> hpage_collapse_scan_abort() khugepaged_scan_pmd() -> hpage_collapse_scan_pmd() khugepaged_find_target_node() -> hpage_collapse_find_target_node() khugepaged_alloc_page() -> hpage_collapse_alloc_page() The kerenel ABI (e.g. huge_memory:mm_khugepaged_scan_pmd tracepoint) is unaltered. Link: https://lkml.kernel.org/r/20220706235936.2197195-11-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:28 -07:00
if (hpage_collapse_test_exit(mm) || !vma) {
/*
* Make sure that if mm_users is reaching zero while
* khugepaged runs here, khugepaged_exit will find
* mm_slot not pointing to the exiting mm.
*/
if (slot->mm_node.next != &khugepaged_scan.mm_head) {
slot = list_entry(slot->mm_node.next,
struct mm_slot, mm_node);
khugepaged_scan.mm_slot =
mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
khugepaged_scan.address = 0;
} else {
khugepaged_scan.mm_slot = NULL;
khugepaged_full_scans++;
}
collect_mm_slot(mm_slot);
}
return progress;
}
static int khugepaged_has_work(void)
{
return !list_empty(&khugepaged_scan.mm_head) &&
hugepage_flags_enabled();
}
static int khugepaged_wait_event(void)
{
return !list_empty(&khugepaged_scan.mm_head) ||
kthread_should_stop();
}
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
static void khugepaged_do_scan(struct collapse_control *cc)
{
unsigned int progress = 0, pass_through_head = 0;
unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
bool wait = true;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
int result = SCAN_SUCCEED;
lru_add_drain_all();
mm: khugepaged: don't carry huge page to the next loop for !CONFIG_NUMA Patch series "mm: userspace hugepage collapse", v7. Introduction -------------------------------- This series provides a mechanism for userspace to induce a collapse of eligible ranges of memory into transparent hugepages in process context, thus permitting users to more tightly control their own hugepage utilization policy at their own expense. This idea was introduced by David Rientjes[5]. Interface -------------------------------- The proposed interface adds a new madvise(2) mode, MADV_COLLAPSE, and leverages the new process_madvise(2) call. process_madvise(2) Performs a synchronous collapse of the native pages mapped by the list of iovecs into transparent hugepages. This operation is independent of the system THP sysfs settings, but attempts to collapse VMAs marked VM_NOHUGEPAGE will still fail. THP allocation may enter direct reclaim and/or compaction. When a range spans multiple VMAs, the semantics of the collapse over of each VMA is independent from the others. Caller must have CAP_SYS_ADMIN if not acting on self. Return value follows existing process_madvise(2) conventions. A “success” indicates that all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already pmd-mapped THPs. madvise(2) Equivalent to process_madvise(2) on self, with 0 returned on “success”. Current Use-Cases -------------------------------- (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. Note that subsequent support for file-backed memory is required here. (2) malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[6]. A prior study of Google internal workloads during evaluation of Temeraire, a hugepage-aware enhancement to TCMalloc, showed that nearly 20% of all cpu cycles were spent in dTLB stalls, and that increasing hugepage coverage by even small amount can help with that[7]. (3) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Note that subsequent support for file/shmem-backed memory is required here. (4) HugeTLB high-granularity mapping allows HugeTLB a HugeTLB page to be mapped at different levels in the page tables[8]. As it's not "transparent" like THP, HugeTLB high-granularity mappings require an explicit user API. It is intended that MADV_COLLAPSE be co-opted for this use case[9]. Note that subsequent support for HugeTLB memory is required here. Future work -------------------------------- Only private anonymous memory is supported by this series. File and shmem memory support will be added later. One possible user of this functionality is a userspace agent that attempts to optimize THP utilization system-wide by allocating THPs based on, for example, task priority, task performance requirements, or heatmaps. For the latter, one idea that has already surfaced is using DAMON to identify hot regions, and driving THP collapse through a new DAMOS_COLLAPSE scheme[10]. This patch (of 17): The khugepaged has optimization to reduce huge page allocation calls for !CONFIG_NUMA by carrying the allocated but failed to collapse huge page to the next loop. CONFIG_NUMA doesn't do so since the next loop may try to collapse huge page from a different node, so it doesn't make too much sense to carry it. But when NUMA=n, the huge page is allocated by khugepaged_prealloc_page() before scanning the address space, so it means huge page may be allocated even though there is no suitable range for collapsing. Then the page would be just freed if khugepaged already made enough progress. This could make NUMA=n run have 5 times as much thp_collapse_alloc as NUMA=y run. This problem actually makes things worse due to the way more pointless THP allocations and makes the optimization pointless. This could be fixed by carrying the huge page across scans, but it will complicate the code further and the huge page may be carried indefinitely. But if we take one step back, the optimization itself seems not worth keeping nowadays since: * Not too many users build NUMA=n kernel nowadays even though the kernel is actually running on a non-NUMA machine. Some small devices may run NUMA=n kernel, but I don't think they actually use THP. * Since commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists"), THP could be cached by pcp. This actually somehow does the job done by the optimization. Link: https://lkml.kernel.org/r/20220706235936.2197195-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-3-zokeefe@google.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Zach O'Keefe <zokeefe@google.com> Co-developed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:20 -07:00
while (true) {
cond_resched();
if (unlikely(kthread_should_stop()))
break;
spin_lock(&khugepaged_mm_lock);
if (!khugepaged_scan.mm_slot)
pass_through_head++;
if (khugepaged_has_work() &&
pass_through_head < 2)
progress += khugepaged_scan_mm_slot(pages - progress,
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
&result, cc);
else
progress = pages;
spin_unlock(&khugepaged_mm_lock);
mm: khugepaged: don't carry huge page to the next loop for !CONFIG_NUMA Patch series "mm: userspace hugepage collapse", v7. Introduction -------------------------------- This series provides a mechanism for userspace to induce a collapse of eligible ranges of memory into transparent hugepages in process context, thus permitting users to more tightly control their own hugepage utilization policy at their own expense. This idea was introduced by David Rientjes[5]. Interface -------------------------------- The proposed interface adds a new madvise(2) mode, MADV_COLLAPSE, and leverages the new process_madvise(2) call. process_madvise(2) Performs a synchronous collapse of the native pages mapped by the list of iovecs into transparent hugepages. This operation is independent of the system THP sysfs settings, but attempts to collapse VMAs marked VM_NOHUGEPAGE will still fail. THP allocation may enter direct reclaim and/or compaction. When a range spans multiple VMAs, the semantics of the collapse over of each VMA is independent from the others. Caller must have CAP_SYS_ADMIN if not acting on self. Return value follows existing process_madvise(2) conventions. A “success” indicates that all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already pmd-mapped THPs. madvise(2) Equivalent to process_madvise(2) on self, with 0 returned on “success”. Current Use-Cases -------------------------------- (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. Note that subsequent support for file-backed memory is required here. (2) malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[6]. A prior study of Google internal workloads during evaluation of Temeraire, a hugepage-aware enhancement to TCMalloc, showed that nearly 20% of all cpu cycles were spent in dTLB stalls, and that increasing hugepage coverage by even small amount can help with that[7]. (3) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Note that subsequent support for file/shmem-backed memory is required here. (4) HugeTLB high-granularity mapping allows HugeTLB a HugeTLB page to be mapped at different levels in the page tables[8]. As it's not "transparent" like THP, HugeTLB high-granularity mappings require an explicit user API. It is intended that MADV_COLLAPSE be co-opted for this use case[9]. Note that subsequent support for HugeTLB memory is required here. Future work -------------------------------- Only private anonymous memory is supported by this series. File and shmem memory support will be added later. One possible user of this functionality is a userspace agent that attempts to optimize THP utilization system-wide by allocating THPs based on, for example, task priority, task performance requirements, or heatmaps. For the latter, one idea that has already surfaced is using DAMON to identify hot regions, and driving THP collapse through a new DAMOS_COLLAPSE scheme[10]. This patch (of 17): The khugepaged has optimization to reduce huge page allocation calls for !CONFIG_NUMA by carrying the allocated but failed to collapse huge page to the next loop. CONFIG_NUMA doesn't do so since the next loop may try to collapse huge page from a different node, so it doesn't make too much sense to carry it. But when NUMA=n, the huge page is allocated by khugepaged_prealloc_page() before scanning the address space, so it means huge page may be allocated even though there is no suitable range for collapsing. Then the page would be just freed if khugepaged already made enough progress. This could make NUMA=n run have 5 times as much thp_collapse_alloc as NUMA=y run. This problem actually makes things worse due to the way more pointless THP allocations and makes the optimization pointless. This could be fixed by carrying the huge page across scans, but it will complicate the code further and the huge page may be carried indefinitely. But if we take one step back, the optimization itself seems not worth keeping nowadays since: * Not too many users build NUMA=n kernel nowadays even though the kernel is actually running on a non-NUMA machine. Some small devices may run NUMA=n kernel, but I don't think they actually use THP. * Since commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists"), THP could be cached by pcp. This actually somehow does the job done by the optimization. Link: https://lkml.kernel.org/r/20220706235936.2197195-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-3-zokeefe@google.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Zach O'Keefe <zokeefe@google.com> Co-developed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:20 -07:00
if (progress >= pages)
break;
mm/khugepaged: propagate enum scan_result codes back to callers Propagate enum scan_result codes back through return values of functions downstream of khugepaged_scan_file() and khugepaged_scan_pmd() to inform callers if the operation was successful, and if not, why. Since khugepaged_scan_pmd()'s return value already has a specific meaning (whether mmap_lock was unlocked or not), add a bool* argument to khugepaged_scan_pmd() to retrieve this information. Change khugepaged to take action based on the return values of khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep within the collapsing functions themselves. hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more consistent with enum scan_result propagation. Remove dependency on error pointers to communicate to khugepaged that allocation failed and it should sleep; instead just use the result of the scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails). Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:23 -07:00
if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
mm: khugepaged: don't carry huge page to the next loop for !CONFIG_NUMA Patch series "mm: userspace hugepage collapse", v7. Introduction -------------------------------- This series provides a mechanism for userspace to induce a collapse of eligible ranges of memory into transparent hugepages in process context, thus permitting users to more tightly control their own hugepage utilization policy at their own expense. This idea was introduced by David Rientjes[5]. Interface -------------------------------- The proposed interface adds a new madvise(2) mode, MADV_COLLAPSE, and leverages the new process_madvise(2) call. process_madvise(2) Performs a synchronous collapse of the native pages mapped by the list of iovecs into transparent hugepages. This operation is independent of the system THP sysfs settings, but attempts to collapse VMAs marked VM_NOHUGEPAGE will still fail. THP allocation may enter direct reclaim and/or compaction. When a range spans multiple VMAs, the semantics of the collapse over of each VMA is independent from the others. Caller must have CAP_SYS_ADMIN if not acting on self. Return value follows existing process_madvise(2) conventions. A “success” indicates that all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already pmd-mapped THPs. madvise(2) Equivalent to process_madvise(2) on self, with 0 returned on “success”. Current Use-Cases -------------------------------- (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. Note that subsequent support for file-backed memory is required here. (2) malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[6]. A prior study of Google internal workloads during evaluation of Temeraire, a hugepage-aware enhancement to TCMalloc, showed that nearly 20% of all cpu cycles were spent in dTLB stalls, and that increasing hugepage coverage by even small amount can help with that[7]. (3) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Note that subsequent support for file/shmem-backed memory is required here. (4) HugeTLB high-granularity mapping allows HugeTLB a HugeTLB page to be mapped at different levels in the page tables[8]. As it's not "transparent" like THP, HugeTLB high-granularity mappings require an explicit user API. It is intended that MADV_COLLAPSE be co-opted for this use case[9]. Note that subsequent support for HugeTLB memory is required here. Future work -------------------------------- Only private anonymous memory is supported by this series. File and shmem memory support will be added later. One possible user of this functionality is a userspace agent that attempts to optimize THP utilization system-wide by allocating THPs based on, for example, task priority, task performance requirements, or heatmaps. For the latter, one idea that has already surfaced is using DAMON to identify hot regions, and driving THP collapse through a new DAMOS_COLLAPSE scheme[10]. This patch (of 17): The khugepaged has optimization to reduce huge page allocation calls for !CONFIG_NUMA by carrying the allocated but failed to collapse huge page to the next loop. CONFIG_NUMA doesn't do so since the next loop may try to collapse huge page from a different node, so it doesn't make too much sense to carry it. But when NUMA=n, the huge page is allocated by khugepaged_prealloc_page() before scanning the address space, so it means huge page may be allocated even though there is no suitable range for collapsing. Then the page would be just freed if khugepaged already made enough progress. This could make NUMA=n run have 5 times as much thp_collapse_alloc as NUMA=y run. This problem actually makes things worse due to the way more pointless THP allocations and makes the optimization pointless. This could be fixed by carrying the huge page across scans, but it will complicate the code further and the huge page may be carried indefinitely. But if we take one step back, the optimization itself seems not worth keeping nowadays since: * Not too many users build NUMA=n kernel nowadays even though the kernel is actually running on a non-NUMA machine. Some small devices may run NUMA=n kernel, but I don't think they actually use THP. * Since commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists"), THP could be cached by pcp. This actually somehow does the job done by the optimization. Link: https://lkml.kernel.org/r/20220706235936.2197195-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-3-zokeefe@google.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Zach O'Keefe <zokeefe@google.com> Co-developed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:20 -07:00
/*
* If fail to allocate the first time, try to sleep for
* a while. When hit again, cancel the scan.
*/
if (!wait)
break;
wait = false;
khugepaged_alloc_sleep();
}
}
}
static bool khugepaged_should_wakeup(void)
{
return kthread_should_stop() ||
time_after_eq(jiffies, khugepaged_sleep_expire);
}
static void khugepaged_wait_work(void)
{
if (khugepaged_has_work()) {
const unsigned long scan_sleep_jiffies =
msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
if (!scan_sleep_jiffies)
return;
khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
wait_event_freezable_timeout(khugepaged_wait,
khugepaged_should_wakeup(),
scan_sleep_jiffies);
return;
}
if (hugepage_flags_enabled())
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}
static int khugepaged(void *none)
{
struct khugepaged_mm_slot *mm_slot;
set_freezable();
set_user_nice(current, MAX_NICE);
while (!kthread_should_stop()) {
mm/khugepaged: add struct collapse_control Modularize hugepage collapse by introducing struct collapse_control. This structure serves to describe the properties of the requested collapse, as well as serve as a local scratch pad to use during the collapse itself. Start by moving global per-node khugepaged statistics into this new structure. Note that this structure is still statically allocated since CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a MAX_NUMNODES-sized array could cause -Wframe-large-than= errors. [zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR] Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/ [sfr@canb.auug.org.au: fix build] Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au [zokeefe@google.com: fix struct collapse_control load_node definition] Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:21 -07:00
khugepaged_do_scan(&khugepaged_collapse_control);
khugepaged_wait_work();
}
spin_lock(&khugepaged_mm_lock);
mm_slot = khugepaged_scan.mm_slot;
khugepaged_scan.mm_slot = NULL;
if (mm_slot)
collect_mm_slot(mm_slot);
spin_unlock(&khugepaged_mm_lock);
return 0;
}
static void set_recommended_min_free_kbytes(void)
{
struct zone *zone;
int nr_zones = 0;
unsigned long recommended_min;
if (!hugepage_flags_enabled()) {
calculate_min_free_kbytes();
goto update_wmarks;
}
mm/thp: don't count ZONE_MOVABLE as the target for freepage reserving There was a regression report for "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE" [1] and I think that it is related to this problem. CMA patchset makes the system use one more zone (ZONE_MOVABLE) and then increases min_free_kbytes. It reduces usable memory and it could cause regression. ZONE_MOVABLE only has movable pages so we don't need to keep enough freepages to avoid or deal with fragmentation. So, don't count it. This changes min_free_kbytes and thus min_watermark greatly if ZONE_MOVABLE is used. It will make the user uses more memory. System: 22GB ram, fakenuma, 2 nodes. 5 zones are used. Before: min_free_kbytes: 112640 zone_info (min_watermark): Node 0, zone DMA min 19 Node 0, zone DMA32 min 3778 Node 0, zone Normal min 10191 Node 0, zone Movable min 0 Node 0, zone Device min 0 Node 1, zone DMA min 0 Node 1, zone DMA32 min 0 Node 1, zone Normal min 14043 Node 1, zone Movable min 127 Node 1, zone Device min 0 After: min_free_kbytes: 90112 zone_info (min_watermark): Node 0, zone DMA min 15 Node 0, zone DMA32 min 3022 Node 0, zone Normal min 8152 Node 0, zone Movable min 0 Node 0, zone Device min 0 Node 1, zone DMA min 0 Node 1, zone DMA32 min 0 Node 1, zone Normal min 11234 Node 1, zone Movable min 102 Node 1, zone Device min 0 [1] (lkml.kernel.org/r/20180102063528.GG30397%20()%20yexl-desktop) Link: http://lkml.kernel.org/r/1522913236-15776-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 16:30:27 -07:00
for_each_populated_zone(zone) {
/*
* We don't need to worry about fragmentation of
* ZONE_MOVABLE since it only has movable pages.
*/
if (zone_idx(zone) > gfp_zone(GFP_USER))
continue;
nr_zones++;
mm/thp: don't count ZONE_MOVABLE as the target for freepage reserving There was a regression report for "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE" [1] and I think that it is related to this problem. CMA patchset makes the system use one more zone (ZONE_MOVABLE) and then increases min_free_kbytes. It reduces usable memory and it could cause regression. ZONE_MOVABLE only has movable pages so we don't need to keep enough freepages to avoid or deal with fragmentation. So, don't count it. This changes min_free_kbytes and thus min_watermark greatly if ZONE_MOVABLE is used. It will make the user uses more memory. System: 22GB ram, fakenuma, 2 nodes. 5 zones are used. Before: min_free_kbytes: 112640 zone_info (min_watermark): Node 0, zone DMA min 19 Node 0, zone DMA32 min 3778 Node 0, zone Normal min 10191 Node 0, zone Movable min 0 Node 0, zone Device min 0 Node 1, zone DMA min 0 Node 1, zone DMA32 min 0 Node 1, zone Normal min 14043 Node 1, zone Movable min 127 Node 1, zone Device min 0 After: min_free_kbytes: 90112 zone_info (min_watermark): Node 0, zone DMA min 15 Node 0, zone DMA32 min 3022 Node 0, zone Normal min 8152 Node 0, zone Movable min 0 Node 0, zone Device min 0 Node 1, zone DMA min 0 Node 1, zone DMA32 min 0 Node 1, zone Normal min 11234 Node 1, zone Movable min 102 Node 1, zone Device min 0 [1] (lkml.kernel.org/r/20180102063528.GG30397%20()%20yexl-desktop) Link: http://lkml.kernel.org/r/1522913236-15776-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 16:30:27 -07:00
}
/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
recommended_min = pageblock_nr_pages * nr_zones * 2;
/*
* Make sure that on average at least two pageblocks are almost free
* of another type, one for a migratetype to fall back to and a
* second to avoid subsequent fallbacks of other types There are 3
* MIGRATE_TYPES we care about.
*/
recommended_min += pageblock_nr_pages * nr_zones *
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
/* don't ever allow to reserve more than 5% of the lowmem */
recommended_min = min(recommended_min,
(unsigned long) nr_free_buffer_pages() / 20);
recommended_min <<= (PAGE_SHIFT-10);
if (recommended_min > min_free_kbytes) {
if (user_min_free_kbytes >= 0)
pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
min_free_kbytes, recommended_min);
min_free_kbytes = recommended_min;
}
update_wmarks:
setup_per_zone_wmarks();
}
int start_stop_khugepaged(void)
{
int err = 0;
mutex_lock(&khugepaged_mutex);
if (hugepage_flags_enabled()) {
if (!khugepaged_thread)
khugepaged_thread = kthread_run(khugepaged, NULL,
"khugepaged");
if (IS_ERR(khugepaged_thread)) {
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
err = PTR_ERR(khugepaged_thread);
khugepaged_thread = NULL;
goto fail;
}
if (!list_empty(&khugepaged_scan.mm_head))
wake_up_interruptible(&khugepaged_wait);
} else if (khugepaged_thread) {
kthread_stop(khugepaged_thread);
khugepaged_thread = NULL;
}
set_recommended_min_free_kbytes();
fail:
mutex_unlock(&khugepaged_mutex);
return err;
}
void khugepaged_min_free_kbytes_update(void)
{
mutex_lock(&khugepaged_mutex);
if (hugepage_flags_enabled() && khugepaged_thread)
set_recommended_min_free_kbytes();
mutex_unlock(&khugepaged_mutex);
}
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
bool current_is_khugepaged(void)
{
return kthread_func(current) == khugepaged;
}
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
static int madvise_collapse_errno(enum scan_result r)
{
/*
* MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
* actionable feedback to caller, so they may take an appropriate
* fallback measure depending on the nature of the failure.
*/
switch (r) {
case SCAN_ALLOC_HUGE_PAGE_FAIL:
return -ENOMEM;
case SCAN_CGROUP_CHARGE_FAIL:
mm/khugepaged: skip shmem with userfaultfd Make sure that collapse_file respects any userfaultfds registered with MODE_MISSING. If userspace has any such userfaultfds registered, then for any page which it knows to be missing, it may expect a UFFD_EVENT_PAGEFAULT. This means collapse_file needs to be careful when collapsing a shmem range would result in replacing an empty page with a THP, to avoid breaking userfaultfd. Synchronization when checking for userfaultfds in collapse_file is tricky because the mmap locks can't be used to prevent races with the registration of new userfaultfds. Instead, we provide synchronization by ensuring that userspace cannot observe the fact that pages are missing before we check for userfaultfds. Although this allows registration of a userfaultfd to race with collapse_file, it ensures that userspace cannot observe any pages transition from missing to present after such a race occurs. This makes such a race indistinguishable to the collapse occurring immediately before the userfaultfd registration. The first step to provide this synchronization is to stop filling gaps during the loop iterating over the target range, since the page cache lock can be dropped during that loop. The second step is to fill the gaps with XA_RETRY_ENTRY after the page cache lock is acquired the final time, to avoid races with accesses to the page cache that only take the RCU read lock. The fact that we don't fill holes during the initial iteration means that collapse_file now has to handle faults occurring during the collapse. This is done by re-validating the number of missing pages after acquiring the page cache lock for the final time. This fix is targeted at khugepaged, but the change also applies to MADV_COLLAPSE. MADV_COLLAPSE on a range with a userfaultfd will now return EBUSY if there are any missing pages (instead of succeeding on shmem and returning EINVAL on anonymous memory). There is also now a window during MADV_COLLAPSE where a fault on a missing page will cause the syscall to fail with EAGAIN. The fact that intermediate page cache state can no longer be observed before the rollback of a failed collapse is also technically a userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is exceedingly unlikely that anything relies on being able to observe that transient state. Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com Signed-off-by: David Stevens <stevensd@chromium.org> Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:16 +09:00
case SCAN_EXCEED_NONE_PTE:
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
return -EBUSY;
/* Resource temporary unavailable - trying again might succeed */
case SCAN_PAGE_COUNT:
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
case SCAN_PAGE_LOCK:
case SCAN_PAGE_LRU:
mm/madvise: MADV_COLLAPSE return EAGAIN when page cannot be isolated MADV_COLLAPSE is a best-effort request that attempts to set an actionable errno value if the request cannot be fulfilled at the time. EAGAIN should be used to communicate that a resource was temporarily unavailable, but that the user may try again immediately. SCAN_DEL_PAGE_LRU is an internal result code used when a page cannot be isolated from it's LRU list. Since this, like SCAN_PAGE_LRU, is likely a transitory state, make MADV_COLLAPSE return EAGAIN so that users know they may reattempt the operation. Another important scenario to consider is race with khugepaged. khugepaged might isolate a page while MADV_COLLAPSE is interested in it. Even though racing with khugepaged might mean that the memory has already been collapsed, signalling an errno that is non-intrinsic to that memory or arguments provided to madvise(2) lets the user know that future attempts might (and in this case likely would) succeed, and avoids false-negative assumptions by the user. Link: https://lkml.kernel.org/r/20220922184651.1016461-1-zokeefe@google.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 11:46:50 -07:00
case SCAN_DEL_PAGE_LRU:
mm/khugepaged: skip shmem with userfaultfd Make sure that collapse_file respects any userfaultfds registered with MODE_MISSING. If userspace has any such userfaultfds registered, then for any page which it knows to be missing, it may expect a UFFD_EVENT_PAGEFAULT. This means collapse_file needs to be careful when collapsing a shmem range would result in replacing an empty page with a THP, to avoid breaking userfaultfd. Synchronization when checking for userfaultfds in collapse_file is tricky because the mmap locks can't be used to prevent races with the registration of new userfaultfds. Instead, we provide synchronization by ensuring that userspace cannot observe the fact that pages are missing before we check for userfaultfds. Although this allows registration of a userfaultfd to race with collapse_file, it ensures that userspace cannot observe any pages transition from missing to present after such a race occurs. This makes such a race indistinguishable to the collapse occurring immediately before the userfaultfd registration. The first step to provide this synchronization is to stop filling gaps during the loop iterating over the target range, since the page cache lock can be dropped during that loop. The second step is to fill the gaps with XA_RETRY_ENTRY after the page cache lock is acquired the final time, to avoid races with accesses to the page cache that only take the RCU read lock. The fact that we don't fill holes during the initial iteration means that collapse_file now has to handle faults occurring during the collapse. This is done by re-validating the number of missing pages after acquiring the page cache lock for the final time. This fix is targeted at khugepaged, but the change also applies to MADV_COLLAPSE. MADV_COLLAPSE on a range with a userfaultfd will now return EBUSY if there are any missing pages (instead of succeeding on shmem and returning EINVAL on anonymous memory). There is also now a window during MADV_COLLAPSE where a fault on a missing page will cause the syscall to fail with EAGAIN. The fact that intermediate page cache state can no longer be observed before the rollback of a failed collapse is also technically a userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is exceedingly unlikely that anything relies on being able to observe that transient state. Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com Signed-off-by: David Stevens <stevensd@chromium.org> Acked-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 21:01:16 +09:00
case SCAN_PAGE_FILLED:
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
return -EAGAIN;
/*
* Other: Trying again likely not to succeed / error intrinsic to
* specified memory range. khugepaged likely won't be able to collapse
* either.
*/
default:
return -EINVAL;
}
}
int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
struct collapse_control *cc;
struct mm_struct *mm = vma->vm_mm;
unsigned long hstart, hend, addr;
int thps = 0, last_fail = SCAN_FAIL;
bool mmap_locked = true;
BUG_ON(vma->vm_start > start);
BUG_ON(vma->vm_end < end);
*prev = vma;
mm: thp: introduce multi-size THP sysfs interface In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-07 16:12:04 +00:00
if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
PMD_ORDER))
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
return -EINVAL;
cc = kmalloc(sizeof(*cc), GFP_KERNEL);
if (!cc)
return -ENOMEM;
cc->is_khugepaged = false;
mmgrab(mm);
lru_add_drain_all();
hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = end & HPAGE_PMD_MASK;
for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
int result = SCAN_FAIL;
if (!mmap_locked) {
cond_resched();
mmap_read_lock(mm);
mmap_locked = true;
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = hugepage_vma_revalidate(mm, addr, false, &vma,
cc);
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
if (result != SCAN_SUCCEED) {
last_fail = result;
goto out_nolock;
}
mm: MADV_COLLAPSE: refetch vm_end after reacquiring mmap_lock The syzbot reported the below problem: BUG: Bad page map in process syz-executor198 pte:8000000071c00227 pmd:74b30067 addr:0000000020563000 vm_flags:08100077 anon_vma:ffff8880547d2200 mapping:0000000000000000 index:20563 file:(null) fault:0x0 mmap:0x0 read_folio:0x0 CPU: 1 PID: 3614 Comm: syz-executor198 Not tainted 6.0.0-rc3-next-20220901-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_bad_pte.cold+0x2a7/0x2d0 mm/memory.c:565 vm_normal_page+0x10c/0x2a0 mm/memory.c:636 hpage_collapse_scan_pmd+0x729/0x1da0 mm/khugepaged.c:1199 madvise_collapse+0x481/0x910 mm/khugepaged.c:2433 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1062 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1236 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1415 do_madvise mm/madvise.c:1428 [inline] __do_sys_madvise mm/madvise.c:1428 [inline] __se_sys_madvise mm/madvise.c:1426 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1426 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f770ba87929 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 11 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f770ba18308 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f770bb0f3f8 RCX: 00007f770ba87929 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f770bb0f3f0 R08: 00007f770ba18700 R09: 0000000000000000 R10: 00007f770ba18700 R11: 0000000000000246 R12: 00007f770bb0f3fc R13: 00007ffc2d8b62ef R14: 00007f770ba18400 R15: 0000000000022000 Basically the test program does the below conceptually: 1. mmap 0x2000000 - 0x21000000 as anonymous region 2. mmap io_uring SQ stuff at 0x20563000 with MAP_FIXED, io_uring_mmap() actually remaps the pages with special PTEs 3. call MADV_COLLAPSE for 0x20000000 - 0x21000000 It actually triggered the below race: CPU A CPU B mmap 0x20000000 - 0x21000000 as anon madvise_collapse is called on this area Retrieve start and end address from the vma (NEVER updated later!) Collapsed the first 2M area and dropped mmap_lock Acquire mmap_lock mmap io_uring file at 0x20563000 Release mmap_lock Reacquire mmap_lock revalidate vma pass since 0x20200000 + 0x200000 > 0x20563000 scan the next 2M (0x20200000 - 0x20400000), but due to whatever reason it didn't release mmap_lock scan the 3rd 2M area (start from 0x20400000) get into the vma created by io_uring The hend should be updated after MADV_COLLAPSE reacquire mmap_lock since the vma may be shrunk. We don't have to worry about shink from the other direction since it could be caught by hugepage_vma_revalidate(). Either no valid vma is found or the vma doesn't fit anymore. Link: https://lkml.kernel.org/r/20220914162220.787703-1-shy828301@gmail.com Fixes: 7d8faaf155454f8 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Reported-by: syzbot+915f3e317adb0e85835f@syzkaller.appspotmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-14 09:22:20 -07:00
mm/MADV_COLLAPSE: don't expand collapse when vm_end is past requested end MADV_COLLAPSE acts on one hugepage-aligned/sized region at a time, until it has collapsed all eligible memory contained within the bounds supplied by the user. At the top of each hugepage iteration we (re)lock mmap_lock and (re)validate the VMA for eligibility and update variables that might have changed while mmap_lock was dropped. One thing that might occur is that the VMA could be resized, and as such, we refetch vma->vm_end to make sure we don't collapse past the end of the VMA's new end. However, it's possible that when refetching vma->vm_end that we expand the region acted on by MADV_COLLAPSE if vma->vm_end is greater than size+len supplied by the user. The consequence here is that we may attempt to collapse more memory than requested, possibly yielding either "too much success" or "false failure" user-visible results. An example of the former is if we MADV_COLLAPSE the first 4MiB of a 2TiB mmap()'d file, the incorrect refetch would cause the operation to block for much longer than anticipated as we attempt to collapse the entire TiB region. An example of the latter is that applying MADV_COLLPSE to a 4MiB file mapped to the start of a 6MiB VMA will successfully collapse the first 4MiB, then incorrectly attempt to collapse the last hugepage-aligned/sized region -- fail (since readahead/page cache lookup will fail) -- and report a failure to the user. I don't believe there is a kernel stability concern here as we always (re)validate the VMA / region accordingly. Also as Hugh mentions, the user-visible effects are: we try to collapse more memory than requested by the user, and/or failing an operation that should have otherwise succeeded. An example is trying to collapse a 4MiB file contained within a 12MiB VMA. Don't expand the acted-on region when refetching vma->vm_end. Link: https://lkml.kernel.org/r/20221224082035.3197140-1-zokeefe@google.com Fixes: 4d24de9425f7 ("mm: MADV_COLLAPSE: refetch vm_end after reacquiring mmap_lock") Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reported-by: Hugh Dickins <hughd@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-24 00:20:34 -08:00
hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
}
mmap_assert_locked(mm);
memset(cc->node_load, 0, sizeof(cc->node_load));
mm: khugepaged: allow page allocation fallback to eligible nodes Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") to satisfy "numactl --interleave=all". But interleaving is a mere hint rather than something that has hard requirements. So use nodemask to record the nodes which have the same hit record, the hugepage allocation could fallback to those nodes. And remove __GFP_THISNODE since it does disallow fallback. And if the nodemask just has one node set, it means there is one single node has the most hit record, the nodemask approach actually behaves like __GFP_THISNODE. Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Yang Shi <shy828301@gmail.com> Suggested-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 10:43:56 -08:00
nodes_clear(cc->alloc_nmask);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
struct file *file = get_file(vma->vm_file);
pgoff_t pgoff = linear_page_index(vma, addr);
mmap_read_unlock(mm);
mmap_locked = false;
result = hpage_collapse_scan_file(mm, addr, file, pgoff,
cc);
fput(file);
} else {
result = hpage_collapse_scan_pmd(mm, vma, addr,
&mmap_locked, cc);
}
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
if (!mmap_locked)
*prev = NULL; /* Tell caller we dropped mmap_lock */
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
handle_result:
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
switch (result) {
case SCAN_SUCCEED:
case SCAN_PMD_MAPPED:
++thps;
break;
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
case SCAN_PTE_MAPPED_HUGEPAGE:
BUG_ON(mmap_locked);
BUG_ON(*prev);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
mmap_read_lock(mm);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
result = collapse_pte_mapped_thp(mm, addr, true);
mm/khugepaged: collapse_pte_mapped_thp() with mmap_read_lock() Bring collapse_and_free_pmd() back into collapse_pte_mapped_thp(). It does need mmap_read_lock(), but it does not need mmap_write_lock(), nor vma_start_write() nor i_mmap lock nor anon_vma lock. All racing paths are relying on pte_offset_map_lock() and pmd_lock(), so use those. Follow the pattern in retract_page_tables(); and using pte_free_defer() removes most of the need for tlb_remove_table_sync_one() here; but call pmdp_get_lockless_sync() to use it in the PAE case. First check the VMA, in case page tables are being torn down: from JannH. Confirm the preliminary find_pmd_or_thp_or_none() once page lock has been acquired and the page looks suitable: from then on its state is stable. However, collapse_pte_mapped_thp() was doing something others don't: freeing a page table still containing "valid" entries. i_mmap lock did stop a racing truncate from double-freeing those pages, but we prefer collapse_pte_mapped_thp() to clear the entries as usual. Their TLB flush can wait until the pmdp_collapse_flush() which follows, but the mmu_notifier_invalidate_range_start() has to be done earlier. Do the "step 1" checking loop without mmu_notifier: it wouldn't be good for khugepaged to keep on repeatedly invalidating a range which is then found unsuitable e.g. contains COWs. "step 2", which does the clearing, must then be more careful (after dropping ptl to do mmu_notifier), with abort prepared to correct the accounting like "step 3". But with those entries now cleared, "step 4" (after dropping ptl to do pmd_lock) is kept safe by the huge page lock, which stops new PTEs from being faulted in. [hughd@google.com: don't set mmap_locked = true in madvise_collapse()] Link: https://lkml.kernel.org/r/d3d9ff14-ef8-8f84-e160-bfa1f5794275@google.com [hughd@google.com: use ptep_clear() instead of pte_clear()] Link: https://lkml.kernel.org/r/e0197433-8a47-6a65-534d-eda26eeb78b0@google.com Link: https://lkml.kernel.org/r/b53be6a4-7715-51f9-aad-f1347dcb7c4@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Russell King <linux@armlinux.org.uk> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-11 21:42:19 -07:00
mmap_read_unlock(mm);
mm/madvise: add file and shmem support to MADV_COLLAPSE Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 15:40:39 -07:00
goto handle_result;
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
/* Whitelisted set of results where continuing OK */
case SCAN_PMD_NULL:
case SCAN_PTE_NON_PRESENT:
case SCAN_PTE_UFFD_WP:
case SCAN_PAGE_RO:
case SCAN_LACK_REFERENCED_PAGE:
case SCAN_PAGE_NULL:
case SCAN_PAGE_COUNT:
case SCAN_PAGE_LOCK:
case SCAN_PAGE_COMPOUND:
case SCAN_PAGE_LRU:
mm/madvise: MADV_COLLAPSE return EAGAIN when page cannot be isolated MADV_COLLAPSE is a best-effort request that attempts to set an actionable errno value if the request cannot be fulfilled at the time. EAGAIN should be used to communicate that a resource was temporarily unavailable, but that the user may try again immediately. SCAN_DEL_PAGE_LRU is an internal result code used when a page cannot be isolated from it's LRU list. Since this, like SCAN_PAGE_LRU, is likely a transitory state, make MADV_COLLAPSE return EAGAIN so that users know they may reattempt the operation. Another important scenario to consider is race with khugepaged. khugepaged might isolate a page while MADV_COLLAPSE is interested in it. Even though racing with khugepaged might mean that the memory has already been collapsed, signalling an errno that is non-intrinsic to that memory or arguments provided to madvise(2) lets the user know that future attempts might (and in this case likely would) succeed, and avoids false-negative assumptions by the user. Link: https://lkml.kernel.org/r/20220922184651.1016461-1-zokeefe@google.com Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse") Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-22 11:46:50 -07:00
case SCAN_DEL_PAGE_LRU:
mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse This idea was introduced by David Rientjes[1]. Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request a synchronous collapse of memory at their own expense. The benefits of this approach are: * CPU is charged to the process that wants to spend the cycles for the THP * Avoid unpredictable timing of khugepaged collapse Semantics This call is independent of the system-wide THP sysfs settings, but will fail for memory marked VM_NOHUGEPAGE. If the ranges provided span multiple VMAs, the semantics of the collapse over each VMA is independent from the others. This implies a hugepage cannot cross a VMA boundary. If collapse of a given hugepage-aligned/sized region fails, the operation may continue to attempt collapsing the remainder of memory specified. The memory ranges provided must be page-aligned, but are not required to be hugepage-aligned. If the memory ranges are not hugepage-aligned, the start/end of the range will be clamped to the first/last hugepage-aligned address covered by said range. The memory ranges must span at least one hugepage-sized region. All non-resident pages covered by the range will first be swapped/faulted-in, before being internally copied onto a freshly allocated hugepage. Unmapped pages will have their data directly initialized to 0 in the new hugepage. However, for every eligible hugepage aligned/sized region to-be collapsed, at least one page must currently be backed by memory (a PMD covering the address range must already exist). Allocation for the new hugepage may enter direct reclaim and/or compaction, regardless of VMA flags. When the system has multiple NUMA nodes, the hugepage will be allocated from the node providing the most native pages. This operation operates on the current state of the specified process and makes no persistent changes or guarantees on how pages will be mapped, constructed, or faulted in the future Return Value If all hugepage-sized/aligned regions covered by the provided range were either successfully collapsed, or were already PMD-mapped THPs, this operation will be deemed successful. On success, process_madvise(2) returns the number of bytes advised, and madvise(2) returns 0. Else, -1 is returned and errno is set to indicate the error for the most-recently attempted hugepage collapse. Note that many failures might have occurred, since the operation may continue to collapse in the event a single hugepage-sized/aligned region fails. ENOMEM Memory allocation failed or VMA not found EBUSY Memcg charging failed EAGAIN Required resource temporarily unavailable. Try again might succeed. EINVAL Other error: No PMD found, subpage doesn't have Present bit set, "Special" page no backed by struct page, VMA incorrectly sized, address not page-aligned, ... Most notable here is ENOMEM and EBUSY (new to madvise) which are intended to provide the caller with actionable feedback so they may take an appropriate fallback measure. Use Cases An immediate user of this new functionality are malloc() implementations that manage memory in hugepage-sized chunks, but sometimes subrelease memory back to the system in native-sized chunks via MADV_DONTNEED; zapping the pmd. Later, when the memory is hot, the implementation could madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage coverage and dTLB performance. TCMalloc is such an implementation that could benefit from this[2]. Only privately-mapped anon memory is supported for now, but additional support for file, shmem, and HugeTLB high-granularity mappings[2] is expected. File and tmpfs/shmem support would permit: * Backing executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. With MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance and lower RAM footprints. * Backing guest memory by hugapages after the memory contents have been migrated in native-page-sized chunks to a new host, in a userfaultfd-based live-migration stack. [1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/ [2] https://github.com/google/tcmalloc/tree/master/tcmalloc [jrdr.linux@gmail.com: avoid possible memory leak in failure path] Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com [zokeefe@google.com add missing kfree() to madvise_collapse()] Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/ Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com [zokeefe@google.com: delay computation of hpage boundaries until use]] Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-06 16:59:27 -07:00
last_fail = result;
break;
default:
last_fail = result;
/* Other error, exit */
goto out_maybelock;
}
}
out_maybelock:
/* Caller expects us to hold mmap_lock on return */
if (!mmap_locked)
mmap_read_lock(mm);
out_nolock:
mmap_assert_locked(mm);
mmdrop(mm);
kfree(cc);
return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
: madvise_collapse_errno(last_fail);
}