PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/*
* Intel Running Average Power Limit ( RAPL ) Driver
* Copyright ( c ) 2013 , Intel Corporation .
*
* This program is free software ; you can redistribute it and / or modify it
* under the terms and conditions of the GNU General Public License ,
* version 2 , as published by the Free Software Foundation .
*
* This program is distributed in the hope it will be useful , but WITHOUT
* ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License for
* more details .
*
* You should have received a copy of the GNU General Public License along with
* this program ; if not , write to the Free Software Foundation , Inc .
*
*/
# define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/list.h>
# include <linux/types.h>
# include <linux/device.h>
# include <linux/slab.h>
# include <linux/log2.h>
# include <linux/bitmap.h>
# include <linux/delay.h>
# include <linux/sysfs.h>
# include <linux/cpu.h>
# include <linux/powercap.h>
2018-01-10 08:38:23 +08:00
# include <linux/suspend.h>
2014-11-07 09:29:26 -08:00
# include <asm/iosf_mbi.h>
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
# include <asm/processor.h>
# include <asm/cpu_device_id.h>
2016-06-02 17:19:36 -07:00
# include <asm/intel-family.h>
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2016-04-17 15:03:01 -07:00
/* Local defines */
# define MSR_PLATFORM_POWER_LIMIT 0x0000065C
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* bitmasks for RAPL MSRs, used by primitive access functions */
# define ENERGY_STATUS_MASK 0xffffffff
# define POWER_LIMIT1_MASK 0x7FFF
# define POWER_LIMIT1_ENABLE BIT(15)
# define POWER_LIMIT1_CLAMP BIT(16)
# define POWER_LIMIT2_MASK (0x7FFFULL<<32)
# define POWER_LIMIT2_ENABLE BIT_ULL(47)
# define POWER_LIMIT2_CLAMP BIT_ULL(48)
# define POWER_PACKAGE_LOCK BIT_ULL(63)
# define POWER_PP_LOCK BIT(31)
# define TIME_WINDOW1_MASK (0x7FULL<<17)
# define TIME_WINDOW2_MASK (0x7FULL<<49)
# define POWER_UNIT_OFFSET 0
# define POWER_UNIT_MASK 0x0F
# define ENERGY_UNIT_OFFSET 0x08
# define ENERGY_UNIT_MASK 0x1F00
# define TIME_UNIT_OFFSET 0x10
# define TIME_UNIT_MASK 0xF0000
# define POWER_INFO_MAX_MASK (0x7fffULL<<32)
# define POWER_INFO_MIN_MASK (0x7fffULL<<16)
# define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
# define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
# define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
# define PP_POLICY_MASK 0x1F
/* Non HW constants */
# define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
# define RAPL_PRIMITIVE_DUMMY BIT(2)
# define TIME_WINDOW_MAX_MSEC 40000
# define TIME_WINDOW_MIN_MSEC 250
2015-03-13 03:48:56 -07:00
# define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
enum unit_type {
ARBITRARY_UNIT , /* no translation */
POWER_UNIT ,
ENERGY_UNIT ,
TIME_UNIT ,
} ;
enum rapl_domain_type {
RAPL_DOMAIN_PACKAGE , /* entire package/socket */
RAPL_DOMAIN_PP0 , /* core power plane */
RAPL_DOMAIN_PP1 , /* graphics uncore */
RAPL_DOMAIN_DRAM , /* DRAM control_type */
2016-04-17 15:03:01 -07:00
RAPL_DOMAIN_PLATFORM , /* PSys control_type */
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
RAPL_DOMAIN_MAX ,
} ;
enum rapl_domain_msr_id {
RAPL_DOMAIN_MSR_LIMIT ,
RAPL_DOMAIN_MSR_STATUS ,
RAPL_DOMAIN_MSR_PERF ,
RAPL_DOMAIN_MSR_POLICY ,
RAPL_DOMAIN_MSR_INFO ,
RAPL_DOMAIN_MSR_MAX ,
} ;
/* per domain data, some are optional */
enum rapl_primitives {
ENERGY_COUNTER ,
POWER_LIMIT1 ,
POWER_LIMIT2 ,
FW_LOCK ,
PL1_ENABLE , /* power limit 1, aka long term */
PL1_CLAMP , /* allow frequency to go below OS request */
PL2_ENABLE , /* power limit 2, aka short term, instantaneous */
PL2_CLAMP ,
TIME_WINDOW1 , /* long term */
TIME_WINDOW2 , /* short term */
THERMAL_SPEC_POWER ,
MAX_POWER ,
MIN_POWER ,
MAX_TIME_WINDOW ,
THROTTLED_TIME ,
PRIORITY_LEVEL ,
/* below are not raw primitive data */
AVERAGE_POWER ,
NR_RAPL_PRIMITIVES ,
} ;
# define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
/* Can be expanded to include events, etc.*/
struct rapl_domain_data {
u64 primitives [ NR_RAPL_PRIMITIVES ] ;
unsigned long timestamp ;
} ;
2016-02-24 13:31:36 -08:00
struct msrl_action {
u32 msr_no ;
u64 clear_mask ;
u64 set_mask ;
int err ;
} ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
# define DOMAIN_STATE_INACTIVE BIT(0)
# define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
# define DOMAIN_STATE_BIOS_LOCKED BIT(2)
# define NR_POWER_LIMITS (2)
struct rapl_power_limit {
struct powercap_zone_constraint * constraint ;
int prim_id ; /* primitive ID used to enable */
struct rapl_domain * domain ;
const char * name ;
2018-01-10 08:38:23 +08:00
u64 last_power_limit ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
} ;
static const char pl1_name [ ] = " long_term " ;
static const char pl2_name [ ] = " short_term " ;
2016-02-24 13:31:37 -08:00
struct rapl_package ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
struct rapl_domain {
const char * name ;
enum rapl_domain_type id ;
int msrs [ RAPL_DOMAIN_MSR_MAX ] ;
struct powercap_zone power_zone ;
struct rapl_domain_data rdd ;
struct rapl_power_limit rpl [ NR_POWER_LIMITS ] ;
u64 attr_map ; /* track capabilities */
unsigned int state ;
2015-03-13 03:48:56 -07:00
unsigned int domain_energy_unit ;
2016-02-24 13:31:37 -08:00
struct rapl_package * rp ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
} ;
# define power_zone_to_rapl_domain(_zone) \
container_of ( _zone , struct rapl_domain , power_zone )
/* Each physical package contains multiple domains, these are the common
* data across RAPL domains within a package .
*/
struct rapl_package {
unsigned int id ; /* physical package/socket id */
unsigned int nr_domains ;
unsigned long domain_map ; /* bit map of active domains */
2014-11-07 09:29:26 -08:00
unsigned int power_unit ;
unsigned int energy_unit ;
unsigned int time_unit ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
struct rapl_domain * domains ; /* array of domains, sized at runtime */
struct powercap_zone * power_zone ; /* keep track of parent zone */
unsigned long power_limit_irq ; /* keep track of package power limit
* notify interrupt enable status .
*/
struct list_head plist ;
2016-02-24 13:31:38 -08:00
int lead_cpu ; /* one active cpu per package for access */
2016-11-22 21:16:05 +00:00
/* Track active cpus */
struct cpumask cpumask ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
} ;
2014-11-07 09:29:25 -08:00
struct rapl_defaults {
2015-04-30 01:43:23 +05:30
u8 floor_freq_reg_addr ;
2014-11-07 09:29:25 -08:00
int ( * check_unit ) ( struct rapl_package * rp , int cpu ) ;
void ( * set_floor_freq ) ( struct rapl_domain * rd , bool mode ) ;
u64 ( * compute_time_window ) ( struct rapl_package * rp , u64 val ,
bool to_raw ) ;
2015-03-13 03:48:56 -07:00
unsigned int dram_domain_energy_unit ;
2014-11-07 09:29:25 -08:00
} ;
static struct rapl_defaults * rapl_defaults ;
2014-11-07 09:29:26 -08:00
/* Sideband MBI registers */
2015-04-30 01:43:23 +05:30
# define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
# define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
2014-11-07 09:29:26 -08:00
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
# define PACKAGE_PLN_INT_SAVED BIT(0)
# define MAX_PRIM_NAME (32)
/* per domain data. used to describe individual knobs such that access function
* can be consolidated into one instead of many inline functions .
*/
struct rapl_primitive_info {
const char * name ;
u64 mask ;
int shift ;
enum rapl_domain_msr_id id ;
enum unit_type unit ;
u32 flag ;
} ;
# define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
. name = # p , \
. mask = m , \
. shift = s , \
. id = i , \
. unit = u , \
. flag = f \
}
static void rapl_init_domains ( struct rapl_package * rp ) ;
static int rapl_read_data_raw ( struct rapl_domain * rd ,
enum rapl_primitives prim ,
bool xlate , u64 * data ) ;
static int rapl_write_data_raw ( struct rapl_domain * rd ,
enum rapl_primitives prim ,
unsigned long long value ) ;
2016-02-24 13:31:37 -08:00
static u64 rapl_unit_xlate ( struct rapl_domain * rd ,
2015-03-13 03:48:56 -07:00
enum unit_type type , u64 value ,
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
int to_raw ) ;
2016-02-24 13:31:37 -08:00
static void package_power_limit_irq_save ( struct rapl_package * rp ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
static LIST_HEAD ( rapl_packages ) ; /* guarded by CPU hotplug lock */
static const char * const rapl_domain_names [ ] = {
" package " ,
" core " ,
" uncore " ,
" dram " ,
2016-04-17 15:03:01 -07:00
" psys " ,
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
} ;
static struct powercap_control_type * control_type ; /* PowerCap Controller */
2016-04-17 15:03:01 -07:00
static struct rapl_domain * platform_rapl_domain ; /* Platform (PSys) domain */
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* caller to ensure CPU hotplug lock is held */
static struct rapl_package * find_package_by_id ( int id )
{
struct rapl_package * rp ;
list_for_each_entry ( rp , & rapl_packages , plist ) {
if ( rp - > id = = id )
return rp ;
}
return NULL ;
}
static int get_energy_counter ( struct powercap_zone * power_zone , u64 * energy_raw )
{
struct rapl_domain * rd ;
u64 energy_now ;
/* prevent CPU hotplug, make sure the RAPL domain does not go
* away while reading the counter .
*/
get_online_cpus ( ) ;
rd = power_zone_to_rapl_domain ( power_zone ) ;
if ( ! rapl_read_data_raw ( rd , ENERGY_COUNTER , true , & energy_now ) ) {
* energy_raw = energy_now ;
put_online_cpus ( ) ;
return 0 ;
}
put_online_cpus ( ) ;
return - EIO ;
}
static int get_max_energy_counter ( struct powercap_zone * pcd_dev , u64 * energy )
{
2015-03-13 03:48:56 -07:00
struct rapl_domain * rd = power_zone_to_rapl_domain ( pcd_dev ) ;
2016-02-24 13:31:37 -08:00
* energy = rapl_unit_xlate ( rd , ENERGY_UNIT , ENERGY_STATUS_MASK , 0 ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
return 0 ;
}
static int release_zone ( struct powercap_zone * power_zone )
{
struct rapl_domain * rd = power_zone_to_rapl_domain ( power_zone ) ;
2016-02-24 13:31:37 -08:00
struct rapl_package * rp = rd - > rp ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* package zone is the last zone of a package, we can free
* memory here since all children has been unregistered .
*/
if ( rd - > id = = RAPL_DOMAIN_PACKAGE ) {
kfree ( rd ) ;
rp - > domains = NULL ;
}
return 0 ;
}
static int find_nr_power_limit ( struct rapl_domain * rd )
{
2016-05-31 13:41:29 -07:00
int i , nr_pl = 0 ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
for ( i = 0 ; i < NR_POWER_LIMITS ; i + + ) {
2016-05-31 13:41:29 -07:00
if ( rd - > rpl [ i ] . name )
nr_pl + + ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
2016-05-31 13:41:29 -07:00
return nr_pl ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
static int set_domain_enable ( struct powercap_zone * power_zone , bool mode )
{
struct rapl_domain * rd = power_zone_to_rapl_domain ( power_zone ) ;
if ( rd - > state & DOMAIN_STATE_BIOS_LOCKED )
return - EACCES ;
2014-11-07 09:29:26 -08:00
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
get_online_cpus ( ) ;
rapl_write_data_raw ( rd , PL1_ENABLE , mode ) ;
2015-04-30 01:43:23 +05:30
if ( rapl_defaults - > set_floor_freq )
rapl_defaults - > set_floor_freq ( rd , mode ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
put_online_cpus ( ) ;
return 0 ;
}
static int get_domain_enable ( struct powercap_zone * power_zone , bool * mode )
{
struct rapl_domain * rd = power_zone_to_rapl_domain ( power_zone ) ;
u64 val ;
if ( rd - > state & DOMAIN_STATE_BIOS_LOCKED ) {
* mode = false ;
return 0 ;
}
get_online_cpus ( ) ;
if ( rapl_read_data_raw ( rd , PL1_ENABLE , true , & val ) ) {
put_online_cpus ( ) ;
return - EIO ;
}
* mode = val ;
put_online_cpus ( ) ;
return 0 ;
}
/* per RAPL domain ops, in the order of rapl_domain_type */
2015-12-23 22:59:55 +01:00
static const struct powercap_zone_ops zone_ops [ ] = {
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* RAPL_DOMAIN_PACKAGE */
{
. get_energy_uj = get_energy_counter ,
. get_max_energy_range_uj = get_max_energy_counter ,
. release = release_zone ,
. set_enable = set_domain_enable ,
. get_enable = get_domain_enable ,
} ,
/* RAPL_DOMAIN_PP0 */
{
. get_energy_uj = get_energy_counter ,
. get_max_energy_range_uj = get_max_energy_counter ,
. release = release_zone ,
. set_enable = set_domain_enable ,
. get_enable = get_domain_enable ,
} ,
/* RAPL_DOMAIN_PP1 */
{
. get_energy_uj = get_energy_counter ,
. get_max_energy_range_uj = get_max_energy_counter ,
. release = release_zone ,
. set_enable = set_domain_enable ,
. get_enable = get_domain_enable ,
} ,
/* RAPL_DOMAIN_DRAM */
{
. get_energy_uj = get_energy_counter ,
. get_max_energy_range_uj = get_max_energy_counter ,
. release = release_zone ,
. set_enable = set_domain_enable ,
. get_enable = get_domain_enable ,
} ,
2016-04-17 15:03:01 -07:00
/* RAPL_DOMAIN_PLATFORM */
{
. get_energy_uj = get_energy_counter ,
. get_max_energy_range_uj = get_max_energy_counter ,
. release = release_zone ,
. set_enable = set_domain_enable ,
. get_enable = get_domain_enable ,
} ,
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
} ;
2016-05-31 13:41:29 -07:00
/*
* Constraint index used by powercap can be different than power limit ( PL )
* index in that some PLs maybe missing due to non - existant MSRs . So we
* need to convert here by finding the valid PLs only ( name populated ) .
*/
static int contraint_to_pl ( struct rapl_domain * rd , int cid )
{
int i , j ;
for ( i = 0 , j = 0 ; i < NR_POWER_LIMITS ; i + + ) {
if ( ( rd - > rpl [ i ] . name ) & & j + + = = cid ) {
pr_debug ( " %s: index %d \n " , __func__ , i ) ;
return i ;
}
}
2016-11-28 13:53:11 -08:00
pr_err ( " Cannot find matching power limit for constraint %d \n " , cid ) ;
2016-05-31 13:41:29 -07:00
return - EINVAL ;
}
static int set_power_limit ( struct powercap_zone * power_zone , int cid ,
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
u64 power_limit )
{
struct rapl_domain * rd ;
struct rapl_package * rp ;
int ret = 0 ;
2016-05-31 13:41:29 -07:00
int id ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
get_online_cpus ( ) ;
rd = power_zone_to_rapl_domain ( power_zone ) ;
2016-05-31 13:41:29 -07:00
id = contraint_to_pl ( rd , cid ) ;
2016-11-28 13:53:11 -08:00
if ( id < 0 ) {
ret = id ;
goto set_exit ;
}
2016-05-31 13:41:29 -07:00
2016-02-24 13:31:37 -08:00
rp = rd - > rp ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
if ( rd - > state & DOMAIN_STATE_BIOS_LOCKED ) {
dev_warn ( & power_zone - > dev , " %s locked by BIOS, monitoring only \n " ,
rd - > name ) ;
ret = - EACCES ;
goto set_exit ;
}
switch ( rd - > rpl [ id ] . prim_id ) {
case PL1_ENABLE :
rapl_write_data_raw ( rd , POWER_LIMIT1 , power_limit ) ;
break ;
case PL2_ENABLE :
rapl_write_data_raw ( rd , POWER_LIMIT2 , power_limit ) ;
break ;
default :
ret = - EINVAL ;
}
if ( ! ret )
2016-02-24 13:31:37 -08:00
package_power_limit_irq_save ( rp ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
set_exit :
put_online_cpus ( ) ;
return ret ;
}
2016-05-31 13:41:29 -07:00
static int get_current_power_limit ( struct powercap_zone * power_zone , int cid ,
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
u64 * data )
{
struct rapl_domain * rd ;
u64 val ;
int prim ;
int ret = 0 ;
2016-05-31 13:41:29 -07:00
int id ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
get_online_cpus ( ) ;
rd = power_zone_to_rapl_domain ( power_zone ) ;
2016-05-31 13:41:29 -07:00
id = contraint_to_pl ( rd , cid ) ;
2016-11-28 13:53:11 -08:00
if ( id < 0 ) {
ret = id ;
goto get_exit ;
}
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
switch ( rd - > rpl [ id ] . prim_id ) {
case PL1_ENABLE :
prim = POWER_LIMIT1 ;
break ;
case PL2_ENABLE :
prim = POWER_LIMIT2 ;
break ;
default :
put_online_cpus ( ) ;
return - EINVAL ;
}
if ( rapl_read_data_raw ( rd , prim , true , & val ) )
ret = - EIO ;
else
* data = val ;
2016-11-28 13:53:11 -08:00
get_exit :
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
put_online_cpus ( ) ;
return ret ;
}
2016-05-31 13:41:29 -07:00
static int set_time_window ( struct powercap_zone * power_zone , int cid ,
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
u64 window )
{
struct rapl_domain * rd ;
int ret = 0 ;
2016-05-31 13:41:29 -07:00
int id ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
get_online_cpus ( ) ;
rd = power_zone_to_rapl_domain ( power_zone ) ;
2016-05-31 13:41:29 -07:00
id = contraint_to_pl ( rd , cid ) ;
2016-11-28 13:53:11 -08:00
if ( id < 0 ) {
ret = id ;
goto set_time_exit ;
}
2016-05-31 13:41:29 -07:00
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
switch ( rd - > rpl [ id ] . prim_id ) {
case PL1_ENABLE :
rapl_write_data_raw ( rd , TIME_WINDOW1 , window ) ;
break ;
case PL2_ENABLE :
rapl_write_data_raw ( rd , TIME_WINDOW2 , window ) ;
break ;
default :
ret = - EINVAL ;
}
2016-11-28 13:53:11 -08:00
set_time_exit :
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
put_online_cpus ( ) ;
return ret ;
}
2016-05-31 13:41:29 -07:00
static int get_time_window ( struct powercap_zone * power_zone , int cid , u64 * data )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
struct rapl_domain * rd ;
u64 val ;
int ret = 0 ;
2016-05-31 13:41:29 -07:00
int id ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
get_online_cpus ( ) ;
rd = power_zone_to_rapl_domain ( power_zone ) ;
2016-05-31 13:41:29 -07:00
id = contraint_to_pl ( rd , cid ) ;
2016-11-28 13:53:11 -08:00
if ( id < 0 ) {
ret = id ;
goto get_time_exit ;
}
2016-05-31 13:41:29 -07:00
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
switch ( rd - > rpl [ id ] . prim_id ) {
case PL1_ENABLE :
ret = rapl_read_data_raw ( rd , TIME_WINDOW1 , true , & val ) ;
break ;
case PL2_ENABLE :
ret = rapl_read_data_raw ( rd , TIME_WINDOW2 , true , & val ) ;
break ;
default :
put_online_cpus ( ) ;
return - EINVAL ;
}
if ( ! ret )
* data = val ;
2016-11-28 13:53:11 -08:00
get_time_exit :
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
put_online_cpus ( ) ;
return ret ;
}
2016-05-31 13:41:29 -07:00
static const char * get_constraint_name ( struct powercap_zone * power_zone , int cid )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
struct rapl_domain * rd ;
2016-05-31 13:41:29 -07:00
int id ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
rd = power_zone_to_rapl_domain ( power_zone ) ;
2016-05-31 13:41:29 -07:00
id = contraint_to_pl ( rd , cid ) ;
if ( id > = 0 )
return rd - > rpl [ id ] . name ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2016-05-31 13:41:29 -07:00
return NULL ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
static int get_max_power ( struct powercap_zone * power_zone , int id ,
u64 * data )
{
struct rapl_domain * rd ;
u64 val ;
int prim ;
int ret = 0 ;
get_online_cpus ( ) ;
rd = power_zone_to_rapl_domain ( power_zone ) ;
switch ( rd - > rpl [ id ] . prim_id ) {
case PL1_ENABLE :
prim = THERMAL_SPEC_POWER ;
break ;
case PL2_ENABLE :
prim = MAX_POWER ;
break ;
default :
put_online_cpus ( ) ;
return - EINVAL ;
}
if ( rapl_read_data_raw ( rd , prim , true , & val ) )
ret = - EIO ;
else
* data = val ;
put_online_cpus ( ) ;
return ret ;
}
2015-12-23 22:59:55 +01:00
static const struct powercap_zone_constraint_ops constraint_ops = {
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
. set_power_limit_uw = set_power_limit ,
. get_power_limit_uw = get_current_power_limit ,
. set_time_window_us = set_time_window ,
. get_time_window_us = get_time_window ,
. get_max_power_uw = get_max_power ,
. get_name = get_constraint_name ,
} ;
/* called after domain detection and package level data are set */
static void rapl_init_domains ( struct rapl_package * rp )
{
int i ;
struct rapl_domain * rd = rp - > domains ;
for ( i = 0 ; i < RAPL_DOMAIN_MAX ; i + + ) {
unsigned int mask = rp - > domain_map & ( 1 < < i ) ;
switch ( mask ) {
case BIT ( RAPL_DOMAIN_PACKAGE ) :
rd - > name = rapl_domain_names [ RAPL_DOMAIN_PACKAGE ] ;
rd - > id = RAPL_DOMAIN_PACKAGE ;
rd - > msrs [ 0 ] = MSR_PKG_POWER_LIMIT ;
rd - > msrs [ 1 ] = MSR_PKG_ENERGY_STATUS ;
rd - > msrs [ 2 ] = MSR_PKG_PERF_STATUS ;
rd - > msrs [ 3 ] = 0 ;
rd - > msrs [ 4 ] = MSR_PKG_POWER_INFO ;
rd - > rpl [ 0 ] . prim_id = PL1_ENABLE ;
rd - > rpl [ 0 ] . name = pl1_name ;
rd - > rpl [ 1 ] . prim_id = PL2_ENABLE ;
rd - > rpl [ 1 ] . name = pl2_name ;
break ;
case BIT ( RAPL_DOMAIN_PP0 ) :
rd - > name = rapl_domain_names [ RAPL_DOMAIN_PP0 ] ;
rd - > id = RAPL_DOMAIN_PP0 ;
rd - > msrs [ 0 ] = MSR_PP0_POWER_LIMIT ;
rd - > msrs [ 1 ] = MSR_PP0_ENERGY_STATUS ;
rd - > msrs [ 2 ] = 0 ;
rd - > msrs [ 3 ] = MSR_PP0_POLICY ;
rd - > msrs [ 4 ] = 0 ;
rd - > rpl [ 0 ] . prim_id = PL1_ENABLE ;
rd - > rpl [ 0 ] . name = pl1_name ;
break ;
case BIT ( RAPL_DOMAIN_PP1 ) :
rd - > name = rapl_domain_names [ RAPL_DOMAIN_PP1 ] ;
rd - > id = RAPL_DOMAIN_PP1 ;
rd - > msrs [ 0 ] = MSR_PP1_POWER_LIMIT ;
rd - > msrs [ 1 ] = MSR_PP1_ENERGY_STATUS ;
rd - > msrs [ 2 ] = 0 ;
rd - > msrs [ 3 ] = MSR_PP1_POLICY ;
rd - > msrs [ 4 ] = 0 ;
rd - > rpl [ 0 ] . prim_id = PL1_ENABLE ;
rd - > rpl [ 0 ] . name = pl1_name ;
break ;
case BIT ( RAPL_DOMAIN_DRAM ) :
rd - > name = rapl_domain_names [ RAPL_DOMAIN_DRAM ] ;
rd - > id = RAPL_DOMAIN_DRAM ;
rd - > msrs [ 0 ] = MSR_DRAM_POWER_LIMIT ;
rd - > msrs [ 1 ] = MSR_DRAM_ENERGY_STATUS ;
rd - > msrs [ 2 ] = MSR_DRAM_PERF_STATUS ;
rd - > msrs [ 3 ] = 0 ;
rd - > msrs [ 4 ] = MSR_DRAM_POWER_INFO ;
rd - > rpl [ 0 ] . prim_id = PL1_ENABLE ;
rd - > rpl [ 0 ] . name = pl1_name ;
2015-03-13 03:48:56 -07:00
rd - > domain_energy_unit =
rapl_defaults - > dram_domain_energy_unit ;
if ( rd - > domain_energy_unit )
pr_info ( " DRAM domain energy unit %dpj \n " ,
rd - > domain_energy_unit ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
break ;
}
if ( mask ) {
2016-02-24 13:31:37 -08:00
rd - > rp = rp ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
rd + + ;
}
}
}
2016-02-24 13:31:37 -08:00
static u64 rapl_unit_xlate ( struct rapl_domain * rd , enum unit_type type ,
u64 value , int to_raw )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
2014-11-07 09:29:26 -08:00
u64 units = 1 ;
2016-02-24 13:31:37 -08:00
struct rapl_package * rp = rd - > rp ;
2015-03-13 03:48:56 -07:00
u64 scale = 1 ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
switch ( type ) {
case POWER_UNIT :
2014-11-07 09:29:26 -08:00
units = rp - > power_unit ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
break ;
case ENERGY_UNIT :
2015-03-13 03:48:56 -07:00
scale = ENERGY_UNIT_SCALE ;
/* per domain unit takes precedence */
2016-11-28 13:53:11 -08:00
if ( rd - > domain_energy_unit )
2015-03-13 03:48:56 -07:00
units = rd - > domain_energy_unit ;
else
units = rp - > energy_unit ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
break ;
case TIME_UNIT :
2014-11-07 09:29:26 -08:00
return rapl_defaults - > compute_time_window ( rp , value , to_raw ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
case ARBITRARY_UNIT :
default :
return value ;
} ;
if ( to_raw )
2015-03-13 03:48:56 -07:00
return div64_u64 ( value , units ) * scale ;
2014-11-07 09:29:26 -08:00
value * = units ;
2015-03-13 03:48:56 -07:00
return div64_u64 ( value , scale ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
/* in the order of enum rapl_primitives */
static struct rapl_primitive_info rpi [ ] = {
/* name, mask, shift, msr index, unit divisor */
PRIMITIVE_INFO_INIT ( ENERGY_COUNTER , ENERGY_STATUS_MASK , 0 ,
RAPL_DOMAIN_MSR_STATUS , ENERGY_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( POWER_LIMIT1 , POWER_LIMIT1_MASK , 0 ,
RAPL_DOMAIN_MSR_LIMIT , POWER_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( POWER_LIMIT2 , POWER_LIMIT2_MASK , 32 ,
RAPL_DOMAIN_MSR_LIMIT , POWER_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( FW_LOCK , POWER_PP_LOCK , 31 ,
RAPL_DOMAIN_MSR_LIMIT , ARBITRARY_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( PL1_ENABLE , POWER_LIMIT1_ENABLE , 15 ,
RAPL_DOMAIN_MSR_LIMIT , ARBITRARY_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( PL1_CLAMP , POWER_LIMIT1_CLAMP , 16 ,
RAPL_DOMAIN_MSR_LIMIT , ARBITRARY_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( PL2_ENABLE , POWER_LIMIT2_ENABLE , 47 ,
RAPL_DOMAIN_MSR_LIMIT , ARBITRARY_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( PL2_CLAMP , POWER_LIMIT2_CLAMP , 48 ,
RAPL_DOMAIN_MSR_LIMIT , ARBITRARY_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( TIME_WINDOW1 , TIME_WINDOW1_MASK , 17 ,
RAPL_DOMAIN_MSR_LIMIT , TIME_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( TIME_WINDOW2 , TIME_WINDOW2_MASK , 49 ,
RAPL_DOMAIN_MSR_LIMIT , TIME_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( THERMAL_SPEC_POWER , POWER_INFO_THERMAL_SPEC_MASK ,
0 , RAPL_DOMAIN_MSR_INFO , POWER_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( MAX_POWER , POWER_INFO_MAX_MASK , 32 ,
RAPL_DOMAIN_MSR_INFO , POWER_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( MIN_POWER , POWER_INFO_MIN_MASK , 16 ,
RAPL_DOMAIN_MSR_INFO , POWER_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( MAX_TIME_WINDOW , POWER_INFO_MAX_TIME_WIN_MASK , 48 ,
RAPL_DOMAIN_MSR_INFO , TIME_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( THROTTLED_TIME , PERF_STATUS_THROTTLE_TIME_MASK , 0 ,
RAPL_DOMAIN_MSR_PERF , TIME_UNIT , 0 ) ,
PRIMITIVE_INFO_INIT ( PRIORITY_LEVEL , PP_POLICY_MASK , 0 ,
RAPL_DOMAIN_MSR_POLICY , ARBITRARY_UNIT , 0 ) ,
/* non-hardware */
PRIMITIVE_INFO_INIT ( AVERAGE_POWER , 0 , 0 , 0 , POWER_UNIT ,
RAPL_PRIMITIVE_DERIVED ) ,
{ NULL , 0 , 0 , 0 } ,
} ;
/* Read primitive data based on its related struct rapl_primitive_info.
* if xlate flag is set , return translated data based on data units , i . e .
* time , energy , and power .
* RAPL MSRs are non - architectual and are laid out not consistently across
* domains . Here we use primitive info to allow writing consolidated access
* functions .
* For a given primitive , it is processed by MSR mask and shift . Unit conversion
* is pre - assigned based on RAPL unit MSRs read at init time .
* 63 - - - - - - - - - - - - - - - - - - - - - - - - - - 31 - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
* | xxxxx ( mask ) |
* | | < - shift - - - - - - - - - - - - - - - - |
* 63 - - - - - - - - - - - - - - - - - - - - - - - - - - 31 - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
*/
static int rapl_read_data_raw ( struct rapl_domain * rd ,
enum rapl_primitives prim ,
bool xlate , u64 * data )
{
u64 value , final ;
u32 msr ;
struct rapl_primitive_info * rp = & rpi [ prim ] ;
int cpu ;
if ( ! rp - > name | | rp - > flag & RAPL_PRIMITIVE_DUMMY )
return - EINVAL ;
msr = rd - > msrs [ rp - > id ] ;
if ( ! msr )
return - EINVAL ;
2016-02-24 13:31:38 -08:00
cpu = rd - > rp - > lead_cpu ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* special-case package domain, which uses a different bit*/
if ( prim = = FW_LOCK & & rd - > id = = RAPL_DOMAIN_PACKAGE ) {
rp - > mask = POWER_PACKAGE_LOCK ;
rp - > shift = 63 ;
}
/* non-hardware data are collected by the polling thread */
if ( rp - > flag & RAPL_PRIMITIVE_DERIVED ) {
* data = rd - > rdd . primitives [ prim ] ;
return 0 ;
}
if ( rdmsrl_safe_on_cpu ( cpu , msr , & value ) ) {
pr_debug ( " failed to read msr 0x%x on cpu %d \n " , msr , cpu ) ;
return - EIO ;
}
final = value & rp - > mask ;
final = final > > rp - > shift ;
if ( xlate )
2016-02-24 13:31:37 -08:00
* data = rapl_unit_xlate ( rd , rp - > unit , final , 0 ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
else
* data = final ;
return 0 ;
}
2016-02-24 13:31:36 -08:00
static int msrl_update_safe ( u32 msr_no , u64 clear_mask , u64 set_mask )
{
int err ;
u64 val ;
err = rdmsrl_safe ( msr_no , & val ) ;
if ( err )
goto out ;
val & = ~ clear_mask ;
val | = set_mask ;
err = wrmsrl_safe ( msr_no , val ) ;
out :
return err ;
}
static void msrl_update_func ( void * info )
{
struct msrl_action * ma = info ;
ma - > err = msrl_update_safe ( ma - > msr_no , ma - > clear_mask , ma - > set_mask ) ;
}
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* Similar use of primitive info in the read counterpart */
static int rapl_write_data_raw ( struct rapl_domain * rd ,
enum rapl_primitives prim ,
unsigned long long value )
{
struct rapl_primitive_info * rp = & rpi [ prim ] ;
int cpu ;
2016-02-24 13:31:36 -08:00
u64 bits ;
struct msrl_action ma ;
int ret ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2016-02-24 13:31:38 -08:00
cpu = rd - > rp - > lead_cpu ;
2016-02-24 13:31:37 -08:00
bits = rapl_unit_xlate ( rd , rp - > unit , value , 1 ) ;
2017-06-01 11:21:50 +02:00
bits < < = rp - > shift ;
bits & = rp - > mask ;
2016-02-24 13:31:36 -08:00
memset ( & ma , 0 , sizeof ( ma ) ) ;
ma . msr_no = rd - > msrs [ rp - > id ] ;
ma . clear_mask = rp - > mask ;
ma . set_mask = bits ;
ret = smp_call_function_single ( cpu , msrl_update_func , & ma , 1 ) ;
if ( ret )
WARN_ON_ONCE ( ret ) ;
else
ret = ma . err ;
return ret ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
2014-11-07 09:29:26 -08:00
/*
* Raw RAPL data stored in MSRs are in certain scales . We need to
* convert them into standard units based on the units reported in
* the RAPL unit MSRs . This is specific to CPUs as the method to
* calculate units differ on different CPUs .
* We convert the units to below format based on CPUs .
* i . e .
2015-03-13 03:48:56 -07:00
* energy unit : picoJoules : Represented in picoJoules by default
2014-11-07 09:29:26 -08:00
* power unit : microWatts : Represented in milliWatts by default
* time unit : microseconds : Represented in seconds by default
*/
static int rapl_check_unit_core ( struct rapl_package * rp , int cpu )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
u64 msr_val ;
u32 value ;
if ( rdmsrl_safe_on_cpu ( cpu , MSR_RAPL_POWER_UNIT , & msr_val ) ) {
pr_err ( " Failed to read power unit MSR 0x%x on CPU %d, exit. \n " ,
MSR_RAPL_POWER_UNIT , cpu ) ;
return - ENODEV ;
}
value = ( msr_val & ENERGY_UNIT_MASK ) > > ENERGY_UNIT_OFFSET ;
2015-03-13 03:48:56 -07:00
rp - > energy_unit = ENERGY_UNIT_SCALE * 1000000 / ( 1 < < value ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
value = ( msr_val & POWER_UNIT_MASK ) > > POWER_UNIT_OFFSET ;
2014-11-07 09:29:26 -08:00
rp - > power_unit = 1000000 / ( 1 < < value ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
value = ( msr_val & TIME_UNIT_MASK ) > > TIME_UNIT_OFFSET ;
2014-11-07 09:29:26 -08:00
rp - > time_unit = 1000000 / ( 1 < < value ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2015-03-13 03:48:56 -07:00
pr_debug ( " Core CPU package %d energy=%dpJ, time=%dus, power=%duW \n " ,
2014-11-07 09:29:26 -08:00
rp - > id , rp - > energy_unit , rp - > time_unit , rp - > power_unit ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
return 0 ;
}
2014-11-07 09:29:26 -08:00
static int rapl_check_unit_atom ( struct rapl_package * rp , int cpu )
{
u64 msr_val ;
u32 value ;
if ( rdmsrl_safe_on_cpu ( cpu , MSR_RAPL_POWER_UNIT , & msr_val ) ) {
pr_err ( " Failed to read power unit MSR 0x%x on CPU %d, exit. \n " ,
MSR_RAPL_POWER_UNIT , cpu ) ;
return - ENODEV ;
}
value = ( msr_val & ENERGY_UNIT_MASK ) > > ENERGY_UNIT_OFFSET ;
2015-03-13 03:48:56 -07:00
rp - > energy_unit = ENERGY_UNIT_SCALE * 1 < < value ;
2014-11-07 09:29:26 -08:00
value = ( msr_val & POWER_UNIT_MASK ) > > POWER_UNIT_OFFSET ;
rp - > power_unit = ( 1 < < value ) * 1000 ;
value = ( msr_val & TIME_UNIT_MASK ) > > TIME_UNIT_OFFSET ;
rp - > time_unit = 1000000 / ( 1 < < value ) ;
2015-03-13 03:48:56 -07:00
pr_debug ( " Atom package %d energy=%dpJ, time=%dus, power=%duW \n " ,
2014-11-07 09:29:26 -08:00
rp - > id , rp - > energy_unit , rp - > time_unit , rp - > power_unit ) ;
return 0 ;
}
2016-02-24 13:31:36 -08:00
static void power_limit_irq_save_cpu ( void * info )
{
u32 l , h = 0 ;
struct rapl_package * rp = ( struct rapl_package * ) info ;
/* save the state of PLN irq mask bit before disabling it */
rdmsr_safe ( MSR_IA32_PACKAGE_THERM_INTERRUPT , & l , & h ) ;
if ( ! ( rp - > power_limit_irq & PACKAGE_PLN_INT_SAVED ) ) {
rp - > power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE ;
rp - > power_limit_irq | = PACKAGE_PLN_INT_SAVED ;
}
l & = ~ PACKAGE_THERM_INT_PLN_ENABLE ;
wrmsr_safe ( MSR_IA32_PACKAGE_THERM_INTERRUPT , l , h ) ;
}
2014-11-07 09:29:26 -08:00
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* REVISIT:
* When package power limit is set artificially low by RAPL , LVT
* thermal interrupt for package power limit should be ignored
* since we are not really exceeding the real limit . The intention
* is to avoid excessive interrupts while we are trying to save power .
* A useful feature might be routing the package_power_limit interrupt
* to userspace via eventfd . once we have a usecase , this is simple
* to do by adding an atomic notifier .
*/
2016-02-24 13:31:37 -08:00
static void package_power_limit_irq_save ( struct rapl_package * rp )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
2016-02-24 13:31:36 -08:00
if ( ! boot_cpu_has ( X86_FEATURE_PTS ) | | ! boot_cpu_has ( X86_FEATURE_PLN ) )
return ;
2016-02-24 13:31:38 -08:00
smp_call_function_single ( rp - > lead_cpu , power_limit_irq_save_cpu , rp , 1 ) ;
2016-02-24 13:31:36 -08:00
}
2016-11-22 21:16:02 +00:00
/*
* Restore per package power limit interrupt enable state . Called from cpu
* hotplug code on package removal .
*/
static void package_power_limit_irq_restore ( struct rapl_package * rp )
2016-02-24 13:31:36 -08:00
{
2016-11-22 21:16:02 +00:00
u32 l , h ;
if ( ! boot_cpu_has ( X86_FEATURE_PTS ) | | ! boot_cpu_has ( X86_FEATURE_PLN ) )
return ;
/* irq enable state not saved, nothing to restore */
if ( ! ( rp - > power_limit_irq & PACKAGE_PLN_INT_SAVED ) )
return ;
2016-02-24 13:31:36 -08:00
rdmsr_safe ( MSR_IA32_PACKAGE_THERM_INTERRUPT , & l , & h ) ;
if ( rp - > power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE )
l | = PACKAGE_THERM_INT_PLN_ENABLE ;
else
l & = ~ PACKAGE_THERM_INT_PLN_ENABLE ;
wrmsr_safe ( MSR_IA32_PACKAGE_THERM_INTERRUPT , l , h ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
2014-11-07 09:29:26 -08:00
static void set_floor_freq_default ( struct rapl_domain * rd , bool mode )
{
int nr_powerlimit = find_nr_power_limit ( rd ) ;
/* always enable clamp such that p-state can go below OS requested
* range . power capping priority over guranteed frequency .
*/
rapl_write_data_raw ( rd , PL1_CLAMP , mode ) ;
/* some domains have pl2 */
if ( nr_powerlimit > 1 ) {
rapl_write_data_raw ( rd , PL2_ENABLE , mode ) ;
rapl_write_data_raw ( rd , PL2_CLAMP , mode ) ;
}
}
static void set_floor_freq_atom ( struct rapl_domain * rd , bool enable )
{
static u32 power_ctrl_orig_val ;
u32 mdata ;
2015-04-30 01:43:23 +05:30
if ( ! rapl_defaults - > floor_freq_reg_addr ) {
pr_err ( " Invalid floor frequency config register \n " ) ;
return ;
}
2014-11-07 09:29:26 -08:00
if ( ! power_ctrl_orig_val )
2015-11-11 19:59:29 +02:00
iosf_mbi_read ( BT_MBI_UNIT_PMC , MBI_CR_READ ,
rapl_defaults - > floor_freq_reg_addr ,
& power_ctrl_orig_val ) ;
2014-11-07 09:29:26 -08:00
mdata = power_ctrl_orig_val ;
if ( enable ) {
mdata & = ~ ( 0x7f < < 8 ) ;
mdata | = 1 < < 8 ;
}
2015-11-11 19:59:29 +02:00
iosf_mbi_write ( BT_MBI_UNIT_PMC , MBI_CR_WRITE ,
rapl_defaults - > floor_freq_reg_addr , mdata ) ;
2014-11-07 09:29:26 -08:00
}
static u64 rapl_compute_time_window_core ( struct rapl_package * rp , u64 value ,
bool to_raw )
{
u64 f , y ; /* fraction and exp. used for time unit */
/*
* Special processing based on 2 ^ Y * ( 1 + F / 4 ) , refer
* to Intel Software Developer ' s manual Vol .3 B : CH 14.9 .3 .
*/
if ( ! to_raw ) {
f = ( value & 0x60 ) > > 5 ;
y = value & 0x1f ;
value = ( 1 < < y ) * ( 4 + f ) * rp - > time_unit / 4 ;
} else {
do_div ( value , rp - > time_unit ) ;
y = ilog2 ( value ) ;
f = div64_u64 ( 4 * ( value - ( 1 < < y ) ) , 1 < < y ) ;
value = ( y & 0x1f ) | ( ( f & 0x3 ) < < 5 ) ;
}
return value ;
}
static u64 rapl_compute_time_window_atom ( struct rapl_package * rp , u64 value ,
bool to_raw )
{
/*
* Atom time unit encoding is straight forward val * time_unit ,
* where time_unit is default to 1 sec . Never 0.
*/
if ( ! to_raw )
return ( value ) ? value * = rp - > time_unit : rp - > time_unit ;
else
value = div64_u64 ( value , rp - > time_unit ) ;
return value ;
}
2014-11-07 09:29:25 -08:00
static const struct rapl_defaults rapl_defaults_core = {
2015-04-30 01:43:23 +05:30
. floor_freq_reg_addr = 0 ,
2014-11-07 09:29:26 -08:00
. check_unit = rapl_check_unit_core ,
. set_floor_freq = set_floor_freq_default ,
. compute_time_window = rapl_compute_time_window_core ,
2014-11-07 09:29:25 -08:00
} ;
2015-03-13 03:48:56 -07:00
static const struct rapl_defaults rapl_defaults_hsw_server = {
. check_unit = rapl_check_unit_core ,
. set_floor_freq = set_floor_freq_default ,
. compute_time_window = rapl_compute_time_window_core ,
. dram_domain_energy_unit = 15300 ,
} ;
2015-04-30 01:43:23 +05:30
static const struct rapl_defaults rapl_defaults_byt = {
. floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT ,
. check_unit = rapl_check_unit_atom ,
. set_floor_freq = set_floor_freq_atom ,
. compute_time_window = rapl_compute_time_window_atom ,
} ;
static const struct rapl_defaults rapl_defaults_tng = {
. floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG ,
2014-11-07 09:29:26 -08:00
. check_unit = rapl_check_unit_atom ,
. set_floor_freq = set_floor_freq_atom ,
. compute_time_window = rapl_compute_time_window_atom ,
2014-11-07 09:29:25 -08:00
} ;
2015-04-30 01:43:23 +05:30
static const struct rapl_defaults rapl_defaults_ann = {
. floor_freq_reg_addr = 0 ,
. check_unit = rapl_check_unit_atom ,
. set_floor_freq = NULL ,
. compute_time_window = rapl_compute_time_window_atom ,
} ;
static const struct rapl_defaults rapl_defaults_cht = {
. floor_freq_reg_addr = 0 ,
. check_unit = rapl_check_unit_atom ,
. set_floor_freq = NULL ,
. compute_time_window = rapl_compute_time_window_atom ,
} ;
2015-03-25 22:15:52 +01:00
static const struct x86_cpu_id rapl_ids [ ] __initconst = {
2018-08-31 11:25:13 +03:00
INTEL_CPU_FAM6 ( SANDYBRIDGE , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( SANDYBRIDGE_X , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( IVYBRIDGE , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( IVYBRIDGE_X , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( HASWELL_CORE , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( HASWELL_ULT , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( HASWELL_GT3E , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( HASWELL_X , rapl_defaults_hsw_server ) ,
INTEL_CPU_FAM6 ( BROADWELL_CORE , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( BROADWELL_GT3E , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( BROADWELL_XEON_D , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( BROADWELL_X , rapl_defaults_hsw_server ) ,
INTEL_CPU_FAM6 ( SKYLAKE_DESKTOP , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( SKYLAKE_MOBILE , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( SKYLAKE_X , rapl_defaults_hsw_server ) ,
INTEL_CPU_FAM6 ( KABYLAKE_MOBILE , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( KABYLAKE_DESKTOP , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( CANNONLAKE_MOBILE , rapl_defaults_core ) ,
2019-02-18 15:01:02 +08:00
INTEL_CPU_FAM6 ( ICELAKE_MOBILE , rapl_defaults_core ) ,
2018-08-31 11:25:13 +03:00
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
"The main updates in this cycle were:
- Lots of perf tooling changes too voluminous to list (big perf trace
and perf stat improvements, lots of libtraceevent reorganization,
etc.), so I'll list the authors and refer to the changelog for
details:
Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter
Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven
Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas
Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir
Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa.
... with the bulk of the changes written by Jiri Olsa, Tzvetomir
Stoyanov and Arnaldo Carvalho de Melo.
- Continued intel_rdt work with a focus on playing well with perf
events. This also imported some non-perf RDT work due to
dependencies. (Reinette Chatre)
- Implement counter freezing for Arch Perfmon v4 (Skylake and newer).
This allows to speed up the PMI handler by avoiding unnecessary MSR
writes and make it more accurate. (Andi Kleen)
- kprobes cleanups and simplification (Masami Hiramatsu)
- Intel Goldmont PMU updates (Kan Liang)
- ... plus misc other fixes and updates"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits)
kprobes/x86: Use preempt_enable() in optimized_callback()
x86/intel_rdt: Prevent pseudo-locking from using stale pointers
kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack
perf/x86/intel: Export mem events only if there's PEBS support
x86/cpu: Drop pointless static qualifier in punit_dev_state_show()
x86/intel_rdt: Fix initial allocation to consider CDP
x86/intel_rdt: CBM overlap should also check for overlap with CDP peer
x86/intel_rdt: Introduce utility to obtain CDP peer
tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file
tools lib traceevent: Separate out tep_strerror() for strerror_r() issues
perf python: More portable way to make CFLAGS work with clang
perf python: Make clang_has_option() work on Python 3
perf tools: Free temporary 'sys' string in read_event_files()
perf tools: Avoid double free in read_event_file()
perf tools: Free 'printk' string in parse_ftrace_printk()
perf tools: Cleanup trace-event-info 'tdata' leak
perf strbuf: Match va_{add,copy} with va_end
perf test: S390 does not support watchpoints in test 22
perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG
tools include: Adopt linux/bits.h
...
2018-10-23 13:32:18 +01:00
INTEL_CPU_FAM6 ( ATOM_SILVERMONT , rapl_defaults_byt ) ,
2018-08-31 11:25:13 +03:00
INTEL_CPU_FAM6 ( ATOM_AIRMONT , rapl_defaults_cht ) ,
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
"The main updates in this cycle were:
- Lots of perf tooling changes too voluminous to list (big perf trace
and perf stat improvements, lots of libtraceevent reorganization,
etc.), so I'll list the authors and refer to the changelog for
details:
Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter
Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven
Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas
Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir
Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa.
... with the bulk of the changes written by Jiri Olsa, Tzvetomir
Stoyanov and Arnaldo Carvalho de Melo.
- Continued intel_rdt work with a focus on playing well with perf
events. This also imported some non-perf RDT work due to
dependencies. (Reinette Chatre)
- Implement counter freezing for Arch Perfmon v4 (Skylake and newer).
This allows to speed up the PMI handler by avoiding unnecessary MSR
writes and make it more accurate. (Andi Kleen)
- kprobes cleanups and simplification (Masami Hiramatsu)
- Intel Goldmont PMU updates (Kan Liang)
- ... plus misc other fixes and updates"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits)
kprobes/x86: Use preempt_enable() in optimized_callback()
x86/intel_rdt: Prevent pseudo-locking from using stale pointers
kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack
perf/x86/intel: Export mem events only if there's PEBS support
x86/cpu: Drop pointless static qualifier in punit_dev_state_show()
x86/intel_rdt: Fix initial allocation to consider CDP
x86/intel_rdt: CBM overlap should also check for overlap with CDP peer
x86/intel_rdt: Introduce utility to obtain CDP peer
tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file
tools lib traceevent: Separate out tep_strerror() for strerror_r() issues
perf python: More portable way to make CFLAGS work with clang
perf python: Make clang_has_option() work on Python 3
perf tools: Free temporary 'sys' string in read_event_files()
perf tools: Avoid double free in read_event_file()
perf tools: Free 'printk' string in parse_ftrace_printk()
perf tools: Cleanup trace-event-info 'tdata' leak
perf strbuf: Match va_{add,copy} with va_end
perf test: S390 does not support watchpoints in test 22
perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG
tools include: Adopt linux/bits.h
...
2018-10-23 13:32:18 +01:00
INTEL_CPU_FAM6 ( ATOM_SILVERMONT_MID , rapl_defaults_tng ) ,
INTEL_CPU_FAM6 ( ATOM_AIRMONT_MID , rapl_defaults_ann ) ,
2018-08-31 11:25:13 +03:00
INTEL_CPU_FAM6 ( ATOM_GOLDMONT , rapl_defaults_core ) ,
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
"The main updates in this cycle were:
- Lots of perf tooling changes too voluminous to list (big perf trace
and perf stat improvements, lots of libtraceevent reorganization,
etc.), so I'll list the authors and refer to the changelog for
details:
Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter
Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven
Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas
Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir
Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa.
... with the bulk of the changes written by Jiri Olsa, Tzvetomir
Stoyanov and Arnaldo Carvalho de Melo.
- Continued intel_rdt work with a focus on playing well with perf
events. This also imported some non-perf RDT work due to
dependencies. (Reinette Chatre)
- Implement counter freezing for Arch Perfmon v4 (Skylake and newer).
This allows to speed up the PMI handler by avoiding unnecessary MSR
writes and make it more accurate. (Andi Kleen)
- kprobes cleanups and simplification (Masami Hiramatsu)
- Intel Goldmont PMU updates (Kan Liang)
- ... plus misc other fixes and updates"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits)
kprobes/x86: Use preempt_enable() in optimized_callback()
x86/intel_rdt: Prevent pseudo-locking from using stale pointers
kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack
perf/x86/intel: Export mem events only if there's PEBS support
x86/cpu: Drop pointless static qualifier in punit_dev_state_show()
x86/intel_rdt: Fix initial allocation to consider CDP
x86/intel_rdt: CBM overlap should also check for overlap with CDP peer
x86/intel_rdt: Introduce utility to obtain CDP peer
tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file
tools lib traceevent: Separate out tep_strerror() for strerror_r() issues
perf python: More portable way to make CFLAGS work with clang
perf python: Make clang_has_option() work on Python 3
perf tools: Free temporary 'sys' string in read_event_files()
perf tools: Avoid double free in read_event_file()
perf tools: Free 'printk' string in parse_ftrace_printk()
perf tools: Cleanup trace-event-info 'tdata' leak
perf strbuf: Match va_{add,copy} with va_end
perf test: S390 does not support watchpoints in test 22
perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG
tools include: Adopt linux/bits.h
...
2018-10-23 13:32:18 +01:00
INTEL_CPU_FAM6 ( ATOM_GOLDMONT_PLUS , rapl_defaults_core ) ,
INTEL_CPU_FAM6 ( ATOM_GOLDMONT_X , rapl_defaults_core ) ,
2019-02-12 10:47:10 +08:00
INTEL_CPU_FAM6 ( ATOM_TREMONT_X , rapl_defaults_core ) ,
2018-08-31 11:25:13 +03:00
INTEL_CPU_FAM6 ( XEON_PHI_KNL , rapl_defaults_hsw_server ) ,
INTEL_CPU_FAM6 ( XEON_PHI_KNM , rapl_defaults_hsw_server ) ,
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{ }
} ;
MODULE_DEVICE_TABLE ( x86cpu , rapl_ids ) ;
2016-11-22 21:15:58 +00:00
/* Read once for all raw primitive data for domains */
static void rapl_update_domain_data ( struct rapl_package * rp )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
int dmn , prim ;
u64 val ;
2016-11-22 21:15:58 +00:00
for ( dmn = 0 ; dmn < rp - > nr_domains ; dmn + + ) {
pr_debug ( " update package %d domain %s data \n " , rp - > id ,
rp - > domains [ dmn ] . name ) ;
/* exclude non-raw primitives */
for ( prim = 0 ; prim < NR_RAW_PRIMITIVES ; prim + + ) {
if ( ! rapl_read_data_raw ( & rp - > domains [ dmn ] , prim ,
rpi [ prim ] . unit , & val ) )
rp - > domains [ dmn ] . rdd . primitives [ prim ] = val ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
}
}
2016-11-22 21:16:02 +00:00
static void rapl_unregister_powercap ( void )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
2016-04-17 15:03:01 -07:00
if ( platform_rapl_domain ) {
powercap_unregister_zone ( control_type ,
& platform_rapl_domain - > power_zone ) ;
kfree ( platform_rapl_domain ) ;
}
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
powercap_unregister_control_type ( control_type ) ;
}
static int rapl_package_register_powercap ( struct rapl_package * rp )
{
struct rapl_domain * rd ;
char dev_name [ 17 ] ; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
struct powercap_zone * power_zone = NULL ;
2018-01-17 10:30:34 +00:00
int nr_pl , ret ;
2016-11-22 21:15:58 +00:00
/* Update the domain data of the new package */
rapl_update_domain_data ( rp ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* first we register package domain as the parent zone*/
for ( rd = rp - > domains ; rd < rp - > domains + rp - > nr_domains ; rd + + ) {
if ( rd - > id = = RAPL_DOMAIN_PACKAGE ) {
nr_pl = find_nr_power_limit ( rd ) ;
pr_debug ( " register socket %d package domain %s \n " ,
rp - > id , rd - > name ) ;
memset ( dev_name , 0 , sizeof ( dev_name ) ) ;
snprintf ( dev_name , sizeof ( dev_name ) , " %s-%d " ,
rd - > name , rp - > id ) ;
power_zone = powercap_register_zone ( & rd - > power_zone ,
control_type ,
dev_name , NULL ,
& zone_ops [ rd - > id ] ,
nr_pl ,
& constraint_ops ) ;
if ( IS_ERR ( power_zone ) ) {
pr_debug ( " failed to register package, %d \n " ,
rp - > id ) ;
2016-11-22 21:15:58 +00:00
return PTR_ERR ( power_zone ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
/* track parent zone in per package/socket data */
rp - > power_zone = power_zone ;
/* done, only one package domain per socket */
break ;
}
}
if ( ! power_zone ) {
pr_err ( " no package domain found, unknown topology! \n " ) ;
2016-11-22 21:15:58 +00:00
return - ENODEV ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
/* now register domains as children of the socket/package*/
for ( rd = rp - > domains ; rd < rp - > domains + rp - > nr_domains ; rd + + ) {
if ( rd - > id = = RAPL_DOMAIN_PACKAGE )
continue ;
/* number of power limits per domain varies */
nr_pl = find_nr_power_limit ( rd ) ;
power_zone = powercap_register_zone ( & rd - > power_zone ,
control_type , rd - > name ,
rp - > power_zone ,
& zone_ops [ rd - > id ] , nr_pl ,
& constraint_ops ) ;
if ( IS_ERR ( power_zone ) ) {
pr_debug ( " failed to register power_zone, %d:%s:%s \n " ,
rp - > id , rd - > name , dev_name ) ;
ret = PTR_ERR ( power_zone ) ;
goto err_cleanup ;
}
}
2016-11-22 21:15:58 +00:00
return 0 ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
err_cleanup :
2016-11-22 21:16:02 +00:00
/*
* Clean up previously initialized domains within the package if we
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
* failed after the first domain setup .
*/
while ( - - rd > = rp - > domains ) {
pr_debug ( " unregister package %d domain %s \n " , rp - > id , rd - > name ) ;
powercap_unregister_zone ( control_type , & rd - > power_zone ) ;
}
return ret ;
}
2016-11-22 21:16:02 +00:00
static int __init rapl_register_psys ( void )
2016-04-17 15:03:01 -07:00
{
struct rapl_domain * rd ;
struct powercap_zone * power_zone ;
u64 val ;
if ( rdmsrl_safe_on_cpu ( 0 , MSR_PLATFORM_ENERGY_STATUS , & val ) | | ! val )
return - ENODEV ;
if ( rdmsrl_safe_on_cpu ( 0 , MSR_PLATFORM_POWER_LIMIT , & val ) | | ! val )
return - ENODEV ;
rd = kzalloc ( sizeof ( * rd ) , GFP_KERNEL ) ;
if ( ! rd )
return - ENOMEM ;
rd - > name = rapl_domain_names [ RAPL_DOMAIN_PLATFORM ] ;
rd - > id = RAPL_DOMAIN_PLATFORM ;
rd - > msrs [ 0 ] = MSR_PLATFORM_POWER_LIMIT ;
rd - > msrs [ 1 ] = MSR_PLATFORM_ENERGY_STATUS ;
rd - > rpl [ 0 ] . prim_id = PL1_ENABLE ;
rd - > rpl [ 0 ] . name = pl1_name ;
rd - > rpl [ 1 ] . prim_id = PL2_ENABLE ;
rd - > rpl [ 1 ] . name = pl2_name ;
rd - > rp = find_package_by_id ( 0 ) ;
power_zone = powercap_register_zone ( & rd - > power_zone , control_type ,
" psys " , NULL ,
& zone_ops [ RAPL_DOMAIN_PLATFORM ] ,
2 , & constraint_ops ) ;
if ( IS_ERR ( power_zone ) ) {
kfree ( rd ) ;
return PTR_ERR ( power_zone ) ;
}
platform_rapl_domain = rd ;
return 0 ;
}
2016-11-22 21:16:02 +00:00
static int __init rapl_register_powercap ( void )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
control_type = powercap_register_control_type ( NULL , " intel-rapl " , NULL ) ;
if ( IS_ERR ( control_type ) ) {
pr_debug ( " failed to register powercap control_type. \n " ) ;
return PTR_ERR ( control_type ) ;
}
2016-11-22 21:16:02 +00:00
return 0 ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
static int rapl_check_domain ( int cpu , int domain )
{
unsigned msr ;
2014-04-29 15:33:06 -07:00
u64 val = 0 ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
switch ( domain ) {
case RAPL_DOMAIN_PACKAGE :
msr = MSR_PKG_ENERGY_STATUS ;
break ;
case RAPL_DOMAIN_PP0 :
msr = MSR_PP0_ENERGY_STATUS ;
break ;
case RAPL_DOMAIN_PP1 :
msr = MSR_PP1_ENERGY_STATUS ;
break ;
case RAPL_DOMAIN_DRAM :
msr = MSR_DRAM_ENERGY_STATUS ;
break ;
2016-04-17 15:03:01 -07:00
case RAPL_DOMAIN_PLATFORM :
/* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
return - EINVAL ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
default :
pr_err ( " invalid domain id %d \n " , domain ) ;
return - EINVAL ;
}
2014-04-29 15:33:06 -07:00
/* make sure domain counters are available and contains non-zero
* values , otherwise skip it .
2014-02-10 06:11:51 -08:00
*/
2014-04-29 15:33:06 -07:00
if ( rdmsrl_safe_on_cpu ( cpu , msr , & val ) | | ! val )
return - ENODEV ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2014-04-29 15:33:06 -07:00
return 0 ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
2016-05-31 13:41:29 -07:00
/*
* Check if power limits are available . Two cases when they are not available :
* 1. Locked by BIOS , in this case we still provide read - only access so that
* users can see what limit is set by the BIOS .
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
* exist at all . In this case , we do not show the contraints in powercap .
*
* Called after domains are detected and initialized .
*/
static void rapl_detect_powerlimit ( struct rapl_domain * rd )
{
u64 val64 ;
int i ;
/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
if ( ! rapl_read_data_raw ( rd , FW_LOCK , false , & val64 ) ) {
if ( val64 ) {
pr_info ( " RAPL package %d domain %s locked by BIOS \n " ,
rd - > rp - > id , rd - > name ) ;
rd - > state | = DOMAIN_STATE_BIOS_LOCKED ;
}
}
/* check if power limit MSRs exists, otherwise domain is monitoring only */
for ( i = 0 ; i < NR_POWER_LIMITS ; i + + ) {
int prim = rd - > rpl [ i ] . prim_id ;
if ( rapl_read_data_raw ( rd , prim , false , & val64 ) )
rd - > rpl [ i ] . name = NULL ;
}
}
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* Detect active and valid domains for the given CPU, caller must
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled .
*/
static int rapl_detect_domains ( struct rapl_package * rp , int cpu )
{
struct rapl_domain * rd ;
2016-11-22 21:16:02 +00:00
int i ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
for ( i = 0 ; i < RAPL_DOMAIN_MAX ; i + + ) {
/* use physical package id to read counters */
2014-09-02 02:55:21 -07:00
if ( ! rapl_check_domain ( cpu , i ) ) {
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
rp - > domain_map | = 1 < < i ;
2014-09-02 02:55:21 -07:00
pr_info ( " Found RAPL domain %s \n " , rapl_domain_names [ i ] ) ;
}
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
rp - > nr_domains = bitmap_weight ( & rp - > domain_map , RAPL_DOMAIN_MAX ) ;
if ( ! rp - > nr_domains ) {
2016-05-23 09:45:43 -07:00
pr_debug ( " no valid rapl domains found in package %d \n " , rp - > id ) ;
2016-11-22 21:16:02 +00:00
return - ENODEV ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
pr_debug ( " found %d domains on package %d \n " , rp - > nr_domains , rp - > id ) ;
rp - > domains = kcalloc ( rp - > nr_domains + 1 , sizeof ( struct rapl_domain ) ,
GFP_KERNEL ) ;
2016-11-22 21:16:02 +00:00
if ( ! rp - > domains )
return - ENOMEM ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
rapl_init_domains ( rp ) ;
2016-05-31 13:41:29 -07:00
for ( rd = rp - > domains ; rd < rp - > domains + rp - > nr_domains ; rd + + )
rapl_detect_powerlimit ( rd ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
return 0 ;
}
/* called from CPU hotplug notifier, hotplug lock held */
static void rapl_remove_package ( struct rapl_package * rp )
{
struct rapl_domain * rd , * rd_package = NULL ;
2016-11-22 21:16:02 +00:00
package_power_limit_irq_restore ( rp ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
for ( rd = rp - > domains ; rd < rp - > domains + rp - > nr_domains ; rd + + ) {
2016-11-22 21:16:02 +00:00
rapl_write_data_raw ( rd , PL1_ENABLE , 0 ) ;
rapl_write_data_raw ( rd , PL1_CLAMP , 0 ) ;
if ( find_nr_power_limit ( rd ) > 1 ) {
rapl_write_data_raw ( rd , PL2_ENABLE , 0 ) ;
rapl_write_data_raw ( rd , PL2_CLAMP , 0 ) ;
}
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
if ( rd - > id = = RAPL_DOMAIN_PACKAGE ) {
rd_package = rd ;
continue ;
}
2016-11-22 21:16:02 +00:00
pr_debug ( " remove package, undo power limit on %d: %s \n " ,
rp - > id , rd - > name ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
powercap_unregister_zone ( control_type , & rd - > power_zone ) ;
}
/* do parent zone last */
powercap_unregister_zone ( control_type , & rd_package - > power_zone ) ;
list_del ( & rp - > plist ) ;
kfree ( rp ) ;
}
/* called from CPU hotplug notifier, hotplug lock held */
2016-11-22 21:16:05 +00:00
static struct rapl_package * rapl_add_package ( int cpu , int pkgid )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
struct rapl_package * rp ;
2016-11-22 21:16:05 +00:00
int ret ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
rp = kzalloc ( sizeof ( struct rapl_package ) , GFP_KERNEL ) ;
if ( ! rp )
2016-11-22 21:16:05 +00:00
return ERR_PTR ( - ENOMEM ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* add the new package to the list */
2016-11-22 21:16:05 +00:00
rp - > id = pkgid ;
2016-02-24 13:31:38 -08:00
rp - > lead_cpu = cpu ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
/* check if the package contains valid domains */
if ( rapl_detect_domains ( rp , cpu ) | |
2014-11-07 09:29:26 -08:00
rapl_defaults - > check_unit ( rp , cpu ) ) {
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
ret = - ENODEV ;
goto err_free_package ;
}
2016-11-22 21:15:59 +00:00
ret = rapl_package_register_powercap ( rp ) ;
if ( ! ret ) {
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
INIT_LIST_HEAD ( & rp - > plist ) ;
list_add ( & rp - > plist , & rapl_packages ) ;
2016-11-22 21:16:05 +00:00
return rp ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
err_free_package :
kfree ( rp - > domains ) ;
kfree ( rp ) ;
2016-11-22 21:16:05 +00:00
return ERR_PTR ( ret ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
/* Handles CPU hotplug on multi-socket systems.
* If a CPU goes online as the first CPU of the physical package
* we add the RAPL package to the system . Similarly , when the last
* CPU of the package is removed , we remove the RAPL package and its
* associated domains . Cooling devices are handled accordingly at
* per - domain level .
*/
2016-11-22 21:16:00 +00:00
static int rapl_cpu_online ( unsigned int cpu )
{
2016-11-22 21:16:05 +00:00
int pkgid = topology_physical_package_id ( cpu ) ;
2016-11-22 21:16:00 +00:00
struct rapl_package * rp ;
2016-11-22 21:16:05 +00:00
rp = find_package_by_id ( pkgid ) ;
if ( ! rp ) {
rp = rapl_add_package ( cpu , pkgid ) ;
if ( IS_ERR ( rp ) )
return PTR_ERR ( rp ) ;
2016-11-22 21:16:02 +00:00
}
2016-11-22 21:16:05 +00:00
cpumask_set_cpu ( cpu , & rp - > cpumask ) ;
return 0 ;
2016-11-22 21:16:00 +00:00
}
static int rapl_cpu_down_prep ( unsigned int cpu )
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
{
2016-11-22 21:16:05 +00:00
int pkgid = topology_physical_package_id ( cpu ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
struct rapl_package * rp ;
2016-02-24 13:31:38 -08:00
int lead_cpu ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2016-11-22 21:16:05 +00:00
rp = find_package_by_id ( pkgid ) ;
2016-11-22 21:16:00 +00:00
if ( ! rp )
return 0 ;
2016-11-22 21:16:05 +00:00
cpumask_clear_cpu ( cpu , & rp - > cpumask ) ;
lead_cpu = cpumask_first ( & rp - > cpumask ) ;
if ( lead_cpu > = nr_cpu_ids )
2016-11-22 21:16:00 +00:00
rapl_remove_package ( rp ) ;
2016-11-22 21:16:05 +00:00
else if ( rp - > lead_cpu = = cpu )
rp - > lead_cpu = lead_cpu ;
2016-11-22 21:16:00 +00:00
return 0 ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
}
2016-11-22 21:16:00 +00:00
static enum cpuhp_state pcap_rapl_online ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2018-01-10 08:38:23 +08:00
static void power_limit_state_save ( void )
{
struct rapl_package * rp ;
struct rapl_domain * rd ;
int nr_pl , ret , i ;
get_online_cpus ( ) ;
list_for_each_entry ( rp , & rapl_packages , plist ) {
if ( ! rp - > power_zone )
continue ;
rd = power_zone_to_rapl_domain ( rp - > power_zone ) ;
nr_pl = find_nr_power_limit ( rd ) ;
for ( i = 0 ; i < nr_pl ; i + + ) {
switch ( rd - > rpl [ i ] . prim_id ) {
case PL1_ENABLE :
ret = rapl_read_data_raw ( rd ,
POWER_LIMIT1 ,
true ,
& rd - > rpl [ i ] . last_power_limit ) ;
if ( ret )
rd - > rpl [ i ] . last_power_limit = 0 ;
break ;
case PL2_ENABLE :
ret = rapl_read_data_raw ( rd ,
POWER_LIMIT2 ,
true ,
& rd - > rpl [ i ] . last_power_limit ) ;
if ( ret )
rd - > rpl [ i ] . last_power_limit = 0 ;
break ;
}
}
}
put_online_cpus ( ) ;
}
static void power_limit_state_restore ( void )
{
struct rapl_package * rp ;
struct rapl_domain * rd ;
int nr_pl , i ;
get_online_cpus ( ) ;
list_for_each_entry ( rp , & rapl_packages , plist ) {
if ( ! rp - > power_zone )
continue ;
rd = power_zone_to_rapl_domain ( rp - > power_zone ) ;
nr_pl = find_nr_power_limit ( rd ) ;
for ( i = 0 ; i < nr_pl ; i + + ) {
switch ( rd - > rpl [ i ] . prim_id ) {
case PL1_ENABLE :
if ( rd - > rpl [ i ] . last_power_limit )
rapl_write_data_raw ( rd ,
POWER_LIMIT1 ,
rd - > rpl [ i ] . last_power_limit ) ;
break ;
case PL2_ENABLE :
if ( rd - > rpl [ i ] . last_power_limit )
rapl_write_data_raw ( rd ,
POWER_LIMIT2 ,
rd - > rpl [ i ] . last_power_limit ) ;
break ;
}
}
}
put_online_cpus ( ) ;
}
static int rapl_pm_callback ( struct notifier_block * nb ,
unsigned long mode , void * _unused )
{
switch ( mode ) {
case PM_SUSPEND_PREPARE :
power_limit_state_save ( ) ;
break ;
case PM_POST_SUSPEND :
power_limit_state_restore ( ) ;
break ;
}
return NOTIFY_OK ;
}
static struct notifier_block rapl_pm_notifier = {
. notifier_call = rapl_pm_callback ,
} ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
static int __init rapl_init ( void )
{
2014-11-07 09:29:25 -08:00
const struct x86_cpu_id * id ;
2016-11-22 21:16:02 +00:00
int ret ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2014-11-07 09:29:25 -08:00
id = x86_match_cpu ( rapl_ids ) ;
if ( ! id ) {
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
pr_err ( " driver does not support CPU family %d model %d \n " ,
boot_cpu_data . x86 , boot_cpu_data . x86_model ) ;
return - ENODEV ;
}
2014-03-11 02:09:26 +05:30
2014-11-07 09:29:25 -08:00
rapl_defaults = ( struct rapl_defaults * ) id - > driver_data ;
2016-11-22 21:16:02 +00:00
ret = rapl_register_powercap ( ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
if ( ret )
2016-11-22 21:16:02 +00:00
return ret ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
2016-11-22 21:16:02 +00:00
ret = cpuhp_setup_state ( CPUHP_AP_ONLINE_DYN , " powercap/rapl:online " ,
rapl_cpu_online , rapl_cpu_down_prep ) ;
2016-11-22 21:16:00 +00:00
if ( ret < 0 )
goto err_unreg ;
pcap_rapl_online = ret ;
2016-11-22 21:16:02 +00:00
/* Don't bail out if PSys is not supported */
rapl_register_psys ( ) ;
2018-01-10 08:38:23 +08:00
ret = register_pm_notifier ( & rapl_pm_notifier ) ;
if ( ret )
goto err_unreg_all ;
2016-11-22 21:16:00 +00:00
return 0 ;
2018-01-10 08:38:23 +08:00
err_unreg_all :
cpuhp_remove_state ( pcap_rapl_online ) ;
2016-11-22 21:16:00 +00:00
err_unreg :
rapl_unregister_powercap ( ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
return ret ;
}
static void __exit rapl_exit ( void )
{
2018-01-10 08:38:23 +08:00
unregister_pm_notifier ( & rapl_pm_notifier ) ;
2016-11-22 21:16:00 +00:00
cpuhp_remove_state ( pcap_rapl_online ) ;
PowerCap: Introduce Intel RAPL power capping driver
The Intel Running Average Power Limit (RAPL) technology provides platform
software with the ability to monitor, control, and get notifications on
power usage.
This feature is present in all Sandy Bridge and later Intel processors.
Newer models allow more fine grained controls to be applied. In RAPL,
power control is divided into domains, which include package, DRAM
controller, CPU core (Power Plane 0), graphics uncore (power plane 1), etc.
The purpose of this driver is to expose the RAPL settings to userspace.
Overall, RAPL fits in the new powercap class driver in that platform
level power capping controls are exposed via this generic interface.
This driver is based on an earlier patch from Zhang Rui.
However, while the previous work was mainly focused on thermal monitoring
the focus here is on the usability from user space perspective.
References: https://lkml.org/lkml/2011/5/26/93
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 10:28:35 -07:00
rapl_unregister_powercap ( ) ;
}
module_init ( rapl_init ) ;
module_exit ( rapl_exit ) ;
MODULE_DESCRIPTION ( " Driver for Intel RAPL (Running Average Power Limit) " ) ;
MODULE_AUTHOR ( " Jacob Pan <jacob.jun.pan@intel.com> " ) ;
MODULE_LICENSE ( " GPL v2 " ) ;