linux/drivers/iio/light/si1133.c

1083 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* si1133.c - Support for Silabs SI1133 combined ambient
* light and UV index sensors
*
* Copyright 2018 Maxime Roussin-Belanger <maxime.roussinbelanger@gmail.com>
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/util_macros.h>
#define SI1133_REG_PART_ID 0x00
#define SI1133_REG_REV_ID 0x01
#define SI1133_REG_MFR_ID 0x02
#define SI1133_REG_INFO0 0x03
#define SI1133_REG_INFO1 0x04
#define SI1133_PART_ID 0x33
#define SI1133_REG_HOSTIN0 0x0A
#define SI1133_REG_COMMAND 0x0B
#define SI1133_REG_IRQ_ENABLE 0x0F
#define SI1133_REG_RESPONSE1 0x10
#define SI1133_REG_RESPONSE0 0x11
#define SI1133_REG_IRQ_STATUS 0x12
#define SI1133_REG_MEAS_RATE 0x1A
#define SI1133_IRQ_CHANNEL_ENABLE 0xF
#define SI1133_CMD_RESET_CTR 0x00
#define SI1133_CMD_RESET_SW 0x01
#define SI1133_CMD_FORCE 0x11
#define SI1133_CMD_START_AUTONOMOUS 0x13
#define SI1133_CMD_PARAM_SET 0x80
#define SI1133_CMD_PARAM_QUERY 0x40
#define SI1133_CMD_PARAM_MASK 0x3F
#define SI1133_CMD_ERR_MASK BIT(4)
#define SI1133_CMD_SEQ_MASK 0xF
#define SI1133_MAX_CMD_CTR 0xF
#define SI1133_PARAM_REG_CHAN_LIST 0x01
#define SI1133_PARAM_REG_ADCCONFIG(x) ((x) * 4) + 2
#define SI1133_PARAM_REG_ADCSENS(x) ((x) * 4) + 3
#define SI1133_PARAM_REG_ADCPOST(x) ((x) * 4) + 4
#define SI1133_ADCMUX_MASK 0x1F
#define SI1133_ADCCONFIG_DECIM_RATE(x) (x) << 5
#define SI1133_ADCSENS_SCALE_MASK 0x70
#define SI1133_ADCSENS_SCALE_SHIFT 4
#define SI1133_ADCSENS_HSIG_MASK BIT(7)
#define SI1133_ADCSENS_HSIG_SHIFT 7
#define SI1133_ADCSENS_HW_GAIN_MASK 0xF
#define SI1133_ADCSENS_NB_MEAS(x) fls(x) << SI1133_ADCSENS_SCALE_SHIFT
#define SI1133_ADCPOST_24BIT_EN BIT(6)
#define SI1133_ADCPOST_POSTSHIFT_BITQTY(x) (x & GENMASK(2, 0)) << 3
#define SI1133_PARAM_ADCMUX_SMALL_IR 0x0
#define SI1133_PARAM_ADCMUX_MED_IR 0x1
#define SI1133_PARAM_ADCMUX_LARGE_IR 0x2
#define SI1133_PARAM_ADCMUX_WHITE 0xB
#define SI1133_PARAM_ADCMUX_LARGE_WHITE 0xD
#define SI1133_PARAM_ADCMUX_UV 0x18
#define SI1133_PARAM_ADCMUX_UV_DEEP 0x19
#define SI1133_ERR_INVALID_CMD 0x0
#define SI1133_ERR_INVALID_LOCATION_CMD 0x1
#define SI1133_ERR_SATURATION_ADC_OR_OVERFLOW_ACCUMULATION 0x2
#define SI1133_ERR_OUTPUT_BUFFER_OVERFLOW 0x3
#define SI1133_COMPLETION_TIMEOUT_MS 500
#define SI1133_CMD_MINSLEEP_US_LOW 5000
#define SI1133_CMD_MINSLEEP_US_HIGH 7500
#define SI1133_CMD_TIMEOUT_MS 25
#define SI1133_CMD_LUX_TIMEOUT_MS 5000
#define SI1133_CMD_TIMEOUT_US SI1133_CMD_TIMEOUT_MS * 1000
#define SI1133_REG_HOSTOUT(x) (x) + 0x13
#define SI1133_MEASUREMENT_FREQUENCY 1250
#define SI1133_X_ORDER_MASK 0x0070
#define SI1133_Y_ORDER_MASK 0x0007
#define si1133_get_x_order(m) ((m) & SI1133_X_ORDER_MASK) >> 4
#define si1133_get_y_order(m) ((m) & SI1133_Y_ORDER_MASK)
#define SI1133_LUX_ADC_MASK 0xE
#define SI1133_ADC_THRESHOLD 16000
#define SI1133_INPUT_FRACTION_HIGH 7
#define SI1133_INPUT_FRACTION_LOW 15
#define SI1133_LUX_OUTPUT_FRACTION 12
#define SI1133_LUX_BUFFER_SIZE 9
#define SI1133_MEASURE_BUFFER_SIZE 3
#define SI1133_SIGN_BIT_INDEX 23
static const int si1133_scale_available[] = {
1, 2, 4, 8, 16, 32, 64, 128};
static IIO_CONST_ATTR(scale_available, "1 2 4 8 16 32 64 128");
static IIO_CONST_ATTR_INT_TIME_AVAIL("0.0244 0.0488 0.0975 0.195 0.390 0.780 "
"1.560 3.120 6.24 12.48 25.0 50.0");
/* A.K.A. HW_GAIN in datasheet */
enum si1133_int_time {
_24_4_us = 0,
_48_8_us = 1,
_97_5_us = 2,
_195_0_us = 3,
_390_0_us = 4,
_780_0_us = 5,
_1_560_0_us = 6,
_3_120_0_us = 7,
_6_240_0_us = 8,
_12_480_0_us = 9,
_25_ms = 10,
_50_ms = 11,
};
/* Integration time in milliseconds, nanoseconds */
static const int si1133_int_time_table[][2] = {
[_24_4_us] = {0, 24400},
[_48_8_us] = {0, 48800},
[_97_5_us] = {0, 97500},
[_195_0_us] = {0, 195000},
[_390_0_us] = {0, 390000},
[_780_0_us] = {0, 780000},
[_1_560_0_us] = {1, 560000},
[_3_120_0_us] = {3, 120000},
[_6_240_0_us] = {6, 240000},
[_12_480_0_us] = {12, 480000},
[_25_ms] = {25, 000000},
[_50_ms] = {50, 000000},
};
static const struct regmap_range si1133_reg_ranges[] = {
regmap_reg_range(0x00, 0x02),
regmap_reg_range(0x0A, 0x0B),
regmap_reg_range(0x0F, 0x0F),
regmap_reg_range(0x10, 0x12),
regmap_reg_range(0x13, 0x2C),
};
static const struct regmap_range si1133_reg_ro_ranges[] = {
regmap_reg_range(0x00, 0x02),
regmap_reg_range(0x10, 0x2C),
};
static const struct regmap_range si1133_precious_ranges[] = {
regmap_reg_range(0x12, 0x12),
};
static const struct regmap_access_table si1133_write_ranges_table = {
.yes_ranges = si1133_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(si1133_reg_ranges),
.no_ranges = si1133_reg_ro_ranges,
.n_no_ranges = ARRAY_SIZE(si1133_reg_ro_ranges),
};
static const struct regmap_access_table si1133_read_ranges_table = {
.yes_ranges = si1133_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(si1133_reg_ranges),
};
static const struct regmap_access_table si1133_precious_table = {
.yes_ranges = si1133_precious_ranges,
.n_yes_ranges = ARRAY_SIZE(si1133_precious_ranges),
};
static const struct regmap_config si1133_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x2C,
.wr_table = &si1133_write_ranges_table,
.rd_table = &si1133_read_ranges_table,
.precious_table = &si1133_precious_table,
};
struct si1133_data {
struct regmap *regmap;
struct i2c_client *client;
/* Lock protecting one command at a time can be processed */
struct mutex mutex;
int rsp_seq;
u8 scan_mask;
u8 adc_sens[6];
u8 adc_config[6];
struct completion completion;
};
struct si1133_coeff {
s16 info;
u16 mag;
};
struct si1133_lux_coeff {
struct si1133_coeff coeff_high[4];
struct si1133_coeff coeff_low[9];
};
static const struct si1133_lux_coeff lux_coeff = {
{
{ 0, 209},
{ 1665, 93},
{ 2064, 65},
{-2671, 234}
},
{
{ 0, 0},
{ 1921, 29053},
{-1022, 36363},
{ 2320, 20789},
{ -367, 57909},
{-1774, 38240},
{ -608, 46775},
{-1503, 51831},
{-1886, 58928}
}
};
static int si1133_calculate_polynomial_inner(s32 input, u8 fraction, u16 mag,
s8 shift)
{
return ((input << fraction) / mag) << shift;
}
static int si1133_calculate_output(s32 x, s32 y, u8 x_order, u8 y_order,
u8 input_fraction, s8 sign,
const struct si1133_coeff *coeffs)
{
s8 shift;
int x1 = 1;
int x2 = 1;
int y1 = 1;
int y2 = 1;
shift = ((u16)coeffs->info & 0xFF00) >> 8;
shift ^= 0xFF;
shift += 1;
shift = -shift;
if (x_order > 0) {
x1 = si1133_calculate_polynomial_inner(x, input_fraction,
coeffs->mag, shift);
if (x_order > 1)
x2 = x1;
}
if (y_order > 0) {
y1 = si1133_calculate_polynomial_inner(y, input_fraction,
coeffs->mag, shift);
if (y_order > 1)
y2 = y1;
}
return sign * x1 * x2 * y1 * y2;
}
/*
* The algorithm is from:
* https://siliconlabs.github.io/Gecko_SDK_Doc/efm32zg/html/si1133_8c_source.html#l00716
*/
static int si1133_calc_polynomial(s32 x, s32 y, u8 input_fraction, u8 num_coeff,
const struct si1133_coeff *coeffs)
{
u8 x_order, y_order;
u8 counter;
s8 sign;
int output = 0;
for (counter = 0; counter < num_coeff; counter++) {
if (coeffs->info < 0)
sign = -1;
else
sign = 1;
x_order = si1133_get_x_order(coeffs->info);
y_order = si1133_get_y_order(coeffs->info);
if ((x_order == 0) && (y_order == 0))
output +=
sign * coeffs->mag << SI1133_LUX_OUTPUT_FRACTION;
else
output += si1133_calculate_output(x, y, x_order,
y_order,
input_fraction, sign,
coeffs);
coeffs++;
}
return abs(output);
}
static int si1133_cmd_reset_sw(struct si1133_data *data)
{
struct device *dev = &data->client->dev;
unsigned int resp;
unsigned long timeout;
int err;
err = regmap_write(data->regmap, SI1133_REG_COMMAND,
SI1133_CMD_RESET_SW);
if (err)
return err;
timeout = jiffies + msecs_to_jiffies(SI1133_CMD_TIMEOUT_MS);
while (true) {
err = regmap_read(data->regmap, SI1133_REG_RESPONSE0, &resp);
if (err == -ENXIO) {
usleep_range(SI1133_CMD_MINSLEEP_US_LOW,
SI1133_CMD_MINSLEEP_US_HIGH);
continue;
}
if ((resp & SI1133_MAX_CMD_CTR) == SI1133_MAX_CMD_CTR)
break;
if (time_after(jiffies, timeout)) {
dev_warn(dev, "Timeout on reset ctr resp: %d\n", resp);
return -ETIMEDOUT;
}
}
if (!err)
data->rsp_seq = SI1133_MAX_CMD_CTR;
return err;
}
static int si1133_parse_response_err(struct device *dev, u32 resp, u8 cmd)
{
resp &= 0xF;
switch (resp) {
case SI1133_ERR_OUTPUT_BUFFER_OVERFLOW:
dev_warn(dev, "Output buffer overflow: %#02hhx\n", cmd);
return -EOVERFLOW;
case SI1133_ERR_SATURATION_ADC_OR_OVERFLOW_ACCUMULATION:
dev_warn(dev, "Saturation of the ADC or overflow of accumulation: %#02hhx\n",
cmd);
return -EOVERFLOW;
case SI1133_ERR_INVALID_LOCATION_CMD:
dev_warn(dev,
"Parameter access to an invalid location: %#02hhx\n",
cmd);
return -EINVAL;
case SI1133_ERR_INVALID_CMD:
dev_warn(dev, "Invalid command %#02hhx\n", cmd);
return -EINVAL;
default:
dev_warn(dev, "Unknown error %#02hhx\n", cmd);
return -EINVAL;
}
}
static int si1133_cmd_reset_counter(struct si1133_data *data)
{
int err = regmap_write(data->regmap, SI1133_REG_COMMAND,
SI1133_CMD_RESET_CTR);
if (err)
return err;
data->rsp_seq = 0;
return 0;
}
static int si1133_command(struct si1133_data *data, u8 cmd)
{
struct device *dev = &data->client->dev;
u32 resp;
int err;
int expected_seq;
mutex_lock(&data->mutex);
expected_seq = (data->rsp_seq + 1) & SI1133_MAX_CMD_CTR;
if (cmd == SI1133_CMD_FORCE)
reinit_completion(&data->completion);
err = regmap_write(data->regmap, SI1133_REG_COMMAND, cmd);
if (err) {
dev_warn(dev, "Failed to write command %#02hhx, ret=%d\n", cmd,
err);
goto out;
}
if (cmd == SI1133_CMD_FORCE) {
/* wait for irq */
if (!wait_for_completion_timeout(&data->completion,
msecs_to_jiffies(SI1133_COMPLETION_TIMEOUT_MS))) {
err = -ETIMEDOUT;
goto out;
}
err = regmap_read(data->regmap, SI1133_REG_RESPONSE0, &resp);
if (err)
goto out;
} else {
err = regmap_read_poll_timeout(data->regmap,
SI1133_REG_RESPONSE0, resp,
(resp & SI1133_CMD_SEQ_MASK) ==
expected_seq ||
(resp & SI1133_CMD_ERR_MASK),
SI1133_CMD_MINSLEEP_US_LOW,
SI1133_CMD_TIMEOUT_MS * 1000);
if (err) {
dev_warn(dev,
"Failed to read command %#02hhx, ret=%d\n",
cmd, err);
goto out;
}
}
if (resp & SI1133_CMD_ERR_MASK) {
err = si1133_parse_response_err(dev, resp, cmd);
si1133_cmd_reset_counter(data);
} else {
data->rsp_seq = expected_seq;
}
out:
mutex_unlock(&data->mutex);
return err;
}
static int si1133_param_set(struct si1133_data *data, u8 param, u32 value)
{
int err = regmap_write(data->regmap, SI1133_REG_HOSTIN0, value);
if (err)
return err;
return si1133_command(data, SI1133_CMD_PARAM_SET |
(param & SI1133_CMD_PARAM_MASK));
}
static int si1133_param_query(struct si1133_data *data, u8 param, u32 *result)
{
int err = si1133_command(data, SI1133_CMD_PARAM_QUERY |
(param & SI1133_CMD_PARAM_MASK));
if (err)
return err;
return regmap_read(data->regmap, SI1133_REG_RESPONSE1, result);
}
#define SI1133_CHANNEL(_ch, _type) \
.type = _type, \
.channel = _ch, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_HARDWAREGAIN), \
static const struct iio_chan_spec si1133_channels[] = {
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.channel = 0,
},
{
SI1133_CHANNEL(SI1133_PARAM_ADCMUX_WHITE, IIO_INTENSITY)
.channel2 = IIO_MOD_LIGHT_BOTH,
},
{
SI1133_CHANNEL(SI1133_PARAM_ADCMUX_LARGE_WHITE, IIO_INTENSITY)
.channel2 = IIO_MOD_LIGHT_BOTH,
.extend_name = "large",
},
{
SI1133_CHANNEL(SI1133_PARAM_ADCMUX_SMALL_IR, IIO_INTENSITY)
.extend_name = "small",
.modified = 1,
.channel2 = IIO_MOD_LIGHT_IR,
},
{
SI1133_CHANNEL(SI1133_PARAM_ADCMUX_MED_IR, IIO_INTENSITY)
.modified = 1,
.channel2 = IIO_MOD_LIGHT_IR,
},
{
SI1133_CHANNEL(SI1133_PARAM_ADCMUX_LARGE_IR, IIO_INTENSITY)
.extend_name = "large",
.modified = 1,
.channel2 = IIO_MOD_LIGHT_IR,
},
{
SI1133_CHANNEL(SI1133_PARAM_ADCMUX_UV, IIO_UVINDEX)
},
{
SI1133_CHANNEL(SI1133_PARAM_ADCMUX_UV_DEEP, IIO_UVINDEX)
.modified = 1,
.channel2 = IIO_MOD_LIGHT_DUV,
}
};
static int si1133_get_int_time_index(int milliseconds, int nanoseconds)
{
int i;
for (i = 0; i < ARRAY_SIZE(si1133_int_time_table); i++) {
if (milliseconds == si1133_int_time_table[i][0] &&
nanoseconds == si1133_int_time_table[i][1])
return i;
}
return -EINVAL;
}
static int si1133_set_integration_time(struct si1133_data *data, u8 adc,
int milliseconds, int nanoseconds)
{
int index;
index = si1133_get_int_time_index(milliseconds, nanoseconds);
if (index < 0)
return index;
data->adc_sens[adc] &= 0xF0;
data->adc_sens[adc] |= index;
return si1133_param_set(data, SI1133_PARAM_REG_ADCSENS(0),
data->adc_sens[adc]);
}
static int si1133_set_chlist(struct si1133_data *data, u8 scan_mask)
{
/* channel list already set, no need to reprogram */
if (data->scan_mask == scan_mask)
return 0;
data->scan_mask = scan_mask;
return si1133_param_set(data, SI1133_PARAM_REG_CHAN_LIST, scan_mask);
}
static int si1133_chan_set_adcconfig(struct si1133_data *data, u8 adc,
u8 adc_config)
{
int err;
err = si1133_param_set(data, SI1133_PARAM_REG_ADCCONFIG(adc),
adc_config);
if (err)
return err;
data->adc_config[adc] = adc_config;
return 0;
}
static int si1133_update_adcconfig(struct si1133_data *data, uint8_t adc,
u8 mask, u8 shift, u8 value)
{
u32 adc_config;
int err;
err = si1133_param_query(data, SI1133_PARAM_REG_ADCCONFIG(adc),
&adc_config);
if (err)
return err;
adc_config &= ~mask;
adc_config |= (value << shift);
return si1133_chan_set_adcconfig(data, adc, adc_config);
}
static int si1133_set_adcmux(struct si1133_data *data, u8 adc, u8 mux)
{
if ((mux & data->adc_config[adc]) == mux)
return 0; /* mux already set to correct value */
return si1133_update_adcconfig(data, adc, SI1133_ADCMUX_MASK, 0, mux);
}
static int si1133_force_measurement(struct si1133_data *data)
{
return si1133_command(data, SI1133_CMD_FORCE);
}
static int si1133_bulk_read(struct si1133_data *data, u8 start_reg, u8 length,
u8 *buffer)
{
int err;
err = si1133_force_measurement(data);
if (err)
return err;
return regmap_bulk_read(data->regmap, start_reg, buffer, length);
}
static int si1133_measure(struct si1133_data *data,
struct iio_chan_spec const *chan,
int *val)
{
int err;
u8 buffer[SI1133_MEASURE_BUFFER_SIZE];
err = si1133_set_adcmux(data, 0, chan->channel);
if (err)
return err;
/* Deactivate lux measurements if they were active */
err = si1133_set_chlist(data, BIT(0));
if (err)
return err;
err = si1133_bulk_read(data, SI1133_REG_HOSTOUT(0), sizeof(buffer),
buffer);
if (err)
return err;
*val = sign_extend32((buffer[0] << 16) | (buffer[1] << 8) | buffer[2],
SI1133_SIGN_BIT_INDEX);
return err;
}
static irqreturn_t si1133_threaded_irq_handler(int irq, void *private)
{
struct iio_dev *iio_dev = private;
struct si1133_data *data = iio_priv(iio_dev);
u32 irq_status;
int err;
err = regmap_read(data->regmap, SI1133_REG_IRQ_STATUS, &irq_status);
if (err) {
dev_err_ratelimited(&iio_dev->dev, "Error reading IRQ\n");
goto out;
}
if (irq_status != data->scan_mask)
return IRQ_NONE;
out:
complete(&data->completion);
return IRQ_HANDLED;
}
static int si1133_scale_to_swgain(int scale_integer, int scale_fractional)
{
scale_integer = find_closest(scale_integer, si1133_scale_available,
ARRAY_SIZE(si1133_scale_available));
if (scale_integer < 0 ||
scale_integer > ARRAY_SIZE(si1133_scale_available) ||
scale_fractional != 0)
return -EINVAL;
return scale_integer;
}
static int si1133_chan_set_adcsens(struct si1133_data *data, u8 adc,
u8 adc_sens)
{
int err;
err = si1133_param_set(data, SI1133_PARAM_REG_ADCSENS(adc), adc_sens);
if (err)
return err;
data->adc_sens[adc] = adc_sens;
return 0;
}
static int si1133_update_adcsens(struct si1133_data *data, u8 mask,
u8 shift, u8 value)
{
int err;
u32 adc_sens;
err = si1133_param_query(data, SI1133_PARAM_REG_ADCSENS(0),
&adc_sens);
if (err)
return err;
adc_sens &= ~mask;
adc_sens |= (value << shift);
return si1133_chan_set_adcsens(data, 0, adc_sens);
}
static int si1133_get_lux(struct si1133_data *data, int *val)
{
int err;
int lux;
s32 high_vis;
s32 low_vis;
s32 ir;
u8 buffer[SI1133_LUX_BUFFER_SIZE];
/* Activate lux channels */
err = si1133_set_chlist(data, SI1133_LUX_ADC_MASK);
if (err)
return err;
err = si1133_bulk_read(data, SI1133_REG_HOSTOUT(0),
SI1133_LUX_BUFFER_SIZE, buffer);
if (err)
return err;
high_vis =
sign_extend32((buffer[0] << 16) | (buffer[1] << 8) | buffer[2],
SI1133_SIGN_BIT_INDEX);
low_vis =
sign_extend32((buffer[3] << 16) | (buffer[4] << 8) | buffer[5],
SI1133_SIGN_BIT_INDEX);
ir = sign_extend32((buffer[6] << 16) | (buffer[7] << 8) | buffer[8],
SI1133_SIGN_BIT_INDEX);
if (high_vis > SI1133_ADC_THRESHOLD || ir > SI1133_ADC_THRESHOLD)
lux = si1133_calc_polynomial(high_vis, ir,
SI1133_INPUT_FRACTION_HIGH,
ARRAY_SIZE(lux_coeff.coeff_high),
&lux_coeff.coeff_high[0]);
else
lux = si1133_calc_polynomial(low_vis, ir,
SI1133_INPUT_FRACTION_LOW,
ARRAY_SIZE(lux_coeff.coeff_low),
&lux_coeff.coeff_low[0]);
*val = lux >> SI1133_LUX_OUTPUT_FRACTION;
return err;
}
static int si1133_read_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct si1133_data *data = iio_priv(iio_dev);
u8 adc_sens = data->adc_sens[0];
int err;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_LIGHT:
err = si1133_get_lux(data, val);
if (err)
return err;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_INTENSITY:
case IIO_UVINDEX:
err = si1133_measure(data, chan, val);
if (err)
return err;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_INT_TIME:
switch (chan->type) {
case IIO_INTENSITY:
case IIO_UVINDEX:
adc_sens &= SI1133_ADCSENS_HW_GAIN_MASK;
*val = si1133_int_time_table[adc_sens][0];
*val2 = si1133_int_time_table[adc_sens][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_INTENSITY:
case IIO_UVINDEX:
adc_sens &= SI1133_ADCSENS_SCALE_MASK;
adc_sens >>= SI1133_ADCSENS_SCALE_SHIFT;
*val = BIT(adc_sens);
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HARDWAREGAIN:
switch (chan->type) {
case IIO_INTENSITY:
case IIO_UVINDEX:
adc_sens >>= SI1133_ADCSENS_HSIG_SHIFT;
*val = adc_sens;
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int si1133_write_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct si1133_data *data = iio_priv(iio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_INTENSITY:
case IIO_UVINDEX:
val = si1133_scale_to_swgain(val, val2);
if (val < 0)
return val;
return si1133_update_adcsens(data,
SI1133_ADCSENS_SCALE_MASK,
SI1133_ADCSENS_SCALE_SHIFT,
val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_INT_TIME:
return si1133_set_integration_time(data, 0, val, val2);
case IIO_CHAN_INFO_HARDWAREGAIN:
switch (chan->type) {
case IIO_INTENSITY:
case IIO_UVINDEX:
if (val != 0 && val != 1)
return -EINVAL;
return si1133_update_adcsens(data,
SI1133_ADCSENS_HSIG_MASK,
SI1133_ADCSENS_HSIG_SHIFT,
val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static struct attribute *si1133_attributes[] = {
&iio_const_attr_integration_time_available.dev_attr.attr,
&iio_const_attr_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group si1133_attribute_group = {
.attrs = si1133_attributes,
};
static const struct iio_info si1133_info = {
.read_raw = si1133_read_raw,
.write_raw = si1133_write_raw,
.attrs = &si1133_attribute_group,
};
/*
* si1133_init_lux_channels - Configure 3 different channels(adc) (1,2 and 3)
* The channel configuration for the lux measurement was taken from :
* https://siliconlabs.github.io/Gecko_SDK_Doc/efm32zg/html/si1133_8c_source.html#l00578
*
* Reserved the channel 0 for the other raw measurements
*/
static int si1133_init_lux_channels(struct si1133_data *data)
{
int err;
err = si1133_chan_set_adcconfig(data, 1,
SI1133_ADCCONFIG_DECIM_RATE(1) |
SI1133_PARAM_ADCMUX_LARGE_WHITE);
if (err)
return err;
err = si1133_param_set(data, SI1133_PARAM_REG_ADCPOST(1),
SI1133_ADCPOST_24BIT_EN |
SI1133_ADCPOST_POSTSHIFT_BITQTY(0));
if (err)
return err;
err = si1133_chan_set_adcsens(data, 1, SI1133_ADCSENS_HSIG_MASK |
SI1133_ADCSENS_NB_MEAS(64) | _48_8_us);
if (err)
return err;
err = si1133_chan_set_adcconfig(data, 2,
SI1133_ADCCONFIG_DECIM_RATE(1) |
SI1133_PARAM_ADCMUX_LARGE_WHITE);
if (err)
return err;
err = si1133_param_set(data, SI1133_PARAM_REG_ADCPOST(2),
SI1133_ADCPOST_24BIT_EN |
SI1133_ADCPOST_POSTSHIFT_BITQTY(2));
if (err)
return err;
err = si1133_chan_set_adcsens(data, 2, SI1133_ADCSENS_HSIG_MASK |
SI1133_ADCSENS_NB_MEAS(1) | _3_120_0_us);
if (err)
return err;
err = si1133_chan_set_adcconfig(data, 3,
SI1133_ADCCONFIG_DECIM_RATE(1) |
SI1133_PARAM_ADCMUX_MED_IR);
if (err)
return err;
err = si1133_param_set(data, SI1133_PARAM_REG_ADCPOST(3),
SI1133_ADCPOST_24BIT_EN |
SI1133_ADCPOST_POSTSHIFT_BITQTY(2));
if (err)
return err;
return si1133_chan_set_adcsens(data, 3, SI1133_ADCSENS_HSIG_MASK |
SI1133_ADCSENS_NB_MEAS(64) | _48_8_us);
}
static int si1133_initialize(struct si1133_data *data)
{
int err;
err = si1133_cmd_reset_sw(data);
if (err)
return err;
/* Turn off autonomous mode */
err = si1133_param_set(data, SI1133_REG_MEAS_RATE, 0);
if (err)
return err;
err = si1133_init_lux_channels(data);
if (err)
return err;
return regmap_write(data->regmap, SI1133_REG_IRQ_ENABLE,
SI1133_IRQ_CHANNEL_ENABLE);
}
static int si1133_validate_ids(struct iio_dev *iio_dev)
{
struct si1133_data *data = iio_priv(iio_dev);
unsigned int part_id, rev_id, mfr_id;
int err;
err = regmap_read(data->regmap, SI1133_REG_PART_ID, &part_id);
if (err)
return err;
err = regmap_read(data->regmap, SI1133_REG_REV_ID, &rev_id);
if (err)
return err;
err = regmap_read(data->regmap, SI1133_REG_MFR_ID, &mfr_id);
if (err)
return err;
dev_info(&iio_dev->dev,
"Device ID part %#02hhx rev %#02hhx mfr %#02hhx\n",
part_id, rev_id, mfr_id);
if (part_id != SI1133_PART_ID) {
dev_err(&iio_dev->dev,
"Part ID mismatch got %#02hhx, expected %#02x\n",
part_id, SI1133_PART_ID);
return -ENODEV;
}
return 0;
}
static int si1133_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct si1133_data *data;
struct iio_dev *iio_dev;
int err;
iio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!iio_dev)
return -ENOMEM;
data = iio_priv(iio_dev);
init_completion(&data->completion);
data->regmap = devm_regmap_init_i2c(client, &si1133_regmap_config);
if (IS_ERR(data->regmap)) {
err = PTR_ERR(data->regmap);
dev_err(&client->dev, "Failed to initialise regmap: %d\n", err);
return err;
}
i2c_set_clientdata(client, iio_dev);
data->client = client;
iio_dev->dev.parent = &client->dev;
iio_dev->name = id->name;
iio_dev->channels = si1133_channels;
iio_dev->num_channels = ARRAY_SIZE(si1133_channels);
iio_dev->info = &si1133_info;
iio_dev->modes = INDIO_DIRECT_MODE;
mutex_init(&data->mutex);
err = si1133_validate_ids(iio_dev);
if (err)
return err;
err = si1133_initialize(data);
if (err) {
dev_err(&client->dev,
"Error when initializing chip: %d\n", err);
return err;
}
if (!client->irq) {
dev_err(&client->dev,
"Required interrupt not provided, cannot proceed\n");
return -EINVAL;
}
err = devm_request_threaded_irq(&client->dev, client->irq,
NULL,
si1133_threaded_irq_handler,
IRQF_ONESHOT | IRQF_SHARED,
client->name, iio_dev);
if (err) {
dev_warn(&client->dev, "Request irq %d failed: %i\n",
client->irq, err);
return err;
}
return devm_iio_device_register(&client->dev, iio_dev);
}
static const struct i2c_device_id si1133_ids[] = {
{ "si1133", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, si1133_ids);
static struct i2c_driver si1133_driver = {
.driver = {
.name = "si1133",
},
.probe = si1133_probe,
.id_table = si1133_ids,
};
module_i2c_driver(si1133_driver);
MODULE_AUTHOR("Maxime Roussin-Belanger <maxime.roussinbelanger@gmail.com>");
MODULE_DESCRIPTION("Silabs SI1133, UV index sensor and ambient light sensor driver");
MODULE_LICENSE("GPL");