2015-01-20 13:15:22 +03:00
/*
* Copyright ( c ) 2012 - 2014 , The Linux Foundation . All rights reserved .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*/
# include <linux/bitops.h>
# include <linux/completion.h>
# include <linux/delay.h>
# include <linux/err.h>
# include <linux/iio/iio.h>
# include <linux/interrupt.h>
# include <linux/kernel.h>
2015-04-17 17:51:08 +03:00
# include <linux/math64.h>
2015-01-20 13:15:22 +03:00
# include <linux/module.h>
# include <linux/of.h>
# include <linux/platform_device.h>
# include <linux/regmap.h>
# include <linux/slab.h>
# include <linux/log2.h>
# include <dt-bindings/iio/qcom,spmi-vadc.h>
/* VADC register and bit definitions */
# define VADC_REVISION2 0x1
# define VADC_REVISION2_SUPPORTED_VADC 1
# define VADC_PERPH_TYPE 0x4
# define VADC_PERPH_TYPE_ADC 8
# define VADC_PERPH_SUBTYPE 0x5
# define VADC_PERPH_SUBTYPE_VADC 1
# define VADC_STATUS1 0x8
# define VADC_STATUS1_OP_MODE 4
# define VADC_STATUS1_REQ_STS BIT(1)
# define VADC_STATUS1_EOC BIT(0)
# define VADC_STATUS1_REQ_STS_EOC_MASK 0x3
# define VADC_MODE_CTL 0x40
# define VADC_OP_MODE_SHIFT 3
# define VADC_OP_MODE_NORMAL 0
# define VADC_AMUX_TRIM_EN BIT(1)
# define VADC_ADC_TRIM_EN BIT(0)
# define VADC_EN_CTL1 0x46
# define VADC_EN_CTL1_SET BIT(7)
# define VADC_ADC_CH_SEL_CTL 0x48
# define VADC_ADC_DIG_PARAM 0x50
# define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
# define VADC_HW_SETTLE_DELAY 0x51
# define VADC_CONV_REQ 0x52
# define VADC_CONV_REQ_SET BIT(7)
# define VADC_FAST_AVG_CTL 0x5a
# define VADC_FAST_AVG_EN 0x5b
# define VADC_FAST_AVG_EN_SET BIT(7)
# define VADC_ACCESS 0xd0
# define VADC_ACCESS_DATA 0xa5
# define VADC_PERH_RESET_CTL3 0xda
# define VADC_FOLLOW_WARM_RB BIT(2)
# define VADC_DATA 0x60 /* 16 bits */
# define VADC_CONV_TIME_MIN_US 2000
# define VADC_CONV_TIME_MAX_US 2100
/* Min ADC code represents 0V */
# define VADC_MIN_ADC_CODE 0x6000
/* Max ADC code represents full-scale range of 1.8V */
# define VADC_MAX_ADC_CODE 0xa800
# define VADC_ABSOLUTE_RANGE_UV 625000
# define VADC_RATIOMETRIC_RANGE_UV 1800000
# define VADC_DEF_PRESCALING 0 /* 1:1 */
# define VADC_DEF_DECIMATION 0 /* 512 */
# define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */
# define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */
# define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE
# define VADC_DECIMATION_MIN 512
# define VADC_DECIMATION_MAX 4096
# define VADC_HW_SETTLE_DELAY_MAX 10000
# define VADC_AVG_SAMPLES_MAX 512
# define KELVINMIL_CELSIUSMIL 273150
# define VADC_CHAN_MIN VADC_USBIN
# define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM
/*
* VADC_CALIB_ABSOLUTE : uses the 625 mV and 1.25 V as reference channels .
* VADC_CALIB_RATIOMETRIC : uses the reference voltage ( 1.8 V ) and GND for
* calibration .
*/
enum vadc_calibration {
VADC_CALIB_ABSOLUTE = 0 ,
VADC_CALIB_RATIOMETRIC
} ;
/**
* struct vadc_linear_graph - Represent ADC characteristics .
* @ dy : numerator slope to calculate the gain .
* @ dx : denominator slope to calculate the gain .
* @ gnd : A / D word of the ground reference used for the channel .
*
* Each ADC device has different offset and gain parameters which are
* computed to calibrate the device .
*/
struct vadc_linear_graph {
s32 dy ;
s32 dx ;
s32 gnd ;
} ;
/**
* struct vadc_prescale_ratio - Represent scaling ratio for ADC input .
* @ num : the inverse numerator of the gain applied to the input channel .
* @ den : the inverse denominator of the gain applied to the input channel .
*/
struct vadc_prescale_ratio {
u32 num ;
u32 den ;
} ;
/**
* struct vadc_channel_prop - VADC channel property .
* @ channel : channel number , refer to the channel list .
* @ calibration : calibration type .
* @ decimation : sampling rate supported for the channel .
* @ prescale : channel scaling performed on the input signal .
* @ hw_settle_time : the time between AMUX being configured and the
* start of conversion .
* @ avg_samples : ability to provide single result from the ADC
* that is an average of multiple measurements .
*/
struct vadc_channel_prop {
unsigned int channel ;
enum vadc_calibration calibration ;
unsigned int decimation ;
unsigned int prescale ;
unsigned int hw_settle_time ;
unsigned int avg_samples ;
} ;
/**
* struct vadc_priv - VADC private structure .
* @ regmap : pointer to struct regmap .
* @ dev : pointer to struct device .
* @ base : base address for the ADC peripheral .
* @ nchannels : number of VADC channels .
* @ chan_props : array of VADC channel properties .
* @ iio_chans : array of IIO channels specification .
* @ are_ref_measured : are reference points measured .
* @ poll_eoc : use polling instead of interrupt .
* @ complete : VADC result notification after interrupt is received .
* @ graph : store parameters for calibration .
* @ lock : ADC lock for access to the peripheral .
*/
struct vadc_priv {
struct regmap * regmap ;
struct device * dev ;
u16 base ;
unsigned int nchannels ;
struct vadc_channel_prop * chan_props ;
struct iio_chan_spec * iio_chans ;
bool are_ref_measured ;
bool poll_eoc ;
struct completion complete ;
struct vadc_linear_graph graph [ 2 ] ;
struct mutex lock ;
} ;
static const struct vadc_prescale_ratio vadc_prescale_ratios [ ] = {
{ . num = 1 , . den = 1 } ,
{ . num = 1 , . den = 3 } ,
{ . num = 1 , . den = 4 } ,
{ . num = 1 , . den = 6 } ,
{ . num = 1 , . den = 20 } ,
{ . num = 1 , . den = 8 } ,
{ . num = 10 , . den = 81 } ,
{ . num = 1 , . den = 10 }
} ;
static int vadc_read ( struct vadc_priv * vadc , u16 offset , u8 * data )
{
return regmap_bulk_read ( vadc - > regmap , vadc - > base + offset , data , 1 ) ;
}
static int vadc_write ( struct vadc_priv * vadc , u16 offset , u8 data )
{
return regmap_write ( vadc - > regmap , vadc - > base + offset , data ) ;
}
static int vadc_reset ( struct vadc_priv * vadc )
{
u8 data ;
int ret ;
ret = vadc_write ( vadc , VADC_ACCESS , VADC_ACCESS_DATA ) ;
if ( ret )
return ret ;
ret = vadc_read ( vadc , VADC_PERH_RESET_CTL3 , & data ) ;
if ( ret )
return ret ;
ret = vadc_write ( vadc , VADC_ACCESS , VADC_ACCESS_DATA ) ;
if ( ret )
return ret ;
data | = VADC_FOLLOW_WARM_RB ;
return vadc_write ( vadc , VADC_PERH_RESET_CTL3 , data ) ;
}
static int vadc_set_state ( struct vadc_priv * vadc , bool state )
{
return vadc_write ( vadc , VADC_EN_CTL1 , state ? VADC_EN_CTL1_SET : 0 ) ;
}
static void vadc_show_status ( struct vadc_priv * vadc )
{
u8 mode , sta1 , chan , dig , en , req ;
int ret ;
ret = vadc_read ( vadc , VADC_MODE_CTL , & mode ) ;
if ( ret )
return ;
ret = vadc_read ( vadc , VADC_ADC_DIG_PARAM , & dig ) ;
if ( ret )
return ;
ret = vadc_read ( vadc , VADC_ADC_CH_SEL_CTL , & chan ) ;
if ( ret )
return ;
ret = vadc_read ( vadc , VADC_CONV_REQ , & req ) ;
if ( ret )
return ;
ret = vadc_read ( vadc , VADC_STATUS1 , & sta1 ) ;
if ( ret )
return ;
ret = vadc_read ( vadc , VADC_EN_CTL1 , & en ) ;
if ( ret )
return ;
dev_err ( vadc - > dev ,
" mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x \n " ,
mode , en , chan , dig , req , sta1 ) ;
}
static int vadc_configure ( struct vadc_priv * vadc ,
struct vadc_channel_prop * prop )
{
u8 decimation , mode_ctrl ;
int ret ;
/* Mode selection */
mode_ctrl = ( VADC_OP_MODE_NORMAL < < VADC_OP_MODE_SHIFT ) |
VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN ;
ret = vadc_write ( vadc , VADC_MODE_CTL , mode_ctrl ) ;
if ( ret )
return ret ;
/* Channel selection */
ret = vadc_write ( vadc , VADC_ADC_CH_SEL_CTL , prop - > channel ) ;
if ( ret )
return ret ;
/* Digital parameter setup */
decimation = prop - > decimation < < VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT ;
ret = vadc_write ( vadc , VADC_ADC_DIG_PARAM , decimation ) ;
if ( ret )
return ret ;
/* HW settle time delay */
ret = vadc_write ( vadc , VADC_HW_SETTLE_DELAY , prop - > hw_settle_time ) ;
if ( ret )
return ret ;
ret = vadc_write ( vadc , VADC_FAST_AVG_CTL , prop - > avg_samples ) ;
if ( ret )
return ret ;
if ( prop - > avg_samples )
ret = vadc_write ( vadc , VADC_FAST_AVG_EN , VADC_FAST_AVG_EN_SET ) ;
else
ret = vadc_write ( vadc , VADC_FAST_AVG_EN , 0 ) ;
return ret ;
}
static int vadc_poll_wait_eoc ( struct vadc_priv * vadc , unsigned int interval_us )
{
unsigned int count , retry ;
u8 sta1 ;
int ret ;
retry = interval_us / VADC_CONV_TIME_MIN_US ;
for ( count = 0 ; count < retry ; count + + ) {
ret = vadc_read ( vadc , VADC_STATUS1 , & sta1 ) ;
if ( ret )
return ret ;
sta1 & = VADC_STATUS1_REQ_STS_EOC_MASK ;
if ( sta1 = = VADC_STATUS1_EOC )
return 0 ;
usleep_range ( VADC_CONV_TIME_MIN_US , VADC_CONV_TIME_MAX_US ) ;
}
vadc_show_status ( vadc ) ;
return - ETIMEDOUT ;
}
static int vadc_read_result ( struct vadc_priv * vadc , u16 * data )
{
int ret ;
ret = regmap_bulk_read ( vadc - > regmap , vadc - > base + VADC_DATA , data , 2 ) ;
if ( ret )
return ret ;
* data = clamp_t ( u16 , * data , VADC_MIN_ADC_CODE , VADC_MAX_ADC_CODE ) ;
return 0 ;
}
static struct vadc_channel_prop * vadc_get_channel ( struct vadc_priv * vadc ,
unsigned int num )
{
unsigned int i ;
for ( i = 0 ; i < vadc - > nchannels ; i + + )
if ( vadc - > chan_props [ i ] . channel = = num )
return & vadc - > chan_props [ i ] ;
dev_dbg ( vadc - > dev , " no such channel %02x \n " , num ) ;
return NULL ;
}
static int vadc_do_conversion ( struct vadc_priv * vadc ,
struct vadc_channel_prop * prop , u16 * data )
{
unsigned int timeout ;
int ret ;
mutex_lock ( & vadc - > lock ) ;
ret = vadc_configure ( vadc , prop ) ;
if ( ret )
goto unlock ;
if ( ! vadc - > poll_eoc )
reinit_completion ( & vadc - > complete ) ;
ret = vadc_set_state ( vadc , true ) ;
if ( ret )
goto unlock ;
ret = vadc_write ( vadc , VADC_CONV_REQ , VADC_CONV_REQ_SET ) ;
if ( ret )
goto err_disable ;
timeout = BIT ( prop - > avg_samples ) * VADC_CONV_TIME_MIN_US * 2 ;
if ( vadc - > poll_eoc ) {
ret = vadc_poll_wait_eoc ( vadc , timeout ) ;
} else {
ret = wait_for_completion_timeout ( & vadc - > complete , timeout ) ;
if ( ! ret ) {
ret = - ETIMEDOUT ;
goto err_disable ;
}
/* Double check conversion status */
ret = vadc_poll_wait_eoc ( vadc , VADC_CONV_TIME_MIN_US ) ;
if ( ret )
goto err_disable ;
}
ret = vadc_read_result ( vadc , data ) ;
err_disable :
vadc_set_state ( vadc , false ) ;
if ( ret )
dev_err ( vadc - > dev , " conversion failed \n " ) ;
unlock :
mutex_unlock ( & vadc - > lock ) ;
return ret ;
}
static int vadc_measure_ref_points ( struct vadc_priv * vadc )
{
struct vadc_channel_prop * prop ;
u16 read_1 , read_2 ;
int ret ;
vadc - > graph [ VADC_CALIB_RATIOMETRIC ] . dx = VADC_RATIOMETRIC_RANGE_UV ;
vadc - > graph [ VADC_CALIB_ABSOLUTE ] . dx = VADC_ABSOLUTE_RANGE_UV ;
prop = vadc_get_channel ( vadc , VADC_REF_1250MV ) ;
ret = vadc_do_conversion ( vadc , prop , & read_1 ) ;
if ( ret )
goto err ;
/* Try with buffered 625mV channel first */
prop = vadc_get_channel ( vadc , VADC_SPARE1 ) ;
if ( ! prop )
prop = vadc_get_channel ( vadc , VADC_REF_625MV ) ;
ret = vadc_do_conversion ( vadc , prop , & read_2 ) ;
if ( ret )
goto err ;
if ( read_1 = = read_2 ) {
ret = - EINVAL ;
goto err ;
}
vadc - > graph [ VADC_CALIB_ABSOLUTE ] . dy = read_1 - read_2 ;
vadc - > graph [ VADC_CALIB_ABSOLUTE ] . gnd = read_2 ;
/* Ratiometric calibration */
prop = vadc_get_channel ( vadc , VADC_VDD_VADC ) ;
ret = vadc_do_conversion ( vadc , prop , & read_1 ) ;
if ( ret )
goto err ;
prop = vadc_get_channel ( vadc , VADC_GND_REF ) ;
ret = vadc_do_conversion ( vadc , prop , & read_2 ) ;
if ( ret )
goto err ;
if ( read_1 = = read_2 ) {
ret = - EINVAL ;
goto err ;
}
vadc - > graph [ VADC_CALIB_RATIOMETRIC ] . dy = read_1 - read_2 ;
vadc - > graph [ VADC_CALIB_RATIOMETRIC ] . gnd = read_2 ;
err :
if ( ret )
dev_err ( vadc - > dev , " measure reference points failed \n " ) ;
return ret ;
}
static s32 vadc_calibrate ( struct vadc_priv * vadc ,
const struct vadc_channel_prop * prop , u16 adc_code )
{
const struct vadc_prescale_ratio * prescale ;
2015-04-17 17:51:08 +03:00
s64 voltage ;
2015-01-20 13:15:22 +03:00
voltage = adc_code - vadc - > graph [ prop - > calibration ] . gnd ;
voltage * = vadc - > graph [ prop - > calibration ] . dx ;
2015-04-17 17:51:08 +03:00
voltage = div64_s64 ( voltage , vadc - > graph [ prop - > calibration ] . dy ) ;
2015-01-20 13:15:22 +03:00
if ( prop - > calibration = = VADC_CALIB_ABSOLUTE )
voltage + = vadc - > graph [ prop - > calibration ] . dx ;
if ( voltage < 0 )
voltage = 0 ;
prescale = & vadc_prescale_ratios [ prop - > prescale ] ;
voltage = voltage * prescale - > den ;
2015-04-17 17:51:08 +03:00
return div64_s64 ( voltage , prescale - > num ) ;
2015-01-20 13:15:22 +03:00
}
static int vadc_decimation_from_dt ( u32 value )
{
if ( ! is_power_of_2 ( value ) | | value < VADC_DECIMATION_MIN | |
value > VADC_DECIMATION_MAX )
return - EINVAL ;
return __ffs64 ( value / VADC_DECIMATION_MIN ) ;
}
static int vadc_prescaling_from_dt ( u32 num , u32 den )
{
unsigned int pre ;
for ( pre = 0 ; pre < ARRAY_SIZE ( vadc_prescale_ratios ) ; pre + + )
if ( vadc_prescale_ratios [ pre ] . num = = num & &
vadc_prescale_ratios [ pre ] . den = = den )
break ;
if ( pre = = ARRAY_SIZE ( vadc_prescale_ratios ) )
return - EINVAL ;
return pre ;
}
static int vadc_hw_settle_time_from_dt ( u32 value )
{
if ( ( value < = 1000 & & value % 100 ) | | ( value > 1000 & & value % 2000 ) )
return - EINVAL ;
if ( value < = 1000 )
value / = 100 ;
else
value = value / 2000 + 10 ;
return value ;
}
static int vadc_avg_samples_from_dt ( u32 value )
{
if ( ! is_power_of_2 ( value ) | | value > VADC_AVG_SAMPLES_MAX )
return - EINVAL ;
return __ffs64 ( value ) ;
}
static int vadc_read_raw ( struct iio_dev * indio_dev ,
struct iio_chan_spec const * chan , int * val , int * val2 ,
long mask )
{
struct vadc_priv * vadc = iio_priv ( indio_dev ) ;
struct vadc_channel_prop * prop ;
u16 adc_code ;
int ret ;
switch ( mask ) {
case IIO_CHAN_INFO_PROCESSED :
prop = & vadc - > chan_props [ chan - > address ] ;
ret = vadc_do_conversion ( vadc , prop , & adc_code ) ;
if ( ret )
break ;
* val = vadc_calibrate ( vadc , prop , adc_code ) ;
/* 2mV/K, return milli Celsius */
* val / = 2 ;
* val - = KELVINMIL_CELSIUSMIL ;
return IIO_VAL_INT ;
case IIO_CHAN_INFO_RAW :
prop = & vadc - > chan_props [ chan - > address ] ;
ret = vadc_do_conversion ( vadc , prop , & adc_code ) ;
if ( ret )
break ;
* val = vadc_calibrate ( vadc , prop , adc_code ) ;
return IIO_VAL_INT ;
case IIO_CHAN_INFO_SCALE :
* val = 0 ;
* val2 = 1000 ;
return IIO_VAL_INT_PLUS_MICRO ;
default :
ret = - EINVAL ;
break ;
}
return ret ;
}
static int vadc_of_xlate ( struct iio_dev * indio_dev ,
const struct of_phandle_args * iiospec )
{
struct vadc_priv * vadc = iio_priv ( indio_dev ) ;
unsigned int i ;
for ( i = 0 ; i < vadc - > nchannels ; i + + )
if ( vadc - > iio_chans [ i ] . channel = = iiospec - > args [ 0 ] )
return i ;
return - EINVAL ;
}
static const struct iio_info vadc_info = {
. read_raw = vadc_read_raw ,
. of_xlate = vadc_of_xlate ,
. driver_module = THIS_MODULE ,
} ;
struct vadc_channels {
const char * datasheet_name ;
unsigned int prescale_index ;
enum iio_chan_type type ;
long info_mask ;
} ;
# define VADC_CHAN(_dname, _type, _mask, _pre) \
[ VADC_ # # _dname ] = { \
. datasheet_name = __stringify ( _dname ) , \
. prescale_index = _pre , \
. type = _type , \
. info_mask = _mask \
} , \
# define VADC_CHAN_TEMP(_dname, _pre) \
VADC_CHAN ( _dname , IIO_TEMP , BIT ( IIO_CHAN_INFO_PROCESSED ) , _pre ) \
# define VADC_CHAN_VOLT(_dname, _pre) \
VADC_CHAN ( _dname , IIO_VOLTAGE , \
BIT ( IIO_CHAN_INFO_RAW ) | BIT ( IIO_CHAN_INFO_SCALE ) , \
_pre ) \
/*
* The array represents all possible ADC channels found in the supported PMICs .
* Every index in the array is equal to the channel number per datasheet . The
* gaps in the array should be treated as reserved channels .
*/
static const struct vadc_channels vadc_chans [ ] = {
VADC_CHAN_VOLT ( USBIN , 4 )
VADC_CHAN_VOLT ( DCIN , 4 )
VADC_CHAN_VOLT ( VCHG_SNS , 3 )
VADC_CHAN_VOLT ( SPARE1_03 , 1 )
VADC_CHAN_VOLT ( USB_ID_MV , 1 )
VADC_CHAN_VOLT ( VCOIN , 1 )
VADC_CHAN_VOLT ( VBAT_SNS , 1 )
VADC_CHAN_VOLT ( VSYS , 1 )
VADC_CHAN_TEMP ( DIE_TEMP , 0 )
VADC_CHAN_VOLT ( REF_625MV , 0 )
VADC_CHAN_VOLT ( REF_1250MV , 0 )
VADC_CHAN_VOLT ( CHG_TEMP , 0 )
VADC_CHAN_VOLT ( SPARE1 , 0 )
VADC_CHAN_VOLT ( SPARE2 , 0 )
VADC_CHAN_VOLT ( GND_REF , 0 )
VADC_CHAN_VOLT ( VDD_VADC , 0 )
VADC_CHAN_VOLT ( P_MUX1_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX2_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX3_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX4_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX5_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX6_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX7_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX8_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX9_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX10_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX11_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX12_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX13_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX14_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX15_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX16_1_1 , 0 )
VADC_CHAN_VOLT ( P_MUX1_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX2_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX3_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX4_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX5_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX6_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX7_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX8_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX9_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX10_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX11_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX12_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX13_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX14_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX15_1_3 , 1 )
VADC_CHAN_VOLT ( P_MUX16_1_3 , 1 )
VADC_CHAN_VOLT ( LR_MUX1_BAT_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX2_BAT_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX3_XO_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX4_AMUX_THM1 , 0 )
VADC_CHAN_VOLT ( LR_MUX5_AMUX_THM2 , 0 )
VADC_CHAN_VOLT ( LR_MUX6_AMUX_THM3 , 0 )
VADC_CHAN_VOLT ( LR_MUX7_HW_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX8_AMUX_THM4 , 0 )
VADC_CHAN_VOLT ( LR_MUX9_AMUX_THM5 , 0 )
VADC_CHAN_VOLT ( LR_MUX10_USB_ID , 0 )
VADC_CHAN_VOLT ( AMUX_PU1 , 0 )
VADC_CHAN_VOLT ( AMUX_PU2 , 0 )
VADC_CHAN_VOLT ( LR_MUX3_BUF_XO_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX1_PU1_BAT_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX2_PU1_BAT_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX3_PU1_XO_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX4_PU1_AMUX_THM1 , 0 )
VADC_CHAN_VOLT ( LR_MUX5_PU1_AMUX_THM2 , 0 )
VADC_CHAN_VOLT ( LR_MUX6_PU1_AMUX_THM3 , 0 )
VADC_CHAN_VOLT ( LR_MUX7_PU1_AMUX_HW_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX8_PU1_AMUX_THM4 , 0 )
VADC_CHAN_VOLT ( LR_MUX9_PU1_AMUX_THM5 , 0 )
VADC_CHAN_VOLT ( LR_MUX10_PU1_AMUX_USB_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX3_BUF_PU1_XO_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX1_PU2_BAT_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX2_PU2_BAT_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX3_PU2_XO_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX4_PU2_AMUX_THM1 , 0 )
VADC_CHAN_VOLT ( LR_MUX5_PU2_AMUX_THM2 , 0 )
VADC_CHAN_VOLT ( LR_MUX6_PU2_AMUX_THM3 , 0 )
VADC_CHAN_VOLT ( LR_MUX7_PU2_AMUX_HW_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX8_PU2_AMUX_THM4 , 0 )
VADC_CHAN_VOLT ( LR_MUX9_PU2_AMUX_THM5 , 0 )
VADC_CHAN_VOLT ( LR_MUX10_PU2_AMUX_USB_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX3_BUF_PU2_XO_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX1_PU1_PU2_BAT_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX2_PU1_PU2_BAT_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX3_PU1_PU2_XO_THERM , 0 )
VADC_CHAN_VOLT ( LR_MUX4_PU1_PU2_AMUX_THM1 , 0 )
VADC_CHAN_VOLT ( LR_MUX5_PU1_PU2_AMUX_THM2 , 0 )
VADC_CHAN_VOLT ( LR_MUX6_PU1_PU2_AMUX_THM3 , 0 )
VADC_CHAN_VOLT ( LR_MUX7_PU1_PU2_AMUX_HW_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX8_PU1_PU2_AMUX_THM4 , 0 )
VADC_CHAN_VOLT ( LR_MUX9_PU1_PU2_AMUX_THM5 , 0 )
VADC_CHAN_VOLT ( LR_MUX10_PU1_PU2_AMUX_USB_ID , 0 )
VADC_CHAN_VOLT ( LR_MUX3_BUF_PU1_PU2_XO_THERM , 0 )
} ;
static int vadc_get_dt_channel_data ( struct device * dev ,
struct vadc_channel_prop * prop ,
struct device_node * node )
{
const char * name = node - > name ;
u32 chan , value , varr [ 2 ] ;
int ret ;
ret = of_property_read_u32 ( node , " reg " , & chan ) ;
if ( ret ) {
dev_err ( dev , " invalid channel number %s \n " , name ) ;
return ret ;
}
if ( chan > VADC_CHAN_MAX | | chan < VADC_CHAN_MIN ) {
dev_err ( dev , " %s invalid channel number %d \n " , name , chan ) ;
return - EINVAL ;
}
/* the channel has DT description */
prop - > channel = chan ;
ret = of_property_read_u32 ( node , " qcom,decimation " , & value ) ;
if ( ! ret ) {
ret = vadc_decimation_from_dt ( value ) ;
if ( ret < 0 ) {
dev_err ( dev , " %02x invalid decimation %d \n " ,
chan , value ) ;
return ret ;
}
prop - > decimation = ret ;
} else {
prop - > decimation = VADC_DEF_DECIMATION ;
}
ret = of_property_read_u32_array ( node , " qcom,pre-scaling " , varr , 2 ) ;
if ( ! ret ) {
ret = vadc_prescaling_from_dt ( varr [ 0 ] , varr [ 1 ] ) ;
if ( ret < 0 ) {
dev_err ( dev , " %02x invalid pre-scaling <%d %d> \n " ,
chan , varr [ 0 ] , varr [ 1 ] ) ;
return ret ;
}
prop - > prescale = ret ;
} else {
prop - > prescale = vadc_chans [ prop - > channel ] . prescale_index ;
}
ret = of_property_read_u32 ( node , " qcom,hw-settle-time " , & value ) ;
if ( ! ret ) {
ret = vadc_hw_settle_time_from_dt ( value ) ;
if ( ret < 0 ) {
dev_err ( dev , " %02x invalid hw-settle-time %d us \n " ,
chan , value ) ;
return ret ;
}
prop - > hw_settle_time = ret ;
} else {
prop - > hw_settle_time = VADC_DEF_HW_SETTLE_TIME ;
}
ret = of_property_read_u32 ( node , " qcom,avg-samples " , & value ) ;
if ( ! ret ) {
ret = vadc_avg_samples_from_dt ( value ) ;
if ( ret < 0 ) {
dev_err ( dev , " %02x invalid avg-samples %d \n " ,
chan , value ) ;
return ret ;
}
prop - > avg_samples = ret ;
} else {
prop - > avg_samples = VADC_DEF_AVG_SAMPLES ;
}
if ( of_property_read_bool ( node , " qcom,ratiometric " ) )
prop - > calibration = VADC_CALIB_RATIOMETRIC ;
else
prop - > calibration = VADC_CALIB_ABSOLUTE ;
dev_dbg ( dev , " %02x name %s \n " , chan , name ) ;
return 0 ;
}
static int vadc_get_dt_data ( struct vadc_priv * vadc , struct device_node * node )
{
const struct vadc_channels * vadc_chan ;
struct iio_chan_spec * iio_chan ;
struct vadc_channel_prop prop ;
struct device_node * child ;
unsigned int index = 0 ;
int ret ;
vadc - > nchannels = of_get_available_child_count ( node ) ;
if ( ! vadc - > nchannels )
return - EINVAL ;
vadc - > iio_chans = devm_kcalloc ( vadc - > dev , vadc - > nchannels ,
sizeof ( * vadc - > iio_chans ) , GFP_KERNEL ) ;
if ( ! vadc - > iio_chans )
return - ENOMEM ;
vadc - > chan_props = devm_kcalloc ( vadc - > dev , vadc - > nchannels ,
sizeof ( * vadc - > chan_props ) , GFP_KERNEL ) ;
if ( ! vadc - > chan_props )
return - ENOMEM ;
iio_chan = vadc - > iio_chans ;
for_each_available_child_of_node ( node , child ) {
ret = vadc_get_dt_channel_data ( vadc - > dev , & prop , child ) ;
if ( ret )
return ret ;
vadc - > chan_props [ index ] = prop ;
vadc_chan = & vadc_chans [ prop . channel ] ;
iio_chan - > channel = prop . channel ;
iio_chan - > datasheet_name = vadc_chan - > datasheet_name ;
iio_chan - > info_mask_separate = vadc_chan - > info_mask ;
iio_chan - > type = vadc_chan - > type ;
iio_chan - > indexed = 1 ;
iio_chan - > address = index + + ;
iio_chan + + ;
}
/* These channels are mandatory, they are used as reference points */
if ( ! vadc_get_channel ( vadc , VADC_REF_1250MV ) ) {
dev_err ( vadc - > dev , " Please define 1.25V channel \n " ) ;
return - ENODEV ;
}
if ( ! vadc_get_channel ( vadc , VADC_REF_625MV ) ) {
dev_err ( vadc - > dev , " Please define 0.625V channel \n " ) ;
return - ENODEV ;
}
if ( ! vadc_get_channel ( vadc , VADC_VDD_VADC ) ) {
dev_err ( vadc - > dev , " Please define VDD channel \n " ) ;
return - ENODEV ;
}
if ( ! vadc_get_channel ( vadc , VADC_GND_REF ) ) {
dev_err ( vadc - > dev , " Please define GND channel \n " ) ;
return - ENODEV ;
}
return 0 ;
}
static irqreturn_t vadc_isr ( int irq , void * dev_id )
{
struct vadc_priv * vadc = dev_id ;
complete ( & vadc - > complete ) ;
return IRQ_HANDLED ;
}
static int vadc_check_revision ( struct vadc_priv * vadc )
{
u8 val ;
int ret ;
ret = vadc_read ( vadc , VADC_PERPH_TYPE , & val ) ;
if ( ret )
return ret ;
if ( val < VADC_PERPH_TYPE_ADC ) {
dev_err ( vadc - > dev , " %d is not ADC \n " , val ) ;
return - ENODEV ;
}
ret = vadc_read ( vadc , VADC_PERPH_SUBTYPE , & val ) ;
if ( ret )
return ret ;
if ( val < VADC_PERPH_SUBTYPE_VADC ) {
dev_err ( vadc - > dev , " %d is not VADC \n " , val ) ;
return - ENODEV ;
}
ret = vadc_read ( vadc , VADC_REVISION2 , & val ) ;
if ( ret )
return ret ;
if ( val < VADC_REVISION2_SUPPORTED_VADC ) {
dev_err ( vadc - > dev , " revision %d not supported \n " , val ) ;
return - ENODEV ;
}
return 0 ;
}
static int vadc_probe ( struct platform_device * pdev )
{
struct device_node * node = pdev - > dev . of_node ;
struct device * dev = & pdev - > dev ;
struct iio_dev * indio_dev ;
struct vadc_priv * vadc ;
struct regmap * regmap ;
int ret , irq_eoc ;
u32 reg ;
regmap = dev_get_regmap ( dev - > parent , NULL ) ;
if ( ! regmap )
return - ENODEV ;
ret = of_property_read_u32 ( node , " reg " , & reg ) ;
if ( ret < 0 )
return ret ;
indio_dev = devm_iio_device_alloc ( dev , sizeof ( * vadc ) ) ;
if ( ! indio_dev )
return - ENOMEM ;
vadc = iio_priv ( indio_dev ) ;
vadc - > regmap = regmap ;
vadc - > dev = dev ;
vadc - > base = reg ;
vadc - > are_ref_measured = false ;
init_completion ( & vadc - > complete ) ;
mutex_init ( & vadc - > lock ) ;
ret = vadc_check_revision ( vadc ) ;
if ( ret )
return ret ;
ret = vadc_get_dt_data ( vadc , node ) ;
if ( ret )
return ret ;
irq_eoc = platform_get_irq ( pdev , 0 ) ;
if ( irq_eoc < 0 ) {
if ( irq_eoc = = - EPROBE_DEFER | | irq_eoc = = - EINVAL )
return irq_eoc ;
vadc - > poll_eoc = true ;
} else {
ret = devm_request_irq ( dev , irq_eoc , vadc_isr , 0 ,
" spmi-vadc " , vadc ) ;
if ( ret )
return ret ;
}
ret = vadc_reset ( vadc ) ;
if ( ret ) {
dev_err ( dev , " reset failed \n " ) ;
return ret ;
}
ret = vadc_measure_ref_points ( vadc ) ;
if ( ret )
return ret ;
indio_dev - > dev . parent = dev ;
indio_dev - > dev . of_node = node ;
indio_dev - > name = pdev - > name ;
indio_dev - > modes = INDIO_DIRECT_MODE ;
indio_dev - > info = & vadc_info ;
indio_dev - > channels = vadc - > iio_chans ;
indio_dev - > num_channels = vadc - > nchannels ;
return devm_iio_device_register ( dev , indio_dev ) ;
}
static const struct of_device_id vadc_match_table [ ] = {
{ . compatible = " qcom,spmi-vadc " } ,
{ }
} ;
MODULE_DEVICE_TABLE ( of , vadc_match_table ) ;
static struct platform_driver vadc_driver = {
. driver = {
. name = " qcom-spmi-vadc " ,
. of_match_table = vadc_match_table ,
} ,
. probe = vadc_probe ,
} ;
module_platform_driver ( vadc_driver ) ;
MODULE_ALIAS ( " platform:qcom-spmi-vadc " ) ;
MODULE_DESCRIPTION ( " Qualcomm SPMI PMIC voltage ADC driver " ) ;
MODULE_LICENSE ( " GPL v2 " ) ;
MODULE_AUTHOR ( " Stanimir Varbanov <svarbanov@mm-sol.com> " ) ;
MODULE_AUTHOR ( " Ivan T. Ivanov <iivanov@mm-sol.com> " ) ;