751 lines
16 KiB
C
Raw Normal View History

/*
* SMP support for ppc.
*
* Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
* deal of code from the sparc and intel versions.
*
* Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
*
* PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
* Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/cache.h>
#include <linux/err.h>
#include <linux/sysdev.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/time.h>
#include <asm/machdep.h>
#include <asm/cputhreads.h>
#include <asm/cputable.h>
#include <asm/system.h>
#include <asm/mpic.h>
#include <asm/vdso_datapage.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#endif
#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/* Store all idle threads, this can be reused instead of creating
* a new thread. Also avoids complicated thread destroy functionality
* for idle threads.
*/
#ifdef CONFIG_HOTPLUG_CPU
/*
* Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
* removed after init for !CONFIG_HOTPLUG_CPU.
*/
static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
#define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
#define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
#else
static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
#define get_idle_for_cpu(x) (idle_thread_array[(x)])
#define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
#endif
struct thread_info *secondary_ti;
DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
/* SMP operations for this machine */
struct smp_ops_t *smp_ops;
/* Can't be static due to PowerMac hackery */
volatile unsigned int cpu_callin_map[NR_CPUS];
int smt_enabled_at_boot = 1;
static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
#ifdef CONFIG_PPC64
int __devinit smp_generic_kick_cpu(int nr)
{
BUG_ON(nr < 0 || nr >= NR_CPUS);
/*
* The processor is currently spinning, waiting for the
* cpu_start field to become non-zero After we set cpu_start,
* the processor will continue on to secondary_start
*/
paca[nr].cpu_start = 1;
smp_mb();
return 0;
}
#endif
static irqreturn_t call_function_action(int irq, void *data)
{
generic_smp_call_function_interrupt();
return IRQ_HANDLED;
}
static irqreturn_t reschedule_action(int irq, void *data)
{
/* we just need the return path side effect of checking need_resched */
return IRQ_HANDLED;
}
static irqreturn_t call_function_single_action(int irq, void *data)
{
generic_smp_call_function_single_interrupt();
return IRQ_HANDLED;
}
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-10 19:29:39 +00:00
irqreturn_t debug_ipi_action(int irq, void *data)
{
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-10 19:29:39 +00:00
if (crash_ipi_function_ptr) {
crash_ipi_function_ptr(get_irq_regs());
return IRQ_HANDLED;
}
#ifdef CONFIG_DEBUGGER
debugger_ipi(get_irq_regs());
#endif /* CONFIG_DEBUGGER */
return IRQ_HANDLED;
}
static irq_handler_t smp_ipi_action[] = {
[PPC_MSG_CALL_FUNCTION] = call_function_action,
[PPC_MSG_RESCHEDULE] = reschedule_action,
[PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
[PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
};
const char *smp_ipi_name[] = {
[PPC_MSG_CALL_FUNCTION] = "ipi call function",
[PPC_MSG_RESCHEDULE] = "ipi reschedule",
[PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
[PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
};
/* optional function to request ipi, for controllers with >= 4 ipis */
int smp_request_message_ipi(int virq, int msg)
{
int err;
if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
return -EINVAL;
}
#if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
if (msg == PPC_MSG_DEBUGGER_BREAK) {
return 1;
}
#endif
err = request_irq(virq, smp_ipi_action[msg], IRQF_DISABLED|IRQF_PERCPU,
smp_ipi_name[msg], 0);
WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
virq, smp_ipi_name[msg], err);
return err;
}
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-10 19:29:39 +00:00
struct cpu_messages {
unsigned long messages; /* current messages bits */
unsigned long data; /* data for cause ipi */
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
void smp_muxed_ipi_set_data(int cpu, unsigned long data)
{
struct cpu_messages *info = &per_cpu(ipi_message, cpu);
info->data = data;
}
void smp_muxed_ipi_message_pass(int cpu, int msg)
{
struct cpu_messages *info = &per_cpu(ipi_message, cpu);
unsigned long *tgt = &info->messages;
set_bit(msg, tgt);
mb();
smp_ops->cause_ipi(cpu, info->data);
}
void smp_muxed_ipi_resend(void)
{
struct cpu_messages *info = &__get_cpu_var(ipi_message);
unsigned long *tgt = &info->messages;
if (*tgt)
smp_ops->cause_ipi(smp_processor_id(), info->data);
}
irqreturn_t smp_ipi_demux(void)
{
struct cpu_messages *info = &__get_cpu_var(ipi_message);
unsigned long *tgt = &info->messages;
mb(); /* order any irq clear */
while (*tgt) {
if (test_and_clear_bit(PPC_MSG_CALL_FUNCTION, tgt))
generic_smp_call_function_interrupt();
if (test_and_clear_bit(PPC_MSG_RESCHEDULE, tgt))
reschedule_action(0, NULL); /* upcoming sched hook */
if (test_and_clear_bit(PPC_MSG_CALL_FUNC_SINGLE, tgt))
generic_smp_call_function_single_interrupt();
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
if (test_and_clear_bit(PPC_MSG_DEBUGGER_BREAK, tgt))
debug_ipi_action(0, NULL);
#endif
}
return IRQ_HANDLED;
}
void smp_send_reschedule(int cpu)
{
if (likely(smp_ops))
smp_ops->message_pass(cpu, PPC_MSG_RESCHEDULE);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
void smp_send_debugger_break(void)
{
int cpu;
int me = raw_smp_processor_id();
if (unlikely(!smp_ops))
return;
for_each_online_cpu(cpu)
if (cpu != me)
smp_ops->message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
}
#endif
#ifdef CONFIG_KEXEC
void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
{
crash_ipi_function_ptr = crash_ipi_callback;
if (crash_ipi_callback) {
mb();
smp_send_debugger_break();
}
}
#endif
static void stop_this_cpu(void *dummy)
{
/* Remove this CPU */
set_cpu_online(smp_processor_id(), false);
local_irq_disable();
while (1)
;
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 0);
}
struct thread_info *current_set[NR_CPUS];
static void __devinit smp_store_cpu_info(int id)
{
per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int cpu;
DBG("smp_prepare_cpus\n");
/*
* setup_cpu may need to be called on the boot cpu. We havent
* spun any cpus up but lets be paranoid.
*/
BUG_ON(boot_cpuid != smp_processor_id());
/* Fixup boot cpu */
smp_store_cpu_info(boot_cpuid);
cpu_callin_map[boot_cpuid] = 1;
for_each_possible_cpu(cpu) {
zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
}
cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
if (smp_ops)
if (smp_ops->probe)
max_cpus = smp_ops->probe();
else
max_cpus = NR_CPUS;
else
max_cpus = 1;
}
void __devinit smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != boot_cpuid);
#ifdef CONFIG_PPC64
paca[boot_cpuid].__current = current;
#endif
current_set[boot_cpuid] = task_thread_info(current);
}
#ifdef CONFIG_HOTPLUG_CPU
/* State of each CPU during hotplug phases */
static DEFINE_PER_CPU(int, cpu_state) = { 0 };
int generic_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == boot_cpuid)
return -EBUSY;
set_cpu_online(cpu, false);
#ifdef CONFIG_PPC64
vdso_data->processorCount--;
#endif
migrate_irqs();
return 0;
}
void generic_cpu_die(unsigned int cpu)
{
int i;
for (i = 0; i < 100; i++) {
smp_rmb();
if (per_cpu(cpu_state, cpu) == CPU_DEAD)
return;
msleep(100);
}
printk(KERN_ERR "CPU%d didn't die...\n", cpu);
}
void generic_mach_cpu_die(void)
{
unsigned int cpu;
local_irq_disable();
idle_task_exit();
cpu = smp_processor_id();
printk(KERN_DEBUG "CPU%d offline\n", cpu);
__get_cpu_var(cpu_state) = CPU_DEAD;
smp_wmb();
while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
cpu_relax();
}
void generic_set_cpu_dead(unsigned int cpu)
{
per_cpu(cpu_state, cpu) = CPU_DEAD;
}
#endif
struct create_idle {
struct work_struct work;
struct task_struct *idle;
struct completion done;
int cpu;
};
static void __cpuinit do_fork_idle(struct work_struct *work)
{
struct create_idle *c_idle =
container_of(work, struct create_idle, work);
c_idle->idle = fork_idle(c_idle->cpu);
complete(&c_idle->done);
}
static int __cpuinit create_idle(unsigned int cpu)
{
struct thread_info *ti;
struct create_idle c_idle = {
.cpu = cpu,
.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
};
INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
c_idle.idle = get_idle_for_cpu(cpu);
/* We can't use kernel_thread since we must avoid to
* reschedule the child. We use a workqueue because
* we want to fork from a kernel thread, not whatever
* userspace process happens to be trying to online us.
*/
if (!c_idle.idle) {
schedule_work(&c_idle.work);
wait_for_completion(&c_idle.done);
} else
init_idle(c_idle.idle, cpu);
if (IS_ERR(c_idle.idle)) {
pr_err("Failed fork for CPU %u: %li", cpu, PTR_ERR(c_idle.idle));
return PTR_ERR(c_idle.idle);
}
ti = task_thread_info(c_idle.idle);
#ifdef CONFIG_PPC64
paca[cpu].__current = c_idle.idle;
paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
#endif
ti->cpu = cpu;
current_set[cpu] = ti;
return 0;
}
[PATCH] Change cpu_up and co from __devinit to __cpuinit Compiling the kernel with CONFIG_HOTPLUG = y and CONFIG_HOTPLUG_CPU = n with CONFIG_RELOCATABLE = y generates the following modpost warnings WARNING: vmlinux - Section mismatch: reference to .init.data: from .text between '_cpu_up' (at offset 0xc0141b7d) and 'cpu_up' WARNING: vmlinux - Section mismatch: reference to .init.data: from .text between '_cpu_up' (at offset 0xc0141b9c) and 'cpu_up' WARNING: vmlinux - Section mismatch: reference to .init.text:__cpu_up from .text between '_cpu_up' (at offset 0xc0141bd8) and 'cpu_up' WARNING: vmlinux - Section mismatch: reference to .init.data: from .text between '_cpu_up' (at offset 0xc0141c05) and 'cpu_up' WARNING: vmlinux - Section mismatch: reference to .init.data: from .text between '_cpu_up' (at offset 0xc0141c26) and 'cpu_up' WARNING: vmlinux - Section mismatch: reference to .init.data: from .text between '_cpu_up' (at offset 0xc0141c37) and 'cpu_up' This is because cpu_up, _cpu_up and __cpu_up (in some architectures) are defined as __devinit AND __cpu_up calls some __cpuinit functions. Since __cpuinit would map to __init with this kind of a configuration, we get a .text refering .init.data warning. This patch solves the problem by converting all of __cpu_up, _cpu_up and cpu_up from __devinit to __cpuinit. The approach is justified since the callers of cpu_up are either dependent on CONFIG_HOTPLUG_CPU or are of __init type. Thus when CONFIG_HOTPLUG_CPU=y, all these cpu up functions would land up in .text section, and when CONFIG_HOTPLUG_CPU=n, all these functions would land up in .init section. Tested on a i386 SMP machine running linux-2.6.20-rc3-mm1. Signed-off-by: Gautham R Shenoy <ego@in.ibm.com> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2007-01-10 23:15:34 -08:00
int __cpuinit __cpu_up(unsigned int cpu)
{
int rc, c;
secondary_ti = current_set[cpu];
if (smp_ops == NULL ||
(smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
return -EINVAL;
/* Make sure we have an idle thread */
rc = create_idle(cpu);
if (rc)
return rc;
/* Make sure callin-map entry is 0 (can be leftover a CPU
* hotplug
*/
cpu_callin_map[cpu] = 0;
/* The information for processor bringup must
* be written out to main store before we release
* the processor.
*/
smp_mb();
/* wake up cpus */
DBG("smp: kicking cpu %d\n", cpu);
rc = smp_ops->kick_cpu(cpu);
if (rc) {
pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
return rc;
}
/*
* wait to see if the cpu made a callin (is actually up).
* use this value that I found through experimentation.
* -- Cort
*/
if (system_state < SYSTEM_RUNNING)
for (c = 50000; c && !cpu_callin_map[cpu]; c--)
udelay(100);
#ifdef CONFIG_HOTPLUG_CPU
else
/*
* CPUs can take much longer to come up in the
* hotplug case. Wait five seconds.
*/
for (c = 5000; c && !cpu_callin_map[cpu]; c--)
msleep(1);
#endif
if (!cpu_callin_map[cpu]) {
printk(KERN_ERR "Processor %u is stuck.\n", cpu);
return -ENOENT;
}
DBG("Processor %u found.\n", cpu);
if (smp_ops->give_timebase)
smp_ops->give_timebase();
/* Wait until cpu puts itself in the online map */
while (!cpu_online(cpu))
cpu_relax();
return 0;
}
/* Return the value of the reg property corresponding to the given
* logical cpu.
*/
int cpu_to_core_id(int cpu)
{
struct device_node *np;
const int *reg;
int id = -1;
np = of_get_cpu_node(cpu, NULL);
if (!np)
goto out;
reg = of_get_property(np, "reg", NULL);
if (!reg)
goto out;
id = *reg;
out:
of_node_put(np);
return id;
}
powerpc: Cleanup APIs for cpu/thread/core mappings These APIs take logical cpu number as input Change cpu_first_thread_in_core() to cpu_first_thread_sibling() Change cpu_last_thread_in_core() to cpu_last_thread_sibling() These APIs convert core number (index) to logical cpu/thread numbers Add cpu_first_thread_of_core(int core) Changed cpu_thread_to_core() to cpu_core_index_of_thread(int cpu) The goal is to make 'threads_per_core' accessible to the pseries_energy module. Instead of making an API to read threads_per_core, this is a higher level wrapper function to convert from logical cpu number to core number. The current APIs cpu_first_thread_in_core() and cpu_last_thread_in_core() returns logical CPU number while cpu_thread_to_core() returns core number or index which is not a logical CPU number. The new APIs are now clearly named to distinguish 'core number' versus first and last 'logical cpu number' in that core. The new APIs cpu_{first,last}_thread_sibling() work on logical cpu numbers. While cpu_first_thread_of_core() and cpu_core_index_of_thread() work on core index. Example usage: (4 threads per core system) cpu_first_thread_sibling(5) = 4 cpu_last_thread_sibling(5) = 7 cpu_core_index_of_thread(5) = 1 cpu_first_thread_of_core(1) = 4 cpu_core_index_of_thread() is used in cpu_to_drc_index() in the module and cpu_first_thread_of_core() is used in drc_index_to_cpu() in the module. Make API changes to few callers. Export symbols for use in modules. Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-10-06 08:36:59 +00:00
/* Helper routines for cpu to core mapping */
int cpu_core_index_of_thread(int cpu)
{
return cpu >> threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
int cpu_first_thread_of_core(int core)
{
return core << threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
/* Must be called when no change can occur to cpu_present_mask,
* i.e. during cpu online or offline.
*/
static struct device_node *cpu_to_l2cache(int cpu)
{
struct device_node *np;
struct device_node *cache;
if (!cpu_present(cpu))
return NULL;
np = of_get_cpu_node(cpu, NULL);
if (np == NULL)
return NULL;
cache = of_find_next_cache_node(np);
of_node_put(np);
return cache;
}
/* Activate a secondary processor. */
void __devinit start_secondary(void *unused)
{
unsigned int cpu = smp_processor_id();
struct device_node *l2_cache;
int i, base;
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
smp_store_cpu_info(cpu);
set_dec(tb_ticks_per_jiffy);
preempt_disable();
cpu_callin_map[cpu] = 1;
if (smp_ops->setup_cpu)
smp_ops->setup_cpu(cpu);
if (smp_ops->take_timebase)
smp_ops->take_timebase();
secondary_cpu_time_init();
#ifdef CONFIG_PPC64
if (system_state == SYSTEM_RUNNING)
vdso_data->processorCount++;
#endif
ipi_call_lock();
notify_cpu_starting(cpu);
set_cpu_online(cpu, true);
/* Update sibling maps */
powerpc: Cleanup APIs for cpu/thread/core mappings These APIs take logical cpu number as input Change cpu_first_thread_in_core() to cpu_first_thread_sibling() Change cpu_last_thread_in_core() to cpu_last_thread_sibling() These APIs convert core number (index) to logical cpu/thread numbers Add cpu_first_thread_of_core(int core) Changed cpu_thread_to_core() to cpu_core_index_of_thread(int cpu) The goal is to make 'threads_per_core' accessible to the pseries_energy module. Instead of making an API to read threads_per_core, this is a higher level wrapper function to convert from logical cpu number to core number. The current APIs cpu_first_thread_in_core() and cpu_last_thread_in_core() returns logical CPU number while cpu_thread_to_core() returns core number or index which is not a logical CPU number. The new APIs are now clearly named to distinguish 'core number' versus first and last 'logical cpu number' in that core. The new APIs cpu_{first,last}_thread_sibling() work on logical cpu numbers. While cpu_first_thread_of_core() and cpu_core_index_of_thread() work on core index. Example usage: (4 threads per core system) cpu_first_thread_sibling(5) = 4 cpu_last_thread_sibling(5) = 7 cpu_core_index_of_thread(5) = 1 cpu_first_thread_of_core(1) = 4 cpu_core_index_of_thread() is used in cpu_to_drc_index() in the module and cpu_first_thread_of_core() is used in drc_index_to_cpu() in the module. Make API changes to few callers. Export symbols for use in modules. Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-10-06 08:36:59 +00:00
base = cpu_first_thread_sibling(cpu);
for (i = 0; i < threads_per_core; i++) {
if (cpu_is_offline(base + i))
continue;
cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
/* cpu_core_map should be a superset of
* cpu_sibling_map even if we don't have cache
* information, so update the former here, too.
*/
cpumask_set_cpu(cpu, cpu_core_mask(base + i));
cpumask_set_cpu(base + i, cpu_core_mask(cpu));
}
l2_cache = cpu_to_l2cache(cpu);
for_each_online_cpu(i) {
struct device_node *np = cpu_to_l2cache(i);
if (!np)
continue;
if (np == l2_cache) {
cpumask_set_cpu(cpu, cpu_core_mask(i));
cpumask_set_cpu(i, cpu_core_mask(cpu));
}
of_node_put(np);
}
of_node_put(l2_cache);
ipi_call_unlock();
local_irq_enable();
cpu_idle();
BUG();
}
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
cpumask_var_t old_mask;
/* We want the setup_cpu() here to be called from CPU 0, but our
* init thread may have been "borrowed" by another CPU in the meantime
* se we pin us down to CPU 0 for a short while
*/
alloc_cpumask_var(&old_mask, GFP_NOWAIT);
cpumask_copy(old_mask, tsk_cpus_allowed(current));
set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
if (smp_ops && smp_ops->setup_cpu)
smp_ops->setup_cpu(boot_cpuid);
set_cpus_allowed_ptr(current, old_mask);
free_cpumask_var(old_mask);
if (smp_ops && smp_ops->bringup_done)
smp_ops->bringup_done();
dump_numa_cpu_topology();
}
int arch_sd_sibling_asym_packing(void)
{
if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
return SD_ASYM_PACKING;
}
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
int __cpu_disable(void)
{
struct device_node *l2_cache;
int cpu = smp_processor_id();
int base, i;
int err;
if (!smp_ops->cpu_disable)
return -ENOSYS;
err = smp_ops->cpu_disable();
if (err)
return err;
/* Update sibling maps */
powerpc: Cleanup APIs for cpu/thread/core mappings These APIs take logical cpu number as input Change cpu_first_thread_in_core() to cpu_first_thread_sibling() Change cpu_last_thread_in_core() to cpu_last_thread_sibling() These APIs convert core number (index) to logical cpu/thread numbers Add cpu_first_thread_of_core(int core) Changed cpu_thread_to_core() to cpu_core_index_of_thread(int cpu) The goal is to make 'threads_per_core' accessible to the pseries_energy module. Instead of making an API to read threads_per_core, this is a higher level wrapper function to convert from logical cpu number to core number. The current APIs cpu_first_thread_in_core() and cpu_last_thread_in_core() returns logical CPU number while cpu_thread_to_core() returns core number or index which is not a logical CPU number. The new APIs are now clearly named to distinguish 'core number' versus first and last 'logical cpu number' in that core. The new APIs cpu_{first,last}_thread_sibling() work on logical cpu numbers. While cpu_first_thread_of_core() and cpu_core_index_of_thread() work on core index. Example usage: (4 threads per core system) cpu_first_thread_sibling(5) = 4 cpu_last_thread_sibling(5) = 7 cpu_core_index_of_thread(5) = 1 cpu_first_thread_of_core(1) = 4 cpu_core_index_of_thread() is used in cpu_to_drc_index() in the module and cpu_first_thread_of_core() is used in drc_index_to_cpu() in the module. Make API changes to few callers. Export symbols for use in modules. Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-10-06 08:36:59 +00:00
base = cpu_first_thread_sibling(cpu);
for (i = 0; i < threads_per_core; i++) {
cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
}
l2_cache = cpu_to_l2cache(cpu);
for_each_present_cpu(i) {
struct device_node *np = cpu_to_l2cache(i);
if (!np)
continue;
if (np == l2_cache) {
cpumask_clear_cpu(cpu, cpu_core_mask(i));
cpumask_clear_cpu(i, cpu_core_mask(cpu));
}
of_node_put(np);
}
of_node_put(l2_cache);
return 0;
}
void __cpu_die(unsigned int cpu)
{
if (smp_ops->cpu_die)
smp_ops->cpu_die(cpu);
}
static DEFINE_MUTEX(powerpc_cpu_hotplug_driver_mutex);
void cpu_hotplug_driver_lock()
{
mutex_lock(&powerpc_cpu_hotplug_driver_mutex);
}
void cpu_hotplug_driver_unlock()
{
mutex_unlock(&powerpc_cpu_hotplug_driver_mutex);
}
void cpu_die(void)
{
if (ppc_md.cpu_die)
ppc_md.cpu_die();
/* If we return, we re-enter start_secondary */
start_secondary_resume();
}
#endif