linux/net/ipv6/inet6_connection_sock.c

155 lines
4.2 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Support for INET6 connection oriented protocols.
*
* Authors: See the TCPv6 sources
*/
#include <linux/module.h>
#include <linux/in6.h>
#include <linux/ipv6.h>
#include <linux/jhash.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <net/addrconf.h>
#include <net/inet_connection_sock.h>
#include <net/inet_ecn.h>
#include <net/inet_hashtables.h>
#include <net/ip6_route.h>
#include <net/sock.h>
#include <net/inet6_connection_sock.h>
#include <net/sock_reuseport.h>
struct dst_entry *inet6_csk_route_req(const struct sock *sk,
struct flowi6 *fl6,
const struct request_sock *req,
u8 proto)
{
struct inet_request_sock *ireq = inet_rsk(req);
const struct ipv6_pinfo *np = inet6_sk(sk);
struct in6_addr *final_p, final;
struct dst_entry *dst;
memset(fl6, 0, sizeof(*fl6));
fl6->flowi6_proto = proto;
fl6->daddr = ireq->ir_v6_rmt_addr;
rcu_read_lock();
final_p = fl6_update_dst(fl6, rcu_dereference(np->opt), &final);
rcu_read_unlock();
fl6->saddr = ireq->ir_v6_loc_addr;
fl6->flowi6_oif = ireq->ir_iif;
fl6->flowi6_mark = ireq->ir_mark;
fl6->fl6_dport = ireq->ir_rmt_port;
fl6->fl6_sport = htons(ireq->ir_num);
fl6->flowi6_uid = sk->sk_uid;
security_req_classify_flow(req, flowi6_to_flowi_common(fl6));
dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_p);
if (IS_ERR(dst))
return NULL;
return dst;
}
EXPORT_SYMBOL(inet6_csk_route_req);
void inet6_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) uaddr;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = sk->sk_v6_daddr;
sin6->sin6_port = inet_sk(sk)->inet_dport;
/* We do not store received flowlabel for TCP */
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr,
sk->sk_bound_dev_if);
}
EXPORT_SYMBOL_GPL(inet6_csk_addr2sockaddr);
static inline
struct dst_entry *__inet6_csk_dst_check(struct sock *sk, u32 cookie)
{
return __sk_dst_check(sk, cookie);
}
static struct dst_entry *inet6_csk_route_socket(struct sock *sk,
struct flowi6 *fl6)
{
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
struct in6_addr *final_p, final;
struct dst_entry *dst;
memset(fl6, 0, sizeof(*fl6));
fl6->flowi6_proto = sk->sk_protocol;
fl6->daddr = sk->sk_v6_daddr;
fl6->saddr = np->saddr;
fl6->flowlabel = np->flow_label;
IP6_ECN_flow_xmit(sk, fl6->flowlabel);
fl6->flowi6_oif = sk->sk_bound_dev_if;
fl6->flowi6_mark = sk->sk_mark;
fl6->fl6_sport = inet->inet_sport;
fl6->fl6_dport = inet->inet_dport;
fl6->flowi6_uid = sk->sk_uid;
security_sk_classify_flow(sk, flowi6_to_flowi_common(fl6));
rcu_read_lock();
final_p = fl6_update_dst(fl6, rcu_dereference(np->opt), &final);
rcu_read_unlock();
dst = __inet6_csk_dst_check(sk, np->dst_cookie);
if (!dst) {
dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_p);
if (!IS_ERR(dst))
ip6_dst_store(sk, dst, NULL, NULL);
}
return dst;
}
int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl_unused)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct flowi6 fl6;
struct dst_entry *dst;
int res;
dst = inet6_csk_route_socket(sk, &fl6);
if (IS_ERR(dst)) {
sk->sk_err_soft = -PTR_ERR(dst);
sk->sk_route_caps = 0;
kfree_skb(skb);
return PTR_ERR(dst);
}
rcu_read_lock();
skb_dst_set_noref(skb, dst);
/* Restore final destination back after routing done */
fl6.daddr = sk->sk_v6_daddr;
res = ip6_xmit(sk, skb, &fl6, sk->sk_mark, rcu_dereference(np->opt),
np->tclass, sk->sk_priority);
rcu_read_unlock();
return res;
}
EXPORT_SYMBOL_GPL(inet6_csk_xmit);
struct dst_entry *inet6_csk_update_pmtu(struct sock *sk, u32 mtu)
{
struct flowi6 fl6;
struct dst_entry *dst = inet6_csk_route_socket(sk, &fl6);
if (IS_ERR(dst))
return NULL;
net: add bool confirm_neigh parameter for dst_ops.update_pmtu The MTU update code is supposed to be invoked in response to real networking events that update the PMTU. In IPv6 PMTU update function __ip6_rt_update_pmtu() we called dst_confirm_neigh() to update neighbor confirmed time. But for tunnel code, it will call pmtu before xmit, like: - tnl_update_pmtu() - skb_dst_update_pmtu() - ip6_rt_update_pmtu() - __ip6_rt_update_pmtu() - dst_confirm_neigh() If the tunnel remote dst mac address changed and we still do the neigh confirm, we will not be able to update neigh cache and ping6 remote will failed. So for this ip_tunnel_xmit() case, _EVEN_ if the MTU is changed, we should not be invoking dst_confirm_neigh() as we have no evidence of successful two-way communication at this point. On the other hand it is also important to keep the neigh reachability fresh for TCP flows, so we cannot remove this dst_confirm_neigh() call. To fix the issue, we have to add a new bool parameter for dst_ops.update_pmtu to choose whether we should do neigh update or not. I will add the parameter in this patch and set all the callers to true to comply with the previous way, and fix the tunnel code one by one on later patches. v5: No change. v4: No change. v3: Do not remove dst_confirm_neigh, but add a new bool parameter in dst_ops.update_pmtu to control whether we should do neighbor confirm. Also split the big patch to small ones for each area. v2: Remove dst_confirm_neigh in __ip6_rt_update_pmtu. Suggested-by: David Miller <davem@davemloft.net> Reviewed-by: Guillaume Nault <gnault@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-22 05:51:09 +03:00
dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
dst = inet6_csk_route_socket(sk, &fl6);
return IS_ERR(dst) ? NULL : dst;
}
EXPORT_SYMBOL_GPL(inet6_csk_update_pmtu);