2020-09-14 23:43:34 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* sl28cpld PWM driver
*
* Copyright ( c ) 2020 Michael Walle < michael @ walle . cc >
*
* There is no public datasheet available for this PWM core . But it is easy
* enough to be briefly explained . It consists of one 8 - bit counter . The PWM
* supports four distinct frequencies by selecting when to reset the counter .
* With the prescaler setting you can select which bit of the counter is used
* to reset it . This implies that the higher the frequency the less remaining
* bits are available for the actual counter .
*
* Let cnt [ 7 : 0 ] be the counter , clocked at 32 kHz :
* + - - - - - - - - - - - + - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - + - - - - - - - - - - - - - - - +
* | prescaler | reset | counter bits | frequency | period length |
* + - - - - - - - - - - - + - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - + - - - - - - - - - - - - - - - +
* | 0 | cnt [ 7 ] | cnt [ 6 : 0 ] | 250 Hz | 4000000 ns |
* | 1 | cnt [ 6 ] | cnt [ 5 : 0 ] | 500 Hz | 2000000 ns |
* | 2 | cnt [ 5 ] | cnt [ 4 : 0 ] | 1 kHz | 1000000 ns |
* | 3 | cnt [ 4 ] | cnt [ 3 : 0 ] | 2 kHz | 500000 ns |
* + - - - - - - - - - - - + - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - + - - - - - - - - - - - - - - - +
*
* Limitations :
* - The hardware cannot generate a 100 % duty cycle if the prescaler is 0.
* - The hardware cannot atomically set the prescaler and the counter value ,
* which might lead to glitches and inconsistent states if a write fails .
* - The counter is not reset if you switch the prescaler which leads
* to glitches , too .
* - The duty cycle will switch immediately and not after a complete cycle .
* - Depending on the actual implementation , disabling the PWM might have
* side effects . For example , if the output pin is shared with a GPIO pin
* it will automatically switch back to GPIO mode .
*/
# include <linux/bitfield.h>
# include <linux/kernel.h>
# include <linux/mod_devicetable.h>
# include <linux/module.h>
# include <linux/platform_device.h>
2023-07-14 11:48:50 -06:00
# include <linux/property.h>
2020-09-14 23:43:34 +02:00
# include <linux/pwm.h>
# include <linux/regmap.h>
/*
* PWM timer block registers .
*/
# define SL28CPLD_PWM_CTRL 0x00
# define SL28CPLD_PWM_CTRL_ENABLE BIT(7)
# define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0)
# define SL28CPLD_PWM_CYCLE 0x01
# define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0)
# define SL28CPLD_PWM_CLK 32000 /* 32 kHz */
# define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler)))
# define SL28CPLD_PWM_PERIOD(prescaler) \
( NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE ( prescaler ) )
/*
* We calculate the duty cycle like this :
* duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
*
* With
* max_period_ns = 1 < < ( 7 - prescaler ) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
* max_duty_cycle = 1 < < ( 7 - prescaler )
* this then simplifies to :
* duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
* = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
*
* NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK , therefore we ' re not losing
* precision by doing the divison first .
*/
# define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
( NSEC_PER_SEC / SL28CPLD_PWM_CLK * ( reg ) )
# define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
( DIV_ROUND_DOWN_ULL ( ( duty_cycle ) , NSEC_PER_SEC / SL28CPLD_PWM_CLK ) )
# define sl28cpld_pwm_read(priv, reg, val) \
regmap_read ( ( priv ) - > regmap , ( priv ) - > offset + ( reg ) , ( val ) )
# define sl28cpld_pwm_write(priv, reg, val) \
regmap_write ( ( priv ) - > regmap , ( priv ) - > offset + ( reg ) , ( val ) )
struct sl28cpld_pwm {
2023-07-14 22:56:22 +02:00
struct pwm_chip chip ;
2020-09-14 23:43:34 +02:00
struct regmap * regmap ;
u32 offset ;
} ;
2023-07-14 22:56:22 +02:00
static inline struct sl28cpld_pwm * sl28cpld_pwm_from_chip ( struct pwm_chip * chip )
{
return container_of ( chip , struct sl28cpld_pwm , chip ) ;
}
2020-09-14 23:43:34 +02:00
2022-12-02 19:35:26 +01:00
static int sl28cpld_pwm_get_state ( struct pwm_chip * chip ,
struct pwm_device * pwm ,
struct pwm_state * state )
2020-09-14 23:43:34 +02:00
{
2020-12-03 09:41:42 +01:00
struct sl28cpld_pwm * priv = sl28cpld_pwm_from_chip ( chip ) ;
2020-09-14 23:43:34 +02:00
unsigned int reg ;
int prescaler ;
sl28cpld_pwm_read ( priv , SL28CPLD_PWM_CTRL , & reg ) ;
state - > enabled = reg & SL28CPLD_PWM_CTRL_ENABLE ;
prescaler = FIELD_GET ( SL28CPLD_PWM_CTRL_PRESCALER_MASK , reg ) ;
state - > period = SL28CPLD_PWM_PERIOD ( prescaler ) ;
sl28cpld_pwm_read ( priv , SL28CPLD_PWM_CYCLE , & reg ) ;
state - > duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE ( reg ) ;
state - > polarity = PWM_POLARITY_NORMAL ;
/*
* Sanitize values for the PWM core . Depending on the prescaler it
* might happen that we calculate a duty_cycle greater than the actual
* period . This might happen if someone ( e . g . the bootloader ) sets an
* invalid combination of values . The behavior of the hardware is
* undefined in this case . But we need to report sane values back to
* the PWM core .
*/
state - > duty_cycle = min ( state - > duty_cycle , state - > period ) ;
2022-12-02 19:35:26 +01:00
return 0 ;
2020-09-14 23:43:34 +02:00
}
static int sl28cpld_pwm_apply ( struct pwm_chip * chip , struct pwm_device * pwm ,
const struct pwm_state * state )
{
2020-12-03 09:41:42 +01:00
struct sl28cpld_pwm * priv = sl28cpld_pwm_from_chip ( chip ) ;
2020-09-14 23:43:34 +02:00
unsigned int cycle , prescaler ;
bool write_duty_cycle_first ;
int ret ;
u8 ctrl ;
/* Polarity inversion is not supported */
if ( state - > polarity ! = PWM_POLARITY_NORMAL )
return - EINVAL ;
/*
* Calculate the prescaler . Pick the biggest period that isn ' t
* bigger than the requested period .
*/
prescaler = DIV_ROUND_UP_ULL ( SL28CPLD_PWM_PERIOD ( 0 ) , state - > period ) ;
prescaler = order_base_2 ( prescaler ) ;
if ( prescaler > field_max ( SL28CPLD_PWM_CTRL_PRESCALER_MASK ) )
return - ERANGE ;
ctrl = FIELD_PREP ( SL28CPLD_PWM_CTRL_PRESCALER_MASK , prescaler ) ;
if ( state - > enabled )
ctrl | = SL28CPLD_PWM_CTRL_ENABLE ;
cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE ( state - > duty_cycle ) ;
cycle = min_t ( unsigned int , cycle , SL28CPLD_PWM_MAX_DUTY_CYCLE ( prescaler ) ) ;
/*
* Work around the hardware limitation . See also above . Trap 100 % duty
* cycle if the prescaler is 0. Set prescaler to 1 instead . We don ' t
* care about the frequency because its " all-one " in either case .
*
* We don ' t need to check the actual prescaler setting , because only
* if the prescaler is 0 we can have this particular value .
*/
if ( cycle = = SL28CPLD_PWM_MAX_DUTY_CYCLE ( 0 ) ) {
ctrl & = ~ SL28CPLD_PWM_CTRL_PRESCALER_MASK ;
ctrl | = FIELD_PREP ( SL28CPLD_PWM_CTRL_PRESCALER_MASK , 1 ) ;
cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE ( 1 ) ;
}
/*
* To avoid glitches when we switch the prescaler , we have to make sure
* we have a valid duty cycle for the new mode .
*
* Take the current prescaler ( or the current period length ) into
* account to decide whether we have to write the duty cycle or the new
* prescaler first . If the period length is decreasing we have to
* write the duty cycle first .
*/
write_duty_cycle_first = pwm - > state . period > state - > period ;
if ( write_duty_cycle_first ) {
ret = sl28cpld_pwm_write ( priv , SL28CPLD_PWM_CYCLE , cycle ) ;
if ( ret )
return ret ;
}
ret = sl28cpld_pwm_write ( priv , SL28CPLD_PWM_CTRL , ctrl ) ;
if ( ret )
return ret ;
if ( ! write_duty_cycle_first ) {
ret = sl28cpld_pwm_write ( priv , SL28CPLD_PWM_CYCLE , cycle ) ;
if ( ret )
return ret ;
}
return 0 ;
}
static const struct pwm_ops sl28cpld_pwm_ops = {
. apply = sl28cpld_pwm_apply ,
. get_state = sl28cpld_pwm_get_state ,
. owner = THIS_MODULE ,
} ;
static int sl28cpld_pwm_probe ( struct platform_device * pdev )
{
struct sl28cpld_pwm * priv ;
struct pwm_chip * chip ;
int ret ;
if ( ! pdev - > dev . parent ) {
dev_err ( & pdev - > dev , " no parent device \n " ) ;
return - ENODEV ;
}
priv = devm_kzalloc ( & pdev - > dev , sizeof ( * priv ) , GFP_KERNEL ) ;
if ( ! priv )
return - ENOMEM ;
priv - > regmap = dev_get_regmap ( pdev - > dev . parent , NULL ) ;
if ( ! priv - > regmap ) {
dev_err ( & pdev - > dev , " could not get parent regmap \n " ) ;
return - ENODEV ;
}
ret = device_property_read_u32 ( & pdev - > dev , " reg " , & priv - > offset ) ;
if ( ret ) {
dev_err ( & pdev - > dev , " no 'reg' property found (%pe) \n " ,
ERR_PTR ( ret ) ) ;
return - EINVAL ;
}
/* Initialize the pwm_chip structure */
2023-07-14 22:56:22 +02:00
chip = & priv - > chip ;
2020-09-14 23:43:34 +02:00
chip - > dev = & pdev - > dev ;
chip - > ops = & sl28cpld_pwm_ops ;
chip - > npwm = 1 ;
2023-07-14 22:56:22 +02:00
ret = devm_pwmchip_add ( & pdev - > dev , chip ) ;
2020-09-14 23:43:34 +02:00
if ( ret ) {
dev_err ( & pdev - > dev , " failed to add PWM chip (%pe) " ,
ERR_PTR ( ret ) ) ;
return ret ;
}
return 0 ;
}
static const struct of_device_id sl28cpld_pwm_of_match [ ] = {
{ . compatible = " kontron,sl28cpld-pwm " } ,
{ }
} ;
MODULE_DEVICE_TABLE ( of , sl28cpld_pwm_of_match ) ;
static struct platform_driver sl28cpld_pwm_driver = {
. probe = sl28cpld_pwm_probe ,
. driver = {
. name = " sl28cpld-pwm " ,
. of_match_table = sl28cpld_pwm_of_match ,
} ,
} ;
module_platform_driver ( sl28cpld_pwm_driver ) ;
MODULE_DESCRIPTION ( " sl28cpld PWM Driver " ) ;
MODULE_AUTHOR ( " Michael Walle <michael@walle.cc> " ) ;
MODULE_LICENSE ( " GPL " ) ;