linux/fs/cifs/smbdirect.c

2525 lines
72 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 08:55:06 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2017, Microsoft Corporation.
*
* Author(s): Long Li <longli@microsoft.com>
*/
#include <linux/module.h>
#include <linux/highmem.h>
#include "smbdirect.h"
#include "cifs_debug.h"
#include "cifsproto.h"
#include "smb2proto.h"
static struct smbd_response *get_empty_queue_buffer(
struct smbd_connection *info);
static struct smbd_response *get_receive_buffer(
struct smbd_connection *info);
static void put_receive_buffer(
struct smbd_connection *info,
struct smbd_response *response);
static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
static void destroy_receive_buffers(struct smbd_connection *info);
static void put_empty_packet(
struct smbd_connection *info, struct smbd_response *response);
static void enqueue_reassembly(
struct smbd_connection *info,
struct smbd_response *response, int data_length);
static struct smbd_response *_get_first_reassembly(
struct smbd_connection *info);
static int smbd_post_recv(
struct smbd_connection *info,
struct smbd_response *response);
static int smbd_post_send_empty(struct smbd_connection *info);
static int smbd_post_send_data(
struct smbd_connection *info,
struct kvec *iov, int n_vec, int remaining_data_length);
static int smbd_post_send_page(struct smbd_connection *info,
struct page *page, unsigned long offset,
size_t size, int remaining_data_length);
static void destroy_mr_list(struct smbd_connection *info);
static int allocate_mr_list(struct smbd_connection *info);
/* SMBD version number */
#define SMBD_V1 0x0100
/* Port numbers for SMBD transport */
#define SMB_PORT 445
#define SMBD_PORT 5445
/* Address lookup and resolve timeout in ms */
#define RDMA_RESOLVE_TIMEOUT 5000
/* SMBD negotiation timeout in seconds */
#define SMBD_NEGOTIATE_TIMEOUT 120
/* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
#define SMBD_MIN_RECEIVE_SIZE 128
#define SMBD_MIN_FRAGMENTED_SIZE 131072
/*
* Default maximum number of RDMA read/write outstanding on this connection
* This value is possibly decreased during QP creation on hardware limit
*/
#define SMBD_CM_RESPONDER_RESOURCES 32
/* Maximum number of retries on data transfer operations */
#define SMBD_CM_RETRY 6
/* No need to retry on Receiver Not Ready since SMBD manages credits */
#define SMBD_CM_RNR_RETRY 0
/*
* User configurable initial values per SMBD transport connection
* as defined in [MS-SMBD] 3.1.1.1
* Those may change after a SMBD negotiation
*/
/* The local peer's maximum number of credits to grant to the peer */
int smbd_receive_credit_max = 255;
/* The remote peer's credit request of local peer */
int smbd_send_credit_target = 255;
/* The maximum single message size can be sent to remote peer */
int smbd_max_send_size = 1364;
/* The maximum fragmented upper-layer payload receive size supported */
int smbd_max_fragmented_recv_size = 1024 * 1024;
/* The maximum single-message size which can be received */
int smbd_max_receive_size = 8192;
/* The timeout to initiate send of a keepalive message on idle */
int smbd_keep_alive_interval = 120;
/*
* User configurable initial values for RDMA transport
* The actual values used may be lower and are limited to hardware capabilities
*/
/* Default maximum number of SGEs in a RDMA write/read */
int smbd_max_frmr_depth = 2048;
/* If payload is less than this byte, use RDMA send/recv not read/write */
int rdma_readwrite_threshold = 4096;
/* Transport logging functions
* Logging are defined as classes. They can be OR'ed to define the actual
* logging level via module parameter smbd_logging_class
* e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
* log_rdma_event()
*/
#define LOG_OUTGOING 0x1
#define LOG_INCOMING 0x2
#define LOG_READ 0x4
#define LOG_WRITE 0x8
#define LOG_RDMA_SEND 0x10
#define LOG_RDMA_RECV 0x20
#define LOG_KEEP_ALIVE 0x40
#define LOG_RDMA_EVENT 0x80
#define LOG_RDMA_MR 0x100
static unsigned int smbd_logging_class;
module_param(smbd_logging_class, uint, 0644);
MODULE_PARM_DESC(smbd_logging_class,
"Logging class for SMBD transport 0x0 to 0x100");
#define ERR 0x0
#define INFO 0x1
static unsigned int smbd_logging_level = ERR;
module_param(smbd_logging_level, uint, 0644);
MODULE_PARM_DESC(smbd_logging_level,
"Logging level for SMBD transport, 0 (default): error, 1: info");
#define log_rdma(level, class, fmt, args...) \
do { \
if (level <= smbd_logging_level || class & smbd_logging_class) \
cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
} while (0)
#define log_outgoing(level, fmt, args...) \
log_rdma(level, LOG_OUTGOING, fmt, ##args)
#define log_incoming(level, fmt, args...) \
log_rdma(level, LOG_INCOMING, fmt, ##args)
#define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
#define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
#define log_rdma_send(level, fmt, args...) \
log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
#define log_rdma_recv(level, fmt, args...) \
log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
#define log_keep_alive(level, fmt, args...) \
log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
#define log_rdma_event(level, fmt, args...) \
log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
#define log_rdma_mr(level, fmt, args...) \
log_rdma(level, LOG_RDMA_MR, fmt, ##args)
static void smbd_disconnect_rdma_work(struct work_struct *work)
{
struct smbd_connection *info =
container_of(work, struct smbd_connection, disconnect_work);
if (info->transport_status == SMBD_CONNECTED) {
info->transport_status = SMBD_DISCONNECTING;
rdma_disconnect(info->id);
}
}
static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
{
queue_work(info->workqueue, &info->disconnect_work);
}
/* Upcall from RDMA CM */
static int smbd_conn_upcall(
struct rdma_cm_id *id, struct rdma_cm_event *event)
{
struct smbd_connection *info = id->context;
log_rdma_event(INFO, "event=%d status=%d\n",
event->event, event->status);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
case RDMA_CM_EVENT_ROUTE_RESOLVED:
info->ri_rc = 0;
complete(&info->ri_done);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
info->ri_rc = -EHOSTUNREACH;
complete(&info->ri_done);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
info->ri_rc = -ENETUNREACH;
complete(&info->ri_done);
break;
case RDMA_CM_EVENT_ESTABLISHED:
log_rdma_event(INFO, "connected event=%d\n", event->event);
info->transport_status = SMBD_CONNECTED;
wake_up_interruptible(&info->conn_wait);
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED:
log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
info->transport_status = SMBD_DISCONNECTED;
wake_up_interruptible(&info->conn_wait);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
case RDMA_CM_EVENT_DISCONNECTED:
/* This happenes when we fail the negotiation */
if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
info->transport_status = SMBD_DISCONNECTED;
wake_up(&info->conn_wait);
break;
}
info->transport_status = SMBD_DISCONNECTED;
wake_up_interruptible(&info->disconn_wait);
wake_up_interruptible(&info->wait_reassembly_queue);
wake_up_interruptible_all(&info->wait_send_queue);
break;
default:
break;
}
return 0;
}
/* Upcall from RDMA QP */
static void
smbd_qp_async_error_upcall(struct ib_event *event, void *context)
{
struct smbd_connection *info = context;
log_rdma_event(ERR, "%s on device %s info %p\n",
ib_event_msg(event->event), event->device->name, info);
switch (event->event) {
case IB_EVENT_CQ_ERR:
case IB_EVENT_QP_FATAL:
smbd_disconnect_rdma_connection(info);
break;
default:
break;
}
}
static inline void *smbd_request_payload(struct smbd_request *request)
{
return (void *)request->packet;
}
static inline void *smbd_response_payload(struct smbd_response *response)
{
return (void *)response->packet;
}
/* Called when a RDMA send is done */
static void send_done(struct ib_cq *cq, struct ib_wc *wc)
{
int i;
struct smbd_request *request =
container_of(wc->wr_cqe, struct smbd_request, cqe);
log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
request, wc->status);
if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
wc->status, wc->opcode);
smbd_disconnect_rdma_connection(request->info);
}
for (i = 0; i < request->num_sge; i++)
ib_dma_unmap_single(request->info->id->device,
request->sge[i].addr,
request->sge[i].length,
DMA_TO_DEVICE);
if (atomic_dec_and_test(&request->info->send_pending))
wake_up(&request->info->wait_send_pending);
wake_up(&request->info->wait_post_send);
mempool_free(request, request->info->request_mempool);
}
static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
{
log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
resp->min_version, resp->max_version,
resp->negotiated_version, resp->credits_requested,
resp->credits_granted, resp->status,
resp->max_readwrite_size, resp->preferred_send_size,
resp->max_receive_size, resp->max_fragmented_size);
}
/*
* Process a negotiation response message, according to [MS-SMBD]3.1.5.7
* response, packet_length: the negotiation response message
* return value: true if negotiation is a success, false if failed
*/
static bool process_negotiation_response(
struct smbd_response *response, int packet_length)
{
struct smbd_connection *info = response->info;
struct smbd_negotiate_resp *packet = smbd_response_payload(response);
if (packet_length < sizeof(struct smbd_negotiate_resp)) {
log_rdma_event(ERR,
"error: packet_length=%d\n", packet_length);
return false;
}
if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
log_rdma_event(ERR, "error: negotiated_version=%x\n",
le16_to_cpu(packet->negotiated_version));
return false;
}
info->protocol = le16_to_cpu(packet->negotiated_version);
if (packet->credits_requested == 0) {
log_rdma_event(ERR, "error: credits_requested==0\n");
return false;
}
info->receive_credit_target = le16_to_cpu(packet->credits_requested);
if (packet->credits_granted == 0) {
log_rdma_event(ERR, "error: credits_granted==0\n");
return false;
}
atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
atomic_set(&info->receive_credits, 0);
if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
log_rdma_event(ERR, "error: preferred_send_size=%d\n",
le32_to_cpu(packet->preferred_send_size));
return false;
}
info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
log_rdma_event(ERR, "error: max_receive_size=%d\n",
le32_to_cpu(packet->max_receive_size));
return false;
}
info->max_send_size = min_t(int, info->max_send_size,
le32_to_cpu(packet->max_receive_size));
if (le32_to_cpu(packet->max_fragmented_size) <
SMBD_MIN_FRAGMENTED_SIZE) {
log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
le32_to_cpu(packet->max_fragmented_size));
return false;
}
info->max_fragmented_send_size =
le32_to_cpu(packet->max_fragmented_size);
info->rdma_readwrite_threshold =
rdma_readwrite_threshold > info->max_fragmented_send_size ?
info->max_fragmented_send_size :
rdma_readwrite_threshold;
info->max_readwrite_size = min_t(u32,
le32_to_cpu(packet->max_readwrite_size),
info->max_frmr_depth * PAGE_SIZE);
info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
return true;
}
static void smbd_post_send_credits(struct work_struct *work)
{
int ret = 0;
int use_receive_queue = 1;
int rc;
struct smbd_response *response;
struct smbd_connection *info =
container_of(work, struct smbd_connection,
post_send_credits_work);
if (info->transport_status != SMBD_CONNECTED) {
wake_up(&info->wait_receive_queues);
return;
}
if (info->receive_credit_target >
atomic_read(&info->receive_credits)) {
while (true) {
if (use_receive_queue)
response = get_receive_buffer(info);
else
response = get_empty_queue_buffer(info);
if (!response) {
/* now switch to emtpy packet queue */
if (use_receive_queue) {
use_receive_queue = 0;
continue;
} else
break;
}
response->type = SMBD_TRANSFER_DATA;
response->first_segment = false;
rc = smbd_post_recv(info, response);
if (rc) {
log_rdma_recv(ERR,
"post_recv failed rc=%d\n", rc);
put_receive_buffer(info, response);
break;
}
ret++;
}
}
spin_lock(&info->lock_new_credits_offered);
info->new_credits_offered += ret;
spin_unlock(&info->lock_new_credits_offered);
/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
info->send_immediate = true;
if (atomic_read(&info->receive_credits) <
info->receive_credit_target - 1) {
if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
info->send_immediate) {
log_keep_alive(INFO, "send an empty message\n");
smbd_post_send_empty(info);
}
}
}
/* Called from softirq, when recv is done */
static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct smbd_data_transfer *data_transfer;
struct smbd_response *response =
container_of(wc->wr_cqe, struct smbd_response, cqe);
struct smbd_connection *info = response->info;
int data_length = 0;
log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%x\n",
response, response->type, wc->status, wc->opcode,
wc->byte_len, wc->pkey_index);
if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
wc->status, wc->opcode);
smbd_disconnect_rdma_connection(info);
goto error;
}
ib_dma_sync_single_for_cpu(
wc->qp->device,
response->sge.addr,
response->sge.length,
DMA_FROM_DEVICE);
switch (response->type) {
/* SMBD negotiation response */
case SMBD_NEGOTIATE_RESP:
dump_smbd_negotiate_resp(smbd_response_payload(response));
info->full_packet_received = true;
info->negotiate_done =
process_negotiation_response(response, wc->byte_len);
complete(&info->negotiate_completion);
break;
/* SMBD data transfer packet */
case SMBD_TRANSFER_DATA:
data_transfer = smbd_response_payload(response);
data_length = le32_to_cpu(data_transfer->data_length);
/*
* If this is a packet with data playload place the data in
* reassembly queue and wake up the reading thread
*/
if (data_length) {
if (info->full_packet_received)
response->first_segment = true;
if (le32_to_cpu(data_transfer->remaining_data_length))
info->full_packet_received = false;
else
info->full_packet_received = true;
enqueue_reassembly(
info,
response,
data_length);
} else
put_empty_packet(info, response);
if (data_length)
wake_up_interruptible(&info->wait_reassembly_queue);
atomic_dec(&info->receive_credits);
info->receive_credit_target =
le16_to_cpu(data_transfer->credits_requested);
if (le16_to_cpu(data_transfer->credits_granted)) {
atomic_add(le16_to_cpu(data_transfer->credits_granted),
&info->send_credits);
/*
* We have new send credits granted from remote peer
* If any sender is waiting for credits, unblock it
*/
wake_up_interruptible(&info->wait_send_queue);
}
log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
le16_to_cpu(data_transfer->flags),
le32_to_cpu(data_transfer->data_offset),
le32_to_cpu(data_transfer->data_length),
le32_to_cpu(data_transfer->remaining_data_length));
/* Send a KEEP_ALIVE response right away if requested */
info->keep_alive_requested = KEEP_ALIVE_NONE;
if (le16_to_cpu(data_transfer->flags) &
SMB_DIRECT_RESPONSE_REQUESTED) {
info->keep_alive_requested = KEEP_ALIVE_PENDING;
}
return;
default:
log_rdma_recv(ERR,
"unexpected response type=%d\n", response->type);
}
error:
put_receive_buffer(info, response);
}
static struct rdma_cm_id *smbd_create_id(
struct smbd_connection *info,
struct sockaddr *dstaddr, int port)
{
struct rdma_cm_id *id;
int rc;
__be16 *sport;
id = rdma_create_id(&init_net, smbd_conn_upcall, info,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(id)) {
rc = PTR_ERR(id);
log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
return id;
}
if (dstaddr->sa_family == AF_INET6)
sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
else
sport = &((struct sockaddr_in *)dstaddr)->sin_port;
*sport = htons(port);
init_completion(&info->ri_done);
info->ri_rc = -ETIMEDOUT;
rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
RDMA_RESOLVE_TIMEOUT);
if (rc) {
log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
goto out;
}
rc = wait_for_completion_interruptible_timeout(
&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
/* e.g. if interrupted returns -ERESTARTSYS */
if (rc < 0) {
log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
goto out;
}
rc = info->ri_rc;
if (rc) {
log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
goto out;
}
info->ri_rc = -ETIMEDOUT;
rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
if (rc) {
log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
goto out;
}
rc = wait_for_completion_interruptible_timeout(
&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
/* e.g. if interrupted returns -ERESTARTSYS */
if (rc < 0) {
log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
goto out;
}
rc = info->ri_rc;
if (rc) {
log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
goto out;
}
return id;
out:
rdma_destroy_id(id);
return ERR_PTR(rc);
}
/*
* Test if FRWR (Fast Registration Work Requests) is supported on the device
* This implementation requries FRWR on RDMA read/write
* return value: true if it is supported
*/
static bool frwr_is_supported(struct ib_device_attr *attrs)
{
if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
return false;
if (attrs->max_fast_reg_page_list_len == 0)
return false;
return true;
}
static int smbd_ia_open(
struct smbd_connection *info,
struct sockaddr *dstaddr, int port)
{
int rc;
info->id = smbd_create_id(info, dstaddr, port);
if (IS_ERR(info->id)) {
rc = PTR_ERR(info->id);
goto out1;
}
if (!frwr_is_supported(&info->id->device->attrs)) {
log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
info->id->device->attrs.device_cap_flags,
info->id->device->attrs.max_fast_reg_page_list_len);
rc = -EPROTONOSUPPORT;
goto out2;
}
info->max_frmr_depth = min_t(int,
smbd_max_frmr_depth,
info->id->device->attrs.max_fast_reg_page_list_len);
info->mr_type = IB_MR_TYPE_MEM_REG;
if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
info->mr_type = IB_MR_TYPE_SG_GAPS;
info->pd = ib_alloc_pd(info->id->device, 0);
if (IS_ERR(info->pd)) {
rc = PTR_ERR(info->pd);
log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
goto out2;
}
return 0;
out2:
rdma_destroy_id(info->id);
info->id = NULL;
out1:
return rc;
}
/*
* Send a negotiation request message to the peer
* The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
* After negotiation, the transport is connected and ready for
* carrying upper layer SMB payload
*/
static int smbd_post_send_negotiate_req(struct smbd_connection *info)
{
struct ib_send_wr send_wr;
int rc = -ENOMEM;
struct smbd_request *request;
struct smbd_negotiate_req *packet;
request = mempool_alloc(info->request_mempool, GFP_KERNEL);
if (!request)
return rc;
request->info = info;
packet = smbd_request_payload(request);
packet->min_version = cpu_to_le16(SMBD_V1);
packet->max_version = cpu_to_le16(SMBD_V1);
packet->reserved = 0;
packet->credits_requested = cpu_to_le16(info->send_credit_target);
packet->preferred_send_size = cpu_to_le32(info->max_send_size);
packet->max_receive_size = cpu_to_le32(info->max_receive_size);
packet->max_fragmented_size =
cpu_to_le32(info->max_fragmented_recv_size);
request->num_sge = 1;
request->sge[0].addr = ib_dma_map_single(
info->id->device, (void *)packet,
sizeof(*packet), DMA_TO_DEVICE);
if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
rc = -EIO;
goto dma_mapping_failed;
}
request->sge[0].length = sizeof(*packet);
request->sge[0].lkey = info->pd->local_dma_lkey;
ib_dma_sync_single_for_device(
info->id->device, request->sge[0].addr,
request->sge[0].length, DMA_TO_DEVICE);
request->cqe.done = send_done;
send_wr.next = NULL;
send_wr.wr_cqe = &request->cqe;
send_wr.sg_list = request->sge;
send_wr.num_sge = request->num_sge;
send_wr.opcode = IB_WR_SEND;
send_wr.send_flags = IB_SEND_SIGNALED;
log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
request->sge[0].addr,
request->sge[0].length, request->sge[0].lkey);
atomic_inc(&info->send_pending);
rc = ib_post_send(info->id->qp, &send_wr, NULL);
if (!rc)
return 0;
/* if we reach here, post send failed */
log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
atomic_dec(&info->send_pending);
ib_dma_unmap_single(info->id->device, request->sge[0].addr,
request->sge[0].length, DMA_TO_DEVICE);
smbd_disconnect_rdma_connection(info);
dma_mapping_failed:
mempool_free(request, info->request_mempool);
return rc;
}
/*
* Extend the credits to remote peer
* This implements [MS-SMBD] 3.1.5.9
* The idea is that we should extend credits to remote peer as quickly as
* it's allowed, to maintain data flow. We allocate as much receive
* buffer as possible, and extend the receive credits to remote peer
* return value: the new credtis being granted.
*/
static int manage_credits_prior_sending(struct smbd_connection *info)
{
int new_credits;
spin_lock(&info->lock_new_credits_offered);
new_credits = info->new_credits_offered;
info->new_credits_offered = 0;
spin_unlock(&info->lock_new_credits_offered);
return new_credits;
}
/*
* Check if we need to send a KEEP_ALIVE message
* The idle connection timer triggers a KEEP_ALIVE message when expires
* SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
* back a response.
* return value:
* 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
* 0: otherwise
*/
static int manage_keep_alive_before_sending(struct smbd_connection *info)
{
if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
info->keep_alive_requested = KEEP_ALIVE_SENT;
return 1;
}
return 0;
}
/* Post the send request */
static int smbd_post_send(struct smbd_connection *info,
struct smbd_request *request)
{
struct ib_send_wr send_wr;
int rc, i;
for (i = 0; i < request->num_sge; i++) {
log_rdma_send(INFO,
"rdma_request sge[%d] addr=%llu length=%u\n",
i, request->sge[i].addr, request->sge[i].length);
ib_dma_sync_single_for_device(
info->id->device,
request->sge[i].addr,
request->sge[i].length,
DMA_TO_DEVICE);
}
request->cqe.done = send_done;
send_wr.next = NULL;
send_wr.wr_cqe = &request->cqe;
send_wr.sg_list = request->sge;
send_wr.num_sge = request->num_sge;
send_wr.opcode = IB_WR_SEND;
send_wr.send_flags = IB_SEND_SIGNALED;
rc = ib_post_send(info->id->qp, &send_wr, NULL);
if (rc) {
log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
smbd_disconnect_rdma_connection(info);
rc = -EAGAIN;
} else
/* Reset timer for idle connection after packet is sent */
mod_delayed_work(info->workqueue, &info->idle_timer_work,
info->keep_alive_interval*HZ);
return rc;
}
static int smbd_post_send_sgl(struct smbd_connection *info,
struct scatterlist *sgl, int data_length, int remaining_data_length)
{
int num_sgs;
int i, rc;
int header_length;
struct smbd_request *request;
struct smbd_data_transfer *packet;
int new_credits;
struct scatterlist *sg;
wait_credit:
/* Wait for send credits. A SMBD packet needs one credit */
rc = wait_event_interruptible(info->wait_send_queue,
atomic_read(&info->send_credits) > 0 ||
info->transport_status != SMBD_CONNECTED);
if (rc)
goto err_wait_credit;
if (info->transport_status != SMBD_CONNECTED) {
log_outgoing(ERR, "disconnected not sending on wait_credit\n");
rc = -EAGAIN;
goto err_wait_credit;
}
if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
atomic_inc(&info->send_credits);
goto wait_credit;
}
wait_send_queue:
wait_event(info->wait_post_send,
atomic_read(&info->send_pending) < info->send_credit_target ||
info->transport_status != SMBD_CONNECTED);
if (info->transport_status != SMBD_CONNECTED) {
log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
rc = -EAGAIN;
goto err_wait_send_queue;
}
if (unlikely(atomic_inc_return(&info->send_pending) >
info->send_credit_target)) {
atomic_dec(&info->send_pending);
goto wait_send_queue;
}
request = mempool_alloc(info->request_mempool, GFP_KERNEL);
if (!request) {
rc = -ENOMEM;
goto err_alloc;
}
request->info = info;
/* Fill in the packet header */
packet = smbd_request_payload(request);
packet->credits_requested = cpu_to_le16(info->send_credit_target);
new_credits = manage_credits_prior_sending(info);
atomic_add(new_credits, &info->receive_credits);
packet->credits_granted = cpu_to_le16(new_credits);
info->send_immediate = false;
packet->flags = 0;
if (manage_keep_alive_before_sending(info))
packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
packet->reserved = 0;
if (!data_length)
packet->data_offset = 0;
else
packet->data_offset = cpu_to_le32(24);
packet->data_length = cpu_to_le32(data_length);
packet->remaining_data_length = cpu_to_le32(remaining_data_length);
packet->padding = 0;
log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
le16_to_cpu(packet->credits_requested),
le16_to_cpu(packet->credits_granted),
le32_to_cpu(packet->data_offset),
le32_to_cpu(packet->data_length),
le32_to_cpu(packet->remaining_data_length));
/* Map the packet to DMA */
header_length = sizeof(struct smbd_data_transfer);
/* If this is a packet without payload, don't send padding */
if (!data_length)
header_length = offsetof(struct smbd_data_transfer, padding);
request->num_sge = 1;
request->sge[0].addr = ib_dma_map_single(info->id->device,
(void *)packet,
header_length,
DMA_TO_DEVICE);
if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
rc = -EIO;
request->sge[0].addr = 0;
goto err_dma;
}
request->sge[0].length = header_length;
request->sge[0].lkey = info->pd->local_dma_lkey;
/* Fill in the packet data payload */
num_sgs = sgl ? sg_nents(sgl) : 0;
for_each_sg(sgl, sg, num_sgs, i) {
request->sge[i+1].addr =
ib_dma_map_page(info->id->device, sg_page(sg),
sg->offset, sg->length, DMA_TO_DEVICE);
if (ib_dma_mapping_error(
info->id->device, request->sge[i+1].addr)) {
rc = -EIO;
request->sge[i+1].addr = 0;
goto err_dma;
}
request->sge[i+1].length = sg->length;
request->sge[i+1].lkey = info->pd->local_dma_lkey;
request->num_sge++;
}
rc = smbd_post_send(info, request);
if (!rc)
return 0;
err_dma:
for (i = 0; i < request->num_sge; i++)
if (request->sge[i].addr)
ib_dma_unmap_single(info->id->device,
request->sge[i].addr,
request->sge[i].length,
DMA_TO_DEVICE);
mempool_free(request, info->request_mempool);
/* roll back receive credits and credits to be offered */
spin_lock(&info->lock_new_credits_offered);
info->new_credits_offered += new_credits;
spin_unlock(&info->lock_new_credits_offered);
atomic_sub(new_credits, &info->receive_credits);
err_alloc:
if (atomic_dec_and_test(&info->send_pending))
wake_up(&info->wait_send_pending);
err_wait_send_queue:
/* roll back send credits and pending */
atomic_inc(&info->send_credits);
err_wait_credit:
return rc;
}
/*
* Send a page
* page: the page to send
* offset: offset in the page to send
* size: length in the page to send
* remaining_data_length: remaining data to send in this payload
*/
static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
unsigned long offset, size_t size, int remaining_data_length)
{
struct scatterlist sgl;
sg_init_table(&sgl, 1);
sg_set_page(&sgl, page, size, offset);
return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
}
/*
* Send an empty message
* Empty message is used to extend credits to peer to for keep live
* while there is no upper layer payload to send at the time
*/
static int smbd_post_send_empty(struct smbd_connection *info)
{
info->count_send_empty++;
return smbd_post_send_sgl(info, NULL, 0, 0);
}
/*
* Send a data buffer
* iov: the iov array describing the data buffers
* n_vec: number of iov array
* remaining_data_length: remaining data to send following this packet
* in segmented SMBD packet
*/
static int smbd_post_send_data(
struct smbd_connection *info, struct kvec *iov, int n_vec,
int remaining_data_length)
{
int i;
u32 data_length = 0;
struct scatterlist sgl[SMBDIRECT_MAX_SGE];
if (n_vec > SMBDIRECT_MAX_SGE) {
cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
return -EINVAL;
}
sg_init_table(sgl, n_vec);
for (i = 0; i < n_vec; i++) {
data_length += iov[i].iov_len;
sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
}
return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
}
/*
* Post a receive request to the transport
* The remote peer can only send data when a receive request is posted
* The interaction is controlled by send/receive credit system
*/
static int smbd_post_recv(
struct smbd_connection *info, struct smbd_response *response)
{
struct ib_recv_wr recv_wr;
int rc = -EIO;
response->sge.addr = ib_dma_map_single(
info->id->device, response->packet,
info->max_receive_size, DMA_FROM_DEVICE);
if (ib_dma_mapping_error(info->id->device, response->sge.addr))
return rc;
response->sge.length = info->max_receive_size;
response->sge.lkey = info->pd->local_dma_lkey;
response->cqe.done = recv_done;
recv_wr.wr_cqe = &response->cqe;
recv_wr.next = NULL;
recv_wr.sg_list = &response->sge;
recv_wr.num_sge = 1;
rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
if (rc) {
ib_dma_unmap_single(info->id->device, response->sge.addr,
response->sge.length, DMA_FROM_DEVICE);
smbd_disconnect_rdma_connection(info);
log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
}
return rc;
}
/* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
static int smbd_negotiate(struct smbd_connection *info)
{
int rc;
struct smbd_response *response = get_receive_buffer(info);
response->type = SMBD_NEGOTIATE_RESP;
rc = smbd_post_recv(info, response);
log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x iov.lkey=%x\n",
rc, response->sge.addr,
response->sge.length, response->sge.lkey);
if (rc)
return rc;
init_completion(&info->negotiate_completion);
info->negotiate_done = false;
rc = smbd_post_send_negotiate_req(info);
if (rc)
return rc;
rc = wait_for_completion_interruptible_timeout(
&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
if (info->negotiate_done)
return 0;
if (rc == 0)
rc = -ETIMEDOUT;
else if (rc == -ERESTARTSYS)
rc = -EINTR;
else
rc = -ENOTCONN;
return rc;
}
static void put_empty_packet(
struct smbd_connection *info, struct smbd_response *response)
{
spin_lock(&info->empty_packet_queue_lock);
list_add_tail(&response->list, &info->empty_packet_queue);
info->count_empty_packet_queue++;
spin_unlock(&info->empty_packet_queue_lock);
queue_work(info->workqueue, &info->post_send_credits_work);
}
/*
* Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
* This is a queue for reassembling upper layer payload and present to upper
* layer. All the inncoming payload go to the reassembly queue, regardless of
* if reassembly is required. The uuper layer code reads from the queue for all
* incoming payloads.
* Put a received packet to the reassembly queue
* response: the packet received
* data_length: the size of payload in this packet
*/
static void enqueue_reassembly(
struct smbd_connection *info,
struct smbd_response *response,
int data_length)
{
spin_lock(&info->reassembly_queue_lock);
list_add_tail(&response->list, &info->reassembly_queue);
info->reassembly_queue_length++;
/*
* Make sure reassembly_data_length is updated after list and
* reassembly_queue_length are updated. On the dequeue side
* reassembly_data_length is checked without a lock to determine
* if reassembly_queue_length and list is up to date
*/
virt_wmb();
info->reassembly_data_length += data_length;
spin_unlock(&info->reassembly_queue_lock);
info->count_reassembly_queue++;
info->count_enqueue_reassembly_queue++;
}
/*
* Get the first entry at the front of reassembly queue
* Caller is responsible for locking
* return value: the first entry if any, NULL if queue is empty
*/
static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
{
struct smbd_response *ret = NULL;
if (!list_empty(&info->reassembly_queue)) {
ret = list_first_entry(
&info->reassembly_queue,
struct smbd_response, list);
}
return ret;
}
static struct smbd_response *get_empty_queue_buffer(
struct smbd_connection *info)
{
struct smbd_response *ret = NULL;
unsigned long flags;
spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
if (!list_empty(&info->empty_packet_queue)) {
ret = list_first_entry(
&info->empty_packet_queue,
struct smbd_response, list);
list_del(&ret->list);
info->count_empty_packet_queue--;
}
spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
return ret;
}
/*
* Get a receive buffer
* For each remote send, we need to post a receive. The receive buffers are
* pre-allocated in advance.
* return value: the receive buffer, NULL if none is available
*/
static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
{
struct smbd_response *ret = NULL;
unsigned long flags;
spin_lock_irqsave(&info->receive_queue_lock, flags);
if (!list_empty(&info->receive_queue)) {
ret = list_first_entry(
&info->receive_queue,
struct smbd_response, list);
list_del(&ret->list);
info->count_receive_queue--;
info->count_get_receive_buffer++;
}
spin_unlock_irqrestore(&info->receive_queue_lock, flags);
return ret;
}
/*
* Return a receive buffer
* Upon returning of a receive buffer, we can post new receive and extend
* more receive credits to remote peer. This is done immediately after a
* receive buffer is returned.
*/
static void put_receive_buffer(
struct smbd_connection *info, struct smbd_response *response)
{
unsigned long flags;
ib_dma_unmap_single(info->id->device, response->sge.addr,
response->sge.length, DMA_FROM_DEVICE);
spin_lock_irqsave(&info->receive_queue_lock, flags);
list_add_tail(&response->list, &info->receive_queue);
info->count_receive_queue++;
info->count_put_receive_buffer++;
spin_unlock_irqrestore(&info->receive_queue_lock, flags);
queue_work(info->workqueue, &info->post_send_credits_work);
}
/* Preallocate all receive buffer on transport establishment */
static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
{
int i;
struct smbd_response *response;
INIT_LIST_HEAD(&info->reassembly_queue);
spin_lock_init(&info->reassembly_queue_lock);
info->reassembly_data_length = 0;
info->reassembly_queue_length = 0;
INIT_LIST_HEAD(&info->receive_queue);
spin_lock_init(&info->receive_queue_lock);
info->count_receive_queue = 0;
INIT_LIST_HEAD(&info->empty_packet_queue);
spin_lock_init(&info->empty_packet_queue_lock);
info->count_empty_packet_queue = 0;
init_waitqueue_head(&info->wait_receive_queues);
for (i = 0; i < num_buf; i++) {
response = mempool_alloc(info->response_mempool, GFP_KERNEL);
if (!response)
goto allocate_failed;
response->info = info;
list_add_tail(&response->list, &info->receive_queue);
info->count_receive_queue++;
}
return 0;
allocate_failed:
while (!list_empty(&info->receive_queue)) {
response = list_first_entry(
&info->receive_queue,
struct smbd_response, list);
list_del(&response->list);
info->count_receive_queue--;
mempool_free(response, info->response_mempool);
}
return -ENOMEM;
}
static void destroy_receive_buffers(struct smbd_connection *info)
{
struct smbd_response *response;
while ((response = get_receive_buffer(info)))
mempool_free(response, info->response_mempool);
while ((response = get_empty_queue_buffer(info)))
mempool_free(response, info->response_mempool);
}
/* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
static void idle_connection_timer(struct work_struct *work)
{
struct smbd_connection *info = container_of(
work, struct smbd_connection,
idle_timer_work.work);
if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
log_keep_alive(ERR,
"error status info->keep_alive_requested=%d\n",
info->keep_alive_requested);
smbd_disconnect_rdma_connection(info);
return;
}
log_keep_alive(INFO, "about to send an empty idle message\n");
smbd_post_send_empty(info);
/* Setup the next idle timeout work */
queue_delayed_work(info->workqueue, &info->idle_timer_work,
info->keep_alive_interval*HZ);
}
/*
* Destroy the transport and related RDMA and memory resources
* Need to go through all the pending counters and make sure on one is using
* the transport while it is destroyed
*/
void smbd_destroy(struct TCP_Server_Info *server)
{
struct smbd_connection *info = server->smbd_conn;
struct smbd_response *response;
unsigned long flags;
if (!info) {
log_rdma_event(INFO, "rdma session already destroyed\n");
return;
}
log_rdma_event(INFO, "destroying rdma session\n");
if (info->transport_status != SMBD_DISCONNECTED) {
rdma_disconnect(server->smbd_conn->id);
log_rdma_event(INFO, "wait for transport being disconnected\n");
wait_event_interruptible(
info->disconn_wait,
info->transport_status == SMBD_DISCONNECTED);
}
log_rdma_event(INFO, "destroying qp\n");
ib_drain_qp(info->id->qp);
rdma_destroy_qp(info->id);
log_rdma_event(INFO, "cancelling idle timer\n");
cancel_delayed_work_sync(&info->idle_timer_work);
log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
wait_event(info->wait_send_pending,
atomic_read(&info->send_pending) == 0);
/* It's not possible for upper layer to get to reassembly */
log_rdma_event(INFO, "drain the reassembly queue\n");
do {
spin_lock_irqsave(&info->reassembly_queue_lock, flags);
response = _get_first_reassembly(info);
if (response) {
list_del(&response->list);
spin_unlock_irqrestore(
&info->reassembly_queue_lock, flags);
put_receive_buffer(info, response);
} else
spin_unlock_irqrestore(
&info->reassembly_queue_lock, flags);
} while (response);
info->reassembly_data_length = 0;
log_rdma_event(INFO, "free receive buffers\n");
wait_event(info->wait_receive_queues,
info->count_receive_queue + info->count_empty_packet_queue
== info->receive_credit_max);
destroy_receive_buffers(info);
/*
* For performance reasons, memory registration and deregistration
* are not locked by srv_mutex. It is possible some processes are
* blocked on transport srv_mutex while holding memory registration.
* Release the transport srv_mutex to allow them to hit the failure
* path when sending data, and then release memory registartions.
*/
log_rdma_event(INFO, "freeing mr list\n");
wake_up_interruptible_all(&info->wait_mr);
while (atomic_read(&info->mr_used_count)) {
cifs: fix potential deadlock in direct reclaim The srv_mutex is used during writeback so cifs should ensure that allocations done when that mutex is held are done with GFP_NOFS, to avoid having direct reclaim ending up waiting for the same mutex and causing a deadlock. This is detected by lockdep with the splat below: ====================================================== WARNING: possible circular locking dependency detected 5.18.0 #70 Not tainted ------------------------------------------------------ kswapd0/49 is trying to acquire lock: ffff8880195782e0 (&tcp_ses->srv_mutex){+.+.}-{3:3}, at: compound_send_recv but task is already holding lock: ffffffffa98e66c0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire kmem_cache_alloc_trace __request_module crypto_alg_mod_lookup crypto_alloc_tfm_node crypto_alloc_shash cifs_alloc_hash smb311_crypto_shash_allocate smb311_update_preauth_hash compound_send_recv cifs_send_recv SMB2_negotiate smb2_negotiate cifs_negotiate_protocol cifs_get_smb_ses cifs_mount cifs_smb3_do_mount smb3_get_tree vfs_get_tree path_mount __x64_sys_mount do_syscall_64 entry_SYSCALL_64_after_hwframe -> #0 (&tcp_ses->srv_mutex){+.+.}-{3:3}: __lock_acquire lock_acquire __mutex_lock mutex_lock_nested compound_send_recv cifs_send_recv SMB2_write smb2_sync_write cifs_write cifs_writepage_locked cifs_writepage shrink_page_list shrink_lruvec shrink_node balance_pgdat kswapd kthread ret_from_fork other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&tcp_ses->srv_mutex); lock(fs_reclaim); lock(&tcp_ses->srv_mutex); *** DEADLOCK *** 1 lock held by kswapd0/49: #0: ffffffffa98e66c0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat stack backtrace: CPU: 2 PID: 49 Comm: kswapd0 Not tainted 5.18.0 #70 Call Trace: <TASK> dump_stack_lvl dump_stack print_circular_bug.cold check_noncircular __lock_acquire lock_acquire __mutex_lock mutex_lock_nested compound_send_recv cifs_send_recv SMB2_write smb2_sync_write cifs_write cifs_writepage_locked cifs_writepage shrink_page_list shrink_lruvec shrink_node balance_pgdat kswapd kthread ret_from_fork </TASK> Fix this by using the memalloc_nofs_save/restore APIs around the places where the srv_mutex is held. Do this in a wrapper function for the lock/unlock of the srv_mutex, and rename the srv_mutex to avoid missing call sites in the conversion. Note that there is another lockdep warning involving internal crypto locks, which was masked by this problem and is visible after this fix, see the discussion in this thread: https://lore.kernel.org/all/20220523123755.GA13668@axis.com/ Link: https://lore.kernel.org/r/CANT5p=rqcYfYMVHirqvdnnca4Mo+JQSw5Qu12v=kPfpk5yhhmg@mail.gmail.com/ Reported-by: Shyam Prasad N <nspmangalore@gmail.com> Suggested-by: Lars Persson <larper@axis.com> Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com> Reviewed-by: Enzo Matsumiya <ematsumiya@suse.de> Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2022-06-01 00:03:18 -05:00
cifs_server_unlock(server);
msleep(1000);
cifs: fix potential deadlock in direct reclaim The srv_mutex is used during writeback so cifs should ensure that allocations done when that mutex is held are done with GFP_NOFS, to avoid having direct reclaim ending up waiting for the same mutex and causing a deadlock. This is detected by lockdep with the splat below: ====================================================== WARNING: possible circular locking dependency detected 5.18.0 #70 Not tainted ------------------------------------------------------ kswapd0/49 is trying to acquire lock: ffff8880195782e0 (&tcp_ses->srv_mutex){+.+.}-{3:3}, at: compound_send_recv but task is already holding lock: ffffffffa98e66c0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire kmem_cache_alloc_trace __request_module crypto_alg_mod_lookup crypto_alloc_tfm_node crypto_alloc_shash cifs_alloc_hash smb311_crypto_shash_allocate smb311_update_preauth_hash compound_send_recv cifs_send_recv SMB2_negotiate smb2_negotiate cifs_negotiate_protocol cifs_get_smb_ses cifs_mount cifs_smb3_do_mount smb3_get_tree vfs_get_tree path_mount __x64_sys_mount do_syscall_64 entry_SYSCALL_64_after_hwframe -> #0 (&tcp_ses->srv_mutex){+.+.}-{3:3}: __lock_acquire lock_acquire __mutex_lock mutex_lock_nested compound_send_recv cifs_send_recv SMB2_write smb2_sync_write cifs_write cifs_writepage_locked cifs_writepage shrink_page_list shrink_lruvec shrink_node balance_pgdat kswapd kthread ret_from_fork other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&tcp_ses->srv_mutex); lock(fs_reclaim); lock(&tcp_ses->srv_mutex); *** DEADLOCK *** 1 lock held by kswapd0/49: #0: ffffffffa98e66c0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat stack backtrace: CPU: 2 PID: 49 Comm: kswapd0 Not tainted 5.18.0 #70 Call Trace: <TASK> dump_stack_lvl dump_stack print_circular_bug.cold check_noncircular __lock_acquire lock_acquire __mutex_lock mutex_lock_nested compound_send_recv cifs_send_recv SMB2_write smb2_sync_write cifs_write cifs_writepage_locked cifs_writepage shrink_page_list shrink_lruvec shrink_node balance_pgdat kswapd kthread ret_from_fork </TASK> Fix this by using the memalloc_nofs_save/restore APIs around the places where the srv_mutex is held. Do this in a wrapper function for the lock/unlock of the srv_mutex, and rename the srv_mutex to avoid missing call sites in the conversion. Note that there is another lockdep warning involving internal crypto locks, which was masked by this problem and is visible after this fix, see the discussion in this thread: https://lore.kernel.org/all/20220523123755.GA13668@axis.com/ Link: https://lore.kernel.org/r/CANT5p=rqcYfYMVHirqvdnnca4Mo+JQSw5Qu12v=kPfpk5yhhmg@mail.gmail.com/ Reported-by: Shyam Prasad N <nspmangalore@gmail.com> Suggested-by: Lars Persson <larper@axis.com> Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com> Reviewed-by: Enzo Matsumiya <ematsumiya@suse.de> Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2022-06-01 00:03:18 -05:00
cifs_server_lock(server);
}
destroy_mr_list(info);
ib_free_cq(info->send_cq);
ib_free_cq(info->recv_cq);
ib_dealloc_pd(info->pd);
rdma_destroy_id(info->id);
/* free mempools */
mempool_destroy(info->request_mempool);
kmem_cache_destroy(info->request_cache);
mempool_destroy(info->response_mempool);
kmem_cache_destroy(info->response_cache);
info->transport_status = SMBD_DESTROYED;
destroy_workqueue(info->workqueue);
log_rdma_event(INFO, "rdma session destroyed\n");
kfree(info);
}
/*
* Reconnect this SMBD connection, called from upper layer
* return value: 0 on success, or actual error code
*/
int smbd_reconnect(struct TCP_Server_Info *server)
{
log_rdma_event(INFO, "reconnecting rdma session\n");
if (!server->smbd_conn) {
log_rdma_event(INFO, "rdma session already destroyed\n");
goto create_conn;
}
/*
* This is possible if transport is disconnected and we haven't received
* notification from RDMA, but upper layer has detected timeout
*/
if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
log_rdma_event(INFO, "disconnecting transport\n");
smbd_destroy(server);
}
create_conn:
log_rdma_event(INFO, "creating rdma session\n");
server->smbd_conn = smbd_get_connection(
server, (struct sockaddr *) &server->dstaddr);
if (server->smbd_conn)
cifs_dbg(VFS, "RDMA transport re-established\n");
return server->smbd_conn ? 0 : -ENOENT;
}
static void destroy_caches_and_workqueue(struct smbd_connection *info)
{
destroy_receive_buffers(info);
destroy_workqueue(info->workqueue);
mempool_destroy(info->response_mempool);
kmem_cache_destroy(info->response_cache);
mempool_destroy(info->request_mempool);
kmem_cache_destroy(info->request_cache);
}
#define MAX_NAME_LEN 80
static int allocate_caches_and_workqueue(struct smbd_connection *info)
{
char name[MAX_NAME_LEN];
int rc;
scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
info->request_cache =
kmem_cache_create(
name,
sizeof(struct smbd_request) +
sizeof(struct smbd_data_transfer),
0, SLAB_HWCACHE_ALIGN, NULL);
if (!info->request_cache)
return -ENOMEM;
info->request_mempool =
mempool_create(info->send_credit_target, mempool_alloc_slab,
mempool_free_slab, info->request_cache);
if (!info->request_mempool)
goto out1;
scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
info->response_cache =
kmem_cache_create(
name,
sizeof(struct smbd_response) +
info->max_receive_size,
0, SLAB_HWCACHE_ALIGN, NULL);
if (!info->response_cache)
goto out2;
info->response_mempool =
mempool_create(info->receive_credit_max, mempool_alloc_slab,
mempool_free_slab, info->response_cache);
if (!info->response_mempool)
goto out3;
scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
info->workqueue = create_workqueue(name);
if (!info->workqueue)
goto out4;
rc = allocate_receive_buffers(info, info->receive_credit_max);
if (rc) {
log_rdma_event(ERR, "failed to allocate receive buffers\n");
goto out5;
}
return 0;
out5:
destroy_workqueue(info->workqueue);
out4:
mempool_destroy(info->response_mempool);
out3:
kmem_cache_destroy(info->response_cache);
out2:
mempool_destroy(info->request_mempool);
out1:
kmem_cache_destroy(info->request_cache);
return -ENOMEM;
}
/* Create a SMBD connection, called by upper layer */
static struct smbd_connection *_smbd_get_connection(
struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
{
int rc;
struct smbd_connection *info;
struct rdma_conn_param conn_param;
struct ib_qp_init_attr qp_attr;
struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
struct ib_port_immutable port_immutable;
u32 ird_ord_hdr[2];
info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
if (!info)
return NULL;
info->transport_status = SMBD_CONNECTING;
rc = smbd_ia_open(info, dstaddr, port);
if (rc) {
log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
goto create_id_failed;
}
if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
smbd_send_credit_target,
info->id->device->attrs.max_cqe,
info->id->device->attrs.max_qp_wr);
goto config_failed;
}
if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
smbd_receive_credit_max,
info->id->device->attrs.max_cqe,
info->id->device->attrs.max_qp_wr);
goto config_failed;
}
info->receive_credit_max = smbd_receive_credit_max;
info->send_credit_target = smbd_send_credit_target;
info->max_send_size = smbd_max_send_size;
info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
info->max_receive_size = smbd_max_receive_size;
info->keep_alive_interval = smbd_keep_alive_interval;
if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
log_rdma_event(ERR,
"warning: device max_send_sge = %d too small\n",
info->id->device->attrs.max_send_sge);
log_rdma_event(ERR, "Queue Pair creation may fail\n");
}
if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
log_rdma_event(ERR,
"warning: device max_recv_sge = %d too small\n",
info->id->device->attrs.max_recv_sge);
log_rdma_event(ERR, "Queue Pair creation may fail\n");
}
info->send_cq = NULL;
info->recv_cq = NULL;
info->send_cq =
ib_alloc_cq_any(info->id->device, info,
info->send_credit_target, IB_POLL_SOFTIRQ);
if (IS_ERR(info->send_cq)) {
info->send_cq = NULL;
goto alloc_cq_failed;
}
info->recv_cq =
ib_alloc_cq_any(info->id->device, info,
info->receive_credit_max, IB_POLL_SOFTIRQ);
if (IS_ERR(info->recv_cq)) {
info->recv_cq = NULL;
goto alloc_cq_failed;
}
memset(&qp_attr, 0, sizeof(qp_attr));
qp_attr.event_handler = smbd_qp_async_error_upcall;
qp_attr.qp_context = info;
qp_attr.cap.max_send_wr = info->send_credit_target;
qp_attr.cap.max_recv_wr = info->receive_credit_max;
qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
qp_attr.cap.max_inline_data = 0;
qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
qp_attr.qp_type = IB_QPT_RC;
qp_attr.send_cq = info->send_cq;
qp_attr.recv_cq = info->recv_cq;
qp_attr.port_num = ~0;
rc = rdma_create_qp(info->id, info->pd, &qp_attr);
if (rc) {
log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
goto create_qp_failed;
}
memset(&conn_param, 0, sizeof(conn_param));
conn_param.initiator_depth = 0;
conn_param.responder_resources =
info->id->device->attrs.max_qp_rd_atom
< SMBD_CM_RESPONDER_RESOURCES ?
info->id->device->attrs.max_qp_rd_atom :
SMBD_CM_RESPONDER_RESOURCES;
info->responder_resources = conn_param.responder_resources;
log_rdma_mr(INFO, "responder_resources=%d\n",
info->responder_resources);
/* Need to send IRD/ORD in private data for iWARP */
info->id->device->ops.get_port_immutable(
info->id->device, info->id->port_num, &port_immutable);
if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
ird_ord_hdr[0] = info->responder_resources;
ird_ord_hdr[1] = 1;
conn_param.private_data = ird_ord_hdr;
conn_param.private_data_len = sizeof(ird_ord_hdr);
} else {
conn_param.private_data = NULL;
conn_param.private_data_len = 0;
}
conn_param.retry_count = SMBD_CM_RETRY;
conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
conn_param.flow_control = 0;
log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
&addr_in->sin_addr, port);
init_waitqueue_head(&info->conn_wait);
init_waitqueue_head(&info->disconn_wait);
init_waitqueue_head(&info->wait_reassembly_queue);
rc = rdma_connect(info->id, &conn_param);
if (rc) {
log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
goto rdma_connect_failed;
}
wait_event_interruptible(
info->conn_wait, info->transport_status != SMBD_CONNECTING);
if (info->transport_status != SMBD_CONNECTED) {
log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
goto rdma_connect_failed;
}
log_rdma_event(INFO, "rdma_connect connected\n");
rc = allocate_caches_and_workqueue(info);
if (rc) {
log_rdma_event(ERR, "cache allocation failed\n");
goto allocate_cache_failed;
}
init_waitqueue_head(&info->wait_send_queue);
INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
queue_delayed_work(info->workqueue, &info->idle_timer_work,
info->keep_alive_interval*HZ);
init_waitqueue_head(&info->wait_send_pending);
atomic_set(&info->send_pending, 0);
init_waitqueue_head(&info->wait_post_send);
INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
info->new_credits_offered = 0;
spin_lock_init(&info->lock_new_credits_offered);
rc = smbd_negotiate(info);
if (rc) {
log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
goto negotiation_failed;
}
rc = allocate_mr_list(info);
if (rc) {
log_rdma_mr(ERR, "memory registration allocation failed\n");
goto allocate_mr_failed;
}
return info;
allocate_mr_failed:
/* At this point, need to a full transport shutdown */
smbd_destroy(server);
return NULL;
negotiation_failed:
cancel_delayed_work_sync(&info->idle_timer_work);
destroy_caches_and_workqueue(info);
info->transport_status = SMBD_NEGOTIATE_FAILED;
init_waitqueue_head(&info->conn_wait);
rdma_disconnect(info->id);
wait_event(info->conn_wait,
info->transport_status == SMBD_DISCONNECTED);
allocate_cache_failed:
rdma_connect_failed:
rdma_destroy_qp(info->id);
create_qp_failed:
alloc_cq_failed:
if (info->send_cq)
ib_free_cq(info->send_cq);
if (info->recv_cq)
ib_free_cq(info->recv_cq);
config_failed:
ib_dealloc_pd(info->pd);
rdma_destroy_id(info->id);
create_id_failed:
kfree(info);
return NULL;
}
struct smbd_connection *smbd_get_connection(
struct TCP_Server_Info *server, struct sockaddr *dstaddr)
{
struct smbd_connection *ret;
int port = SMBD_PORT;
try_again:
ret = _smbd_get_connection(server, dstaddr, port);
/* Try SMB_PORT if SMBD_PORT doesn't work */
if (!ret && port == SMBD_PORT) {
port = SMB_PORT;
goto try_again;
}
return ret;
}
/*
* Receive data from receive reassembly queue
* All the incoming data packets are placed in reassembly queue
* buf: the buffer to read data into
* size: the length of data to read
* return value: actual data read
* Note: this implementation copies the data from reassebmly queue to receive
* buffers used by upper layer. This is not the optimal code path. A better way
* to do it is to not have upper layer allocate its receive buffers but rather
* borrow the buffer from reassembly queue, and return it after data is
* consumed. But this will require more changes to upper layer code, and also
* need to consider packet boundaries while they still being reassembled.
*/
static int smbd_recv_buf(struct smbd_connection *info, char *buf,
unsigned int size)
{
struct smbd_response *response;
struct smbd_data_transfer *data_transfer;
int to_copy, to_read, data_read, offset;
u32 data_length, remaining_data_length, data_offset;
int rc;
again:
/*
* No need to hold the reassembly queue lock all the time as we are
* the only one reading from the front of the queue. The transport
* may add more entries to the back of the queue at the same time
*/
log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
info->reassembly_data_length);
if (info->reassembly_data_length >= size) {
int queue_length;
int queue_removed = 0;
/*
* Need to make sure reassembly_data_length is read before
* reading reassembly_queue_length and calling
* _get_first_reassembly. This call is lock free
* as we never read at the end of the queue which are being
* updated in SOFTIRQ as more data is received
*/
virt_rmb();
queue_length = info->reassembly_queue_length;
data_read = 0;
to_read = size;
offset = info->first_entry_offset;
while (data_read < size) {
response = _get_first_reassembly(info);
data_transfer = smbd_response_payload(response);
data_length = le32_to_cpu(data_transfer->data_length);
remaining_data_length =
le32_to_cpu(
data_transfer->remaining_data_length);
data_offset = le32_to_cpu(data_transfer->data_offset);
/*
* The upper layer expects RFC1002 length at the
* beginning of the payload. Return it to indicate
* the total length of the packet. This minimize the
* change to upper layer packet processing logic. This
* will be eventually remove when an intermediate
* transport layer is added
*/
if (response->first_segment && size == 4) {
unsigned int rfc1002_len =
data_length + remaining_data_length;
*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
data_read = 4;
response->first_segment = false;
log_read(INFO, "returning rfc1002 length %d\n",
rfc1002_len);
goto read_rfc1002_done;
}
to_copy = min_t(int, data_length - offset, to_read);
memcpy(
buf + data_read,
(char *)data_transfer + data_offset + offset,
to_copy);
/* move on to the next buffer? */
if (to_copy == data_length - offset) {
queue_length--;
/*
* No need to lock if we are not at the
* end of the queue
*/
if (queue_length)
list_del(&response->list);
else {
spin_lock_irq(
&info->reassembly_queue_lock);
list_del(&response->list);
spin_unlock_irq(
&info->reassembly_queue_lock);
}
queue_removed++;
info->count_reassembly_queue--;
info->count_dequeue_reassembly_queue++;
put_receive_buffer(info, response);
offset = 0;
log_read(INFO, "put_receive_buffer offset=0\n");
} else
offset += to_copy;
to_read -= to_copy;
data_read += to_copy;
log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
to_copy, data_length - offset,
to_read, data_read, offset);
}
spin_lock_irq(&info->reassembly_queue_lock);
info->reassembly_data_length -= data_read;
info->reassembly_queue_length -= queue_removed;
spin_unlock_irq(&info->reassembly_queue_lock);
info->first_entry_offset = offset;
log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
data_read, info->reassembly_data_length,
info->first_entry_offset);
read_rfc1002_done:
return data_read;
}
log_read(INFO, "wait_event on more data\n");
rc = wait_event_interruptible(
info->wait_reassembly_queue,
info->reassembly_data_length >= size ||
info->transport_status != SMBD_CONNECTED);
/* Don't return any data if interrupted */
if (rc)
return rc;
if (info->transport_status != SMBD_CONNECTED) {
log_read(ERR, "disconnected\n");
return -ECONNABORTED;
}
goto again;
}
/*
* Receive a page from receive reassembly queue
* page: the page to read data into
* to_read: the length of data to read
* return value: actual data read
*/
static int smbd_recv_page(struct smbd_connection *info,
struct page *page, unsigned int page_offset,
unsigned int to_read)
{
int ret;
char *to_address;
void *page_address;
/* make sure we have the page ready for read */
ret = wait_event_interruptible(
info->wait_reassembly_queue,
info->reassembly_data_length >= to_read ||
info->transport_status != SMBD_CONNECTED);
if (ret)
return ret;
/* now we can read from reassembly queue and not sleep */
page_address = kmap_atomic(page);
to_address = (char *) page_address + page_offset;
log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
page, to_address, to_read);
ret = smbd_recv_buf(info, to_address, to_read);
kunmap_atomic(page_address);
return ret;
}
/*
* Receive data from transport
* msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
* return: total bytes read, or 0. SMB Direct will not do partial read.
*/
int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
{
char *buf;
struct page *page;
unsigned int to_read, page_offset;
int rc;
if (iov_iter_rw(&msg->msg_iter) == WRITE) {
/* It's a bug in upper layer to get there */
cifs_dbg(VFS, "Invalid msg iter dir %u\n",
iov_iter_rw(&msg->msg_iter));
rc = -EINVAL;
goto out;
}
switch (iov_iter_type(&msg->msg_iter)) {
case ITER_KVEC:
buf = msg->msg_iter.kvec->iov_base;
to_read = msg->msg_iter.kvec->iov_len;
rc = smbd_recv_buf(info, buf, to_read);
break;
case ITER_BVEC:
page = msg->msg_iter.bvec->bv_page;
page_offset = msg->msg_iter.bvec->bv_offset;
to_read = msg->msg_iter.bvec->bv_len;
rc = smbd_recv_page(info, page, page_offset, to_read);
break;
default:
/* It's a bug in upper layer to get there */
cifs_dbg(VFS, "Invalid msg type %d\n",
iov_iter_type(&msg->msg_iter));
rc = -EINVAL;
}
out:
/* SMBDirect will read it all or nothing */
if (rc > 0)
msg->msg_iter.count = 0;
return rc;
}
/*
* Send data to transport
* Each rqst is transported as a SMBDirect payload
* rqst: the data to write
* return value: 0 if successfully write, otherwise error code
*/
int smbd_send(struct TCP_Server_Info *server,
int num_rqst, struct smb_rqst *rqst_array)
{
struct smbd_connection *info = server->smbd_conn;
struct kvec vec;
int nvecs;
int size;
unsigned int buflen, remaining_data_length;
int start, i, j;
int max_iov_size =
info->max_send_size - sizeof(struct smbd_data_transfer);
struct kvec *iov;
int rc;
struct smb_rqst *rqst;
int rqst_idx;
if (info->transport_status != SMBD_CONNECTED) {
rc = -EAGAIN;
goto done;
}
/*
* Add in the page array if there is one. The caller needs to set
* rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
* ends at page boundary
*/
remaining_data_length = 0;
for (i = 0; i < num_rqst; i++)
remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
if (remaining_data_length > info->max_fragmented_send_size) {
log_write(ERR, "payload size %d > max size %d\n",
remaining_data_length, info->max_fragmented_send_size);
rc = -EINVAL;
goto done;
}
log_write(INFO, "num_rqst=%d total length=%u\n",
num_rqst, remaining_data_length);
rqst_idx = 0;
next_rqst:
rqst = &rqst_array[rqst_idx];
iov = rqst->rq_iov;
cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
rqst_idx, smb_rqst_len(server, rqst));
for (i = 0; i < rqst->rq_nvec; i++)
dump_smb(iov[i].iov_base, iov[i].iov_len);
log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
rqst->rq_tailsz, smb_rqst_len(server, rqst));
start = i = 0;
buflen = 0;
while (true) {
buflen += iov[i].iov_len;
if (buflen > max_iov_size) {
if (i > start) {
remaining_data_length -=
(buflen-iov[i].iov_len);
log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
start, i, i - start,
remaining_data_length);
rc = smbd_post_send_data(
info, &iov[start], i-start,
remaining_data_length);
if (rc)
goto done;
} else {
/* iov[start] is too big, break it */
nvecs = (buflen+max_iov_size-1)/max_iov_size;
log_write(INFO, "iov[%d] iov_base=%p buflen=%d break to %d vectors\n",
start, iov[start].iov_base,
buflen, nvecs);
for (j = 0; j < nvecs; j++) {
vec.iov_base =
(char *)iov[start].iov_base +
j*max_iov_size;
vec.iov_len = max_iov_size;
if (j == nvecs-1)
vec.iov_len =
buflen -
max_iov_size*(nvecs-1);
remaining_data_length -= vec.iov_len;
log_write(INFO,
"sending vec j=%d iov_base=%p iov_len=%zu remaining_data_length=%d\n",
j, vec.iov_base, vec.iov_len,
remaining_data_length);
rc = smbd_post_send_data(
info, &vec, 1,
remaining_data_length);
if (rc)
goto done;
}
i++;
if (i == rqst->rq_nvec)
break;
}
start = i;
buflen = 0;
} else {
i++;
if (i == rqst->rq_nvec) {
/* send out all remaining vecs */
remaining_data_length -= buflen;
log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
start, i, i - start,
remaining_data_length);
rc = smbd_post_send_data(info, &iov[start],
i-start, remaining_data_length);
if (rc)
goto done;
break;
}
}
log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
}
/* now sending pages if there are any */
for (i = 0; i < rqst->rq_npages; i++) {
unsigned int offset;
rqst_page_get_length(rqst, i, &buflen, &offset);
nvecs = (buflen + max_iov_size - 1) / max_iov_size;
log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
buflen, nvecs);
for (j = 0; j < nvecs; j++) {
size = max_iov_size;
if (j == nvecs-1)
size = buflen - j*max_iov_size;
remaining_data_length -= size;
log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
i, j * max_iov_size + offset, size,
remaining_data_length);
rc = smbd_post_send_page(
info, rqst->rq_pages[i],
j*max_iov_size + offset,
size, remaining_data_length);
if (rc)
goto done;
}
}
rqst_idx++;
if (rqst_idx < num_rqst)
goto next_rqst;
done:
/*
* As an optimization, we don't wait for individual I/O to finish
* before sending the next one.
* Send them all and wait for pending send count to get to 0
* that means all the I/Os have been out and we are good to return
*/
wait_event(info->wait_send_pending,
atomic_read(&info->send_pending) == 0);
return rc;
}
static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct smbd_mr *mr;
struct ib_cqe *cqe;
if (wc->status) {
log_rdma_mr(ERR, "status=%d\n", wc->status);
cqe = wc->wr_cqe;
mr = container_of(cqe, struct smbd_mr, cqe);
smbd_disconnect_rdma_connection(mr->conn);
}
}
/*
* The work queue function that recovers MRs
* We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
* again. Both calls are slow, so finish them in a workqueue. This will not
* block I/O path.
* There is one workqueue that recovers MRs, there is no need to lock as the
* I/O requests calling smbd_register_mr will never update the links in the
* mr_list.
*/
static void smbd_mr_recovery_work(struct work_struct *work)
{
struct smbd_connection *info =
container_of(work, struct smbd_connection, mr_recovery_work);
struct smbd_mr *smbdirect_mr;
int rc;
list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
if (smbdirect_mr->state == MR_ERROR) {
/* recover this MR entry */
rc = ib_dereg_mr(smbdirect_mr->mr);
if (rc) {
log_rdma_mr(ERR,
"ib_dereg_mr failed rc=%x\n",
rc);
smbd_disconnect_rdma_connection(info);
continue;
}
smbdirect_mr->mr = ib_alloc_mr(
info->pd, info->mr_type,
info->max_frmr_depth);
if (IS_ERR(smbdirect_mr->mr)) {
log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
info->mr_type,
info->max_frmr_depth);
smbd_disconnect_rdma_connection(info);
continue;
}
} else
/* This MR is being used, don't recover it */
continue;
smbdirect_mr->state = MR_READY;
/* smbdirect_mr->state is updated by this function
* and is read and updated by I/O issuing CPUs trying
* to get a MR, the call to atomic_inc_return
* implicates a memory barrier and guarantees this
* value is updated before waking up any calls to
* get_mr() from the I/O issuing CPUs
*/
if (atomic_inc_return(&info->mr_ready_count) == 1)
wake_up_interruptible(&info->wait_mr);
}
}
static void destroy_mr_list(struct smbd_connection *info)
{
struct smbd_mr *mr, *tmp;
cancel_work_sync(&info->mr_recovery_work);
list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
if (mr->state == MR_INVALIDATED)
ib_dma_unmap_sg(info->id->device, mr->sgl,
mr->sgl_count, mr->dir);
ib_dereg_mr(mr->mr);
kfree(mr->sgl);
kfree(mr);
}
}
/*
* Allocate MRs used for RDMA read/write
* The number of MRs will not exceed hardware capability in responder_resources
* All MRs are kept in mr_list. The MR can be recovered after it's used
* Recovery is done in smbd_mr_recovery_work. The content of list entry changes
* as MRs are used and recovered for I/O, but the list links will not change
*/
static int allocate_mr_list(struct smbd_connection *info)
{
int i;
struct smbd_mr *smbdirect_mr, *tmp;
INIT_LIST_HEAD(&info->mr_list);
init_waitqueue_head(&info->wait_mr);
spin_lock_init(&info->mr_list_lock);
atomic_set(&info->mr_ready_count, 0);
atomic_set(&info->mr_used_count, 0);
init_waitqueue_head(&info->wait_for_mr_cleanup);
/* Allocate more MRs (2x) than hardware responder_resources */
for (i = 0; i < info->responder_resources * 2; i++) {
smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
if (!smbdirect_mr)
goto out;
smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
info->max_frmr_depth);
if (IS_ERR(smbdirect_mr->mr)) {
log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
info->mr_type, info->max_frmr_depth);
goto out;
}
smbdirect_mr->sgl = kcalloc(
info->max_frmr_depth,
sizeof(struct scatterlist),
GFP_KERNEL);
if (!smbdirect_mr->sgl) {
log_rdma_mr(ERR, "failed to allocate sgl\n");
ib_dereg_mr(smbdirect_mr->mr);
goto out;
}
smbdirect_mr->state = MR_READY;
smbdirect_mr->conn = info;
list_add_tail(&smbdirect_mr->list, &info->mr_list);
atomic_inc(&info->mr_ready_count);
}
INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
return 0;
out:
kfree(smbdirect_mr);
list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
ib_dereg_mr(smbdirect_mr->mr);
kfree(smbdirect_mr->sgl);
kfree(smbdirect_mr);
}
return -ENOMEM;
}
/*
* Get a MR from mr_list. This function waits until there is at least one
* MR available in the list. It may access the list while the
* smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
* as they never modify the same places. However, there may be several CPUs
* issueing I/O trying to get MR at the same time, mr_list_lock is used to
* protect this situation.
*/
static struct smbd_mr *get_mr(struct smbd_connection *info)
{
struct smbd_mr *ret;
int rc;
again:
rc = wait_event_interruptible(info->wait_mr,
atomic_read(&info->mr_ready_count) ||
info->transport_status != SMBD_CONNECTED);
if (rc) {
log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
return NULL;
}
if (info->transport_status != SMBD_CONNECTED) {
log_rdma_mr(ERR, "info->transport_status=%x\n",
info->transport_status);
return NULL;
}
spin_lock(&info->mr_list_lock);
list_for_each_entry(ret, &info->mr_list, list) {
if (ret->state == MR_READY) {
ret->state = MR_REGISTERED;
spin_unlock(&info->mr_list_lock);
atomic_dec(&info->mr_ready_count);
atomic_inc(&info->mr_used_count);
return ret;
}
}
spin_unlock(&info->mr_list_lock);
/*
* It is possible that we could fail to get MR because other processes may
* try to acquire a MR at the same time. If this is the case, retry it.
*/
goto again;
}
/*
* Register memory for RDMA read/write
* pages[]: the list of pages to register memory with
* num_pages: the number of pages to register
* tailsz: if non-zero, the bytes to register in the last page
* writing: true if this is a RDMA write (SMB read), false for RDMA read
* need_invalidate: true if this MR needs to be locally invalidated after I/O
* return value: the MR registered, NULL if failed.
*/
struct smbd_mr *smbd_register_mr(
struct smbd_connection *info, struct page *pages[], int num_pages,
int offset, int tailsz, bool writing, bool need_invalidate)
{
struct smbd_mr *smbdirect_mr;
int rc, i;
enum dma_data_direction dir;
struct ib_reg_wr *reg_wr;
if (num_pages > info->max_frmr_depth) {
log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
num_pages, info->max_frmr_depth);
return NULL;
}
smbdirect_mr = get_mr(info);
if (!smbdirect_mr) {
log_rdma_mr(ERR, "get_mr returning NULL\n");
return NULL;
}
smbdirect_mr->need_invalidate = need_invalidate;
smbdirect_mr->sgl_count = num_pages;
sg_init_table(smbdirect_mr->sgl, num_pages);
log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
num_pages, offset, tailsz);
if (num_pages == 1) {
sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
goto skip_multiple_pages;
}
/* We have at least two pages to register */
sg_set_page(
&smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
i = 1;
while (i < num_pages - 1) {
sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
i++;
}
sg_set_page(&smbdirect_mr->sgl[i], pages[i],
tailsz ? tailsz : PAGE_SIZE, 0);
skip_multiple_pages:
dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
smbdirect_mr->dir = dir;
rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
if (!rc) {
log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
num_pages, dir, rc);
goto dma_map_error;
}
rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
NULL, PAGE_SIZE);
if (rc != num_pages) {
log_rdma_mr(ERR,
"ib_map_mr_sg failed rc = %d num_pages = %x\n",
rc, num_pages);
goto map_mr_error;
}
ib_update_fast_reg_key(smbdirect_mr->mr,
ib_inc_rkey(smbdirect_mr->mr->rkey));
reg_wr = &smbdirect_mr->wr;
reg_wr->wr.opcode = IB_WR_REG_MR;
smbdirect_mr->cqe.done = register_mr_done;
reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
reg_wr->wr.num_sge = 0;
reg_wr->wr.send_flags = IB_SEND_SIGNALED;
reg_wr->mr = smbdirect_mr->mr;
reg_wr->key = smbdirect_mr->mr->rkey;
reg_wr->access = writing ?
IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
IB_ACCESS_REMOTE_READ;
/*
* There is no need for waiting for complemtion on ib_post_send
* on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
* on the next ib_post_send when we actaully send I/O to remote peer
*/
rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
if (!rc)
return smbdirect_mr;
log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
rc, reg_wr->key);
/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
map_mr_error:
ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
smbdirect_mr->sgl_count, smbdirect_mr->dir);
dma_map_error:
smbdirect_mr->state = MR_ERROR;
if (atomic_dec_and_test(&info->mr_used_count))
wake_up(&info->wait_for_mr_cleanup);
smbd_disconnect_rdma_connection(info);
return NULL;
}
static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct smbd_mr *smbdirect_mr;
struct ib_cqe *cqe;
cqe = wc->wr_cqe;
smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
smbdirect_mr->state = MR_INVALIDATED;
if (wc->status != IB_WC_SUCCESS) {
log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
smbdirect_mr->state = MR_ERROR;
}
complete(&smbdirect_mr->invalidate_done);
}
/*
* Deregister a MR after I/O is done
* This function may wait if remote invalidation is not used
* and we have to locally invalidate the buffer to prevent data is being
* modified by remote peer after upper layer consumes it
*/
int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
{
struct ib_send_wr *wr;
struct smbd_connection *info = smbdirect_mr->conn;
int rc = 0;
if (smbdirect_mr->need_invalidate) {
/* Need to finish local invalidation before returning */
wr = &smbdirect_mr->inv_wr;
wr->opcode = IB_WR_LOCAL_INV;
smbdirect_mr->cqe.done = local_inv_done;
wr->wr_cqe = &smbdirect_mr->cqe;
wr->num_sge = 0;
wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
wr->send_flags = IB_SEND_SIGNALED;
init_completion(&smbdirect_mr->invalidate_done);
rc = ib_post_send(info->id->qp, wr, NULL);
if (rc) {
log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
smbd_disconnect_rdma_connection(info);
goto done;
}
wait_for_completion(&smbdirect_mr->invalidate_done);
smbdirect_mr->need_invalidate = false;
} else
/*
* For remote invalidation, just set it to MR_INVALIDATED
* and defer to mr_recovery_work to recover the MR for next use
*/
smbdirect_mr->state = MR_INVALIDATED;
if (smbdirect_mr->state == MR_INVALIDATED) {
ib_dma_unmap_sg(
info->id->device, smbdirect_mr->sgl,
smbdirect_mr->sgl_count,
smbdirect_mr->dir);
smbdirect_mr->state = MR_READY;
if (atomic_inc_return(&info->mr_ready_count) == 1)
wake_up_interruptible(&info->wait_mr);
} else
/*
* Schedule the work to do MR recovery for future I/Os MR
* recovery is slow and don't want it to block current I/O
*/
queue_work(info->workqueue, &info->mr_recovery_work);
done:
if (atomic_dec_and_test(&info->mr_used_count))
wake_up(&info->wait_for_mr_cleanup);
return rc;
}