4984 lines
164 KiB
C
Raw Normal View History

/*
* For the Realtek RTL chip RTL2831U
* Realtek Release Date: 2008-03-14, ver 080314
* Realtek version RTL2831 Linux driver version 080314
* ver 080314
*
* for linux kernel version 2.6.21.4 - 2.6.22-14
* support MXL5005s and MT2060 tuners (support tuner auto-detecting)
* support two IR types -- RC5 and NEC
*
* Known boards with Realtek RTL chip RTL2821U
* Freecom USB stick 14aa:0160 (version 4)
* Conceptronic CTVDIGRCU
*
* Copyright (c) 2008 Realtek
* Copyright (c) 2008 Jan Hoogenraad, Barnaby Shearer, Andy Hasper
* This code is placed under the terms of the GNU General Public License
*
* Released by Realtek under GPLv2.
* Thanks to Realtek for a lot of support we received !
*
* Revision: 080314 - original version
*/
/**
@file
@brief MxL5005S tuner module definition
One can manipulate MxL5005S tuner through MxL5005S module.
MxL5005S module is derived from tuner module.
*/
#include "mxl5005s.h"
/**
@defgroup MXL5005S_TUNER_MODULE MxL5005S tuner module
MxL5005S tuner module is drived from tuner base module.
@see TUNER_BASE_MODULE
*/
/**
@defgroup MXL5005S_MODULE_BUILDER MxL5005S module builder
@ingroup MXL5005S_TUNER_MODULE
One should call MxL5005S module builder before using MxL5005S module.
*/
/// @{
/**
@brief MxL5005S tuner module builder
Use BuildMxl5005sModule() to build MxL5005S module, set all module function pointers with the corresponding functions,
and initialize module private variables.
@param [in] ppTuner Pointer to MxL5005S tuner module pointer
@param [in] pTunerModuleMemory Pointer to an allocated tuner module memory
@param [in] pMxl5005sExtraModuleMemory Pointer to an allocated MxL5005S extra module memory
@param [in] pI2cBridgeModuleMemory Pointer to an allocated I2C bridge module memory
@param [in] DeviceAddr MxL5005S I2C device address
@param [in] CrystalFreqHz MxL5005S crystal frequency in Hz
@note \n
-# One should call BuildMxl5005sModule() to build MxL5005S module before using it.
*/
void
BuildMxl5005sModule(
TUNER_MODULE **ppTuner,
TUNER_MODULE *pTunerModuleMemory,
MXL5005S_EXTRA_MODULE *pMxl5005sExtraModuleMemory,
BASE_INTERFACE_MODULE *pBaseInterfaceModuleMemory,
I2C_BRIDGE_MODULE *pI2cBridgeModuleMemory,
unsigned char DeviceAddr,
int StandardMode
)
{
MXL5005S_EXTRA_MODULE *pExtra;
int MxlModMode;
int MxlIfMode;
unsigned long MxlBandwitdh;
unsigned long MxlIfFreqHz;
unsigned long MxlCrystalFreqHz;
int MxlAgcMode;
unsigned short MxlTop;
unsigned short MxlIfOutputLoad;
int MxlClockOut;
int MxlDivOut;
int MxlCapSel;
int MxlRssiOnOff;
unsigned char MxlStandard;
unsigned char MxlTfType;
// Set tuner module pointer, tuner extra module pointer, and I2C bridge module pointer.
*ppTuner = pTunerModuleMemory;
(*ppTuner)->pExtra = pMxl5005sExtraModuleMemory;
(*ppTuner)->pBaseInterface = pBaseInterfaceModuleMemory;
(*ppTuner)->pI2cBridge = pI2cBridgeModuleMemory;
// Get tuner extra module pointer.
pExtra = (MXL5005S_EXTRA_MODULE *)(*ppTuner)->pExtra;
// Set I2C bridge tuner arguments.
mxl5005s_SetI2cBridgeModuleTunerArg(*ppTuner);
// Set tuner module manipulating function pointers.
(*ppTuner)->SetDeviceAddr = mxl5005s_SetDeviceAddr;
(*ppTuner)->GetTunerType = mxl5005s_GetTunerType;
(*ppTuner)->GetDeviceAddr = mxl5005s_GetDeviceAddr;
(*ppTuner)->Initialize = mxl5005s_Initialize;
(*ppTuner)->SetRfFreqHz = mxl5005s_SetRfFreqHz;
(*ppTuner)->GetRfFreqHz = mxl5005s_GetRfFreqHz;
// Set tuner extra module manipulating function pointers.
pExtra->SetRegsWithTable = mxl5005s_SetRegsWithTable;
pExtra->SetRegMaskBits = mxl5005s_SetRegMaskBits;
pExtra->SetSpectrumMode = mxl5005s_SetSpectrumMode;
pExtra->SetBandwidthHz = mxl5005s_SetBandwidthHz;
// Initialize tuner parameter setting status.
(*ppTuner)->IsDeviceAddrSet = NO;
(*ppTuner)->IsRfFreqHzSet = NO;
// Set MxL5005S parameters.
MxlModMode = MXL_DIGITAL_MODE;
MxlIfMode = MXL_ZERO_IF;
MxlBandwitdh = MXL5005S_BANDWIDTH_8MHZ;
MxlIfFreqHz = IF_FREQ_4570000HZ;
MxlCrystalFreqHz = CRYSTAL_FREQ_16000000HZ;
MxlAgcMode = MXL_SINGLE_AGC;
MxlTop = MXL5005S_TOP_25P2;
MxlIfOutputLoad = MXL5005S_IF_OUTPUT_LOAD_200_OHM;
MxlClockOut = MXL_CLOCK_OUT_DISABLE;
MxlDivOut = MXL_DIV_OUT_4;
MxlCapSel = MXL_CAP_SEL_ENABLE;
MxlRssiOnOff = MXL_RSSI_ENABLE;
MxlTfType = MXL_TF_C_H;
// Set MxL5005S parameters according to standard mode
switch(StandardMode)
{
default:
case MXL5005S_STANDARD_DVBT: MxlStandard = MXL_DVBT; break;
case MXL5005S_STANDARD_ATSC: MxlStandard = MXL_ATSC; break;
}
// Set MxL5005S extra module.
pExtra->AgcMasterByte = (MxlAgcMode == MXL_DUAL_AGC) ? 0x4 : 0x0;
MXL5005_TunerConfig(&pExtra->MxlDefinedTunerStructure, (unsigned char)MxlModMode, (unsigned char)MxlIfMode,
MxlBandwitdh, MxlIfFreqHz, MxlCrystalFreqHz, (unsigned char)MxlAgcMode, MxlTop, MxlIfOutputLoad,
(unsigned char)MxlClockOut, (unsigned char)MxlDivOut, (unsigned char)MxlCapSel, (unsigned char)MxlRssiOnOff,
MxlStandard, MxlTfType);
// Note: Need to set all module arguments before using module functions.
// Set tuner type.
(*ppTuner)->TunerType = TUNER_TYPE_MXL5005S;
// Set tuner I2C device address.
(*ppTuner)->SetDeviceAddr(*ppTuner, DeviceAddr);
return;
}
/// @}
/**
@defgroup MXL5005S_MANIPULATING_FUNCTIONS MxL5005S manipulating functions derived from tuner base module
@ingroup MXL5005S_TUNER_MODULE
One can use the MxL5005S tuner module manipulating interface implemented by MxL5005S manipulating functions to
manipulate MxL5005S tuner.
*/
/// @{
/**
@brief Set MxL5005S tuner I2C device address.
@note \n
-# MxL5005S tuner builder will set TUNER_FP_SET_DEVICE_ADDR() function pointer with mxl5005s_SetDeviceAddr().
@see TUNER_FP_SET_DEVICE_ADDR
*/
void
mxl5005s_SetDeviceAddr(
TUNER_MODULE *pTuner,
unsigned char DeviceAddr
)
{
// Set tuner I2C device address.
pTuner->DeviceAddr = DeviceAddr;
pTuner->IsDeviceAddrSet = YES;
return;
}
/**
@brief Get MxL5005S tuner type.
@note \n
-# MxL5005S tuner builder will set TUNER_FP_GET_TUNER_TYPE() function pointer with mxl5005s_GetTunerType().
@see TUNER_FP_GET_TUNER_TYPE
*/
void
mxl5005s_GetTunerType(
TUNER_MODULE *pTuner,
int *pTunerType
)
{
// Get tuner type from tuner module.
*pTunerType = pTuner->TunerType;
return;
}
/**
@brief Get MxL5005S tuner I2C device address.
@note \n
-# MxL5005S tuner builder will set TUNER_FP_GET_DEVICE_ADDR() function pointer with mxl5005s_GetDeviceAddr().
@see TUNER_FP_GET_DEVICE_ADDR
*/
int
mxl5005s_GetDeviceAddr(
TUNER_MODULE *pTuner,
unsigned char *pDeviceAddr
)
{
// Get tuner I2C device address from tuner module.
if(pTuner->IsDeviceAddrSet != YES)
goto error_status_get_tuner_i2c_device_addr;
*pDeviceAddr = pTuner->DeviceAddr;
return FUNCTION_SUCCESS;
error_status_get_tuner_i2c_device_addr:
return FUNCTION_ERROR;
}
/**
@brief Initialize MxL5005S tuner.
@note \n
-# MxL5005S tuner builder will set TUNER_FP_INITIALIZE() function pointer with mxl5005s_Initialize().
@see TUNER_FP_INITIALIZE
*/
int
mxl5005s_Initialize(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner
)
{
MXL5005S_EXTRA_MODULE *pExtra;
unsigned char AgcMasterByte;
unsigned char AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
unsigned char ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
int TableLen;
// Get tuner extra module.
pExtra = (MXL5005S_EXTRA_MODULE *)pTuner->pExtra;
// Get AGC master byte
AgcMasterByte = pExtra->AgcMasterByte;
// Initialize MxL5005S tuner according to MxL5005S tuner example code.
// Tuner initialization stage 0
MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET);
AddrTable[0] = MASTER_CONTROL_ADDR;
ByteTable[0] |= AgcMasterByte;
if(pExtra->SetRegsWithTable( dib,pTuner, AddrTable, ByteTable, LEN_1_BYTE) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
// Tuner initialization stage 1
MXL_GetInitRegister(&pExtra->MxlDefinedTunerStructure, AddrTable, ByteTable, &TableLen);
if(pExtra->SetRegsWithTable( dib,pTuner, AddrTable, ByteTable, TableLen) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
return FUNCTION_SUCCESS;
error_status_set_tuner_registers:
return FUNCTION_ERROR;
}
/**
@brief Set MxL5005S tuner RF frequency in Hz.
@note \n
-# MxL5005S tuner builder will set TUNER_FP_SET_RF_FREQ_HZ() function pointer with mxl5005s_SetRfFreqHz().
@see TUNER_FP_SET_RF_FREQ_HZ
*/
int
mxl5005s_SetRfFreqHz(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner,
unsigned long RfFreqHz
)
{
MXL5005S_EXTRA_MODULE *pExtra;
BASE_INTERFACE_MODULE *pBaseInterface;
unsigned char AgcMasterByte;
unsigned char AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
unsigned char ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
int TableLen;
unsigned long IfDivval;
unsigned char MasterControlByte;
// Get tuner extra module and base interface module.
pExtra = (MXL5005S_EXTRA_MODULE *)pTuner->pExtra;
pBaseInterface = pTuner->pBaseInterface;
// Get AGC master byte
AgcMasterByte = pExtra->AgcMasterByte;
// Set MxL5005S tuner RF frequency according to MxL5005S tuner example code.
// Tuner RF frequency setting stage 0
MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET) ;
AddrTable[0] = MASTER_CONTROL_ADDR;
ByteTable[0] |= AgcMasterByte;
if(pExtra->SetRegsWithTable( dib,pTuner, AddrTable, ByteTable, LEN_1_BYTE) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
// Tuner RF frequency setting stage 1
MXL_TuneRF(&pExtra->MxlDefinedTunerStructure, RfFreqHz);
MXL_ControlRead(&pExtra->MxlDefinedTunerStructure, IF_DIVVAL, &IfDivval);
MXL_ControlWrite(&pExtra->MxlDefinedTunerStructure, SEQ_FSM_PULSE, 0);
MXL_ControlWrite(&pExtra->MxlDefinedTunerStructure, SEQ_EXTPOWERUP, 1);
MXL_ControlWrite(&pExtra->MxlDefinedTunerStructure, IF_DIVVAL, 8);
MXL_GetCHRegister(&pExtra->MxlDefinedTunerStructure, AddrTable, ByteTable, &TableLen) ;
MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ;
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
ByteTable[TableLen] = MasterControlByte | AgcMasterByte;
TableLen += 1;
if(pExtra->SetRegsWithTable( dib,pTuner, AddrTable, ByteTable, TableLen) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
// Wait 30 ms.
pBaseInterface->WaitMs(pBaseInterface, 30);
// Tuner RF frequency setting stage 2
MXL_ControlWrite(&pExtra->MxlDefinedTunerStructure, SEQ_FSM_PULSE, 1) ;
MXL_ControlWrite(&pExtra->MxlDefinedTunerStructure, IF_DIVVAL, IfDivval) ;
MXL_GetCHRegister_ZeroIF(&pExtra->MxlDefinedTunerStructure, AddrTable, ByteTable, &TableLen) ;
MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ;
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
ByteTable[TableLen] = MasterControlByte | AgcMasterByte ;
TableLen += 1;
if(pExtra->SetRegsWithTable( dib,pTuner, AddrTable, ByteTable, TableLen) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
// Set tuner RF frequency parameter.
pTuner->RfFreqHz = RfFreqHz;
pTuner->IsRfFreqHzSet = YES;
return FUNCTION_SUCCESS;
error_status_set_tuner_registers:
return FUNCTION_ERROR;
}
/**
@brief Get MxL5005S tuner RF frequency in Hz.
@note \n
-# MxL5005S tuner builder will set TUNER_FP_GET_RF_FREQ_HZ() function pointer with mxl5005s_GetRfFreqHz().
@see TUNER_FP_GET_RF_FREQ_HZ
*/
int
mxl5005s_GetRfFreqHz(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner,
unsigned long *pRfFreqHz
)
{
// Get tuner RF frequency in Hz from tuner module.
if(pTuner->IsRfFreqHzSet != YES)
goto error_status_get_tuner_rf_frequency;
*pRfFreqHz = pTuner->RfFreqHz;
return FUNCTION_SUCCESS;
error_status_get_tuner_rf_frequency:
return FUNCTION_ERROR;
}
/**
@brief Set MxL5005S tuner registers with table.
*/
/*
int
mxl5005s_SetRegsWithTable(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner,
unsigned char *pAddrTable,
unsigned char *pByteTable,
int TableLen
)
{
BASE_INTERFACE_MODULE *pBaseInterface;
I2C_BRIDGE_MODULE *pI2cBridge;
unsigned char WritingByteNumMax;
int i;
unsigned char WritingBuffer[I2C_BUFFER_LEN];
unsigned char WritingIndex;
// Get base interface, I2C bridge, and maximum writing byte number.
pBaseInterface = pTuner->pBaseInterface;
pI2cBridge = pTuner->pI2cBridge;
WritingByteNumMax = pBaseInterface->I2cWritingByteNumMax;
// Set registers with table.
// Note: 1. The I2C format of MxL5005S is described as follows:
// start_bit + (device_addr | writing_bit) + (register_addr + writing_byte) * n + stop_bit
// ...
// start_bit + (device_addr | writing_bit) + (register_addr + writing_byte) * m + latch_byte + stop_bit
// 2. The latch_byte is 0xfe.
// 3. The following writing byte separating scheme takes latch_byte as two byte data.
for(i = 0, WritingIndex = 0; i < TableLen; i++)
{
// Put register address and register byte value into writing buffer.
WritingBuffer[WritingIndex] = pAddrTable[i];
WritingBuffer[WritingIndex + 1] = pByteTable[i];
WritingIndex += 2;
// If writing buffer is full, send the I2C writing command with writing buffer.
if(WritingIndex > (WritingByteNumMax - 2))
{
if(pI2cBridge->ForwardI2cWritingCmd(pI2cBridge, WritingBuffer, WritingIndex) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
WritingIndex = 0;
}
}
// Send the last I2C writing command with writing buffer and latch byte.
WritingBuffer[WritingIndex] = MXL5005S_LATCH_BYTE;
WritingIndex += 1;
if(pI2cBridge->ForwardI2cWritingCmd(pI2cBridge, WritingBuffer, WritingIndex) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
return FUNCTION_SUCCESS;
error_status_set_tuner_registers:
return FUNCTION_ERROR;
}
*/
int
mxl5005s_SetRegsWithTable(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner,
unsigned char *pAddrTable,
unsigned char *pByteTable,
int TableLen
)
{
int i;
u8 end_two_bytes_buf[]={ 0 , 0 };
u8 tuner_addr=0x00;
pTuner->GetDeviceAddr(pTuner , &tuner_addr);
for( i = 0 ; i < TableLen - 1 ; i++)
{
if ( TUNER_WI2C(dib , tuner_addr , pAddrTable[i] , &pByteTable[i] , 1 ) )
return FUNCTION_ERROR;
}
end_two_bytes_buf[0] = pByteTable[i];
end_two_bytes_buf[1] = MXL5005S_LATCH_BYTE;
if ( TUNER_WI2C(dib , tuner_addr , pAddrTable[i] , end_two_bytes_buf , 2 ) )
return FUNCTION_ERROR;
return FUNCTION_SUCCESS;
}
/**
@brief Set MxL5005S tuner register bits.
*/
int
mxl5005s_SetRegMaskBits(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner,
unsigned char RegAddr,
unsigned char Msb,
unsigned char Lsb,
const unsigned char WritingValue
)
{
MXL5005S_EXTRA_MODULE *pExtra;
int i;
unsigned char Mask;
unsigned char Shift;
unsigned char RegByte;
// Get tuner extra module.
pExtra = (MXL5005S_EXTRA_MODULE *)pTuner->pExtra;
// Generate mask and shift according to MSB and LSB.
Mask = 0;
for(i = Lsb; i < (unsigned char)(Msb + 1); i++)
Mask |= 0x1 << i;
Shift = Lsb;
// Get tuner register byte according to register adddress.
MXL_RegRead(&pExtra->MxlDefinedTunerStructure, RegAddr, &RegByte);
// Reserve register byte unmask bit with mask and inlay writing value into it.
RegByte &= ~Mask;
RegByte |= (WritingValue << Shift) & Mask;
// Update tuner register byte table.
MXL_RegWrite(&pExtra->MxlDefinedTunerStructure, RegAddr, RegByte);
// Write tuner register byte with writing byte.
if(pExtra->SetRegsWithTable( dib, pTuner, &RegAddr, &RegByte, LEN_1_BYTE) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
return FUNCTION_SUCCESS;
error_status_set_tuner_registers:
return FUNCTION_ERROR;
}
/**
@brief Set MxL5005S tuner spectrum mode.
*/
int
mxl5005s_SetSpectrumMode(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner,
int SpectrumMode
)
{
static const unsigned char BbIqswapTable[SPECTRUM_MODE_NUM] =
{
// BB_IQSWAP
0, // Normal spectrum
1, // Inverse spectrum
};
MXL5005S_EXTRA_MODULE *pExtra;
// Get tuner extra module.
pExtra = (MXL5005S_EXTRA_MODULE *)pTuner->pExtra;
// Set BB_IQSWAP according to BB_IQSWAP table and spectrum mode.
if(pExtra->SetRegMaskBits(dib,pTuner, MXL5005S_BB_IQSWAP_ADDR, MXL5005S_BB_IQSWAP_MSB,
MXL5005S_BB_IQSWAP_LSB, BbIqswapTable[SpectrumMode]) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
return FUNCTION_SUCCESS;
error_status_set_tuner_registers:
return FUNCTION_ERROR;
}
/**
@brief Set MxL5005S tuner bandwidth in Hz.
*/
int
mxl5005s_SetBandwidthHz(
struct dvb_usb_device* dib,
TUNER_MODULE *pTuner,
unsigned long BandwidthHz
)
{
MXL5005S_EXTRA_MODULE *pExtra;
unsigned char BbDlpfBandsel;
// Get tuner extra module.
pExtra = (MXL5005S_EXTRA_MODULE *)pTuner->pExtra;
// Set BB_DLPF_BANDSEL according to bandwidth.
switch(BandwidthHz)
{
default:
case MXL5005S_BANDWIDTH_6MHZ: BbDlpfBandsel = 3; break;
case MXL5005S_BANDWIDTH_7MHZ: BbDlpfBandsel = 2; break;
case MXL5005S_BANDWIDTH_8MHZ: BbDlpfBandsel = 0; break;
}
if(pExtra->SetRegMaskBits(dib,pTuner, MXL5005S_BB_DLPF_BANDSEL_ADDR, MXL5005S_BB_DLPF_BANDSEL_MSB,
MXL5005S_BB_DLPF_BANDSEL_LSB, BbDlpfBandsel) != FUNCTION_SUCCESS)
goto error_status_set_tuner_registers;
return FUNCTION_SUCCESS;
error_status_set_tuner_registers:
return FUNCTION_ERROR;
}
/// @}
/**
@defgroup MXL5005S_DEPENDENCE MxL5005S dependence
@ingroup MXL5005S_TUNER_MODULE
MxL5005S dependence is the related functions for MxL5005S tuner module interface.
One should not use MxL5005S dependence directly.
*/
/// @{
/**
@brief Set I2C bridge module tuner arguments.
MxL5005S builder will use mxl5005s_SetI2cBridgeModuleTunerArg() to set I2C bridge module tuner arguments.
@param [in] pTuner The tuner module pointer
@see BuildMxl5005sModule()
*/
void
mxl5005s_SetI2cBridgeModuleTunerArg(
TUNER_MODULE *pTuner
)
{
I2C_BRIDGE_MODULE *pI2cBridge;
// Get I2C bridge module.
pI2cBridge = pTuner->pI2cBridge;
// Set I2C bridge module tuner arguments.
pI2cBridge->pTunerDeviceAddr = &pTuner->DeviceAddr;
return;
}
/// @}
// The following context is source code provided by MaxLinear.
// MaxLinear source code - MXL5005_Initialize.cpp
//#ifdef _MXL_HEADER
//#include "stdafx.h"
//#endif
//#include "MXL5005_c.h"
_u16 MXL5005_RegisterInit (Tuner_struct * Tuner)
{
Tuner->TunerRegs_Num = TUNER_REGS_NUM ;
// Tuner->TunerRegs = (TunerReg_struct *) calloc( TUNER_REGS_NUM, sizeof(TunerReg_struct) ) ;
Tuner->TunerRegs[0].Reg_Num = 9 ;
Tuner->TunerRegs[0].Reg_Val = 0x40 ;
Tuner->TunerRegs[1].Reg_Num = 11 ;
Tuner->TunerRegs[1].Reg_Val = 0x19 ;
Tuner->TunerRegs[2].Reg_Num = 12 ;
Tuner->TunerRegs[2].Reg_Val = 0x60 ;
Tuner->TunerRegs[3].Reg_Num = 13 ;
Tuner->TunerRegs[3].Reg_Val = 0x00 ;
Tuner->TunerRegs[4].Reg_Num = 14 ;
Tuner->TunerRegs[4].Reg_Val = 0x00 ;
Tuner->TunerRegs[5].Reg_Num = 15 ;
Tuner->TunerRegs[5].Reg_Val = 0xC0 ;
Tuner->TunerRegs[6].Reg_Num = 16 ;
Tuner->TunerRegs[6].Reg_Val = 0x00 ;
Tuner->TunerRegs[7].Reg_Num = 17 ;
Tuner->TunerRegs[7].Reg_Val = 0x00 ;
Tuner->TunerRegs[8].Reg_Num = 18 ;
Tuner->TunerRegs[8].Reg_Val = 0x00 ;
Tuner->TunerRegs[9].Reg_Num = 19 ;
Tuner->TunerRegs[9].Reg_Val = 0x34 ;
Tuner->TunerRegs[10].Reg_Num = 21 ;
Tuner->TunerRegs[10].Reg_Val = 0x00 ;
Tuner->TunerRegs[11].Reg_Num = 22 ;
Tuner->TunerRegs[11].Reg_Val = 0x6B ;
Tuner->TunerRegs[12].Reg_Num = 23 ;
Tuner->TunerRegs[12].Reg_Val = 0x35 ;
Tuner->TunerRegs[13].Reg_Num = 24 ;
Tuner->TunerRegs[13].Reg_Val = 0x70 ;
Tuner->TunerRegs[14].Reg_Num = 25 ;
Tuner->TunerRegs[14].Reg_Val = 0x3E ;
Tuner->TunerRegs[15].Reg_Num = 26 ;
Tuner->TunerRegs[15].Reg_Val = 0x82 ;
Tuner->TunerRegs[16].Reg_Num = 31 ;
Tuner->TunerRegs[16].Reg_Val = 0x00 ;
Tuner->TunerRegs[17].Reg_Num = 32 ;
Tuner->TunerRegs[17].Reg_Val = 0x40 ;
Tuner->TunerRegs[18].Reg_Num = 33 ;
Tuner->TunerRegs[18].Reg_Val = 0x53 ;
Tuner->TunerRegs[19].Reg_Num = 34 ;
Tuner->TunerRegs[19].Reg_Val = 0x81 ;
Tuner->TunerRegs[20].Reg_Num = 35 ;
Tuner->TunerRegs[20].Reg_Val = 0xC9 ;
Tuner->TunerRegs[21].Reg_Num = 36 ;
Tuner->TunerRegs[21].Reg_Val = 0x01 ;
Tuner->TunerRegs[22].Reg_Num = 37 ;
Tuner->TunerRegs[22].Reg_Val = 0x00 ;
Tuner->TunerRegs[23].Reg_Num = 41 ;
Tuner->TunerRegs[23].Reg_Val = 0x00 ;
Tuner->TunerRegs[24].Reg_Num = 42 ;
Tuner->TunerRegs[24].Reg_Val = 0xF8 ;
Tuner->TunerRegs[25].Reg_Num = 43 ;
Tuner->TunerRegs[25].Reg_Val = 0x43 ;
Tuner->TunerRegs[26].Reg_Num = 44 ;
Tuner->TunerRegs[26].Reg_Val = 0x20 ;
Tuner->TunerRegs[27].Reg_Num = 45 ;
Tuner->TunerRegs[27].Reg_Val = 0x80 ;
Tuner->TunerRegs[28].Reg_Num = 46 ;
Tuner->TunerRegs[28].Reg_Val = 0x88 ;
Tuner->TunerRegs[29].Reg_Num = 47 ;
Tuner->TunerRegs[29].Reg_Val = 0x86 ;
Tuner->TunerRegs[30].Reg_Num = 48 ;
Tuner->TunerRegs[30].Reg_Val = 0x00 ;
Tuner->TunerRegs[31].Reg_Num = 49 ;
Tuner->TunerRegs[31].Reg_Val = 0x00 ;
Tuner->TunerRegs[32].Reg_Num = 53 ;
Tuner->TunerRegs[32].Reg_Val = 0x94 ;
Tuner->TunerRegs[33].Reg_Num = 54 ;
Tuner->TunerRegs[33].Reg_Val = 0xFA ;
Tuner->TunerRegs[34].Reg_Num = 55 ;
Tuner->TunerRegs[34].Reg_Val = 0x92 ;
Tuner->TunerRegs[35].Reg_Num = 56 ;
Tuner->TunerRegs[35].Reg_Val = 0x80 ;
Tuner->TunerRegs[36].Reg_Num = 57 ;
Tuner->TunerRegs[36].Reg_Val = 0x41 ;
Tuner->TunerRegs[37].Reg_Num = 58 ;
Tuner->TunerRegs[37].Reg_Val = 0xDB ;
Tuner->TunerRegs[38].Reg_Num = 59 ;
Tuner->TunerRegs[38].Reg_Val = 0x00 ;
Tuner->TunerRegs[39].Reg_Num = 60 ;
Tuner->TunerRegs[39].Reg_Val = 0x00 ;
Tuner->TunerRegs[40].Reg_Num = 61 ;
Tuner->TunerRegs[40].Reg_Val = 0x00 ;
Tuner->TunerRegs[41].Reg_Num = 62 ;
Tuner->TunerRegs[41].Reg_Val = 0x00 ;
Tuner->TunerRegs[42].Reg_Num = 65 ;
Tuner->TunerRegs[42].Reg_Val = 0xF8 ;
Tuner->TunerRegs[43].Reg_Num = 66 ;
Tuner->TunerRegs[43].Reg_Val = 0xE4 ;
Tuner->TunerRegs[44].Reg_Num = 67 ;
Tuner->TunerRegs[44].Reg_Val = 0x90 ;
Tuner->TunerRegs[45].Reg_Num = 68 ;
Tuner->TunerRegs[45].Reg_Val = 0xC0 ;
Tuner->TunerRegs[46].Reg_Num = 69 ;
Tuner->TunerRegs[46].Reg_Val = 0x01 ;
Tuner->TunerRegs[47].Reg_Num = 70 ;
Tuner->TunerRegs[47].Reg_Val = 0x50 ;
Tuner->TunerRegs[48].Reg_Num = 71 ;
Tuner->TunerRegs[48].Reg_Val = 0x06 ;
Tuner->TunerRegs[49].Reg_Num = 72 ;
Tuner->TunerRegs[49].Reg_Val = 0x00 ;
Tuner->TunerRegs[50].Reg_Num = 73 ;
Tuner->TunerRegs[50].Reg_Val = 0x20 ;
Tuner->TunerRegs[51].Reg_Num = 76 ;
Tuner->TunerRegs[51].Reg_Val = 0xBB ;
Tuner->TunerRegs[52].Reg_Num = 77 ;
Tuner->TunerRegs[52].Reg_Val = 0x13 ;
Tuner->TunerRegs[53].Reg_Num = 81 ;
Tuner->TunerRegs[53].Reg_Val = 0x04 ;
Tuner->TunerRegs[54].Reg_Num = 82 ;
Tuner->TunerRegs[54].Reg_Val = 0x75 ;
Tuner->TunerRegs[55].Reg_Num = 83 ;
Tuner->TunerRegs[55].Reg_Val = 0x00 ;
Tuner->TunerRegs[56].Reg_Num = 84 ;
Tuner->TunerRegs[56].Reg_Val = 0x00 ;
Tuner->TunerRegs[57].Reg_Num = 85 ;
Tuner->TunerRegs[57].Reg_Val = 0x00 ;
Tuner->TunerRegs[58].Reg_Num = 91 ;
Tuner->TunerRegs[58].Reg_Val = 0x70 ;
Tuner->TunerRegs[59].Reg_Num = 92 ;
Tuner->TunerRegs[59].Reg_Val = 0x00 ;
Tuner->TunerRegs[60].Reg_Num = 93 ;
Tuner->TunerRegs[60].Reg_Val = 0x00 ;
Tuner->TunerRegs[61].Reg_Num = 94 ;
Tuner->TunerRegs[61].Reg_Val = 0x00 ;
Tuner->TunerRegs[62].Reg_Num = 95 ;
Tuner->TunerRegs[62].Reg_Val = 0x0C ;
Tuner->TunerRegs[63].Reg_Num = 96 ;
Tuner->TunerRegs[63].Reg_Val = 0x00 ;
Tuner->TunerRegs[64].Reg_Num = 97 ;
Tuner->TunerRegs[64].Reg_Val = 0x00 ;
Tuner->TunerRegs[65].Reg_Num = 98 ;
Tuner->TunerRegs[65].Reg_Val = 0xE2 ;
Tuner->TunerRegs[66].Reg_Num = 99 ;
Tuner->TunerRegs[66].Reg_Val = 0x00 ;
Tuner->TunerRegs[67].Reg_Num = 100 ;
Tuner->TunerRegs[67].Reg_Val = 0x00 ;
Tuner->TunerRegs[68].Reg_Num = 101 ;
Tuner->TunerRegs[68].Reg_Val = 0x12 ;
Tuner->TunerRegs[69].Reg_Num = 102 ;
Tuner->TunerRegs[69].Reg_Val = 0x80 ;
Tuner->TunerRegs[70].Reg_Num = 103 ;
Tuner->TunerRegs[70].Reg_Val = 0x32 ;
Tuner->TunerRegs[71].Reg_Num = 104 ;
Tuner->TunerRegs[71].Reg_Val = 0xB4 ;
Tuner->TunerRegs[72].Reg_Num = 105 ;
Tuner->TunerRegs[72].Reg_Val = 0x60 ;
Tuner->TunerRegs[73].Reg_Num = 106 ;
Tuner->TunerRegs[73].Reg_Val = 0x83 ;
Tuner->TunerRegs[74].Reg_Num = 107 ;
Tuner->TunerRegs[74].Reg_Val = 0x84 ;
Tuner->TunerRegs[75].Reg_Num = 108 ;
Tuner->TunerRegs[75].Reg_Val = 0x9C ;
Tuner->TunerRegs[76].Reg_Num = 109 ;
Tuner->TunerRegs[76].Reg_Val = 0x02 ;
Tuner->TunerRegs[77].Reg_Num = 110 ;
Tuner->TunerRegs[77].Reg_Val = 0x81 ;
Tuner->TunerRegs[78].Reg_Num = 111 ;
Tuner->TunerRegs[78].Reg_Val = 0xC0 ;
Tuner->TunerRegs[79].Reg_Num = 112 ;
Tuner->TunerRegs[79].Reg_Val = 0x10 ;
Tuner->TunerRegs[80].Reg_Num = 131 ;
Tuner->TunerRegs[80].Reg_Val = 0x8A ;
Tuner->TunerRegs[81].Reg_Num = 132 ;
Tuner->TunerRegs[81].Reg_Val = 0x10 ;
Tuner->TunerRegs[82].Reg_Num = 133 ;
Tuner->TunerRegs[82].Reg_Val = 0x24 ;
Tuner->TunerRegs[83].Reg_Num = 134 ;
Tuner->TunerRegs[83].Reg_Val = 0x00 ;
Tuner->TunerRegs[84].Reg_Num = 135 ;
Tuner->TunerRegs[84].Reg_Val = 0x00 ;
Tuner->TunerRegs[85].Reg_Num = 136 ;
Tuner->TunerRegs[85].Reg_Val = 0x7E ;
Tuner->TunerRegs[86].Reg_Num = 137 ;
Tuner->TunerRegs[86].Reg_Val = 0x40 ;
Tuner->TunerRegs[87].Reg_Num = 138 ;
Tuner->TunerRegs[87].Reg_Val = 0x38 ;
Tuner->TunerRegs[88].Reg_Num = 146 ;
Tuner->TunerRegs[88].Reg_Val = 0xF6 ;
Tuner->TunerRegs[89].Reg_Num = 147 ;
Tuner->TunerRegs[89].Reg_Val = 0x1A ;
Tuner->TunerRegs[90].Reg_Num = 148 ;
Tuner->TunerRegs[90].Reg_Val = 0x62 ;
Tuner->TunerRegs[91].Reg_Num = 149 ;
Tuner->TunerRegs[91].Reg_Val = 0x33 ;
Tuner->TunerRegs[92].Reg_Num = 150 ;
Tuner->TunerRegs[92].Reg_Val = 0x80 ;
Tuner->TunerRegs[93].Reg_Num = 156 ;
Tuner->TunerRegs[93].Reg_Val = 0x56 ;
Tuner->TunerRegs[94].Reg_Num = 157 ;
Tuner->TunerRegs[94].Reg_Val = 0x17 ;
Tuner->TunerRegs[95].Reg_Num = 158 ;
Tuner->TunerRegs[95].Reg_Val = 0xA9 ;
Tuner->TunerRegs[96].Reg_Num = 159 ;
Tuner->TunerRegs[96].Reg_Val = 0x00 ;
Tuner->TunerRegs[97].Reg_Num = 160 ;
Tuner->TunerRegs[97].Reg_Val = 0x00 ;
Tuner->TunerRegs[98].Reg_Num = 161 ;
Tuner->TunerRegs[98].Reg_Val = 0x00 ;
Tuner->TunerRegs[99].Reg_Num = 162 ;
Tuner->TunerRegs[99].Reg_Val = 0x40 ;
Tuner->TunerRegs[100].Reg_Num = 166 ;
Tuner->TunerRegs[100].Reg_Val = 0xAE ;
Tuner->TunerRegs[101].Reg_Num = 167 ;
Tuner->TunerRegs[101].Reg_Val = 0x1B ;
Tuner->TunerRegs[102].Reg_Num = 168 ;
Tuner->TunerRegs[102].Reg_Val = 0xF2 ;
Tuner->TunerRegs[103].Reg_Num = 195 ;
Tuner->TunerRegs[103].Reg_Val = 0x00 ;
return 0 ;
}
_u16 MXL5005_ControlInit (Tuner_struct *Tuner)
{
Tuner->Init_Ctrl_Num = INITCTRL_NUM ;
Tuner->Init_Ctrl[0].Ctrl_Num = DN_IQTN_AMP_CUT ;
Tuner->Init_Ctrl[0].size = 1 ;
Tuner->Init_Ctrl[0].addr[0] = 73;
Tuner->Init_Ctrl[0].bit[0] = 7;
Tuner->Init_Ctrl[0].val[0] = 0;
Tuner->Init_Ctrl[1].Ctrl_Num = BB_MODE ;
Tuner->Init_Ctrl[1].size = 1 ;
Tuner->Init_Ctrl[1].addr[0] = 53;
Tuner->Init_Ctrl[1].bit[0] = 2;
Tuner->Init_Ctrl[1].val[0] = 1;
Tuner->Init_Ctrl[2].Ctrl_Num = BB_BUF ;
Tuner->Init_Ctrl[2].size = 2 ;
Tuner->Init_Ctrl[2].addr[0] = 53;
Tuner->Init_Ctrl[2].bit[0] = 1;
Tuner->Init_Ctrl[2].val[0] = 0;
Tuner->Init_Ctrl[2].addr[1] = 57;
Tuner->Init_Ctrl[2].bit[1] = 0;
Tuner->Init_Ctrl[2].val[1] = 1;
Tuner->Init_Ctrl[3].Ctrl_Num = BB_BUF_OA ;
Tuner->Init_Ctrl[3].size = 1 ;
Tuner->Init_Ctrl[3].addr[0] = 53;
Tuner->Init_Ctrl[3].bit[0] = 0;
Tuner->Init_Ctrl[3].val[0] = 0;
Tuner->Init_Ctrl[4].Ctrl_Num = BB_ALPF_BANDSELECT ;
Tuner->Init_Ctrl[4].size = 3 ;
Tuner->Init_Ctrl[4].addr[0] = 53;
Tuner->Init_Ctrl[4].bit[0] = 5;
Tuner->Init_Ctrl[4].val[0] = 0;
Tuner->Init_Ctrl[4].addr[1] = 53;
Tuner->Init_Ctrl[4].bit[1] = 6;
Tuner->Init_Ctrl[4].val[1] = 0;
Tuner->Init_Ctrl[4].addr[2] = 53;
Tuner->Init_Ctrl[4].bit[2] = 7;
Tuner->Init_Ctrl[4].val[2] = 1;
Tuner->Init_Ctrl[5].Ctrl_Num = BB_IQSWAP ;
Tuner->Init_Ctrl[5].size = 1 ;
Tuner->Init_Ctrl[5].addr[0] = 59;
Tuner->Init_Ctrl[5].bit[0] = 0;
Tuner->Init_Ctrl[5].val[0] = 0;
Tuner->Init_Ctrl[6].Ctrl_Num = BB_DLPF_BANDSEL ;
Tuner->Init_Ctrl[6].size = 2 ;
Tuner->Init_Ctrl[6].addr[0] = 53;
Tuner->Init_Ctrl[6].bit[0] = 3;
Tuner->Init_Ctrl[6].val[0] = 0;
Tuner->Init_Ctrl[6].addr[1] = 53;
Tuner->Init_Ctrl[6].bit[1] = 4;
Tuner->Init_Ctrl[6].val[1] = 1;
Tuner->Init_Ctrl[7].Ctrl_Num = RFSYN_CHP_GAIN ;
Tuner->Init_Ctrl[7].size = 4 ;
Tuner->Init_Ctrl[7].addr[0] = 22;
Tuner->Init_Ctrl[7].bit[0] = 4;
Tuner->Init_Ctrl[7].val[0] = 0;
Tuner->Init_Ctrl[7].addr[1] = 22;
Tuner->Init_Ctrl[7].bit[1] = 5;
Tuner->Init_Ctrl[7].val[1] = 1;
Tuner->Init_Ctrl[7].addr[2] = 22;
Tuner->Init_Ctrl[7].bit[2] = 6;
Tuner->Init_Ctrl[7].val[2] = 1;
Tuner->Init_Ctrl[7].addr[3] = 22;
Tuner->Init_Ctrl[7].bit[3] = 7;
Tuner->Init_Ctrl[7].val[3] = 0;
Tuner->Init_Ctrl[8].Ctrl_Num = RFSYN_EN_CHP_HIGAIN ;
Tuner->Init_Ctrl[8].size = 1 ;
Tuner->Init_Ctrl[8].addr[0] = 22;
Tuner->Init_Ctrl[8].bit[0] = 2;
Tuner->Init_Ctrl[8].val[0] = 0;
Tuner->Init_Ctrl[9].Ctrl_Num = AGC_IF ;
Tuner->Init_Ctrl[9].size = 4 ;
Tuner->Init_Ctrl[9].addr[0] = 76;
Tuner->Init_Ctrl[9].bit[0] = 0;
Tuner->Init_Ctrl[9].val[0] = 1;
Tuner->Init_Ctrl[9].addr[1] = 76;
Tuner->Init_Ctrl[9].bit[1] = 1;
Tuner->Init_Ctrl[9].val[1] = 1;
Tuner->Init_Ctrl[9].addr[2] = 76;
Tuner->Init_Ctrl[9].bit[2] = 2;
Tuner->Init_Ctrl[9].val[2] = 0;
Tuner->Init_Ctrl[9].addr[3] = 76;
Tuner->Init_Ctrl[9].bit[3] = 3;
Tuner->Init_Ctrl[9].val[3] = 1;
Tuner->Init_Ctrl[10].Ctrl_Num = AGC_RF ;
Tuner->Init_Ctrl[10].size = 4 ;
Tuner->Init_Ctrl[10].addr[0] = 76;
Tuner->Init_Ctrl[10].bit[0] = 4;
Tuner->Init_Ctrl[10].val[0] = 1;
Tuner->Init_Ctrl[10].addr[1] = 76;
Tuner->Init_Ctrl[10].bit[1] = 5;
Tuner->Init_Ctrl[10].val[1] = 1;
Tuner->Init_Ctrl[10].addr[2] = 76;
Tuner->Init_Ctrl[10].bit[2] = 6;
Tuner->Init_Ctrl[10].val[2] = 0;
Tuner->Init_Ctrl[10].addr[3] = 76;
Tuner->Init_Ctrl[10].bit[3] = 7;
Tuner->Init_Ctrl[10].val[3] = 1;
Tuner->Init_Ctrl[11].Ctrl_Num = IF_DIVVAL ;
Tuner->Init_Ctrl[11].size = 5 ;
Tuner->Init_Ctrl[11].addr[0] = 43;
Tuner->Init_Ctrl[11].bit[0] = 3;
Tuner->Init_Ctrl[11].val[0] = 0;
Tuner->Init_Ctrl[11].addr[1] = 43;
Tuner->Init_Ctrl[11].bit[1] = 4;
Tuner->Init_Ctrl[11].val[1] = 0;
Tuner->Init_Ctrl[11].addr[2] = 43;
Tuner->Init_Ctrl[11].bit[2] = 5;
Tuner->Init_Ctrl[11].val[2] = 0;
Tuner->Init_Ctrl[11].addr[3] = 43;
Tuner->Init_Ctrl[11].bit[3] = 6;
Tuner->Init_Ctrl[11].val[3] = 1;
Tuner->Init_Ctrl[11].addr[4] = 43;
Tuner->Init_Ctrl[11].bit[4] = 7;
Tuner->Init_Ctrl[11].val[4] = 0;
Tuner->Init_Ctrl[12].Ctrl_Num = IF_VCO_BIAS ;
Tuner->Init_Ctrl[12].size = 6 ;
Tuner->Init_Ctrl[12].addr[0] = 44;
Tuner->Init_Ctrl[12].bit[0] = 2;
Tuner->Init_Ctrl[12].val[0] = 0;
Tuner->Init_Ctrl[12].addr[1] = 44;
Tuner->Init_Ctrl[12].bit[1] = 3;
Tuner->Init_Ctrl[12].val[1] = 0;
Tuner->Init_Ctrl[12].addr[2] = 44;
Tuner->Init_Ctrl[12].bit[2] = 4;
Tuner->Init_Ctrl[12].val[2] = 0;
Tuner->Init_Ctrl[12].addr[3] = 44;
Tuner->Init_Ctrl[12].bit[3] = 5;
Tuner->Init_Ctrl[12].val[3] = 1;
Tuner->Init_Ctrl[12].addr[4] = 44;
Tuner->Init_Ctrl[12].bit[4] = 6;
Tuner->Init_Ctrl[12].val[4] = 0;
Tuner->Init_Ctrl[12].addr[5] = 44;
Tuner->Init_Ctrl[12].bit[5] = 7;
Tuner->Init_Ctrl[12].val[5] = 0;
Tuner->Init_Ctrl[13].Ctrl_Num = CHCAL_INT_MOD_IF ;
Tuner->Init_Ctrl[13].size = 7 ;
Tuner->Init_Ctrl[13].addr[0] = 11;
Tuner->Init_Ctrl[13].bit[0] = 0;
Tuner->Init_Ctrl[13].val[0] = 1;
Tuner->Init_Ctrl[13].addr[1] = 11;
Tuner->Init_Ctrl[13].bit[1] = 1;
Tuner->Init_Ctrl[13].val[1] = 0;
Tuner->Init_Ctrl[13].addr[2] = 11;
Tuner->Init_Ctrl[13].bit[2] = 2;
Tuner->Init_Ctrl[13].val[2] = 0;
Tuner->Init_Ctrl[13].addr[3] = 11;
Tuner->Init_Ctrl[13].bit[3] = 3;
Tuner->Init_Ctrl[13].val[3] = 1;
Tuner->Init_Ctrl[13].addr[4] = 11;
Tuner->Init_Ctrl[13].bit[4] = 4;
Tuner->Init_Ctrl[13].val[4] = 1;
Tuner->Init_Ctrl[13].addr[5] = 11;
Tuner->Init_Ctrl[13].bit[5] = 5;
Tuner->Init_Ctrl[13].val[5] = 0;
Tuner->Init_Ctrl[13].addr[6] = 11;
Tuner->Init_Ctrl[13].bit[6] = 6;
Tuner->Init_Ctrl[13].val[6] = 0;
Tuner->Init_Ctrl[14].Ctrl_Num = CHCAL_FRAC_MOD_IF ;
Tuner->Init_Ctrl[14].size = 16 ;
Tuner->Init_Ctrl[14].addr[0] = 13;
Tuner->Init_Ctrl[14].bit[0] = 0;
Tuner->Init_Ctrl[14].val[0] = 0;
Tuner->Init_Ctrl[14].addr[1] = 13;
Tuner->Init_Ctrl[14].bit[1] = 1;
Tuner->Init_Ctrl[14].val[1] = 0;
Tuner->Init_Ctrl[14].addr[2] = 13;
Tuner->Init_Ctrl[14].bit[2] = 2;
Tuner->Init_Ctrl[14].val[2] = 0;
Tuner->Init_Ctrl[14].addr[3] = 13;
Tuner->Init_Ctrl[14].bit[3] = 3;
Tuner->Init_Ctrl[14].val[3] = 0;
Tuner->Init_Ctrl[14].addr[4] = 13;
Tuner->Init_Ctrl[14].bit[4] = 4;
Tuner->Init_Ctrl[14].val[4] = 0;
Tuner->Init_Ctrl[14].addr[5] = 13;
Tuner->Init_Ctrl[14].bit[5] = 5;
Tuner->Init_Ctrl[14].val[5] = 0;
Tuner->Init_Ctrl[14].addr[6] = 13;
Tuner->Init_Ctrl[14].bit[6] = 6;
Tuner->Init_Ctrl[14].val[6] = 0;
Tuner->Init_Ctrl[14].addr[7] = 13;
Tuner->Init_Ctrl[14].bit[7] = 7;
Tuner->Init_Ctrl[14].val[7] = 0;
Tuner->Init_Ctrl[14].addr[8] = 12;
Tuner->Init_Ctrl[14].bit[8] = 0;
Tuner->Init_Ctrl[14].val[8] = 0;
Tuner->Init_Ctrl[14].addr[9] = 12;
Tuner->Init_Ctrl[14].bit[9] = 1;
Tuner->Init_Ctrl[14].val[9] = 0;
Tuner->Init_Ctrl[14].addr[10] = 12;
Tuner->Init_Ctrl[14].bit[10] = 2;
Tuner->Init_Ctrl[14].val[10] = 0;
Tuner->Init_Ctrl[14].addr[11] = 12;
Tuner->Init_Ctrl[14].bit[11] = 3;
Tuner->Init_Ctrl[14].val[11] = 0;
Tuner->Init_Ctrl[14].addr[12] = 12;
Tuner->Init_Ctrl[14].bit[12] = 4;
Tuner->Init_Ctrl[14].val[12] = 0;
Tuner->Init_Ctrl[14].addr[13] = 12;
Tuner->Init_Ctrl[14].bit[13] = 5;
Tuner->Init_Ctrl[14].val[13] = 1;
Tuner->Init_Ctrl[14].addr[14] = 12;
Tuner->Init_Ctrl[14].bit[14] = 6;
Tuner->Init_Ctrl[14].val[14] = 1;
Tuner->Init_Ctrl[14].addr[15] = 12;
Tuner->Init_Ctrl[14].bit[15] = 7;
Tuner->Init_Ctrl[14].val[15] = 0;
Tuner->Init_Ctrl[15].Ctrl_Num = DRV_RES_SEL ;
Tuner->Init_Ctrl[15].size = 3 ;
Tuner->Init_Ctrl[15].addr[0] = 147;
Tuner->Init_Ctrl[15].bit[0] = 2;
Tuner->Init_Ctrl[15].val[0] = 0;
Tuner->Init_Ctrl[15].addr[1] = 147;
Tuner->Init_Ctrl[15].bit[1] = 3;
Tuner->Init_Ctrl[15].val[1] = 1;
Tuner->Init_Ctrl[15].addr[2] = 147;
Tuner->Init_Ctrl[15].bit[2] = 4;
Tuner->Init_Ctrl[15].val[2] = 1;
Tuner->Init_Ctrl[16].Ctrl_Num = I_DRIVER ;
Tuner->Init_Ctrl[16].size = 2 ;
Tuner->Init_Ctrl[16].addr[0] = 147;
Tuner->Init_Ctrl[16].bit[0] = 0;
Tuner->Init_Ctrl[16].val[0] = 0;
Tuner->Init_Ctrl[16].addr[1] = 147;
Tuner->Init_Ctrl[16].bit[1] = 1;
Tuner->Init_Ctrl[16].val[1] = 1;
Tuner->Init_Ctrl[17].Ctrl_Num = EN_AAF ;
Tuner->Init_Ctrl[17].size = 1 ;
Tuner->Init_Ctrl[17].addr[0] = 147;
Tuner->Init_Ctrl[17].bit[0] = 7;
Tuner->Init_Ctrl[17].val[0] = 0;
Tuner->Init_Ctrl[18].Ctrl_Num = EN_3P ;
Tuner->Init_Ctrl[18].size = 1 ;
Tuner->Init_Ctrl[18].addr[0] = 147;
Tuner->Init_Ctrl[18].bit[0] = 6;
Tuner->Init_Ctrl[18].val[0] = 0;
Tuner->Init_Ctrl[19].Ctrl_Num = EN_AUX_3P ;
Tuner->Init_Ctrl[19].size = 1 ;
Tuner->Init_Ctrl[19].addr[0] = 156;
Tuner->Init_Ctrl[19].bit[0] = 0;
Tuner->Init_Ctrl[19].val[0] = 0;
Tuner->Init_Ctrl[20].Ctrl_Num = SEL_AAF_BAND ;
Tuner->Init_Ctrl[20].size = 1 ;
Tuner->Init_Ctrl[20].addr[0] = 147;
Tuner->Init_Ctrl[20].bit[0] = 5;
Tuner->Init_Ctrl[20].val[0] = 0;
Tuner->Init_Ctrl[21].Ctrl_Num = SEQ_ENCLK16_CLK_OUT ;
Tuner->Init_Ctrl[21].size = 1 ;
Tuner->Init_Ctrl[21].addr[0] = 137;
Tuner->Init_Ctrl[21].bit[0] = 4;
Tuner->Init_Ctrl[21].val[0] = 0;
Tuner->Init_Ctrl[22].Ctrl_Num = SEQ_SEL4_16B ;
Tuner->Init_Ctrl[22].size = 1 ;
Tuner->Init_Ctrl[22].addr[0] = 137;
Tuner->Init_Ctrl[22].bit[0] = 7;
Tuner->Init_Ctrl[22].val[0] = 0;
Tuner->Init_Ctrl[23].Ctrl_Num = XTAL_CAPSELECT ;
Tuner->Init_Ctrl[23].size = 1 ;
Tuner->Init_Ctrl[23].addr[0] = 91;
Tuner->Init_Ctrl[23].bit[0] = 5;
Tuner->Init_Ctrl[23].val[0] = 1;
Tuner->Init_Ctrl[24].Ctrl_Num = IF_SEL_DBL ;
Tuner->Init_Ctrl[24].size = 1 ;
Tuner->Init_Ctrl[24].addr[0] = 43;
Tuner->Init_Ctrl[24].bit[0] = 0;
Tuner->Init_Ctrl[24].val[0] = 1;
Tuner->Init_Ctrl[25].Ctrl_Num = RFSYN_R_DIV ;
Tuner->Init_Ctrl[25].size = 2 ;
Tuner->Init_Ctrl[25].addr[0] = 22;
Tuner->Init_Ctrl[25].bit[0] = 0;
Tuner->Init_Ctrl[25].val[0] = 1;
Tuner->Init_Ctrl[25].addr[1] = 22;
Tuner->Init_Ctrl[25].bit[1] = 1;
Tuner->Init_Ctrl[25].val[1] = 1;
Tuner->Init_Ctrl[26].Ctrl_Num = SEQ_EXTSYNTHCALIF ;
Tuner->Init_Ctrl[26].size = 1 ;
Tuner->Init_Ctrl[26].addr[0] = 134;
Tuner->Init_Ctrl[26].bit[0] = 2;
Tuner->Init_Ctrl[26].val[0] = 0;
Tuner->Init_Ctrl[27].Ctrl_Num = SEQ_EXTDCCAL ;
Tuner->Init_Ctrl[27].size = 1 ;
Tuner->Init_Ctrl[27].addr[0] = 137;
Tuner->Init_Ctrl[27].bit[0] = 3;
Tuner->Init_Ctrl[27].val[0] = 0;
Tuner->Init_Ctrl[28].Ctrl_Num = AGC_EN_RSSI ;
Tuner->Init_Ctrl[28].size = 1 ;
Tuner->Init_Ctrl[28].addr[0] = 77;
Tuner->Init_Ctrl[28].bit[0] = 7;
Tuner->Init_Ctrl[28].val[0] = 0;
Tuner->Init_Ctrl[29].Ctrl_Num = RFA_ENCLKRFAGC ;
Tuner->Init_Ctrl[29].size = 1 ;
Tuner->Init_Ctrl[29].addr[0] = 166;
Tuner->Init_Ctrl[29].bit[0] = 7;
Tuner->Init_Ctrl[29].val[0] = 1;
Tuner->Init_Ctrl[30].Ctrl_Num = RFA_RSSI_REFH ;
Tuner->Init_Ctrl[30].size = 3 ;
Tuner->Init_Ctrl[30].addr[0] = 166;
Tuner->Init_Ctrl[30].bit[0] = 0;
Tuner->Init_Ctrl[30].val[0] = 0;
Tuner->Init_Ctrl[30].addr[1] = 166;
Tuner->Init_Ctrl[30].bit[1] = 1;
Tuner->Init_Ctrl[30].val[1] = 1;
Tuner->Init_Ctrl[30].addr[2] = 166;
Tuner->Init_Ctrl[30].bit[2] = 2;
Tuner->Init_Ctrl[30].val[2] = 1;
Tuner->Init_Ctrl[31].Ctrl_Num = RFA_RSSI_REF ;
Tuner->Init_Ctrl[31].size = 3 ;
Tuner->Init_Ctrl[31].addr[0] = 166;
Tuner->Init_Ctrl[31].bit[0] = 3;
Tuner->Init_Ctrl[31].val[0] = 1;
Tuner->Init_Ctrl[31].addr[1] = 166;
Tuner->Init_Ctrl[31].bit[1] = 4;
Tuner->Init_Ctrl[31].val[1] = 0;
Tuner->Init_Ctrl[31].addr[2] = 166;
Tuner->Init_Ctrl[31].bit[2] = 5;
Tuner->Init_Ctrl[31].val[2] = 1;
Tuner->Init_Ctrl[32].Ctrl_Num = RFA_RSSI_REFL ;
Tuner->Init_Ctrl[32].size = 3 ;
Tuner->Init_Ctrl[32].addr[0] = 167;
Tuner->Init_Ctrl[32].bit[0] = 0;
Tuner->Init_Ctrl[32].val[0] = 1;
Tuner->Init_Ctrl[32].addr[1] = 167;
Tuner->Init_Ctrl[32].bit[1] = 1;
Tuner->Init_Ctrl[32].val[1] = 1;
Tuner->Init_Ctrl[32].addr[2] = 167;
Tuner->Init_Ctrl[32].bit[2] = 2;
Tuner->Init_Ctrl[32].val[2] = 0;
Tuner->Init_Ctrl[33].Ctrl_Num = RFA_FLR ;
Tuner->Init_Ctrl[33].size = 4 ;
Tuner->Init_Ctrl[33].addr[0] = 168;
Tuner->Init_Ctrl[33].bit[0] = 0;
Tuner->Init_Ctrl[33].val[0] = 0;
Tuner->Init_Ctrl[33].addr[1] = 168;
Tuner->Init_Ctrl[33].bit[1] = 1;
Tuner->Init_Ctrl[33].val[1] = 1;
Tuner->Init_Ctrl[33].addr[2] = 168;
Tuner->Init_Ctrl[33].bit[2] = 2;
Tuner->Init_Ctrl[33].val[2] = 0;
Tuner->Init_Ctrl[33].addr[3] = 168;
Tuner->Init_Ctrl[33].bit[3] = 3;
Tuner->Init_Ctrl[33].val[3] = 0;
Tuner->Init_Ctrl[34].Ctrl_Num = RFA_CEIL ;
Tuner->Init_Ctrl[34].size = 4 ;
Tuner->Init_Ctrl[34].addr[0] = 168;
Tuner->Init_Ctrl[34].bit[0] = 4;
Tuner->Init_Ctrl[34].val[0] = 1;
Tuner->Init_Ctrl[34].addr[1] = 168;
Tuner->Init_Ctrl[34].bit[1] = 5;
Tuner->Init_Ctrl[34].val[1] = 1;
Tuner->Init_Ctrl[34].addr[2] = 168;
Tuner->Init_Ctrl[34].bit[2] = 6;
Tuner->Init_Ctrl[34].val[2] = 1;
Tuner->Init_Ctrl[34].addr[3] = 168;
Tuner->Init_Ctrl[34].bit[3] = 7;
Tuner->Init_Ctrl[34].val[3] = 1;
Tuner->Init_Ctrl[35].Ctrl_Num = SEQ_EXTIQFSMPULSE ;
Tuner->Init_Ctrl[35].size = 1 ;
Tuner->Init_Ctrl[35].addr[0] = 135;
Tuner->Init_Ctrl[35].bit[0] = 0;
Tuner->Init_Ctrl[35].val[0] = 0;
Tuner->Init_Ctrl[36].Ctrl_Num = OVERRIDE_1 ;
Tuner->Init_Ctrl[36].size = 1 ;
Tuner->Init_Ctrl[36].addr[0] = 56;
Tuner->Init_Ctrl[36].bit[0] = 3;
Tuner->Init_Ctrl[36].val[0] = 0;
Tuner->Init_Ctrl[37].Ctrl_Num = BB_INITSTATE_DLPF_TUNE ;
Tuner->Init_Ctrl[37].size = 7 ;
Tuner->Init_Ctrl[37].addr[0] = 59;
Tuner->Init_Ctrl[37].bit[0] = 1;
Tuner->Init_Ctrl[37].val[0] = 0;
Tuner->Init_Ctrl[37].addr[1] = 59;
Tuner->Init_Ctrl[37].bit[1] = 2;
Tuner->Init_Ctrl[37].val[1] = 0;
Tuner->Init_Ctrl[37].addr[2] = 59;
Tuner->Init_Ctrl[37].bit[2] = 3;
Tuner->Init_Ctrl[37].val[2] = 0;
Tuner->Init_Ctrl[37].addr[3] = 59;
Tuner->Init_Ctrl[37].bit[3] = 4;
Tuner->Init_Ctrl[37].val[3] = 0;
Tuner->Init_Ctrl[37].addr[4] = 59;
Tuner->Init_Ctrl[37].bit[4] = 5;
Tuner->Init_Ctrl[37].val[4] = 0;
Tuner->Init_Ctrl[37].addr[5] = 59;
Tuner->Init_Ctrl[37].bit[5] = 6;
Tuner->Init_Ctrl[37].val[5] = 0;
Tuner->Init_Ctrl[37].addr[6] = 59;
Tuner->Init_Ctrl[37].bit[6] = 7;
Tuner->Init_Ctrl[37].val[6] = 0;
Tuner->Init_Ctrl[38].Ctrl_Num = TG_R_DIV ;
Tuner->Init_Ctrl[38].size = 6 ;
Tuner->Init_Ctrl[38].addr[0] = 32;
Tuner->Init_Ctrl[38].bit[0] = 2;
Tuner->Init_Ctrl[38].val[0] = 0;
Tuner->Init_Ctrl[38].addr[1] = 32;
Tuner->Init_Ctrl[38].bit[1] = 3;
Tuner->Init_Ctrl[38].val[1] = 0;
Tuner->Init_Ctrl[38].addr[2] = 32;
Tuner->Init_Ctrl[38].bit[2] = 4;
Tuner->Init_Ctrl[38].val[2] = 0;
Tuner->Init_Ctrl[38].addr[3] = 32;
Tuner->Init_Ctrl[38].bit[3] = 5;
Tuner->Init_Ctrl[38].val[3] = 0;
Tuner->Init_Ctrl[38].addr[4] = 32;
Tuner->Init_Ctrl[38].bit[4] = 6;
Tuner->Init_Ctrl[38].val[4] = 1;
Tuner->Init_Ctrl[38].addr[5] = 32;
Tuner->Init_Ctrl[38].bit[5] = 7;
Tuner->Init_Ctrl[38].val[5] = 0;
Tuner->Init_Ctrl[39].Ctrl_Num = EN_CHP_LIN_B ;
Tuner->Init_Ctrl[39].size = 1 ;
Tuner->Init_Ctrl[39].addr[0] = 25;
Tuner->Init_Ctrl[39].bit[0] = 3;
Tuner->Init_Ctrl[39].val[0] = 1;
Tuner->CH_Ctrl_Num = CHCTRL_NUM ;
Tuner->CH_Ctrl[0].Ctrl_Num = DN_POLY ;
Tuner->CH_Ctrl[0].size = 2 ;
Tuner->CH_Ctrl[0].addr[0] = 68;
Tuner->CH_Ctrl[0].bit[0] = 6;
Tuner->CH_Ctrl[0].val[0] = 1;
Tuner->CH_Ctrl[0].addr[1] = 68;
Tuner->CH_Ctrl[0].bit[1] = 7;
Tuner->CH_Ctrl[0].val[1] = 1;
Tuner->CH_Ctrl[1].Ctrl_Num = DN_RFGAIN ;
Tuner->CH_Ctrl[1].size = 2 ;
Tuner->CH_Ctrl[1].addr[0] = 70;
Tuner->CH_Ctrl[1].bit[0] = 6;
Tuner->CH_Ctrl[1].val[0] = 1;
Tuner->CH_Ctrl[1].addr[1] = 70;
Tuner->CH_Ctrl[1].bit[1] = 7;
Tuner->CH_Ctrl[1].val[1] = 0;
Tuner->CH_Ctrl[2].Ctrl_Num = DN_CAP_RFLPF ;
Tuner->CH_Ctrl[2].size = 9 ;
Tuner->CH_Ctrl[2].addr[0] = 69;
Tuner->CH_Ctrl[2].bit[0] = 5;
Tuner->CH_Ctrl[2].val[0] = 0;
Tuner->CH_Ctrl[2].addr[1] = 69;
Tuner->CH_Ctrl[2].bit[1] = 6;
Tuner->CH_Ctrl[2].val[1] = 0;
Tuner->CH_Ctrl[2].addr[2] = 69;
Tuner->CH_Ctrl[2].bit[2] = 7;
Tuner->CH_Ctrl[2].val[2] = 0;
Tuner->CH_Ctrl[2].addr[3] = 68;
Tuner->CH_Ctrl[2].bit[3] = 0;
Tuner->CH_Ctrl[2].val[3] = 0;
Tuner->CH_Ctrl[2].addr[4] = 68;
Tuner->CH_Ctrl[2].bit[4] = 1;
Tuner->CH_Ctrl[2].val[4] = 0;
Tuner->CH_Ctrl[2].addr[5] = 68;
Tuner->CH_Ctrl[2].bit[5] = 2;
Tuner->CH_Ctrl[2].val[5] = 0;
Tuner->CH_Ctrl[2].addr[6] = 68;
Tuner->CH_Ctrl[2].bit[6] = 3;
Tuner->CH_Ctrl[2].val[6] = 0;
Tuner->CH_Ctrl[2].addr[7] = 68;
Tuner->CH_Ctrl[2].bit[7] = 4;
Tuner->CH_Ctrl[2].val[7] = 0;
Tuner->CH_Ctrl[2].addr[8] = 68;
Tuner->CH_Ctrl[2].bit[8] = 5;
Tuner->CH_Ctrl[2].val[8] = 0;
Tuner->CH_Ctrl[3].Ctrl_Num = DN_EN_VHFUHFBAR ;
Tuner->CH_Ctrl[3].size = 1 ;
Tuner->CH_Ctrl[3].addr[0] = 70;
Tuner->CH_Ctrl[3].bit[0] = 5;
Tuner->CH_Ctrl[3].val[0] = 0;
Tuner->CH_Ctrl[4].Ctrl_Num = DN_GAIN_ADJUST ;
Tuner->CH_Ctrl[4].size = 3 ;
Tuner->CH_Ctrl[4].addr[0] = 73;
Tuner->CH_Ctrl[4].bit[0] = 4;
Tuner->CH_Ctrl[4].val[0] = 0;
Tuner->CH_Ctrl[4].addr[1] = 73;
Tuner->CH_Ctrl[4].bit[1] = 5;
Tuner->CH_Ctrl[4].val[1] = 1;
Tuner->CH_Ctrl[4].addr[2] = 73;
Tuner->CH_Ctrl[4].bit[2] = 6;
Tuner->CH_Ctrl[4].val[2] = 0;
Tuner->CH_Ctrl[5].Ctrl_Num = DN_IQTNBUF_AMP ;
Tuner->CH_Ctrl[5].size = 4 ;
Tuner->CH_Ctrl[5].addr[0] = 70;
Tuner->CH_Ctrl[5].bit[0] = 0;
Tuner->CH_Ctrl[5].val[0] = 0;
Tuner->CH_Ctrl[5].addr[1] = 70;
Tuner->CH_Ctrl[5].bit[1] = 1;
Tuner->CH_Ctrl[5].val[1] = 0;
Tuner->CH_Ctrl[5].addr[2] = 70;
Tuner->CH_Ctrl[5].bit[2] = 2;
Tuner->CH_Ctrl[5].val[2] = 0;
Tuner->CH_Ctrl[5].addr[3] = 70;
Tuner->CH_Ctrl[5].bit[3] = 3;
Tuner->CH_Ctrl[5].val[3] = 0;
Tuner->CH_Ctrl[6].Ctrl_Num = DN_IQTNGNBFBIAS_BST ;
Tuner->CH_Ctrl[6].size = 1 ;
Tuner->CH_Ctrl[6].addr[0] = 70;
Tuner->CH_Ctrl[6].bit[0] = 4;
Tuner->CH_Ctrl[6].val[0] = 1;
Tuner->CH_Ctrl[7].Ctrl_Num = RFSYN_EN_OUTMUX ;
Tuner->CH_Ctrl[7].size = 1 ;
Tuner->CH_Ctrl[7].addr[0] = 111;
Tuner->CH_Ctrl[7].bit[0] = 4;
Tuner->CH_Ctrl[7].val[0] = 0;
Tuner->CH_Ctrl[8].Ctrl_Num = RFSYN_SEL_VCO_OUT ;
Tuner->CH_Ctrl[8].size = 1 ;
Tuner->CH_Ctrl[8].addr[0] = 111;
Tuner->CH_Ctrl[8].bit[0] = 7;
Tuner->CH_Ctrl[8].val[0] = 1;
Tuner->CH_Ctrl[9].Ctrl_Num = RFSYN_SEL_VCO_HI ;
Tuner->CH_Ctrl[9].size = 1 ;
Tuner->CH_Ctrl[9].addr[0] = 111;
Tuner->CH_Ctrl[9].bit[0] = 6;
Tuner->CH_Ctrl[9].val[0] = 1;
Tuner->CH_Ctrl[10].Ctrl_Num = RFSYN_SEL_DIVM ;
Tuner->CH_Ctrl[10].size = 1 ;
Tuner->CH_Ctrl[10].addr[0] = 111;
Tuner->CH_Ctrl[10].bit[0] = 5;
Tuner->CH_Ctrl[10].val[0] = 0;
Tuner->CH_Ctrl[11].Ctrl_Num = RFSYN_RF_DIV_BIAS ;
Tuner->CH_Ctrl[11].size = 2 ;
Tuner->CH_Ctrl[11].addr[0] = 110;
Tuner->CH_Ctrl[11].bit[0] = 0;
Tuner->CH_Ctrl[11].val[0] = 1;
Tuner->CH_Ctrl[11].addr[1] = 110;
Tuner->CH_Ctrl[11].bit[1] = 1;
Tuner->CH_Ctrl[11].val[1] = 0;
Tuner->CH_Ctrl[12].Ctrl_Num = DN_SEL_FREQ ;
Tuner->CH_Ctrl[12].size = 3 ;
Tuner->CH_Ctrl[12].addr[0] = 69;
Tuner->CH_Ctrl[12].bit[0] = 2;
Tuner->CH_Ctrl[12].val[0] = 0;
Tuner->CH_Ctrl[12].addr[1] = 69;
Tuner->CH_Ctrl[12].bit[1] = 3;
Tuner->CH_Ctrl[12].val[1] = 0;
Tuner->CH_Ctrl[12].addr[2] = 69;
Tuner->CH_Ctrl[12].bit[2] = 4;
Tuner->CH_Ctrl[12].val[2] = 0;
Tuner->CH_Ctrl[13].Ctrl_Num = RFSYN_VCO_BIAS ;
Tuner->CH_Ctrl[13].size = 6 ;
Tuner->CH_Ctrl[13].addr[0] = 110;
Tuner->CH_Ctrl[13].bit[0] = 2;
Tuner->CH_Ctrl[13].val[0] = 0;
Tuner->CH_Ctrl[13].addr[1] = 110;
Tuner->CH_Ctrl[13].bit[1] = 3;
Tuner->CH_Ctrl[13].val[1] = 0;
Tuner->CH_Ctrl[13].addr[2] = 110;
Tuner->CH_Ctrl[13].bit[2] = 4;
Tuner->CH_Ctrl[13].val[2] = 0;
Tuner->CH_Ctrl[13].addr[3] = 110;
Tuner->CH_Ctrl[13].bit[3] = 5;
Tuner->CH_Ctrl[13].val[3] = 0;
Tuner->CH_Ctrl[13].addr[4] = 110;
Tuner->CH_Ctrl[13].bit[4] = 6;
Tuner->CH_Ctrl[13].val[4] = 0;
Tuner->CH_Ctrl[13].addr[5] = 110;
Tuner->CH_Ctrl[13].bit[5] = 7;
Tuner->CH_Ctrl[13].val[5] = 1;
Tuner->CH_Ctrl[14].Ctrl_Num = CHCAL_INT_MOD_RF ;
Tuner->CH_Ctrl[14].size = 7 ;
Tuner->CH_Ctrl[14].addr[0] = 14;
Tuner->CH_Ctrl[14].bit[0] = 0;
Tuner->CH_Ctrl[14].val[0] = 0;
Tuner->CH_Ctrl[14].addr[1] = 14;
Tuner->CH_Ctrl[14].bit[1] = 1;
Tuner->CH_Ctrl[14].val[1] = 0;
Tuner->CH_Ctrl[14].addr[2] = 14;
Tuner->CH_Ctrl[14].bit[2] = 2;
Tuner->CH_Ctrl[14].val[2] = 0;
Tuner->CH_Ctrl[14].addr[3] = 14;
Tuner->CH_Ctrl[14].bit[3] = 3;
Tuner->CH_Ctrl[14].val[3] = 0;
Tuner->CH_Ctrl[14].addr[4] = 14;
Tuner->CH_Ctrl[14].bit[4] = 4;
Tuner->CH_Ctrl[14].val[4] = 0;
Tuner->CH_Ctrl[14].addr[5] = 14;
Tuner->CH_Ctrl[14].bit[5] = 5;
Tuner->CH_Ctrl[14].val[5] = 0;
Tuner->CH_Ctrl[14].addr[6] = 14;
Tuner->CH_Ctrl[14].bit[6] = 6;
Tuner->CH_Ctrl[14].val[6] = 0;
Tuner->CH_Ctrl[15].Ctrl_Num = CHCAL_FRAC_MOD_RF ;
Tuner->CH_Ctrl[15].size = 18 ;
Tuner->CH_Ctrl[15].addr[0] = 17;
Tuner->CH_Ctrl[15].bit[0] = 6;
Tuner->CH_Ctrl[15].val[0] = 0;
Tuner->CH_Ctrl[15].addr[1] = 17;
Tuner->CH_Ctrl[15].bit[1] = 7;
Tuner->CH_Ctrl[15].val[1] = 0;
Tuner->CH_Ctrl[15].addr[2] = 16;
Tuner->CH_Ctrl[15].bit[2] = 0;
Tuner->CH_Ctrl[15].val[2] = 0;
Tuner->CH_Ctrl[15].addr[3] = 16;
Tuner->CH_Ctrl[15].bit[3] = 1;
Tuner->CH_Ctrl[15].val[3] = 0;
Tuner->CH_Ctrl[15].addr[4] = 16;
Tuner->CH_Ctrl[15].bit[4] = 2;
Tuner->CH_Ctrl[15].val[4] = 0;
Tuner->CH_Ctrl[15].addr[5] = 16;
Tuner->CH_Ctrl[15].bit[5] = 3;
Tuner->CH_Ctrl[15].val[5] = 0;
Tuner->CH_Ctrl[15].addr[6] = 16;
Tuner->CH_Ctrl[15].bit[6] = 4;
Tuner->CH_Ctrl[15].val[6] = 0;
Tuner->CH_Ctrl[15].addr[7] = 16;
Tuner->CH_Ctrl[15].bit[7] = 5;
Tuner->CH_Ctrl[15].val[7] = 0;
Tuner->CH_Ctrl[15].addr[8] = 16;
Tuner->CH_Ctrl[15].bit[8] = 6;
Tuner->CH_Ctrl[15].val[8] = 0;
Tuner->CH_Ctrl[15].addr[9] = 16;
Tuner->CH_Ctrl[15].bit[9] = 7;
Tuner->CH_Ctrl[15].val[9] = 0;
Tuner->CH_Ctrl[15].addr[10] = 15;
Tuner->CH_Ctrl[15].bit[10] = 0;
Tuner->CH_Ctrl[15].val[10] = 0;
Tuner->CH_Ctrl[15].addr[11] = 15;
Tuner->CH_Ctrl[15].bit[11] = 1;
Tuner->CH_Ctrl[15].val[11] = 0;
Tuner->CH_Ctrl[15].addr[12] = 15;
Tuner->CH_Ctrl[15].bit[12] = 2;
Tuner->CH_Ctrl[15].val[12] = 0;
Tuner->CH_Ctrl[15].addr[13] = 15;
Tuner->CH_Ctrl[15].bit[13] = 3;
Tuner->CH_Ctrl[15].val[13] = 0;
Tuner->CH_Ctrl[15].addr[14] = 15;
Tuner->CH_Ctrl[15].bit[14] = 4;
Tuner->CH_Ctrl[15].val[14] = 0;
Tuner->CH_Ctrl[15].addr[15] = 15;
Tuner->CH_Ctrl[15].bit[15] = 5;
Tuner->CH_Ctrl[15].val[15] = 0;
Tuner->CH_Ctrl[15].addr[16] = 15;
Tuner->CH_Ctrl[15].bit[16] = 6;
Tuner->CH_Ctrl[15].val[16] = 1;
Tuner->CH_Ctrl[15].addr[17] = 15;
Tuner->CH_Ctrl[15].bit[17] = 7;
Tuner->CH_Ctrl[15].val[17] = 1;
Tuner->CH_Ctrl[16].Ctrl_Num = RFSYN_LPF_R ;
Tuner->CH_Ctrl[16].size = 5 ;
Tuner->CH_Ctrl[16].addr[0] = 112;
Tuner->CH_Ctrl[16].bit[0] = 0;
Tuner->CH_Ctrl[16].val[0] = 0;
Tuner->CH_Ctrl[16].addr[1] = 112;
Tuner->CH_Ctrl[16].bit[1] = 1;
Tuner->CH_Ctrl[16].val[1] = 0;
Tuner->CH_Ctrl[16].addr[2] = 112;
Tuner->CH_Ctrl[16].bit[2] = 2;
Tuner->CH_Ctrl[16].val[2] = 0;
Tuner->CH_Ctrl[16].addr[3] = 112;
Tuner->CH_Ctrl[16].bit[3] = 3;
Tuner->CH_Ctrl[16].val[3] = 0;
Tuner->CH_Ctrl[16].addr[4] = 112;
Tuner->CH_Ctrl[16].bit[4] = 4;
Tuner->CH_Ctrl[16].val[4] = 1;
Tuner->CH_Ctrl[17].Ctrl_Num = CHCAL_EN_INT_RF ;
Tuner->CH_Ctrl[17].size = 1 ;
Tuner->CH_Ctrl[17].addr[0] = 14;
Tuner->CH_Ctrl[17].bit[0] = 7;
Tuner->CH_Ctrl[17].val[0] = 0;
Tuner->CH_Ctrl[18].Ctrl_Num = TG_LO_DIVVAL ;
Tuner->CH_Ctrl[18].size = 4 ;
Tuner->CH_Ctrl[18].addr[0] = 107;
Tuner->CH_Ctrl[18].bit[0] = 3;
Tuner->CH_Ctrl[18].val[0] = 0;
Tuner->CH_Ctrl[18].addr[1] = 107;
Tuner->CH_Ctrl[18].bit[1] = 4;
Tuner->CH_Ctrl[18].val[1] = 0;
Tuner->CH_Ctrl[18].addr[2] = 107;
Tuner->CH_Ctrl[18].bit[2] = 5;
Tuner->CH_Ctrl[18].val[2] = 0;
Tuner->CH_Ctrl[18].addr[3] = 107;
Tuner->CH_Ctrl[18].bit[3] = 6;
Tuner->CH_Ctrl[18].val[3] = 0;
Tuner->CH_Ctrl[19].Ctrl_Num = TG_LO_SELVAL ;
Tuner->CH_Ctrl[19].size = 3 ;
Tuner->CH_Ctrl[19].addr[0] = 107;
Tuner->CH_Ctrl[19].bit[0] = 7;
Tuner->CH_Ctrl[19].val[0] = 1;
Tuner->CH_Ctrl[19].addr[1] = 106;
Tuner->CH_Ctrl[19].bit[1] = 0;
Tuner->CH_Ctrl[19].val[1] = 1;
Tuner->CH_Ctrl[19].addr[2] = 106;
Tuner->CH_Ctrl[19].bit[2] = 1;
Tuner->CH_Ctrl[19].val[2] = 1;
Tuner->CH_Ctrl[20].Ctrl_Num = TG_DIV_VAL ;
Tuner->CH_Ctrl[20].size = 11 ;
Tuner->CH_Ctrl[20].addr[0] = 109;
Tuner->CH_Ctrl[20].bit[0] = 2;
Tuner->CH_Ctrl[20].val[0] = 0;
Tuner->CH_Ctrl[20].addr[1] = 109;
Tuner->CH_Ctrl[20].bit[1] = 3;
Tuner->CH_Ctrl[20].val[1] = 0;
Tuner->CH_Ctrl[20].addr[2] = 109;
Tuner->CH_Ctrl[20].bit[2] = 4;
Tuner->CH_Ctrl[20].val[2] = 0;
Tuner->CH_Ctrl[20].addr[3] = 109;
Tuner->CH_Ctrl[20].bit[3] = 5;
Tuner->CH_Ctrl[20].val[3] = 0;
Tuner->CH_Ctrl[20].addr[4] = 109;
Tuner->CH_Ctrl[20].bit[4] = 6;
Tuner->CH_Ctrl[20].val[4] = 0;
Tuner->CH_Ctrl[20].addr[5] = 109;
Tuner->CH_Ctrl[20].bit[5] = 7;
Tuner->CH_Ctrl[20].val[5] = 0;
Tuner->CH_Ctrl[20].addr[6] = 108;
Tuner->CH_Ctrl[20].bit[6] = 0;
Tuner->CH_Ctrl[20].val[6] = 0;
Tuner->CH_Ctrl[20].addr[7] = 108;
Tuner->CH_Ctrl[20].bit[7] = 1;
Tuner->CH_Ctrl[20].val[7] = 0;
Tuner->CH_Ctrl[20].addr[8] = 108;
Tuner->CH_Ctrl[20].bit[8] = 2;
Tuner->CH_Ctrl[20].val[8] = 1;
Tuner->CH_Ctrl[20].addr[9] = 108;
Tuner->CH_Ctrl[20].bit[9] = 3;
Tuner->CH_Ctrl[20].val[9] = 1;
Tuner->CH_Ctrl[20].addr[10] = 108;
Tuner->CH_Ctrl[20].bit[10] = 4;
Tuner->CH_Ctrl[20].val[10] = 1;
Tuner->CH_Ctrl[21].Ctrl_Num = TG_VCO_BIAS ;
Tuner->CH_Ctrl[21].size = 6 ;
Tuner->CH_Ctrl[21].addr[0] = 106;
Tuner->CH_Ctrl[21].bit[0] = 2;
Tuner->CH_Ctrl[21].val[0] = 0;
Tuner->CH_Ctrl[21].addr[1] = 106;
Tuner->CH_Ctrl[21].bit[1] = 3;
Tuner->CH_Ctrl[21].val[1] = 0;
Tuner->CH_Ctrl[21].addr[2] = 106;
Tuner->CH_Ctrl[21].bit[2] = 4;
Tuner->CH_Ctrl[21].val[2] = 0;
Tuner->CH_Ctrl[21].addr[3] = 106;
Tuner->CH_Ctrl[21].bit[3] = 5;
Tuner->CH_Ctrl[21].val[3] = 0;
Tuner->CH_Ctrl[21].addr[4] = 106;
Tuner->CH_Ctrl[21].bit[4] = 6;
Tuner->CH_Ctrl[21].val[4] = 0;
Tuner->CH_Ctrl[21].addr[5] = 106;
Tuner->CH_Ctrl[21].bit[5] = 7;
Tuner->CH_Ctrl[21].val[5] = 1;
Tuner->CH_Ctrl[22].Ctrl_Num = SEQ_EXTPOWERUP ;
Tuner->CH_Ctrl[22].size = 1 ;
Tuner->CH_Ctrl[22].addr[0] = 138;
Tuner->CH_Ctrl[22].bit[0] = 4;
Tuner->CH_Ctrl[22].val[0] = 1;
Tuner->CH_Ctrl[23].Ctrl_Num = OVERRIDE_2 ;
Tuner->CH_Ctrl[23].size = 1 ;
Tuner->CH_Ctrl[23].addr[0] = 17;
Tuner->CH_Ctrl[23].bit[0] = 5;
Tuner->CH_Ctrl[23].val[0] = 0;
Tuner->CH_Ctrl[24].Ctrl_Num = OVERRIDE_3 ;
Tuner->CH_Ctrl[24].size = 1 ;
Tuner->CH_Ctrl[24].addr[0] = 111;
Tuner->CH_Ctrl[24].bit[0] = 3;
Tuner->CH_Ctrl[24].val[0] = 0;
Tuner->CH_Ctrl[25].Ctrl_Num = OVERRIDE_4 ;
Tuner->CH_Ctrl[25].size = 1 ;
Tuner->CH_Ctrl[25].addr[0] = 112;
Tuner->CH_Ctrl[25].bit[0] = 7;
Tuner->CH_Ctrl[25].val[0] = 0;
Tuner->CH_Ctrl[26].Ctrl_Num = SEQ_FSM_PULSE ;
Tuner->CH_Ctrl[26].size = 1 ;
Tuner->CH_Ctrl[26].addr[0] = 136;
Tuner->CH_Ctrl[26].bit[0] = 7;
Tuner->CH_Ctrl[26].val[0] = 0;
Tuner->CH_Ctrl[27].Ctrl_Num = GPIO_4B ;
Tuner->CH_Ctrl[27].size = 1 ;
Tuner->CH_Ctrl[27].addr[0] = 149;
Tuner->CH_Ctrl[27].bit[0] = 7;
Tuner->CH_Ctrl[27].val[0] = 0;
Tuner->CH_Ctrl[28].Ctrl_Num = GPIO_3B ;
Tuner->CH_Ctrl[28].size = 1 ;
Tuner->CH_Ctrl[28].addr[0] = 149;
Tuner->CH_Ctrl[28].bit[0] = 6;
Tuner->CH_Ctrl[28].val[0] = 0;
Tuner->CH_Ctrl[29].Ctrl_Num = GPIO_4 ;
Tuner->CH_Ctrl[29].size = 1 ;
Tuner->CH_Ctrl[29].addr[0] = 149;
Tuner->CH_Ctrl[29].bit[0] = 5;
Tuner->CH_Ctrl[29].val[0] = 1;
Tuner->CH_Ctrl[30].Ctrl_Num = GPIO_3 ;
Tuner->CH_Ctrl[30].size = 1 ;
Tuner->CH_Ctrl[30].addr[0] = 149;
Tuner->CH_Ctrl[30].bit[0] = 4;
Tuner->CH_Ctrl[30].val[0] = 1;
Tuner->CH_Ctrl[31].Ctrl_Num = GPIO_1B ;
Tuner->CH_Ctrl[31].size = 1 ;
Tuner->CH_Ctrl[31].addr[0] = 149;
Tuner->CH_Ctrl[31].bit[0] = 3;
Tuner->CH_Ctrl[31].val[0] = 0;
Tuner->CH_Ctrl[32].Ctrl_Num = DAC_A_ENABLE ;
Tuner->CH_Ctrl[32].size = 1 ;
Tuner->CH_Ctrl[32].addr[0] = 93;
Tuner->CH_Ctrl[32].bit[0] = 1;
Tuner->CH_Ctrl[32].val[0] = 0;
Tuner->CH_Ctrl[33].Ctrl_Num = DAC_B_ENABLE ;
Tuner->CH_Ctrl[33].size = 1 ;
Tuner->CH_Ctrl[33].addr[0] = 93;
Tuner->CH_Ctrl[33].bit[0] = 0;
Tuner->CH_Ctrl[33].val[0] = 0;
Tuner->CH_Ctrl[34].Ctrl_Num = DAC_DIN_A ;
Tuner->CH_Ctrl[34].size = 6 ;
Tuner->CH_Ctrl[34].addr[0] = 92;
Tuner->CH_Ctrl[34].bit[0] = 2;
Tuner->CH_Ctrl[34].val[0] = 0;
Tuner->CH_Ctrl[34].addr[1] = 92;
Tuner->CH_Ctrl[34].bit[1] = 3;
Tuner->CH_Ctrl[34].val[1] = 0;
Tuner->CH_Ctrl[34].addr[2] = 92;
Tuner->CH_Ctrl[34].bit[2] = 4;
Tuner->CH_Ctrl[34].val[2] = 0;
Tuner->CH_Ctrl[34].addr[3] = 92;
Tuner->CH_Ctrl[34].bit[3] = 5;
Tuner->CH_Ctrl[34].val[3] = 0;
Tuner->CH_Ctrl[34].addr[4] = 92;
Tuner->CH_Ctrl[34].bit[4] = 6;
Tuner->CH_Ctrl[34].val[4] = 0;
Tuner->CH_Ctrl[34].addr[5] = 92;
Tuner->CH_Ctrl[34].bit[5] = 7;
Tuner->CH_Ctrl[34].val[5] = 0;
Tuner->CH_Ctrl[35].Ctrl_Num = DAC_DIN_B ;
Tuner->CH_Ctrl[35].size = 6 ;
Tuner->CH_Ctrl[35].addr[0] = 93;
Tuner->CH_Ctrl[35].bit[0] = 2;
Tuner->CH_Ctrl[35].val[0] = 0;
Tuner->CH_Ctrl[35].addr[1] = 93;
Tuner->CH_Ctrl[35].bit[1] = 3;
Tuner->CH_Ctrl[35].val[1] = 0;
Tuner->CH_Ctrl[35].addr[2] = 93;
Tuner->CH_Ctrl[35].bit[2] = 4;
Tuner->CH_Ctrl[35].val[2] = 0;
Tuner->CH_Ctrl[35].addr[3] = 93;
Tuner->CH_Ctrl[35].bit[3] = 5;
Tuner->CH_Ctrl[35].val[3] = 0;
Tuner->CH_Ctrl[35].addr[4] = 93;
Tuner->CH_Ctrl[35].bit[4] = 6;
Tuner->CH_Ctrl[35].val[4] = 0;
Tuner->CH_Ctrl[35].addr[5] = 93;
Tuner->CH_Ctrl[35].bit[5] = 7;
Tuner->CH_Ctrl[35].val[5] = 0;
#ifdef _MXL_PRODUCTION
Tuner->CH_Ctrl[36].Ctrl_Num = RFSYN_EN_DIV ;
Tuner->CH_Ctrl[36].size = 1 ;
Tuner->CH_Ctrl[36].addr[0] = 109;
Tuner->CH_Ctrl[36].bit[0] = 1;
Tuner->CH_Ctrl[36].val[0] = 1;
Tuner->CH_Ctrl[37].Ctrl_Num = RFSYN_DIVM ;
Tuner->CH_Ctrl[37].size = 2 ;
Tuner->CH_Ctrl[37].addr[0] = 112;
Tuner->CH_Ctrl[37].bit[0] = 5;
Tuner->CH_Ctrl[37].val[0] = 0;
Tuner->CH_Ctrl[37].addr[1] = 112;
Tuner->CH_Ctrl[37].bit[1] = 6;
Tuner->CH_Ctrl[37].val[1] = 0;
Tuner->CH_Ctrl[38].Ctrl_Num = DN_BYPASS_AGC_I2C ;
Tuner->CH_Ctrl[38].size = 1 ;
Tuner->CH_Ctrl[38].addr[0] = 65;
Tuner->CH_Ctrl[38].bit[0] = 1;
Tuner->CH_Ctrl[38].val[0] = 0;
#endif
return 0 ;
}
// MaxLinear source code - MXL5005_c.cpp
// MXL5005.cpp : Defines the initialization routines for the DLL.
// 2.6.12
//#ifdef _MXL_HEADER
//#include "stdafx.h"
//#endif
//#include "MXL5005_c.h"
void InitTunerControls(Tuner_struct *Tuner)
{
MXL5005_RegisterInit(Tuner) ;
MXL5005_ControlInit(Tuner) ;
#ifdef _MXL_INTERNAL
MXL5005_MXLControlInit(Tuner) ;
#endif
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ConfigTuner //
// //
// Description: Configure MXL5005Tuner structure for desired //
// Channel Bandwidth/Channel Frequency //
// //
// //
// Functions used: //
// MXL_SynthIFLO_Calc //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// Mode: Tuner Mode (Analog/Digital) //
// IF_Mode: IF Mode ( Zero/Low ) //
// Bandwidth: Filter Channel Bandwidth (in Hz) //
// IF_out: Desired IF out Frequency (in Hz) //
// Fxtal: Crystal Frerquency (in Hz) //
// TOP: 0: Dual AGC; Value: take over point //
// IF_OUT_LOAD: IF out load resistor (200/300 Ohms) //
// CLOCK_OUT: 0: Turn off clock out; 1: turn on clock out //
// DIV_OUT: 0: Div-1; 1: Div-4 //
// CAPSELECT: 0: Disable On-chip pulling cap; 1: Enable //
// EN_RSSI: 0: Disable RSSI; 1: Enable RSSI //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL5005_TunerConfig(Tuner_struct *Tuner,
_u8 Mode, // 0: Analog Mode ; 1: Digital Mode
_u8 IF_mode, // for Analog Mode, 0: zero IF; 1: low IF
_u32 Bandwidth, // filter channel bandwidth (6, 7, 8)
_u32 IF_out, // Desired IF Out Frequency
_u32 Fxtal, // XTAL Frequency
_u8 AGC_Mode, // AGC Mode - Dual AGC: 0, Single AGC: 1
_u16 TOP, // 0: Dual AGC; Value: take over point
_u16 IF_OUT_LOAD, // IF Out Load Resistor (200 / 300 Ohms)
_u8 CLOCK_OUT, // 0: turn off clock out; 1: turn on clock out
_u8 DIV_OUT, // 0: Div-1; 1: Div-4
_u8 CAPSELECT, // 0: disable On-Chip pulling cap; 1: enable
_u8 EN_RSSI, // 0: disable RSSI; 1: enable RSSI
_u8 Mod_Type, // Modulation Type;
// 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable
_u8 TF_Type // Tracking Filter
// 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H
)
{
_u16 status = 0 ;
Tuner->Mode = Mode ;
Tuner->IF_Mode = IF_mode ;
Tuner->Chan_Bandwidth = Bandwidth ;
Tuner->IF_OUT = IF_out ;
Tuner->Fxtal = Fxtal ;
Tuner->AGC_Mode = AGC_Mode ;
Tuner->TOP = TOP ;
Tuner->IF_OUT_LOAD = IF_OUT_LOAD ;
Tuner->CLOCK_OUT = CLOCK_OUT ;
Tuner->DIV_OUT = DIV_OUT ;
Tuner->CAPSELECT = CAPSELECT ;
Tuner->EN_RSSI = EN_RSSI ;
Tuner->Mod_Type = Mod_Type ;
Tuner->TF_Type = TF_Type ;
//
// Initialize all the controls and registers
//
InitTunerControls (Tuner) ;
//
// Synthesizer LO frequency calculation
//
MXL_SynthIFLO_Calc( Tuner ) ;
return status ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_SynthIFLO_Calc //
// //
// Description: Calculate Internal IF-LO Frequency //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
void MXL_SynthIFLO_Calc(Tuner_struct *Tuner)
{
if (Tuner->Mode == 1) // Digital Mode
{
Tuner->IF_LO = Tuner->IF_OUT ;
}
else // Analog Mode
{
if(Tuner->IF_Mode == 0) // Analog Zero IF mode
{
Tuner->IF_LO = Tuner->IF_OUT + 400000 ;
}
else // Analog Low IF mode
{
Tuner->IF_LO = Tuner->IF_OUT + Tuner->Chan_Bandwidth/2 ;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_SynthRFTGLO_Calc //
// //
// Description: Calculate Internal RF-LO frequency and //
// internal Tone-Gen(TG)-LO frequency //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
void MXL_SynthRFTGLO_Calc(Tuner_struct *Tuner)
{
if (Tuner->Mode == 1) // Digital Mode
{
//remove 20.48MHz setting for 2.6.10
Tuner->RF_LO = Tuner->RF_IN ;
Tuner->TG_LO = Tuner->RF_IN - 750000 ; //change for 2.6.6
}
else // Analog Mode
{
if(Tuner->IF_Mode == 0) // Analog Zero IF mode
{
Tuner->RF_LO = Tuner->RF_IN - 400000 ;
Tuner->TG_LO = Tuner->RF_IN - 1750000 ;
}
else // Analog Low IF mode
{
Tuner->RF_LO = Tuner->RF_IN - Tuner->Chan_Bandwidth/2 ;
Tuner->TG_LO = Tuner->RF_IN - Tuner->Chan_Bandwidth + 500000 ;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_OverwriteICDefault //
// //
// Description: Overwrite the Default Register Setting //
// //
// //
// Functions used: //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_OverwriteICDefault( Tuner_struct *Tuner)
{
_u16 status = 0 ;
status += MXL_ControlWrite(Tuner, OVERRIDE_1, 1) ;
status += MXL_ControlWrite(Tuner, OVERRIDE_2, 1) ;
status += MXL_ControlWrite(Tuner, OVERRIDE_3, 1) ;
status += MXL_ControlWrite(Tuner, OVERRIDE_4, 1) ;
return status ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_BlockInit //
// //
// Description: Tuner Initialization as a function of 'User Settings' //
// * User settings in Tuner strcuture must be assigned //
// first //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// Tuner_struct: structure defined at higher level //
// //
// Inputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_BlockInit( Tuner_struct *Tuner )
{
_u16 status = 0 ;
status += MXL_OverwriteICDefault(Tuner) ;
//
// Downconverter Control
// Dig Ana
status += MXL_ControlWrite(Tuner, DN_IQTN_AMP_CUT, Tuner->Mode ? 1 : 0) ;
//
// Filter Control
// Dig Ana
status += MXL_ControlWrite(Tuner, BB_MODE, Tuner->Mode ? 0 : 1) ;
status += MXL_ControlWrite(Tuner, BB_BUF, Tuner->Mode ? 3 : 2) ;
status += MXL_ControlWrite(Tuner, BB_BUF_OA, Tuner->Mode ? 1 : 0) ;
status += MXL_ControlWrite(Tuner, BB_IQSWAP, Tuner->Mode ? 0 : 1) ;
status += MXL_ControlWrite(Tuner, BB_INITSTATE_DLPF_TUNE, 0) ;
// Initialize Low-Pass Filter
if (Tuner->Mode) { // Digital Mode
switch (Tuner->Chan_Bandwidth) {
case 8000000:
status += MXL_ControlWrite(Tuner, BB_DLPF_BANDSEL, 0) ;
break ;
case 7000000:
status += MXL_ControlWrite(Tuner, BB_DLPF_BANDSEL, 2) ;
break ;
case 6000000:
status += MXL_ControlWrite(Tuner, BB_DLPF_BANDSEL, 3) ;
break ;
}
} else { // Analog Mode
switch (Tuner->Chan_Bandwidth) {
case 8000000: // Low Zero
status += MXL_ControlWrite(Tuner, BB_ALPF_BANDSELECT, (Tuner->IF_Mode ? 0 : 3)) ;
break ;
case 7000000:
status += MXL_ControlWrite(Tuner, BB_ALPF_BANDSELECT, (Tuner->IF_Mode ? 1 : 4)) ;
break ;
case 6000000:
status += MXL_ControlWrite(Tuner, BB_ALPF_BANDSELECT, (Tuner->IF_Mode ? 2 : 5)) ;
break ;
}
}
//
// Charge Pump Control
// Dig Ana
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, Tuner->Mode ? 5 : 8) ;
status += MXL_ControlWrite(Tuner, RFSYN_EN_CHP_HIGAIN, Tuner->Mode ? 1 : 1) ;
status += MXL_ControlWrite(Tuner, EN_CHP_LIN_B, Tuner->Mode ? 0 : 0) ;
//
// AGC TOP Control
//
if (Tuner->AGC_Mode == 0) // Dual AGC
{
status += MXL_ControlWrite(Tuner, AGC_IF, 15) ;
status += MXL_ControlWrite(Tuner, AGC_RF, 15) ;
}
else // Single AGC Mode Dig Ana
status += MXL_ControlWrite(Tuner, AGC_RF, Tuner->Mode? 15 : 12) ;
if (Tuner->TOP == 55) // TOP == 5.5
status += MXL_ControlWrite(Tuner, AGC_IF, 0x0) ;
if (Tuner->TOP == 72) // TOP == 7.2
status += MXL_ControlWrite(Tuner, AGC_IF, 0x1) ;
if (Tuner->TOP == 92) // TOP == 9.2
status += MXL_ControlWrite(Tuner, AGC_IF, 0x2) ;
if (Tuner->TOP == 110) // TOP == 11.0
status += MXL_ControlWrite(Tuner, AGC_IF, 0x3) ;
if (Tuner->TOP == 129) // TOP == 12.9
status += MXL_ControlWrite(Tuner, AGC_IF, 0x4) ;
if (Tuner->TOP == 147) // TOP == 14.7
status += MXL_ControlWrite(Tuner, AGC_IF, 0x5) ;
if (Tuner->TOP == 168) // TOP == 16.8
status += MXL_ControlWrite(Tuner, AGC_IF, 0x6) ;
if (Tuner->TOP == 194) // TOP == 19.4
status += MXL_ControlWrite(Tuner, AGC_IF, 0x7) ;
if (Tuner->TOP == 212) // TOP == 21.2
status += MXL_ControlWrite(Tuner, AGC_IF, 0x9) ;
if (Tuner->TOP == 232) // TOP == 23.2
status += MXL_ControlWrite(Tuner, AGC_IF, 0xA) ;
if (Tuner->TOP == 252) // TOP == 25.2
status += MXL_ControlWrite(Tuner, AGC_IF, 0xB) ;
if (Tuner->TOP == 271) // TOP == 27.1
status += MXL_ControlWrite(Tuner, AGC_IF, 0xC) ;
if (Tuner->TOP == 292) // TOP == 29.2
status += MXL_ControlWrite(Tuner, AGC_IF, 0xD) ;
if (Tuner->TOP == 317) // TOP == 31.7
status += MXL_ControlWrite(Tuner, AGC_IF, 0xE) ;
if (Tuner->TOP == 349) // TOP == 34.9
status += MXL_ControlWrite(Tuner, AGC_IF, 0xF) ;
//
// IF Synthesizer Control
//
status += MXL_IFSynthInit( Tuner ) ;
//
// IF UpConverter Control
if (Tuner->IF_OUT_LOAD == 200)
{
status += MXL_ControlWrite(Tuner, DRV_RES_SEL, 6) ;
status += MXL_ControlWrite(Tuner, I_DRIVER, 2) ;
}
if (Tuner->IF_OUT_LOAD == 300)
{
status += MXL_ControlWrite(Tuner, DRV_RES_SEL, 4) ;
status += MXL_ControlWrite(Tuner, I_DRIVER, 1) ;
}
//
// Anti-Alias Filtering Control
//
// initialise Anti-Aliasing Filter
if (Tuner->Mode) {// Digital Mode
if (Tuner->IF_OUT >= 4000000UL && Tuner->IF_OUT <= 6280000UL) {
status += MXL_ControlWrite(Tuner, EN_AAF, 1) ;
status += MXL_ControlWrite(Tuner, EN_3P, 1) ;
status += MXL_ControlWrite(Tuner, EN_AUX_3P, 1) ;
status += MXL_ControlWrite(Tuner, SEL_AAF_BAND, 0) ;
}
if ((Tuner->IF_OUT == 36125000UL) || (Tuner->IF_OUT == 36150000UL)) {
status += MXL_ControlWrite(Tuner, EN_AAF, 1) ;
status += MXL_ControlWrite(Tuner, EN_3P, 1) ;
status += MXL_ControlWrite(Tuner, EN_AUX_3P, 1) ;
status += MXL_ControlWrite(Tuner, SEL_AAF_BAND, 1) ;
}
if (Tuner->IF_OUT > 36150000UL) {
status += MXL_ControlWrite(Tuner, EN_AAF, 0) ;
status += MXL_ControlWrite(Tuner, EN_3P, 1) ;
status += MXL_ControlWrite(Tuner, EN_AUX_3P, 1) ;
status += MXL_ControlWrite(Tuner, SEL_AAF_BAND, 1) ;
}
} else { // Analog Mode
if (Tuner->IF_OUT >= 4000000UL && Tuner->IF_OUT <= 5000000UL)
{
status += MXL_ControlWrite(Tuner, EN_AAF, 1) ;
status += MXL_ControlWrite(Tuner, EN_3P, 1) ;
status += MXL_ControlWrite(Tuner, EN_AUX_3P, 1) ;
status += MXL_ControlWrite(Tuner, SEL_AAF_BAND, 0) ;
}
if (Tuner->IF_OUT > 5000000UL)
{
status += MXL_ControlWrite(Tuner, EN_AAF, 0) ;
status += MXL_ControlWrite(Tuner, EN_3P, 0) ;
status += MXL_ControlWrite(Tuner, EN_AUX_3P, 0) ;
status += MXL_ControlWrite(Tuner, SEL_AAF_BAND, 0) ;
}
}
//
// Demod Clock Out
//
if (Tuner->CLOCK_OUT)
status += MXL_ControlWrite(Tuner, SEQ_ENCLK16_CLK_OUT, 1) ;
else
status += MXL_ControlWrite(Tuner, SEQ_ENCLK16_CLK_OUT, 0) ;
if (Tuner->DIV_OUT == 1)
status += MXL_ControlWrite(Tuner, SEQ_SEL4_16B, 1) ;
if (Tuner->DIV_OUT == 0)
status += MXL_ControlWrite(Tuner, SEQ_SEL4_16B, 0) ;
//
// Crystal Control
//
if (Tuner->CAPSELECT)
status += MXL_ControlWrite(Tuner, XTAL_CAPSELECT, 1) ;
else
status += MXL_ControlWrite(Tuner, XTAL_CAPSELECT, 0) ;
if (Tuner->Fxtal >= 12000000UL && Tuner->Fxtal <= 16000000UL)
status += MXL_ControlWrite(Tuner, IF_SEL_DBL, 1) ;
if (Tuner->Fxtal > 16000000UL && Tuner->Fxtal <= 32000000UL)
status += MXL_ControlWrite(Tuner, IF_SEL_DBL, 0) ;
if (Tuner->Fxtal >= 12000000UL && Tuner->Fxtal <= 22000000UL)
status += MXL_ControlWrite(Tuner, RFSYN_R_DIV, 3) ;
if (Tuner->Fxtal > 22000000UL && Tuner->Fxtal <= 32000000UL)
status += MXL_ControlWrite(Tuner, RFSYN_R_DIV, 0) ;
//
// Misc Controls
//
if (Tuner->Mode == 0 && Tuner->IF_Mode == 1) // Analog LowIF mode
status += MXL_ControlWrite(Tuner, SEQ_EXTIQFSMPULSE, 0);
else
status += MXL_ControlWrite(Tuner, SEQ_EXTIQFSMPULSE, 1);
// status += MXL_ControlRead(Tuner, IF_DIVVAL, &IF_DIVVAL_Val) ;
// Set TG_R_DIV
status += MXL_ControlWrite(Tuner, TG_R_DIV, MXL_Ceiling(Tuner->Fxtal, 1000000)) ;
//
// Apply Default value to BB_INITSTATE_DLPF_TUNE
//
//
// RSSI Control
//
if(Tuner->EN_RSSI)
{
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 1) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
// RSSI reference point
status += MXL_ControlWrite(Tuner, RFA_RSSI_REF, 2) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFH, 3) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFL, 1) ;
// TOP point
status += MXL_ControlWrite(Tuner, RFA_FLR, 0) ;
status += MXL_ControlWrite(Tuner, RFA_CEIL, 12) ;
}
//
// Modulation type bit settings
// Override the control values preset
//
if (Tuner->Mod_Type == MXL_DVBT) // DVB-T Mode
{
Tuner->AGC_Mode = 1 ; // Single AGC Mode
// Enable RSSI
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 1) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
// RSSI reference point
status += MXL_ControlWrite(Tuner, RFA_RSSI_REF, 3) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFH, 5) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFL, 1) ;
// TOP point
status += MXL_ControlWrite(Tuner, RFA_FLR, 2) ;
status += MXL_ControlWrite(Tuner, RFA_CEIL, 13) ;
if (Tuner->IF_OUT <= 6280000UL) // Low IF
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 0) ;
else // High IF
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 1) ;
}
if (Tuner->Mod_Type == MXL_ATSC) // ATSC Mode
{
Tuner->AGC_Mode = 1 ; // Single AGC Mode
// Enable RSSI
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 1) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
// RSSI reference point
status += MXL_ControlWrite(Tuner, RFA_RSSI_REF, 2) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFH, 4) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFL, 1) ;
// TOP point
status += MXL_ControlWrite(Tuner, RFA_FLR, 2) ;
status += MXL_ControlWrite(Tuner, RFA_CEIL, 13) ;
status += MXL_ControlWrite(Tuner, BB_INITSTATE_DLPF_TUNE, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, 5) ; // Low Zero
if (Tuner->IF_OUT <= 6280000UL) // Low IF
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 0) ;
else // High IF
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 1) ;
}
if (Tuner->Mod_Type == MXL_QAM) // QAM Mode
{
Tuner->Mode = MXL_DIGITAL_MODE;
//Tuner->AGC_Mode = 1 ; // Single AGC Mode
// Disable RSSI //change here for v2.6.5
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 0) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
// RSSI reference point
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFH, 5) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REF, 3) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFL, 2) ;
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, 3) ; //change here for v2.6.5
if (Tuner->IF_OUT <= 6280000UL) // Low IF
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 0) ;
else // High IF
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 1) ;
}
if (Tuner->Mod_Type == MXL_ANALOG_CABLE) // Analog Cable Mode
{
//Tuner->Mode = MXL_DIGITAL_MODE ;
Tuner->AGC_Mode = 1 ; // Single AGC Mode
// Disable RSSI
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 0) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
status += MXL_ControlWrite(Tuner, AGC_IF, 1) ; //change for 2.6.3
status += MXL_ControlWrite(Tuner, AGC_RF, 15) ;
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 1) ;
}
if (Tuner->Mod_Type == MXL_ANALOG_OTA) //Analog OTA Terrestrial mode add for 2.6.7
{
//Tuner->Mode = MXL_ANALOG_MODE;
// Enable RSSI
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 1) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
// RSSI reference point
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFH, 5) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REF, 3) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFL, 2) ;
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, 3) ;
status += MXL_ControlWrite(Tuner, BB_IQSWAP, 1) ;
}
// RSSI disable
if(Tuner->EN_RSSI==0)
{
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 0) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
}
return status ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_IFSynthInit //
// //
// Description: Tuner IF Synthesizer related register initialization //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// Tuner_struct: structure defined at higher level //
// //
// Inputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_IFSynthInit( Tuner_struct * Tuner )
{
_u16 status = 0 ;
// Declare Local Variables
_u32 Fref = 0 ;
_u32 Kdbl, intModVal ;
_u32 fracModVal ;
Kdbl = 2 ;
if (Tuner->Fxtal >= 12000000UL && Tuner->Fxtal <= 16000000UL)
Kdbl = 2 ;
if (Tuner->Fxtal > 16000000UL && Tuner->Fxtal <= 32000000UL)
Kdbl = 1 ;
//
// IF Synthesizer Control
//
if (Tuner->Mode == 0 && Tuner->IF_Mode == 1) // Analog Low IF mode
{
if (Tuner->IF_LO == 41000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 328000000UL ;
}
if (Tuner->IF_LO == 47000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 376000000UL ;
}
if (Tuner->IF_LO == 54000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 324000000UL ;
}
if (Tuner->IF_LO == 60000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (Tuner->IF_LO == 39250000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 314000000UL ;
}
if (Tuner->IF_LO == 39650000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 317200000UL ;
}
if (Tuner->IF_LO == 40150000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 321200000UL ;
}
if (Tuner->IF_LO == 40650000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 325200000UL ;
}
}
if (Tuner->Mode || (Tuner->Mode == 0 && Tuner->IF_Mode == 0))
{
if (Tuner->IF_LO == 57000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 342000000UL ;
}
if (Tuner->IF_LO == 44000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 352000000UL ;
}
if (Tuner->IF_LO == 43750000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 350000000UL ;
}
if (Tuner->IF_LO == 36650000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 366500000UL ;
}
if (Tuner->IF_LO == 36150000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 361500000UL ;
}
if (Tuner->IF_LO == 36000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (Tuner->IF_LO == 35250000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 352500000UL ;
}
if (Tuner->IF_LO == 34750000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 347500000UL ;
}
if (Tuner->IF_LO == 6280000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 376800000UL ;
}
if (Tuner->IF_LO == 5000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x09) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (Tuner->IF_LO == 4500000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x06) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (Tuner->IF_LO == 4570000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x06) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 365600000UL ;
}
if (Tuner->IF_LO == 4000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x05) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (Tuner->IF_LO == 57400000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 344400000UL ;
}
if (Tuner->IF_LO == 44400000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 355200000UL ;
}
if (Tuner->IF_LO == 44150000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 353200000UL ;
}
if (Tuner->IF_LO == 37050000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 370500000UL ;
}
if (Tuner->IF_LO == 36550000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 365500000UL ;
}
if (Tuner->IF_LO == 36125000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 361250000UL ;
}
if (Tuner->IF_LO == 6000000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (Tuner->IF_LO == 5400000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 324000000UL ;
}
if (Tuner->IF_LO == 5380000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x0C) ;
Fref = 322800000UL ;
}
if (Tuner->IF_LO == 5200000UL) {
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x09) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 374400000UL ;
}
if (Tuner->IF_LO == 4900000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x09) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 352800000UL ;
}
if (Tuner->IF_LO == 4400000UL)
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x06) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 352000000UL ;
}
if (Tuner->IF_LO == 4063000UL) //add for 2.6.8
{
status += MXL_ControlWrite(Tuner, IF_DIVVAL, 0x05) ;
status += MXL_ControlWrite(Tuner, IF_VCO_BIAS, 0x08) ;
Fref = 365670000UL ;
}
}
// CHCAL_INT_MOD_IF
// CHCAL_FRAC_MOD_IF
intModVal = Fref / (Tuner->Fxtal * Kdbl/2) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_IF, intModVal ) ;
fracModVal = (2<<15)*(Fref/1000 - (Tuner->Fxtal/1000 * Kdbl/2) * intModVal);
fracModVal = fracModVal / ((Tuner->Fxtal * Kdbl/2)/1000) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_IF, fracModVal) ;
return status ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_GetXtalInt //
// //
// Description: return the Crystal Integration Value for //
// TG_VCO_BIAS calculation //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Crystal Frequency Value in Hz //
// //
// Outputs: //
// Calculated Crystal Frequency Integration Value //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
_u32 MXL_GetXtalInt(_u32 Xtal_Freq)
{
if ((Xtal_Freq % 1000000) == 0)
return (Xtal_Freq / 10000) ;
else
return (((Xtal_Freq / 1000000) + 1)*100) ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL5005_TuneRF //
// //
// Description: Set control names to tune to requested RF_IN frequency //
// //
// Globals: //
// None //
// //
// Functions used: //
// MXL_SynthRFTGLO_Calc //
// MXL5005_ControlWrite //
// MXL_GetXtalInt //
// //
// Inputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// 1 : Unsuccessful //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_TuneRF(Tuner_struct *Tuner, _u32 RF_Freq)
{
// Declare Local Variables
_u16 status = 0 ;
_u32 divider_val, E3, E4, E5, E5A ;
_u32 Fmax, Fmin, FmaxBin, FminBin ;
_u32 Kdbl_RF = 2;
_u32 tg_divval ;
_u32 tg_lo ;
_u32 Xtal_Int ;
_u32 Fref_TG;
_u32 Fvco;
// _u32 temp;
Xtal_Int = MXL_GetXtalInt(Tuner->Fxtal ) ;
Tuner->RF_IN = RF_Freq ;
MXL_SynthRFTGLO_Calc( Tuner ) ;
if (Tuner->Fxtal >= 12000000UL && Tuner->Fxtal <= 22000000UL)
Kdbl_RF = 2 ;
if (Tuner->Fxtal > 22000000 && Tuner->Fxtal <= 32000000)
Kdbl_RF = 1 ;
//
// Downconverter Controls
//
// Look-Up Table Implementation for:
// DN_POLY
// DN_RFGAIN
// DN_CAP_RFLPF
// DN_EN_VHFUHFBAR
// DN_GAIN_ADJUST
// Change the boundary reference from RF_IN to RF_LO
if (Tuner->RF_LO < 40000000UL) {
return -1;
}
if (Tuner->RF_LO >= 40000000UL && Tuner->RF_LO <= 75000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(Tuner, DN_POLY, 2) ;
status += MXL_ControlWrite(Tuner, DN_RFGAIN, 3) ;
status += MXL_ControlWrite(Tuner, DN_CAP_RFLPF, 423) ;
status += MXL_ControlWrite(Tuner, DN_EN_VHFUHFBAR, 1) ;
status += MXL_ControlWrite(Tuner, DN_GAIN_ADJUST, 1) ;
}
if (Tuner->RF_LO > 75000000UL && Tuner->RF_LO <= 100000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(Tuner, DN_POLY, 3) ;
status += MXL_ControlWrite(Tuner, DN_RFGAIN, 3) ;
status += MXL_ControlWrite(Tuner, DN_CAP_RFLPF, 222) ;
status += MXL_ControlWrite(Tuner, DN_EN_VHFUHFBAR, 1) ;
status += MXL_ControlWrite(Tuner, DN_GAIN_ADJUST, 1) ;
}
if (Tuner->RF_LO > 100000000UL && Tuner->RF_LO <= 150000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(Tuner, DN_POLY, 3) ;
status += MXL_ControlWrite(Tuner, DN_RFGAIN, 3) ;
status += MXL_ControlWrite(Tuner, DN_CAP_RFLPF, 147) ;
status += MXL_ControlWrite(Tuner, DN_EN_VHFUHFBAR, 1) ;
status += MXL_ControlWrite(Tuner, DN_GAIN_ADJUST, 2) ;
}
if (Tuner->RF_LO > 150000000UL && Tuner->RF_LO <= 200000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(Tuner, DN_POLY, 3) ;
status += MXL_ControlWrite(Tuner, DN_RFGAIN, 3) ;
status += MXL_ControlWrite(Tuner, DN_CAP_RFLPF, 9) ;
status += MXL_ControlWrite(Tuner, DN_EN_VHFUHFBAR, 1) ;
status += MXL_ControlWrite(Tuner, DN_GAIN_ADJUST, 2) ;
}
if (Tuner->RF_LO > 200000000UL && Tuner->RF_LO <= 300000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(Tuner, DN_POLY, 3) ;
status += MXL_ControlWrite(Tuner, DN_RFGAIN, 3) ;
status += MXL_ControlWrite(Tuner, DN_CAP_RFLPF, 0) ;
status += MXL_ControlWrite(Tuner, DN_EN_VHFUHFBAR, 1) ;
status += MXL_ControlWrite(Tuner, DN_GAIN_ADJUST, 3) ;
}
if (Tuner->RF_LO > 300000000UL && Tuner->RF_LO <= 650000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(Tuner, DN_POLY, 3) ;
status += MXL_ControlWrite(Tuner, DN_RFGAIN, 1) ;
status += MXL_ControlWrite(Tuner, DN_CAP_RFLPF, 0) ;
status += MXL_ControlWrite(Tuner, DN_EN_VHFUHFBAR, 0) ;
status += MXL_ControlWrite(Tuner, DN_GAIN_ADJUST, 3) ;
}
if (Tuner->RF_LO > 650000000UL && Tuner->RF_LO <= 900000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(Tuner, DN_POLY, 3) ;
status += MXL_ControlWrite(Tuner, DN_RFGAIN, 2) ;
status += MXL_ControlWrite(Tuner, DN_CAP_RFLPF, 0) ;
status += MXL_ControlWrite(Tuner, DN_EN_VHFUHFBAR, 0) ;
status += MXL_ControlWrite(Tuner, DN_GAIN_ADJUST, 3) ;
}
if (Tuner->RF_LO > 900000000UL) {
return -1;
}
// DN_IQTNBUF_AMP
// DN_IQTNGNBFBIAS_BST
if (Tuner->RF_LO >= 40000000UL && Tuner->RF_LO <= 75000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 75000000UL && Tuner->RF_LO <= 100000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 100000000UL && Tuner->RF_LO <= 150000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 150000000UL && Tuner->RF_LO <= 200000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 200000000UL && Tuner->RF_LO <= 300000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 300000000UL && Tuner->RF_LO <= 400000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 400000000UL && Tuner->RF_LO <= 450000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 450000000UL && Tuner->RF_LO <= 500000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 500000000UL && Tuner->RF_LO <= 550000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 550000000UL && Tuner->RF_LO <= 600000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 600000000UL && Tuner->RF_LO <= 650000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 650000000UL && Tuner->RF_LO <= 700000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 700000000UL && Tuner->RF_LO <= 750000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 750000000UL && Tuner->RF_LO <= 800000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 1) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 0) ;
}
if (Tuner->RF_LO > 800000000UL && Tuner->RF_LO <= 850000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 10) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 1) ;
}
if (Tuner->RF_LO > 850000000UL && Tuner->RF_LO <= 900000000UL) {
status += MXL_ControlWrite(Tuner, DN_IQTNBUF_AMP, 10) ;
status += MXL_ControlWrite(Tuner, DN_IQTNGNBFBIAS_BST, 1) ;
}
//
// Set RF Synth and LO Path Control
//
// Look-Up table implementation for:
// RFSYN_EN_OUTMUX
// RFSYN_SEL_VCO_OUT
// RFSYN_SEL_VCO_HI
// RFSYN_SEL_DIVM
// RFSYN_RF_DIV_BIAS
// DN_SEL_FREQ
//
// Set divider_val, Fmax, Fmix to use in Equations
FminBin = 28000000UL ;
FmaxBin = 42500000UL ;
if (Tuner->RF_LO >= 40000000UL && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 1) ;
divider_val = 64 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 42500000UL ;
FmaxBin = 56000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 1) ;
divider_val = 64 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 56000000UL ;
FmaxBin = 85000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 1) ;
divider_val = 32 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 85000000UL ;
FmaxBin = 112000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 1) ;
divider_val = 32 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 112000000UL ;
FmaxBin = 170000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 2) ;
divider_val = 16 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 170000000UL ;
FmaxBin = 225000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 2) ;
divider_val = 16 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 225000000UL ;
FmaxBin = 300000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 4) ;
divider_val = 8 ;
Fmax = 340000000UL ;
Fmin = FminBin ;
}
FminBin = 300000000UL ;
FmaxBin = 340000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0) ;
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = 225000000UL ;
}
FminBin = 340000000UL ;
FmaxBin = 450000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 2) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0) ;
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 450000000UL ;
FmaxBin = 680000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0) ;
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 680000000UL ;
FmaxBin = 900000000UL ;
if (Tuner->RF_LO > FminBin && Tuner->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0) ;
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
// CHCAL_INT_MOD_RF
// CHCAL_FRAC_MOD_RF
// RFSYN_LPF_R
// CHCAL_EN_INT_RF
// Equation E3
// RFSYN_VCO_BIAS
E3 = (((Fmax-Tuner->RF_LO)/1000)*32)/((Fmax-Fmin)/1000) + 8 ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, E3) ;
// Equation E4
// CHCAL_INT_MOD_RF
E4 = (Tuner->RF_LO*divider_val/1000)/(2*Tuner->Fxtal*Kdbl_RF/1000) ;
MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, E4) ;
// Equation E5
// CHCAL_FRAC_MOD_RF
// CHCAL_EN_INT_RF
E5 = ((2<<17)*(Tuner->RF_LO/10000*divider_val - (E4*(2*Tuner->Fxtal*Kdbl_RF)/10000)))/(2*Tuner->Fxtal*Kdbl_RF/10000) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, E5) ;
// Equation E5A
// RFSYN_LPF_R
E5A = (((Fmax - Tuner->RF_LO)/1000)*4/((Fmax-Fmin)/1000)) + 1 ;
status += MXL_ControlWrite(Tuner, RFSYN_LPF_R, E5A) ;
// Euqation E5B
// CHCAL_EN_INIT_RF
status += MXL_ControlWrite(Tuner, CHCAL_EN_INT_RF, ((E5 == 0) ? 1 : 0));
//if (E5 == 0)
// status += MXL_ControlWrite(Tuner, CHCAL_EN_INT_RF, 1);
//else
// status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, E5) ;
//
// Set TG Synth
//
// Look-Up table implementation for:
// TG_LO_DIVVAL
// TG_LO_SELVAL
//
// Set divider_val, Fmax, Fmix to use in Equations
if (Tuner->TG_LO < 33000000UL) {
return -1;
}
FminBin = 33000000UL ;
FmaxBin = 50000000UL ;
if (Tuner->TG_LO >= FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x6) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x0) ;
divider_val = 36 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 50000000UL ;
FmaxBin = 67000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x1) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x0) ;
divider_val = 24 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 67000000UL ;
FmaxBin = 100000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0xC) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x2) ;
divider_val = 18 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 100000000UL ;
FmaxBin = 150000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x8) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x2) ;
divider_val = 12 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 150000000UL ;
FmaxBin = 200000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x0) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x2) ;
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 200000000UL ;
FmaxBin = 300000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x8) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x3) ;
divider_val = 6 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 300000000UL ;
FmaxBin = 400000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x0) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x3) ;
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 400000000UL ;
FmaxBin = 600000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x8) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x7) ;
divider_val = 3 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 600000000UL ;
FmaxBin = 900000000UL ;
if (Tuner->TG_LO > FminBin && Tuner->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(Tuner, TG_LO_DIVVAL, 0x0) ;
status += MXL_ControlWrite(Tuner, TG_LO_SELVAL, 0x7) ;
divider_val = 2 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
// TG_DIV_VAL
tg_divval = (Tuner->TG_LO*divider_val/100000)
*(MXL_Ceiling(Tuner->Fxtal,1000000) * 100) / (Tuner->Fxtal/1000) ;
status += MXL_ControlWrite(Tuner, TG_DIV_VAL, tg_divval) ;
if (Tuner->TG_LO > 600000000UL)
status += MXL_ControlWrite(Tuner, TG_DIV_VAL, tg_divval + 1 ) ;
Fmax = 1800000000UL ;
Fmin = 1200000000UL ;
// to prevent overflow of 32 bit unsigned integer, use following equation. Edit for v2.6.4
Fref_TG = (Tuner->Fxtal/1000)/ MXL_Ceiling(Tuner->Fxtal, 1000000) ; // Fref_TF = Fref_TG*1000
Fvco = (Tuner->TG_LO/10000) * divider_val * Fref_TG; //Fvco = Fvco/10
tg_lo = (((Fmax/10 - Fvco)/100)*32) / ((Fmax-Fmin)/1000)+8;
//below equation is same as above but much harder to debug.
//tg_lo = ( ((Fmax/10000 * Xtal_Int)/100) - ((Tuner->TG_LO/10000)*divider_val*(Tuner->Fxtal/10000)/100) )*32/((Fmax-Fmin)/10000 * Xtal_Int/100) + 8 ;
status += MXL_ControlWrite(Tuner, TG_VCO_BIAS , tg_lo) ;
//add for 2.6.5
//Special setting for QAM
if(Tuner ->Mod_Type == MXL_QAM)
{
if(Tuner->RF_IN < 680000000)
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, 3) ;
else
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, 2) ;
}
//remove 20.48MHz setting for 2.6.10
//
// Off Chip Tracking Filter Control
//
if (Tuner->TF_Type == MXL_TF_OFF) // Tracking Filter Off State; turn off all the banks
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ;
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // turn off Bank 1
status += MXL_SetGPIO(Tuner, 1, 1) ; // turn off Bank 2
status += MXL_SetGPIO(Tuner, 4, 1) ; // turn off Bank 3
}
if (Tuner->TF_Type == MXL_TF_C) // Tracking Filter type C
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ;
status += MXL_ControlWrite(Tuner, DAC_DIN_A, 0) ;
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 150000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 150000000 && Tuner->RF_IN < 280000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 280000000 && Tuner->RF_IN < 360000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 360000000 && Tuner->RF_IN < 560000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 560000000 && Tuner->RF_IN < 580000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 29) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 580000000 && Tuner->RF_IN < 630000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 630000000 && Tuner->RF_IN < 700000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 16) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 700000000 && Tuner->RF_IN < 760000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 7) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 760000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank3 Off
}
}
if (Tuner->TF_Type == MXL_TF_C_H) // Tracking Filter type C-H for Hauppauge only
{
status += MXL_ControlWrite(Tuner, DAC_DIN_A, 0) ;
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 150000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 150000000 && Tuner->RF_IN < 280000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 280000000 && Tuner->RF_IN < 360000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 360000000 && Tuner->RF_IN < 560000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 560000000 && Tuner->RF_IN < 580000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 580000000 && Tuner->RF_IN < 630000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 630000000 && Tuner->RF_IN < 700000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 700000000 && Tuner->RF_IN < 760000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 760000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank3 Off
}
}
if (Tuner->TF_Type == MXL_TF_D) // Tracking Filter type D
{
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 174000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 174000000 && Tuner->RF_IN < 250000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 250000000 && Tuner->RF_IN < 310000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 310000000 && Tuner->RF_IN < 360000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 360000000 && Tuner->RF_IN < 470000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 470000000 && Tuner->RF_IN < 640000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 640000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
}
if (Tuner->TF_Type == MXL_TF_D_L) // Tracking Filter type D-L for Lumanate ONLY change for 2.6.3
{
status += MXL_ControlWrite(Tuner, DAC_DIN_A, 0) ;
if (Tuner->RF_IN >= 471000000 && (Tuner->RF_IN - 471000000)%6000000 != 0) // if UHF and terrestrial => Turn off Tracking Filter
{
// Turn off all the banks
status += MXL_SetGPIO(Tuner, 3, 1) ;
status += MXL_SetGPIO(Tuner, 1, 1) ;
status += MXL_SetGPIO(Tuner, 4, 1) ;
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ;
status += MXL_ControlWrite(Tuner, AGC_IF, 10) ;
}
else // if VHF or cable => Turn on Tracking Filter
{
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 140000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 Off
}
if (Tuner->RF_IN >= 140000000 && Tuner->RF_IN < 240000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 Off
}
if (Tuner->RF_IN >= 240000000 && Tuner->RF_IN < 340000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 Off
}
if (Tuner->RF_IN >= 340000000 && Tuner->RF_IN < 430000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 On
}
if (Tuner->RF_IN >= 430000000 && Tuner->RF_IN < 470000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 On
}
if (Tuner->RF_IN >= 470000000 && Tuner->RF_IN < 570000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 On
}
if (Tuner->RF_IN >= 570000000 && Tuner->RF_IN < 620000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 0) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Offq
}
if (Tuner->RF_IN >= 620000000 && Tuner->RF_IN < 760000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 760000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
}
}
if (Tuner->TF_Type == MXL_TF_E) // Tracking Filter type E
{
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 174000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 174000000 && Tuner->RF_IN < 250000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 250000000 && Tuner->RF_IN < 310000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 310000000 && Tuner->RF_IN < 360000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 360000000 && Tuner->RF_IN < 470000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 470000000 && Tuner->RF_IN < 640000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 640000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
}
if (Tuner->TF_Type == MXL_TF_F) // Tracking Filter type F
{
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 160000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 160000000 && Tuner->RF_IN < 210000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 210000000 && Tuner->RF_IN < 300000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 300000000 && Tuner->RF_IN < 390000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 390000000 && Tuner->RF_IN < 515000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 515000000 && Tuner->RF_IN < 650000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 650000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
}
if (Tuner->TF_Type == MXL_TF_E_2) // Tracking Filter type E_2
{
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 174000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 174000000 && Tuner->RF_IN < 250000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 250000000 && Tuner->RF_IN < 350000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 350000000 && Tuner->RF_IN < 400000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 400000000 && Tuner->RF_IN < 570000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 570000000 && Tuner->RF_IN < 770000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 770000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
}
if (Tuner->TF_Type == MXL_TF_G) // Tracking Filter type G add for v2.6.8
{
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
if (Tuner->RF_IN >= 50000000 && Tuner->RF_IN < 190000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 190000000 && Tuner->RF_IN < 280000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 280000000 && Tuner->RF_IN < 350000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 350000000 && Tuner->RF_IN < 400000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 400000000 && Tuner->RF_IN < 470000000) //modified for 2.6.11
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 470000000 && Tuner->RF_IN < 640000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 640000000 && Tuner->RF_IN < 820000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 820000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
}
if (Tuner->TF_Type == MXL_TF_E_NA) // Tracking Filter type E-NA for Empia ONLY change for 2.6.8
{
status += MXL_ControlWrite(Tuner, DAC_DIN_B, 0) ;
if (Tuner->RF_IN >= 471000000 && (Tuner->RF_IN - 471000000)%6000000 != 0) //if UHF and terrestrial=> Turn off Tracking Filter
{
// Turn off all the banks
status += MXL_SetGPIO(Tuner, 3, 1) ;
status += MXL_SetGPIO(Tuner, 1, 1) ;
status += MXL_SetGPIO(Tuner, 4, 1) ;
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ;
//2.6.12
//Turn on RSSI
status += MXL_ControlWrite(Tuner, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(Tuner, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 1) ;
status += MXL_ControlWrite(Tuner, RFA_ENCLKRFAGC, 1) ;
// RSSI reference point
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFH, 5) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REF, 3) ;
status += MXL_ControlWrite(Tuner, RFA_RSSI_REFL, 2) ;
//status += MXL_ControlWrite(Tuner, AGC_IF, 10) ; //doesn't matter since RSSI is turn on
//following parameter is from analog OTA mode, can be change to seek better performance
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, 3) ;
}
else //if VHF or Cable => Turn on Tracking Filter
{
//2.6.12
//Turn off RSSI
status += MXL_ControlWrite(Tuner, AGC_EN_RSSI, 0) ;
//change back from above condition
status += MXL_ControlWrite(Tuner, RFSYN_CHP_GAIN, 5) ;
if (Tuner->RF_IN >= 43000000 && Tuner->RF_IN < 174000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 174000000 && Tuner->RF_IN < 250000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 250000000 && Tuner->RF_IN < 350000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
if (Tuner->RF_IN >= 350000000 && Tuner->RF_IN < 400000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 400000000 && Tuner->RF_IN < 570000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 570000000 && Tuner->RF_IN < 770000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 0) ; // Bank3 On
}
if (Tuner->RF_IN >= 770000000 && Tuner->RF_IN <= 900000000)
{
status += MXL_ControlWrite(Tuner, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(Tuner, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(Tuner, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(Tuner, 3, 1) ; // Bank3 Off
}
}
}
return status ;
}
_u16 MXL_SetGPIO(Tuner_struct *Tuner, _u8 GPIO_Num, _u8 GPIO_Val)
{
_u16 status = 0 ;
if (GPIO_Num == 1)
status += MXL_ControlWrite(Tuner, GPIO_1B, GPIO_Val ? 0 : 1) ;
// GPIO2 is not available
if (GPIO_Num == 3)
{
if (GPIO_Val == 1) {
status += MXL_ControlWrite(Tuner, GPIO_3, 0) ;
status += MXL_ControlWrite(Tuner, GPIO_3B, 0) ;
}
if (GPIO_Val == 0) {
status += MXL_ControlWrite(Tuner, GPIO_3, 1) ;
status += MXL_ControlWrite(Tuner, GPIO_3B, 1) ;
}
if (GPIO_Val == 3) { // tri-state
status += MXL_ControlWrite(Tuner, GPIO_3, 0) ;
status += MXL_ControlWrite(Tuner, GPIO_3B, 1) ;
}
}
if (GPIO_Num == 4)
{
if (GPIO_Val == 1) {
status += MXL_ControlWrite(Tuner, GPIO_4, 0) ;
status += MXL_ControlWrite(Tuner, GPIO_4B, 0) ;
}
if (GPIO_Val == 0) {
status += MXL_ControlWrite(Tuner, GPIO_4, 1) ;
status += MXL_ControlWrite(Tuner, GPIO_4B, 1) ;
}
if (GPIO_Val == 3) { // tri-state
status += MXL_ControlWrite(Tuner, GPIO_4, 0) ;
status += MXL_ControlWrite(Tuner, GPIO_4B, 1) ;
}
}
return status ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlWrite //
// //
// Description: Update control name value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// MXL_ControlWrite( Tuner, controlName, value, Group ) //
// //
// Inputs: //
// Tuner : Tuner structure //
// ControlName : Control name to be updated //
// value : Value to be written //
// //
// Outputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Return: //
// 0 : Successful write //
// >0 : Value exceed maximum allowed for control number //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_ControlWrite(Tuner_struct *Tuner, _u16 ControlNum, _u32 value)
{
_u16 status = 0 ;
// Will write ALL Matching Control Name
status += MXL_ControlWrite_Group( Tuner, ControlNum, value, 1 ) ; // Write Matching INIT Control
status += MXL_ControlWrite_Group( Tuner, ControlNum, value, 2 ) ; // Write Matching CH Control
#ifdef _MXL_INTERNAL
status += MXL_ControlWrite_Group( Tuner, ControlNum, value, 3 ) ; // Write Matching MXL Control
#endif
return status ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlWrite //
// //
// Description: Update control name value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// strcmp //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// ControlName : Control Name //
// value : Value Assigned to Control Name //
// controlGroup : Control Register Group //
// //
// Outputs: //
// NONE //
// //
// Return: //
// 0 : Successful write //
// 1 : Value exceed maximum allowed for control name //
// 2 : Control name not found //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_ControlWrite_Group(Tuner_struct *Tuner, _u16 controlNum, _u32 value, _u16 controlGroup)
{
_u16 i, j, k ;
_u32 highLimit ;
_u32 ctrlVal ;
if( controlGroup == 1) // Initial Control
{
for (i=0; i<Tuner->Init_Ctrl_Num ; i++)
{
if ( controlNum == Tuner->Init_Ctrl[i].Ctrl_Num )
{ // find the control Name
highLimit = 1 << Tuner->Init_Ctrl[i].size ;
if ( value < highLimit)
{
for( j=0; j<Tuner->Init_Ctrl[i].size; j++)
{
Tuner->Init_Ctrl[i].val[j] = (_u8)((value >> j) & 0x01) ;
// change the register map accordingly
MXL_RegWriteBit( Tuner, (_u8)(Tuner->Init_Ctrl[i].addr[j]),
(_u8)(Tuner->Init_Ctrl[i].bit[j]),
(_u8)((value>>j) & 0x01) ) ;
}
ctrlVal = 0 ;
for(k=0; k<Tuner->Init_Ctrl[i].size; k++)
{
ctrlVal += Tuner->Init_Ctrl[i].val[k] * (1 << k) ;
}
}
else
{
return -1 ;
}
}
}
}
if ( controlGroup == 2) // Chan change Control
{
for (i=0; i<Tuner->CH_Ctrl_Num; i++)
{
if ( controlNum == Tuner->CH_Ctrl[i].Ctrl_Num )
{ // find the control Name
highLimit = 1 << Tuner->CH_Ctrl[i].size ;
if ( value < highLimit)
{
for( j=0; j<Tuner->CH_Ctrl[i].size; j++)
{
Tuner->CH_Ctrl[i].val[j] = (_u8)((value >> j) & 0x01) ;
// change the register map accordingly
MXL_RegWriteBit( Tuner, (_u8)(Tuner->CH_Ctrl[i].addr[j]),
(_u8)(Tuner->CH_Ctrl[i].bit[j]),
(_u8)((value>>j) & 0x01) ) ;
}
ctrlVal = 0 ;
for(k=0; k<Tuner->CH_Ctrl[i].size; k++)
{
ctrlVal += Tuner->CH_Ctrl[i].val[k] * (1 << k) ;
}
}
else
{
return -1 ;
}
}
}
}
#ifdef _MXL_INTERNAL
if ( controlGroup == 3) // Maxlinear Control
{
for (i=0; i<Tuner->MXL_Ctrl_Num; i++)
{
if ( controlNum == Tuner->MXL_Ctrl[i].Ctrl_Num )
{ // find the control Name
highLimit = (1 << Tuner->MXL_Ctrl[i].size) ;
if ( value < highLimit)
{
for( j=0; j<Tuner->MXL_Ctrl[i].size; j++)
{
Tuner->MXL_Ctrl[i].val[j] = (_u8)((value >> j) & 0x01) ;
// change the register map accordingly
MXL_RegWriteBit( Tuner, (_u8)(Tuner->MXL_Ctrl[i].addr[j]),
(_u8)(Tuner->MXL_Ctrl[i].bit[j]),
(_u8)((value>>j) & 0x01) ) ;
}
ctrlVal = 0 ;
for(k=0; k<Tuner->MXL_Ctrl[i].size; k++)
{
ctrlVal += Tuner->MXL_Ctrl[i].val[k] * (1 << k) ;
}
}
else
{
return -1 ;
}
}
}
}
#endif
return 0 ; // successful return
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_RegWrite //
// //
// Description: Update tuner register value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// RegNum : Register address to be assigned a value //
// RegVal : Register value to write //
// //
// Outputs: //
// NONE //
// //
// Return: //
// 0 : Successful write //
// -1 : Invalid Register Address //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_RegWrite(Tuner_struct *Tuner, _u8 RegNum, _u8 RegVal)
{
int i ;
for (i=0; i<104; i++)
{
if (RegNum == Tuner->TunerRegs[i].Reg_Num )
{
Tuner->TunerRegs[i].Reg_Val = RegVal ;
return 0 ;
}
}
return 1 ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_RegRead //
// //
// Description: Retrieve tuner register value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// RegNum : Register address to be assigned a value //
// //
// Outputs: //
// RegVal : Retrieved register value //
// //
// Return: //
// 0 : Successful read //
// -1 : Invalid Register Address //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_RegRead(Tuner_struct *Tuner, _u8 RegNum, _u8 *RegVal)
{
int i ;
for (i=0; i<104; i++)
{
if (RegNum == Tuner->TunerRegs[i].Reg_Num )
{
*RegVal = (_u8)(Tuner->TunerRegs[i].Reg_Val) ;
return 0 ;
}
}
return 1 ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlRead //
// //
// Description: Retrieve the control value based on the control name //
// //
// Globals: //
// NONE //
// //
// Inputs: //
// Tuner_struct : structure defined at higher level //
// ControlName : Control Name //
// //
// Outputs: //
// value : returned control value //
// //
// Return: //
// 0 : Successful read //
// -1 : Invalid control name //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_ControlRead(Tuner_struct *Tuner, _u16 controlNum, _u32 * value)
{
_u32 ctrlVal ;
_u16 i, k ;
for (i=0; i<Tuner->Init_Ctrl_Num ; i++)
{
if ( controlNum == Tuner->Init_Ctrl[i].Ctrl_Num )
{
ctrlVal = 0 ;
for(k=0; k<Tuner->Init_Ctrl[i].size; k++)
ctrlVal += Tuner->Init_Ctrl[i].val[k] * (1 << k) ;
*value = ctrlVal ;
return 0 ;
}
}
for (i=0; i<Tuner->CH_Ctrl_Num ; i++)
{
if ( controlNum == Tuner->CH_Ctrl[i].Ctrl_Num )
{
ctrlVal = 0 ;
for(k=0; k<Tuner->CH_Ctrl[i].size; k++)
ctrlVal += Tuner->CH_Ctrl[i].val[k] * (1 << k) ;
*value = ctrlVal ;
return 0 ;
}
}
#ifdef _MXL_INTERNAL
for (i=0; i<Tuner->MXL_Ctrl_Num ; i++)
{
if ( controlNum == Tuner->MXL_Ctrl[i].Ctrl_Num )
{
ctrlVal = 0 ;
for(k=0; k<Tuner->MXL_Ctrl[i].size; k++)
ctrlVal += Tuner->MXL_Ctrl[i].val[k] * (1<<k) ;
*value = ctrlVal ;
return 0 ;
}
}
#endif
return 1 ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlRegRead //
// //
// Description: Retrieve the register addresses and count related to a //
// a specific control name //
// //
// Globals: //
// NONE //
// //
// Inputs: //
// Tuner_struct : structure defined at higher level //
// ControlName : Control Name //
// //
// Outputs: //
// RegNum : returned register address array //
// count : returned register count related to a control //
// //
// Return: //
// 0 : Successful read //
// -1 : Invalid control name //
// //
///////////////////////////////////////////////////////////////////////////////
_u16 MXL_ControlRegRead(Tuner_struct *Tuner, _u16 controlNum, _u8 *RegNum, int * count)
{
_u16 i, j, k ;
_u16 Count ;
for (i=0; i<Tuner->Init_Ctrl_Num ; i++)
{
if ( controlNum == Tuner->Init_Ctrl[i].Ctrl_Num )
{
Count = 1 ;
RegNum[0] = (_u8)(Tuner->Init_Ctrl[i].addr[0]) ;
for(k=1; k<Tuner->Init_Ctrl[i].size; k++)
{
for (j= 0; j<Count; j++)
{
if (Tuner->Init_Ctrl[i].addr[k] != RegNum[j])
{
Count ++ ;
RegNum[Count-1] = (_u8)(Tuner->Init_Ctrl[i].addr[k]) ;
}
}
}
*count = Count ;
return 0 ;
}
}
for (i=0; i<Tuner->CH_Ctrl_Num ; i++)
{
if ( controlNum == Tuner->CH_Ctrl[i].Ctrl_Num )
{
Count = 1 ;
RegNum[0] = (_u8)(Tuner->CH_Ctrl[i].addr[0]) ;
for(k=1; k<Tuner->CH_Ctrl[i].size; k++)
{
for (j= 0; j<Count; j++)
{
if (Tuner->CH_Ctrl[i].addr[k] != RegNum[j])
{
Count ++ ;
RegNum[Count-1] = (_u8)(Tuner->CH_Ctrl[i].addr[k]) ;
}
}
}
*count = Count ;
return 0 ;
}
}
#ifdef _MXL_INTERNAL
for (i=0; i<Tuner->MXL_Ctrl_Num ; i++)
{
if ( controlNum == Tuner->MXL_Ctrl[i].Ctrl_Num )
{
Count = 1 ;
RegNum[0] = (_u8)(Tuner->MXL_Ctrl[i].addr[0]) ;
for(k=1; k<Tuner->MXL_Ctrl[i].size; k++)
{
for (j= 0; j<Count; j++)
{
if (Tuner->MXL_Ctrl[i].addr[k] != RegNum[j])
{
Count ++ ;
RegNum[Count-1] = (_u8)Tuner->MXL_Ctrl[i].addr[k] ;
}
}
}
*count = Count ;
return 0 ;
}
}
#endif
*count = 0 ;
return 1 ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_RegWriteBit //
// //
// Description: Write a register for specified register address, //
// register bit and register bit value //
// //
// Globals: //
// NONE //
// //
// Inputs: //
// Tuner_struct : structure defined at higher level //
// address : register address //
// bit : register bit number //
// bitVal : register bit value //
// //
// Outputs: //
// NONE //
// //
// Return: //
// NONE //
// //
///////////////////////////////////////////////////////////////////////////////
void MXL_RegWriteBit(Tuner_struct *Tuner, _u8 address, _u8 bit, _u8 bitVal)
{
int i ;
// Declare Local Constants
const _u8 AND_MAP[8] = {
0xFE, 0xFD, 0xFB, 0xF7,
0xEF, 0xDF, 0xBF, 0x7F } ;
const _u8 OR_MAP[8] = {
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80 } ;
for(i=0; i<Tuner->TunerRegs_Num; i++) {
if ( Tuner->TunerRegs[i].Reg_Num == address ) {
if (bitVal)
Tuner->TunerRegs[i].Reg_Val |= OR_MAP[bit] ;
else
Tuner->TunerRegs[i].Reg_Val &= AND_MAP[bit] ;
break ;
}
}
} ;
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_Ceiling //
// //
// Description: Complete to closest increment of resolution //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// value : Input number to compute //
// resolution : Increment step //
// //
// Outputs: //
// NONE //
// //
// Return: //
// Computed value //
// //
///////////////////////////////////////////////////////////////////////////////
_u32 MXL_Ceiling( _u32 value, _u32 resolution )
{
return (value/resolution + (value%resolution > 0 ? 1 : 0)) ;
};
//
// Retrieve the Initialzation Registers
//
_u16 MXL_GetInitRegister(Tuner_struct *Tuner, _u8 * RegNum, _u8 *RegVal, int *count)
{
_u16 status = 0;
int i ;
_u8 RegAddr[] = {11, 12, 13, 22, 32, 43, 44, 53, 56, 59, 73,
76, 77, 91, 134, 135, 137, 147,
156, 166, 167, 168, 25 } ;
*count = sizeof(RegAddr) / sizeof(_u8) ;
status += MXL_BlockInit(Tuner) ;
for (i=0 ; i< *count; i++)
{
RegNum[i] = RegAddr[i] ;
status += MXL_RegRead(Tuner, RegNum[i], &RegVal[i]) ;
}
return status ;
}
_u16 MXL_GetCHRegister(Tuner_struct *Tuner, _u8 * RegNum, _u8 *RegVal, int *count)
{
_u16 status = 0;
int i ;
//add 77, 166, 167, 168 register for 2.6.12
#ifdef _MXL_PRODUCTION
_u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 65, 68, 69, 70, 73, 92, 93, 106,
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ;
#else
_u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 68, 69, 70, 73, 92, 93, 106,
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ;
//_u8 RegAddr[171];
//for (i=0; i<=170; i++)
// RegAddr[i] = i;
#endif
*count = sizeof(RegAddr) / sizeof(_u8) ;
for (i=0 ; i< *count; i++)
{
RegNum[i] = RegAddr[i] ;
status += MXL_RegRead(Tuner, RegNum[i], &RegVal[i]) ;
}
return status ;
}
_u16 MXL_GetCHRegister_ZeroIF(Tuner_struct *Tuner, _u8 * RegNum, _u8 *RegVal, int *count)
{
_u16 status = 0 ;
int i ;
_u8 RegAddr[] = {43, 136} ;
*count = sizeof(RegAddr) / sizeof(_u8) ;
for (i=0; i<*count; i++)
{
RegNum[i] = RegAddr[i] ;
status += MXL_RegRead(Tuner, RegNum[i], &RegVal[i]) ;
}
return status ;
}
_u16 MXL_GetCHRegister_LowIF(Tuner_struct *Tuner, _u8 * RegNum, _u8 *RegVal, int *count)
{
_u16 status = 0 ;
int i ;
_u8 RegAddr[] = {138} ;
*count = sizeof(RegAddr) / sizeof(_u8) ;
for (i=0; i<*count; i++)
{
RegNum[i] = RegAddr[i] ;
status += MXL_RegRead(Tuner, RegNum[i], &RegVal[i]) ;
}
return status ;
}
_u16 MXL_GetMasterControl(_u8 *MasterReg, int state)
{
if (state == 1) // Load_Start
*MasterReg = 0xF3 ;
if (state == 2) // Power_Down
*MasterReg = 0x41 ;
if (state == 3) // Synth_Reset
*MasterReg = 0xB1 ;
if (state == 4) // Seq_Off
*MasterReg = 0xF1 ;
return 0 ;
}
#ifdef _MXL_PRODUCTION
_u16 MXL_VCORange_Test(Tuner_struct *Tuner, int VCO_Range)
{
_u16 status = 0 ;
if (VCO_Range == 1) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_DIV, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_DIVM, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1 ) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0 ) ;
if (Tuner->Mode == 0 && Tuner->IF_Mode == 1) // Analog Low IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 8 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 56 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 180224 ) ;
}
if (Tuner->Mode == 0 && Tuner->IF_Mode == 0) // Analog Zero IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 8 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 56 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 222822 ) ;
}
if (Tuner->Mode == 1) // Digital Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 8 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 56 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 229376 ) ;
}
}
if (VCO_Range == 2) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_DIV, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_DIVM, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1 ) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 41 ) ;
if (Tuner->Mode == 0 && Tuner->IF_Mode == 1) // Analog Low IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 42 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 206438 ) ;
}
if (Tuner->Mode == 0 && Tuner->IF_Mode == 0) // Analog Zero IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 42 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 206438 ) ;
}
if (Tuner->Mode == 1) // Digital Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 41 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 16384 ) ;
}
}
if (VCO_Range == 3) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_DIV, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_DIVM, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1 ) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 8 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 42 ) ;
if (Tuner->Mode == 0 && Tuner->IF_Mode == 1) // Analog Low IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 8 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 44 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 173670 ) ;
}
if (Tuner->Mode == 0 && Tuner->IF_Mode == 0) // Analog Zero IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 8 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 44 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 173670 ) ;
}
if (Tuner->Mode == 1) // Digital Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 8 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 42 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 245760 ) ;
}
}
if (VCO_Range == 4) {
status += MXL_ControlWrite(Tuner, RFSYN_EN_DIV, 1) ;
status += MXL_ControlWrite(Tuner, RFSYN_EN_OUTMUX, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_DIVM, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_DIVM, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_OUT, 1 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_RF_DIV_BIAS, 1 ) ;
status += MXL_ControlWrite(Tuner, DN_SEL_FREQ, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 27 ) ;
if (Tuner->Mode == 0 && Tuner->IF_Mode == 1) // Analog Low IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 27 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 206438 ) ;
}
if (Tuner->Mode == 0 && Tuner->IF_Mode == 0) // Analog Zero IF Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 27 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 206438 ) ;
}
if (Tuner->Mode == 1) // Digital Mode
{
status += MXL_ControlWrite(Tuner, RFSYN_SEL_VCO_HI, 0 ) ;
status += MXL_ControlWrite(Tuner, RFSYN_VCO_BIAS, 40 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_INT_MOD_RF, 27 ) ;
status += MXL_ControlWrite(Tuner, CHCAL_FRAC_MOD_RF, 212992 ) ;
}
}
return status ;
}
_u16 MXL_Hystersis_Test(Tuner_struct *Tuner, int Hystersis)
{
_u16 status = 0 ;
if (Hystersis == 1)
status += MXL_ControlWrite(Tuner, DN_BYPASS_AGC_I2C, 1) ;
return status ;
}
#endif