2018-07-23 18:49:54 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Hisilicon SEC units found on Hip06 Hip07
*
* Copyright ( c ) 2016 - 2017 Hisilicon Limited .
*/
# include <linux/acpi.h>
# include <linux/atomic.h>
# include <linux/delay.h>
# include <linux/dma-direction.h>
# include <linux/dma-mapping.h>
# include <linux/dmapool.h>
# include <linux/io.h>
# include <linux/iommu.h>
# include <linux/interrupt.h>
# include <linux/irq.h>
# include <linux/irqreturn.h>
# include <linux/mm.h>
# include <linux/module.h>
# include <linux/of.h>
# include <linux/platform_device.h>
# include <linux/slab.h>
# include "sec_drv.h"
# define SEC_QUEUE_AR_FROCE_ALLOC 0
# define SEC_QUEUE_AR_FROCE_NOALLOC 1
# define SEC_QUEUE_AR_FROCE_DIS 2
# define SEC_QUEUE_AW_FROCE_ALLOC 0
# define SEC_QUEUE_AW_FROCE_NOALLOC 1
# define SEC_QUEUE_AW_FROCE_DIS 2
/* SEC_ALGSUB registers */
# define SEC_ALGSUB_CLK_EN_REG 0x03b8
# define SEC_ALGSUB_CLK_DIS_REG 0x03bc
# define SEC_ALGSUB_CLK_ST_REG 0x535c
# define SEC_ALGSUB_RST_REQ_REG 0x0aa8
# define SEC_ALGSUB_RST_DREQ_REG 0x0aac
# define SEC_ALGSUB_RST_ST_REG 0x5a54
# define SEC_ALGSUB_RST_ST_IS_RST BIT(0)
# define SEC_ALGSUB_BUILD_RST_REQ_REG 0x0ab8
# define SEC_ALGSUB_BUILD_RST_DREQ_REG 0x0abc
# define SEC_ALGSUB_BUILD_RST_ST_REG 0x5a5c
# define SEC_ALGSUB_BUILD_RST_ST_IS_RST BIT(0)
# define SEC_SAA_BASE 0x00001000UL
/* SEC_SAA registers */
# define SEC_SAA_CTRL_REG(x) ((x) * SEC_SAA_ADDR_SIZE)
# define SEC_SAA_CTRL_GET_QM_EN BIT(0)
# define SEC_ST_INTMSK1_REG 0x0200
# define SEC_ST_RINT1_REG 0x0400
# define SEC_ST_INTSTS1_REG 0x0600
# define SEC_BD_MNG_STAT_REG 0x0800
# define SEC_PARSING_STAT_REG 0x0804
# define SEC_LOAD_TIME_OUT_CNT_REG 0x0808
# define SEC_CORE_WORK_TIME_OUT_CNT_REG 0x080c
# define SEC_BACK_TIME_OUT_CNT_REG 0x0810
# define SEC_BD1_PARSING_RD_TIME_OUT_CNT_REG 0x0814
# define SEC_BD1_PARSING_WR_TIME_OUT_CNT_REG 0x0818
# define SEC_BD2_PARSING_RD_TIME_OUT_CNT_REG 0x081c
# define SEC_BD2_PARSING_WR_TIME_OUT_CNT_REG 0x0820
# define SEC_SAA_ACC_REG 0x083c
# define SEC_BD_NUM_CNT_IN_SEC_REG 0x0858
# define SEC_LOAD_WORK_TIME_CNT_REG 0x0860
# define SEC_CORE_WORK_WORK_TIME_CNT_REG 0x0864
# define SEC_BACK_WORK_TIME_CNT_REG 0x0868
# define SEC_SAA_IDLE_TIME_CNT_REG 0x086c
# define SEC_SAA_CLK_CNT_REG 0x0870
/* SEC_COMMON registers */
# define SEC_CLK_EN_REG 0x0000
# define SEC_CTRL_REG 0x0004
# define SEC_COMMON_CNT_CLR_CE_REG 0x0008
# define SEC_COMMON_CNT_CLR_CE_CLEAR BIT(0)
# define SEC_COMMON_CNT_CLR_CE_SNAP_EN BIT(1)
# define SEC_SECURE_CTRL_REG 0x000c
# define SEC_AXI_CACHE_CFG_REG 0x0010
# define SEC_AXI_QOS_CFG_REG 0x0014
# define SEC_IPV4_MASK_TABLE_REG 0x0020
# define SEC_IPV6_MASK_TABLE_X_REG(x) (0x0024 + (x) * 4)
# define SEC_FSM_MAX_CNT_REG 0x0064
# define SEC_CTRL2_REG 0x0068
# define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M GENMASK(3, 0)
# define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S 0
# define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M GENMASK(6, 4)
# define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S 4
# define SEC_CTRL2_CLK_GATE_EN BIT(7)
# define SEC_CTRL2_ENDIAN_BD BIT(8)
# define SEC_CTRL2_ENDIAN_BD_TYPE BIT(9)
# define SEC_CNT_PRECISION_CFG_REG 0x006c
# define SEC_DEBUG_BD_CFG_REG 0x0070
# define SEC_DEBUG_BD_CFG_WB_NORMAL BIT(0)
# define SEC_DEBUG_BD_CFG_WB_EN BIT(1)
# define SEC_Q_SIGHT_SEL 0x0074
# define SEC_Q_SIGHT_HIS_CLR 0x0078
# define SEC_Q_VMID_CFG_REG(q) (0x0100 + (q) * 4)
# define SEC_Q_WEIGHT_CFG_REG(q) (0x200 + (q) * 4)
# define SEC_STAT_CLR_REG 0x0a00
# define SEC_SAA_IDLE_CNT_CLR_REG 0x0a04
# define SEC_QM_CPL_Q_IDBUF_DFX_CFG_REG 0x0b00
# define SEC_QM_CPL_Q_IDBUF_DFX_RESULT_REG 0x0b04
# define SEC_QM_BD_DFX_CFG_REG 0x0b08
# define SEC_QM_BD_DFX_RESULT_REG 0x0b0c
# define SEC_QM_BDID_DFX_RESULT_REG 0x0b10
# define SEC_QM_BD_DFIFO_STATUS_REG 0x0b14
# define SEC_QM_BD_DFX_CFG2_REG 0x0b1c
# define SEC_QM_BD_DFX_RESULT2_REG 0x0b20
# define SEC_QM_BD_IDFIFO_STATUS_REG 0x0b18
# define SEC_QM_BD_DFIFO_STATUS2_REG 0x0b28
# define SEC_QM_BD_IDFIFO_STATUS2_REG 0x0b2c
# define SEC_HASH_IPV4_MASK 0xfff00000
# define SEC_MAX_SAA_NUM 0xa
# define SEC_SAA_ADDR_SIZE 0x1000
# define SEC_Q_INIT_REG 0x0
# define SEC_Q_INIT_WO_STAT_CLEAR 0x2
# define SEC_Q_INIT_AND_STAT_CLEAR 0x3
# define SEC_Q_CFG_REG 0x8
# define SEC_Q_CFG_REORDER BIT(0)
# define SEC_Q_PROC_NUM_CFG_REG 0x10
# define SEC_QUEUE_ENB_REG 0x18
# define SEC_Q_DEPTH_CFG_REG 0x50
# define SEC_Q_DEPTH_CFG_DEPTH_M GENMASK(11, 0)
# define SEC_Q_DEPTH_CFG_DEPTH_S 0
# define SEC_Q_BASE_HADDR_REG 0x54
# define SEC_Q_BASE_LADDR_REG 0x58
# define SEC_Q_WR_PTR_REG 0x5c
# define SEC_Q_OUTORDER_BASE_HADDR_REG 0x60
# define SEC_Q_OUTORDER_BASE_LADDR_REG 0x64
# define SEC_Q_OUTORDER_RD_PTR_REG 0x68
# define SEC_Q_OT_TH_REG 0x6c
# define SEC_Q_ARUSER_CFG_REG 0x70
# define SEC_Q_ARUSER_CFG_FA BIT(0)
# define SEC_Q_ARUSER_CFG_FNA BIT(1)
# define SEC_Q_ARUSER_CFG_RINVLD BIT(2)
# define SEC_Q_ARUSER_CFG_PKG BIT(3)
# define SEC_Q_AWUSER_CFG_REG 0x74
# define SEC_Q_AWUSER_CFG_FA BIT(0)
# define SEC_Q_AWUSER_CFG_FNA BIT(1)
# define SEC_Q_AWUSER_CFG_PKG BIT(2)
# define SEC_Q_ERR_BASE_HADDR_REG 0x7c
# define SEC_Q_ERR_BASE_LADDR_REG 0x80
# define SEC_Q_CFG_VF_NUM_REG 0x84
# define SEC_Q_SOFT_PROC_PTR_REG 0x88
# define SEC_Q_FAIL_INT_MSK_REG 0x300
# define SEC_Q_FLOW_INT_MKS_REG 0x304
# define SEC_Q_FAIL_RINT_REG 0x400
# define SEC_Q_FLOW_RINT_REG 0x404
# define SEC_Q_FAIL_INT_STATUS_REG 0x500
# define SEC_Q_FLOW_INT_STATUS_REG 0x504
# define SEC_Q_STATUS_REG 0x600
# define SEC_Q_RD_PTR_REG 0x604
# define SEC_Q_PRO_PTR_REG 0x608
# define SEC_Q_OUTORDER_WR_PTR_REG 0x60c
# define SEC_Q_OT_CNT_STATUS_REG 0x610
# define SEC_Q_INORDER_BD_NUM_ST_REG 0x650
# define SEC_Q_INORDER_GET_FLAG_ST_REG 0x654
# define SEC_Q_INORDER_ADD_FLAG_ST_REG 0x658
# define SEC_Q_INORDER_TASK_INT_NUM_LEFT_ST_REG 0x65c
# define SEC_Q_RD_DONE_PTR_REG 0x660
# define SEC_Q_CPL_Q_BD_NUM_ST_REG 0x700
# define SEC_Q_CPL_Q_PTR_ST_REG 0x704
# define SEC_Q_CPL_Q_H_ADDR_ST_REG 0x708
# define SEC_Q_CPL_Q_L_ADDR_ST_REG 0x70c
# define SEC_Q_CPL_TASK_INT_NUM_LEFT_ST_REG 0x710
# define SEC_Q_WRR_ID_CHECK_REG 0x714
# define SEC_Q_CPLQ_FULL_CHECK_REG 0x718
# define SEC_Q_SUCCESS_BD_CNT_REG 0x800
# define SEC_Q_FAIL_BD_CNT_REG 0x804
# define SEC_Q_GET_BD_CNT_REG 0x808
# define SEC_Q_IVLD_CNT_REG 0x80c
# define SEC_Q_BD_PROC_GET_CNT_REG 0x810
# define SEC_Q_BD_PROC_DONE_CNT_REG 0x814
# define SEC_Q_LAT_CLR_REG 0x850
# define SEC_Q_PKT_LAT_MAX_REG 0x854
# define SEC_Q_PKT_LAT_AVG_REG 0x858
# define SEC_Q_PKT_LAT_MIN_REG 0x85c
# define SEC_Q_ID_CLR_CFG_REG 0x900
# define SEC_Q_1ST_BD_ERR_ID_REG 0x904
# define SEC_Q_1ST_AUTH_FAIL_ID_REG 0x908
# define SEC_Q_1ST_RD_ERR_ID_REG 0x90c
# define SEC_Q_1ST_ECC2_ERR_ID_REG 0x910
# define SEC_Q_1ST_IVLD_ID_REG 0x914
# define SEC_Q_1ST_BD_WR_ERR_ID_REG 0x918
# define SEC_Q_1ST_ERR_BD_WR_ERR_ID_REG 0x91c
# define SEC_Q_1ST_BD_MAC_WR_ERR_ID_REG 0x920
struct sec_debug_bd_info {
# define SEC_DEBUG_BD_INFO_SOFT_ERR_CHECK_M GENMASK(22, 0)
u32 soft_err_check ;
# define SEC_DEBUG_BD_INFO_HARD_ERR_CHECK_M GENMASK(9, 0)
u32 hard_err_check ;
u32 icv_mac1st_word ;
# define SEC_DEBUG_BD_INFO_GET_ID_M GENMASK(19, 0)
u32 sec_get_id ;
/* W4---W15 */
u32 reserv_left [ 12 ] ;
} ;
struct sec_out_bd_info {
# define SEC_OUT_BD_INFO_Q_ID_M GENMASK(11, 0)
# define SEC_OUT_BD_INFO_ECC_2BIT_ERR BIT(14)
u16 data ;
} ;
# define SEC_MAX_DEVICES 8
static struct sec_dev_info * sec_devices [ SEC_MAX_DEVICES ] ;
static DEFINE_MUTEX ( sec_id_lock ) ;
static int sec_queue_map_io ( struct sec_queue * queue )
{
struct device * dev = queue - > dev_info - > dev ;
struct resource * res ;
res = platform_get_resource ( to_platform_device ( dev ) ,
IORESOURCE_MEM ,
2 + queue - > queue_id ) ;
if ( ! res ) {
dev_err ( dev , " Failed to get queue %d memory resource \n " ,
queue - > queue_id ) ;
return - ENOMEM ;
}
queue - > regs = ioremap ( res - > start , resource_size ( res ) ) ;
if ( ! queue - > regs )
return - ENOMEM ;
return 0 ;
}
static void sec_queue_unmap_io ( struct sec_queue * queue )
{
iounmap ( queue - > regs ) ;
}
static int sec_queue_ar_pkgattr ( struct sec_queue * queue , u32 ar_pkg )
{
void __iomem * addr = queue - > regs + SEC_Q_ARUSER_CFG_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
if ( ar_pkg )
regval | = SEC_Q_ARUSER_CFG_PKG ;
else
regval & = ~ SEC_Q_ARUSER_CFG_PKG ;
writel_relaxed ( regval , addr ) ;
return 0 ;
}
static int sec_queue_aw_pkgattr ( struct sec_queue * queue , u32 aw_pkg )
{
void __iomem * addr = queue - > regs + SEC_Q_AWUSER_CFG_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
regval | = SEC_Q_AWUSER_CFG_PKG ;
writel_relaxed ( regval , addr ) ;
return 0 ;
}
static int sec_clk_en ( struct sec_dev_info * info )
{
void __iomem * base = info - > regs [ SEC_COMMON ] ;
u32 i = 0 ;
writel_relaxed ( 0x7 , base + SEC_ALGSUB_CLK_EN_REG ) ;
do {
usleep_range ( 1000 , 10000 ) ;
if ( ( readl_relaxed ( base + SEC_ALGSUB_CLK_ST_REG ) & 0x7 ) = = 0x7 )
return 0 ;
i + + ;
} while ( i < 10 ) ;
dev_err ( info - > dev , " sec clock enable fail! \n " ) ;
return - EIO ;
}
static int sec_clk_dis ( struct sec_dev_info * info )
{
void __iomem * base = info - > regs [ SEC_COMMON ] ;
u32 i = 0 ;
writel_relaxed ( 0x7 , base + SEC_ALGSUB_CLK_DIS_REG ) ;
do {
usleep_range ( 1000 , 10000 ) ;
if ( ( readl_relaxed ( base + SEC_ALGSUB_CLK_ST_REG ) & 0x7 ) = = 0 )
return 0 ;
i + + ;
} while ( i < 10 ) ;
dev_err ( info - > dev , " sec clock disable fail! \n " ) ;
return - EIO ;
}
static int sec_reset_whole_module ( struct sec_dev_info * info )
{
void __iomem * base = info - > regs [ SEC_COMMON ] ;
bool is_reset , b_is_reset ;
u32 i = 0 ;
writel_relaxed ( 1 , base + SEC_ALGSUB_RST_REQ_REG ) ;
writel_relaxed ( 1 , base + SEC_ALGSUB_BUILD_RST_REQ_REG ) ;
while ( 1 ) {
usleep_range ( 1000 , 10000 ) ;
is_reset = readl_relaxed ( base + SEC_ALGSUB_RST_ST_REG ) &
SEC_ALGSUB_RST_ST_IS_RST ;
b_is_reset = readl_relaxed ( base + SEC_ALGSUB_BUILD_RST_ST_REG ) &
SEC_ALGSUB_BUILD_RST_ST_IS_RST ;
if ( is_reset & & b_is_reset )
break ;
i + + ;
if ( i > 10 ) {
dev_err ( info - > dev , " Reset req failed \n " ) ;
return - EIO ;
}
}
i = 0 ;
writel_relaxed ( 1 , base + SEC_ALGSUB_RST_DREQ_REG ) ;
writel_relaxed ( 1 , base + SEC_ALGSUB_BUILD_RST_DREQ_REG ) ;
while ( 1 ) {
usleep_range ( 1000 , 10000 ) ;
is_reset = readl_relaxed ( base + SEC_ALGSUB_RST_ST_REG ) &
SEC_ALGSUB_RST_ST_IS_RST ;
b_is_reset = readl_relaxed ( base + SEC_ALGSUB_BUILD_RST_ST_REG ) &
SEC_ALGSUB_BUILD_RST_ST_IS_RST ;
if ( ! is_reset & & ! b_is_reset )
break ;
i + + ;
if ( i > 10 ) {
dev_err ( info - > dev , " Reset dreq failed \n " ) ;
return - EIO ;
}
}
return 0 ;
}
static void sec_bd_endian_little ( struct sec_dev_info * info )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_CTRL2_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
regval & = ~ ( SEC_CTRL2_ENDIAN_BD | SEC_CTRL2_ENDIAN_BD_TYPE ) ;
writel_relaxed ( regval , addr ) ;
}
/*
* sec_cache_config - configure optimum cache placement
*/
static void sec_cache_config ( struct sec_dev_info * info )
{
struct iommu_domain * domain ;
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_CTRL_REG ;
domain = iommu_get_domain_for_dev ( info - > dev ) ;
/* Check that translation is occurring */
if ( domain & & ( domain - > type & __IOMMU_DOMAIN_PAGING ) )
writel_relaxed ( 0x44cf9e , addr ) ;
else
writel_relaxed ( 0x4cfd9 , addr ) ;
}
static void sec_data_axiwr_otsd_cfg ( struct sec_dev_info * info , u32 cfg )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_CTRL2_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
regval & = ~ SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M ;
regval | = ( cfg < < SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S ) &
SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M ;
writel_relaxed ( regval , addr ) ;
}
static void sec_data_axird_otsd_cfg ( struct sec_dev_info * info , u32 cfg )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_CTRL2_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
regval & = ~ SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M ;
regval | = ( cfg < < SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S ) &
SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M ;
writel_relaxed ( regval , addr ) ;
}
static void sec_clk_gate_en ( struct sec_dev_info * info , bool clkgate )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_CTRL2_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
if ( clkgate )
regval | = SEC_CTRL2_CLK_GATE_EN ;
else
regval & = ~ SEC_CTRL2_CLK_GATE_EN ;
writel_relaxed ( regval , addr ) ;
}
static void sec_comm_cnt_cfg ( struct sec_dev_info * info , bool clr_ce )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_COMMON_CNT_CLR_CE_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
if ( clr_ce )
regval | = SEC_COMMON_CNT_CLR_CE_CLEAR ;
else
regval & = ~ SEC_COMMON_CNT_CLR_CE_CLEAR ;
writel_relaxed ( regval , addr ) ;
}
static void sec_commsnap_en ( struct sec_dev_info * info , bool snap_en )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_COMMON_CNT_CLR_CE_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
if ( snap_en )
regval | = SEC_COMMON_CNT_CLR_CE_SNAP_EN ;
else
regval & = ~ SEC_COMMON_CNT_CLR_CE_SNAP_EN ;
writel_relaxed ( regval , addr ) ;
}
static void sec_ipv6_hashmask ( struct sec_dev_info * info , u32 hash_mask [ ] )
{
void __iomem * base = info - > regs [ SEC_SAA ] ;
int i ;
for ( i = 0 ; i < 10 ; i + + )
writel_relaxed ( hash_mask [ 0 ] ,
base + SEC_IPV6_MASK_TABLE_X_REG ( i ) ) ;
}
static int sec_ipv4_hashmask ( struct sec_dev_info * info , u32 hash_mask )
{
if ( hash_mask & SEC_HASH_IPV4_MASK ) {
dev_err ( info - > dev , " Sec Ipv4 Hash Mask Input Error! \n " ) ;
return - EINVAL ;
}
writel_relaxed ( hash_mask ,
info - > regs [ SEC_SAA ] + SEC_IPV4_MASK_TABLE_REG ) ;
return 0 ;
}
static void sec_set_dbg_bd_cfg ( struct sec_dev_info * info , u32 cfg )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_DEBUG_BD_CFG_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
/* Always disable write back of normal bd */
regval & = ~ SEC_DEBUG_BD_CFG_WB_NORMAL ;
if ( cfg )
regval & = ~ SEC_DEBUG_BD_CFG_WB_EN ;
else
regval | = SEC_DEBUG_BD_CFG_WB_EN ;
writel_relaxed ( regval , addr ) ;
}
static void sec_saa_getqm_en ( struct sec_dev_info * info , u32 saa_indx , u32 en )
{
void __iomem * addr = info - > regs [ SEC_SAA ] + SEC_SAA_BASE +
SEC_SAA_CTRL_REG ( saa_indx ) ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
if ( en )
regval | = SEC_SAA_CTRL_GET_QM_EN ;
else
regval & = ~ SEC_SAA_CTRL_GET_QM_EN ;
writel_relaxed ( regval , addr ) ;
}
static void sec_saa_int_mask ( struct sec_dev_info * info , u32 saa_indx ,
u32 saa_int_mask )
{
writel_relaxed ( saa_int_mask ,
info - > regs [ SEC_SAA ] + SEC_SAA_BASE + SEC_ST_INTMSK1_REG +
saa_indx * SEC_SAA_ADDR_SIZE ) ;
}
static void sec_streamid ( struct sec_dev_info * info , int i )
{
# define SEC_SID 0x600
# define SEC_VMID 0
writel_relaxed ( ( SEC_VMID | ( ( SEC_SID & 0xffff ) < < 8 ) ) ,
info - > regs [ SEC_SAA ] + SEC_Q_VMID_CFG_REG ( i ) ) ;
}
static void sec_queue_ar_alloc ( struct sec_queue * queue , u32 alloc )
{
void __iomem * addr = queue - > regs + SEC_Q_ARUSER_CFG_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
if ( alloc = = SEC_QUEUE_AR_FROCE_ALLOC ) {
regval | = SEC_Q_ARUSER_CFG_FA ;
regval & = ~ SEC_Q_ARUSER_CFG_FNA ;
} else {
regval & = ~ SEC_Q_ARUSER_CFG_FA ;
regval | = SEC_Q_ARUSER_CFG_FNA ;
}
writel_relaxed ( regval , addr ) ;
}
static void sec_queue_aw_alloc ( struct sec_queue * queue , u32 alloc )
{
void __iomem * addr = queue - > regs + SEC_Q_AWUSER_CFG_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
if ( alloc = = SEC_QUEUE_AW_FROCE_ALLOC ) {
regval | = SEC_Q_AWUSER_CFG_FA ;
regval & = ~ SEC_Q_AWUSER_CFG_FNA ;
} else {
regval & = ~ SEC_Q_AWUSER_CFG_FA ;
regval | = SEC_Q_AWUSER_CFG_FNA ;
}
writel_relaxed ( regval , addr ) ;
}
static void sec_queue_reorder ( struct sec_queue * queue , bool reorder )
{
void __iomem * base = queue - > regs ;
u32 regval ;
regval = readl_relaxed ( base + SEC_Q_CFG_REG ) ;
if ( reorder )
regval | = SEC_Q_CFG_REORDER ;
else
regval & = ~ SEC_Q_CFG_REORDER ;
writel_relaxed ( regval , base + SEC_Q_CFG_REG ) ;
}
static void sec_queue_depth ( struct sec_queue * queue , u32 depth )
{
void __iomem * addr = queue - > regs + SEC_Q_DEPTH_CFG_REG ;
u32 regval ;
regval = readl_relaxed ( addr ) ;
regval & = ~ SEC_Q_DEPTH_CFG_DEPTH_M ;
regval | = ( depth < < SEC_Q_DEPTH_CFG_DEPTH_S ) & SEC_Q_DEPTH_CFG_DEPTH_M ;
writel_relaxed ( regval , addr ) ;
}
static void sec_queue_cmdbase_addr ( struct sec_queue * queue , u64 addr )
{
writel_relaxed ( upper_32_bits ( addr ) , queue - > regs + SEC_Q_BASE_HADDR_REG ) ;
writel_relaxed ( lower_32_bits ( addr ) , queue - > regs + SEC_Q_BASE_LADDR_REG ) ;
}
static void sec_queue_outorder_addr ( struct sec_queue * queue , u64 addr )
{
writel_relaxed ( upper_32_bits ( addr ) ,
queue - > regs + SEC_Q_OUTORDER_BASE_HADDR_REG ) ;
writel_relaxed ( lower_32_bits ( addr ) ,
queue - > regs + SEC_Q_OUTORDER_BASE_LADDR_REG ) ;
}
static void sec_queue_errbase_addr ( struct sec_queue * queue , u64 addr )
{
writel_relaxed ( upper_32_bits ( addr ) ,
queue - > regs + SEC_Q_ERR_BASE_HADDR_REG ) ;
writel_relaxed ( lower_32_bits ( addr ) ,
queue - > regs + SEC_Q_ERR_BASE_LADDR_REG ) ;
}
static void sec_queue_irq_disable ( struct sec_queue * queue )
{
writel_relaxed ( ( u32 ) ~ 0 , queue - > regs + SEC_Q_FLOW_INT_MKS_REG ) ;
}
static void sec_queue_irq_enable ( struct sec_queue * queue )
{
writel_relaxed ( 0 , queue - > regs + SEC_Q_FLOW_INT_MKS_REG ) ;
}
static void sec_queue_abn_irq_disable ( struct sec_queue * queue )
{
writel_relaxed ( ( u32 ) ~ 0 , queue - > regs + SEC_Q_FAIL_INT_MSK_REG ) ;
}
static void sec_queue_stop ( struct sec_queue * queue )
{
disable_irq ( queue - > task_irq ) ;
sec_queue_irq_disable ( queue ) ;
writel_relaxed ( 0x0 , queue - > regs + SEC_QUEUE_ENB_REG ) ;
}
static void sec_queue_start ( struct sec_queue * queue )
{
sec_queue_irq_enable ( queue ) ;
enable_irq ( queue - > task_irq ) ;
queue - > expected = 0 ;
writel_relaxed ( SEC_Q_INIT_AND_STAT_CLEAR , queue - > regs + SEC_Q_INIT_REG ) ;
writel_relaxed ( 0x1 , queue - > regs + SEC_QUEUE_ENB_REG ) ;
}
static struct sec_queue * sec_alloc_queue ( struct sec_dev_info * info )
{
int i ;
mutex_lock ( & info - > dev_lock ) ;
/* Get the first idle queue in SEC device */
for ( i = 0 ; i < SEC_Q_NUM ; i + + )
if ( ! info - > queues [ i ] . in_use ) {
info - > queues [ i ] . in_use = true ;
info - > queues_in_use + + ;
mutex_unlock ( & info - > dev_lock ) ;
return & info - > queues [ i ] ;
}
mutex_unlock ( & info - > dev_lock ) ;
return ERR_PTR ( - ENODEV ) ;
}
static int sec_queue_free ( struct sec_queue * queue )
{
struct sec_dev_info * info = queue - > dev_info ;
if ( queue - > queue_id > = SEC_Q_NUM ) {
dev_err ( info - > dev , " No queue %d \n " , queue - > queue_id ) ;
return - ENODEV ;
}
if ( ! queue - > in_use ) {
dev_err ( info - > dev , " Queue %d is idle \n " , queue - > queue_id ) ;
return - ENODEV ;
}
mutex_lock ( & info - > dev_lock ) ;
queue - > in_use = false ;
info - > queues_in_use - - ;
mutex_unlock ( & info - > dev_lock ) ;
return 0 ;
}
static irqreturn_t sec_isr_handle_th ( int irq , void * q )
{
sec_queue_irq_disable ( q ) ;
return IRQ_WAKE_THREAD ;
}
static irqreturn_t sec_isr_handle ( int irq , void * q )
{
struct sec_queue * queue = q ;
struct sec_queue_ring_cmd * msg_ring = & queue - > ring_cmd ;
struct sec_queue_ring_cq * cq_ring = & queue - > ring_cq ;
struct sec_out_bd_info * outorder_msg ;
struct sec_bd_info * msg ;
u32 ooo_read , ooo_write ;
void __iomem * base = queue - > regs ;
int q_id ;
ooo_read = readl ( base + SEC_Q_OUTORDER_RD_PTR_REG ) ;
ooo_write = readl ( base + SEC_Q_OUTORDER_WR_PTR_REG ) ;
outorder_msg = cq_ring - > vaddr + ooo_read ;
q_id = outorder_msg - > data & SEC_OUT_BD_INFO_Q_ID_M ;
msg = msg_ring - > vaddr + q_id ;
while ( ( ooo_write ! = ooo_read ) & & msg - > w0 & SEC_BD_W0_DONE ) {
/*
* Must be before callback otherwise blocks adding other chained
* elements
*/
set_bit ( q_id , queue - > unprocessed ) ;
if ( q_id = = queue - > expected )
while ( test_bit ( queue - > expected , queue - > unprocessed ) ) {
clear_bit ( queue - > expected , queue - > unprocessed ) ;
msg = msg_ring - > vaddr + queue - > expected ;
msg - > w0 & = ~ SEC_BD_W0_DONE ;
msg_ring - > callback ( msg ,
queue - > shadow [ queue - > expected ] ) ;
queue - > shadow [ queue - > expected ] = NULL ;
queue - > expected = ( queue - > expected + 1 ) %
SEC_QUEUE_LEN ;
atomic_dec ( & msg_ring - > used ) ;
}
ooo_read = ( ooo_read + 1 ) % SEC_QUEUE_LEN ;
writel ( ooo_read , base + SEC_Q_OUTORDER_RD_PTR_REG ) ;
ooo_write = readl ( base + SEC_Q_OUTORDER_WR_PTR_REG ) ;
outorder_msg = cq_ring - > vaddr + ooo_read ;
q_id = outorder_msg - > data & SEC_OUT_BD_INFO_Q_ID_M ;
msg = msg_ring - > vaddr + q_id ;
}
sec_queue_irq_enable ( queue ) ;
return IRQ_HANDLED ;
}
static int sec_queue_irq_init ( struct sec_queue * queue )
{
struct sec_dev_info * info = queue - > dev_info ;
int irq = queue - > task_irq ;
int ret ;
ret = request_threaded_irq ( irq , sec_isr_handle_th , sec_isr_handle ,
IRQF_TRIGGER_RISING , queue - > name , queue ) ;
if ( ret ) {
dev_err ( info - > dev , " request irq(%d) failed %d \n " , irq , ret ) ;
return ret ;
}
disable_irq ( irq ) ;
return 0 ;
}
static int sec_queue_irq_uninit ( struct sec_queue * queue )
{
free_irq ( queue - > task_irq , queue ) ;
return 0 ;
}
static struct sec_dev_info * sec_device_get ( void )
{
struct sec_dev_info * sec_dev = NULL ;
struct sec_dev_info * this_sec_dev ;
int least_busy_n = SEC_Q_NUM + 1 ;
int i ;
/* Find which one is least busy and use that first */
for ( i = 0 ; i < SEC_MAX_DEVICES ; i + + ) {
this_sec_dev = sec_devices [ i ] ;
if ( this_sec_dev & &
this_sec_dev - > queues_in_use < least_busy_n ) {
least_busy_n = this_sec_dev - > queues_in_use ;
sec_dev = this_sec_dev ;
}
}
return sec_dev ;
}
static struct sec_queue * sec_queue_alloc_start ( struct sec_dev_info * info )
{
struct sec_queue * queue ;
queue = sec_alloc_queue ( info ) ;
if ( IS_ERR ( queue ) ) {
dev_err ( info - > dev , " alloc sec queue failed! %ld \n " ,
PTR_ERR ( queue ) ) ;
return queue ;
}
sec_queue_start ( queue ) ;
return queue ;
}
/**
* sec_queue_alloc_start_safe - get a hw queue from appropriate instance
*
* This function does extremely simplistic load balancing . It does not take into
* account NUMA locality of the accelerator , or which cpu has requested the
* queue . Future work may focus on optimizing this in order to improve full
* machine throughput .
*/
struct sec_queue * sec_queue_alloc_start_safe ( void )
{
struct sec_dev_info * info ;
struct sec_queue * queue = ERR_PTR ( - ENODEV ) ;
mutex_lock ( & sec_id_lock ) ;
info = sec_device_get ( ) ;
if ( ! info )
goto unlock ;
queue = sec_queue_alloc_start ( info ) ;
unlock :
mutex_unlock ( & sec_id_lock ) ;
return queue ;
}
/**
* sec_queue_stop_release ( ) - free up a hw queue for reuse
* @ queue : The queue we are done with .
*
* This will stop the current queue , terminanting any transactions
* that are inflight an return it to the pool of available hw queuess
*/
int sec_queue_stop_release ( struct sec_queue * queue )
{
struct device * dev = queue - > dev_info - > dev ;
int ret ;
sec_queue_stop ( queue ) ;
ret = sec_queue_free ( queue ) ;
if ( ret )
dev_err ( dev , " Releasing queue failed %d \n " , ret ) ;
return ret ;
}
/**
* sec_queue_empty ( ) - Is this hardware queue currently empty .
*
* We need to know if we have an empty queue for some of the chaining modes
* as if it is not empty we may need to hold the message in a software queue
* until the hw queue is drained .
*/
bool sec_queue_empty ( struct sec_queue * queue )
{
struct sec_queue_ring_cmd * msg_ring = & queue - > ring_cmd ;
return ! atomic_read ( & msg_ring - > used ) ;
}
/**
* sec_queue_send ( ) - queue up a single operation in the hw queue
* @ queue : The queue in which to put the message
* @ msg : The message
* @ ctx : Context to be put in the shadow array and passed back to cb on result .
*
* This function will return - EAGAIN if the queue is currently full .
*/
int sec_queue_send ( struct sec_queue * queue , struct sec_bd_info * msg , void * ctx )
{
struct sec_queue_ring_cmd * msg_ring = & queue - > ring_cmd ;
void __iomem * base = queue - > regs ;
u32 write , read ;
mutex_lock ( & msg_ring - > lock ) ;
read = readl ( base + SEC_Q_RD_PTR_REG ) ;
write = readl ( base + SEC_Q_WR_PTR_REG ) ;
if ( write = = read & & atomic_read ( & msg_ring - > used ) = = SEC_QUEUE_LEN ) {
mutex_unlock ( & msg_ring - > lock ) ;
return - EAGAIN ;
}
memcpy ( msg_ring - > vaddr + write , msg , sizeof ( * msg ) ) ;
queue - > shadow [ write ] = ctx ;
write = ( write + 1 ) % SEC_QUEUE_LEN ;
/* Ensure content updated before queue advance */
wmb ( ) ;
writel ( write , base + SEC_Q_WR_PTR_REG ) ;
atomic_inc ( & msg_ring - > used ) ;
mutex_unlock ( & msg_ring - > lock ) ;
return 0 ;
}
bool sec_queue_can_enqueue ( struct sec_queue * queue , int num )
{
struct sec_queue_ring_cmd * msg_ring = & queue - > ring_cmd ;
return SEC_QUEUE_LEN - atomic_read ( & msg_ring - > used ) > = num ;
}
static void sec_queue_hw_init ( struct sec_queue * queue )
{
sec_queue_ar_alloc ( queue , SEC_QUEUE_AR_FROCE_NOALLOC ) ;
sec_queue_aw_alloc ( queue , SEC_QUEUE_AR_FROCE_NOALLOC ) ;
sec_queue_ar_pkgattr ( queue , 1 ) ;
sec_queue_aw_pkgattr ( queue , 1 ) ;
/* Enable out of order queue */
sec_queue_reorder ( queue , true ) ;
/* Interrupt after a single complete element */
writel_relaxed ( 1 , queue - > regs + SEC_Q_PROC_NUM_CFG_REG ) ;
sec_queue_depth ( queue , SEC_QUEUE_LEN - 1 ) ;
sec_queue_cmdbase_addr ( queue , queue - > ring_cmd . paddr ) ;
sec_queue_outorder_addr ( queue , queue - > ring_cq . paddr ) ;
sec_queue_errbase_addr ( queue , queue - > ring_db . paddr ) ;
writel_relaxed ( 0x100 , queue - > regs + SEC_Q_OT_TH_REG ) ;
sec_queue_abn_irq_disable ( queue ) ;
sec_queue_irq_disable ( queue ) ;
writel_relaxed ( SEC_Q_INIT_AND_STAT_CLEAR , queue - > regs + SEC_Q_INIT_REG ) ;
}
static int sec_hw_init ( struct sec_dev_info * info )
{
struct iommu_domain * domain ;
u32 sec_ipv4_mask = 0 ;
u32 sec_ipv6_mask [ 10 ] = { } ;
u32 i , ret ;
domain = iommu_get_domain_for_dev ( info - > dev ) ;
/*
* Enable all available processing unit clocks .
* Only the first cluster is usable with translations .
*/
if ( domain & & ( domain - > type & __IOMMU_DOMAIN_PAGING ) )
info - > num_saas = 5 ;
else
info - > num_saas = 10 ;
writel_relaxed ( GENMASK ( info - > num_saas - 1 , 0 ) ,
info - > regs [ SEC_SAA ] + SEC_CLK_EN_REG ) ;
/* 32 bit little endian */
sec_bd_endian_little ( info ) ;
sec_cache_config ( info ) ;
/* Data axi port write and read outstanding config as per datasheet */
sec_data_axiwr_otsd_cfg ( info , 0x7 ) ;
sec_data_axird_otsd_cfg ( info , 0x7 ) ;
/* Enable clock gating */
sec_clk_gate_en ( info , true ) ;
/* Set CNT_CYC register not read clear */
sec_comm_cnt_cfg ( info , false ) ;
/* Enable CNT_CYC */
sec_commsnap_en ( info , false ) ;
writel_relaxed ( ( u32 ) ~ 0 , info - > regs [ SEC_SAA ] + SEC_FSM_MAX_CNT_REG ) ;
ret = sec_ipv4_hashmask ( info , sec_ipv4_mask ) ;
if ( ret ) {
dev_err ( info - > dev , " Failed to set ipv4 hashmask %d \n " , ret ) ;
return - EIO ;
}
sec_ipv6_hashmask ( info , sec_ipv6_mask ) ;
/* do not use debug bd */
sec_set_dbg_bd_cfg ( info , 0 ) ;
if ( domain & & ( domain - > type & __IOMMU_DOMAIN_PAGING ) ) {
for ( i = 0 ; i < SEC_Q_NUM ; i + + ) {
sec_streamid ( info , i ) ;
/* Same QoS for all queues */
writel_relaxed ( 0x3f ,
info - > regs [ SEC_SAA ] +
SEC_Q_WEIGHT_CFG_REG ( i ) ) ;
}
}
for ( i = 0 ; i < info - > num_saas ; i + + ) {
sec_saa_getqm_en ( info , i , 1 ) ;
sec_saa_int_mask ( info , i , 0 ) ;
}
return 0 ;
}
static void sec_hw_exit ( struct sec_dev_info * info )
{
int i ;
for ( i = 0 ; i < SEC_MAX_SAA_NUM ; i + + ) {
sec_saa_int_mask ( info , i , ( u32 ) ~ 0 ) ;
sec_saa_getqm_en ( info , i , 0 ) ;
}
}
static void sec_queue_base_init ( struct sec_dev_info * info ,
struct sec_queue * queue , int queue_id )
{
queue - > dev_info = info ;
queue - > queue_id = queue_id ;
snprintf ( queue - > name , sizeof ( queue - > name ) ,
" %s_%d " , dev_name ( info - > dev ) , queue - > queue_id ) ;
}
static int sec_map_io ( struct sec_dev_info * info , struct platform_device * pdev )
{
struct resource * res ;
int i ;
for ( i = 0 ; i < SEC_NUM_ADDR_REGIONS ; i + + ) {
res = platform_get_resource ( pdev , IORESOURCE_MEM , i ) ;
if ( ! res ) {
dev_err ( info - > dev , " Memory resource %d not found \n " , i ) ;
return - EINVAL ;
}
info - > regs [ i ] = devm_ioremap ( info - > dev , res - > start ,
resource_size ( res ) ) ;
if ( ! info - > regs [ i ] ) {
dev_err ( info - > dev ,
" Memory resource %d could not be remapped \n " ,
i ) ;
return - EINVAL ;
}
}
return 0 ;
}
static int sec_base_init ( struct sec_dev_info * info ,
struct platform_device * pdev )
{
int ret ;
ret = sec_map_io ( info , pdev ) ;
if ( ret )
return ret ;
ret = sec_clk_en ( info ) ;
if ( ret )
return ret ;
ret = sec_reset_whole_module ( info ) ;
if ( ret )
goto sec_clk_disable ;
ret = sec_hw_init ( info ) ;
if ( ret )
goto sec_clk_disable ;
return 0 ;
sec_clk_disable :
sec_clk_dis ( info ) ;
return ret ;
}
static void sec_base_exit ( struct sec_dev_info * info )
{
sec_hw_exit ( info ) ;
sec_clk_dis ( info ) ;
}
# define SEC_Q_CMD_SIZE \
round_up ( SEC_QUEUE_LEN * sizeof ( struct sec_bd_info ) , PAGE_SIZE )
# define SEC_Q_CQ_SIZE \
round_up ( SEC_QUEUE_LEN * sizeof ( struct sec_out_bd_info ) , PAGE_SIZE )
# define SEC_Q_DB_SIZE \
round_up ( SEC_QUEUE_LEN * sizeof ( struct sec_debug_bd_info ) , PAGE_SIZE )
static int sec_queue_res_cfg ( struct sec_queue * queue )
{
struct device * dev = queue - > dev_info - > dev ;
struct sec_queue_ring_cmd * ring_cmd = & queue - > ring_cmd ;
struct sec_queue_ring_cq * ring_cq = & queue - > ring_cq ;
struct sec_queue_ring_db * ring_db = & queue - > ring_db ;
int ret ;
cross-tree: phase out dma_zalloc_coherent()
We already need to zero out memory for dma_alloc_coherent(), as such
using dma_zalloc_coherent() is superflous. Phase it out.
This change was generated with the following Coccinelle SmPL patch:
@ replace_dma_zalloc_coherent @
expression dev, size, data, handle, flags;
@@
-dma_zalloc_coherent(dev, size, handle, flags)
+dma_alloc_coherent(dev, size, handle, flags)
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
[hch: re-ran the script on the latest tree]
Signed-off-by: Christoph Hellwig <hch@lst.de>
2019-01-04 11:23:09 +03:00
ring_cmd - > vaddr = dma_alloc_coherent ( dev , SEC_Q_CMD_SIZE ,
& ring_cmd - > paddr , GFP_KERNEL ) ;
2018-07-23 18:49:54 +03:00
if ( ! ring_cmd - > vaddr )
return - ENOMEM ;
atomic_set ( & ring_cmd - > used , 0 ) ;
mutex_init ( & ring_cmd - > lock ) ;
ring_cmd - > callback = sec_alg_callback ;
cross-tree: phase out dma_zalloc_coherent()
We already need to zero out memory for dma_alloc_coherent(), as such
using dma_zalloc_coherent() is superflous. Phase it out.
This change was generated with the following Coccinelle SmPL patch:
@ replace_dma_zalloc_coherent @
expression dev, size, data, handle, flags;
@@
-dma_zalloc_coherent(dev, size, handle, flags)
+dma_alloc_coherent(dev, size, handle, flags)
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
[hch: re-ran the script on the latest tree]
Signed-off-by: Christoph Hellwig <hch@lst.de>
2019-01-04 11:23:09 +03:00
ring_cq - > vaddr = dma_alloc_coherent ( dev , SEC_Q_CQ_SIZE ,
& ring_cq - > paddr , GFP_KERNEL ) ;
2018-07-23 18:49:54 +03:00
if ( ! ring_cq - > vaddr ) {
ret = - ENOMEM ;
goto err_free_ring_cmd ;
}
cross-tree: phase out dma_zalloc_coherent()
We already need to zero out memory for dma_alloc_coherent(), as such
using dma_zalloc_coherent() is superflous. Phase it out.
This change was generated with the following Coccinelle SmPL patch:
@ replace_dma_zalloc_coherent @
expression dev, size, data, handle, flags;
@@
-dma_zalloc_coherent(dev, size, handle, flags)
+dma_alloc_coherent(dev, size, handle, flags)
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
[hch: re-ran the script on the latest tree]
Signed-off-by: Christoph Hellwig <hch@lst.de>
2019-01-04 11:23:09 +03:00
ring_db - > vaddr = dma_alloc_coherent ( dev , SEC_Q_DB_SIZE ,
& ring_db - > paddr , GFP_KERNEL ) ;
2018-07-23 18:49:54 +03:00
if ( ! ring_db - > vaddr ) {
ret = - ENOMEM ;
goto err_free_ring_cq ;
}
queue - > task_irq = platform_get_irq ( to_platform_device ( dev ) ,
queue - > queue_id * 2 + 1 ) ;
if ( queue - > task_irq < = 0 ) {
ret = - EINVAL ;
goto err_free_ring_db ;
}
return 0 ;
err_free_ring_db :
dma_free_coherent ( dev , SEC_Q_DB_SIZE , queue - > ring_db . vaddr ,
queue - > ring_db . paddr ) ;
err_free_ring_cq :
dma_free_coherent ( dev , SEC_Q_CQ_SIZE , queue - > ring_cq . vaddr ,
queue - > ring_cq . paddr ) ;
err_free_ring_cmd :
dma_free_coherent ( dev , SEC_Q_CMD_SIZE , queue - > ring_cmd . vaddr ,
queue - > ring_cmd . paddr ) ;
return ret ;
}
static void sec_queue_free_ring_pages ( struct sec_queue * queue )
{
struct device * dev = queue - > dev_info - > dev ;
dma_free_coherent ( dev , SEC_Q_DB_SIZE , queue - > ring_db . vaddr ,
queue - > ring_db . paddr ) ;
dma_free_coherent ( dev , SEC_Q_CQ_SIZE , queue - > ring_cq . vaddr ,
queue - > ring_cq . paddr ) ;
dma_free_coherent ( dev , SEC_Q_CMD_SIZE , queue - > ring_cmd . vaddr ,
queue - > ring_cmd . paddr ) ;
}
static int sec_queue_config ( struct sec_dev_info * info , struct sec_queue * queue ,
int queue_id )
{
int ret ;
sec_queue_base_init ( info , queue , queue_id ) ;
ret = sec_queue_res_cfg ( queue ) ;
if ( ret )
return ret ;
ret = sec_queue_map_io ( queue ) ;
if ( ret ) {
dev_err ( info - > dev , " Queue map failed %d \n " , ret ) ;
sec_queue_free_ring_pages ( queue ) ;
return ret ;
}
sec_queue_hw_init ( queue ) ;
return 0 ;
}
static void sec_queue_unconfig ( struct sec_dev_info * info ,
struct sec_queue * queue )
{
sec_queue_unmap_io ( queue ) ;
sec_queue_free_ring_pages ( queue ) ;
}
static int sec_id_alloc ( struct sec_dev_info * info )
{
int ret = 0 ;
int i ;
mutex_lock ( & sec_id_lock ) ;
for ( i = 0 ; i < SEC_MAX_DEVICES ; i + + )
if ( ! sec_devices [ i ] )
break ;
if ( i = = SEC_MAX_DEVICES ) {
ret = - ENOMEM ;
goto unlock ;
}
info - > sec_id = i ;
sec_devices [ info - > sec_id ] = info ;
unlock :
mutex_unlock ( & sec_id_lock ) ;
return ret ;
}
static void sec_id_free ( struct sec_dev_info * info )
{
mutex_lock ( & sec_id_lock ) ;
sec_devices [ info - > sec_id ] = NULL ;
mutex_unlock ( & sec_id_lock ) ;
}
static int sec_probe ( struct platform_device * pdev )
{
struct sec_dev_info * info ;
struct device * dev = & pdev - > dev ;
int i , j ;
int ret ;
ret = dma_set_mask_and_coherent ( dev , DMA_BIT_MASK ( 64 ) ) ;
if ( ret ) {
dev_err ( dev , " Failed to set 64 bit dma mask %d " , ret ) ;
return - ENODEV ;
}
info = devm_kzalloc ( dev , ( sizeof ( * info ) ) , GFP_KERNEL ) ;
if ( ! info )
return - ENOMEM ;
info - > dev = dev ;
mutex_init ( & info - > dev_lock ) ;
info - > hw_sgl_pool = dmam_pool_create ( " sgl " , dev ,
sizeof ( struct sec_hw_sgl ) , 64 , 0 ) ;
if ( ! info - > hw_sgl_pool ) {
dev_err ( dev , " Failed to create sec sgl dma pool \n " ) ;
return - ENOMEM ;
}
ret = sec_base_init ( info , pdev ) ;
if ( ret ) {
dev_err ( dev , " Base initialization fail! %d \n " , ret ) ;
return ret ;
}
for ( i = 0 ; i < SEC_Q_NUM ; i + + ) {
ret = sec_queue_config ( info , & info - > queues [ i ] , i ) ;
if ( ret )
goto queues_unconfig ;
ret = sec_queue_irq_init ( & info - > queues [ i ] ) ;
if ( ret ) {
sec_queue_unconfig ( info , & info - > queues [ i ] ) ;
goto queues_unconfig ;
}
}
ret = sec_algs_register ( ) ;
if ( ret ) {
dev_err ( dev , " Failed to register algorithms with crypto %d \n " ,
ret ) ;
goto queues_unconfig ;
}
platform_set_drvdata ( pdev , info ) ;
ret = sec_id_alloc ( info ) ;
if ( ret )
goto algs_unregister ;
return 0 ;
algs_unregister :
sec_algs_unregister ( ) ;
queues_unconfig :
for ( j = i - 1 ; j > = 0 ; j - - ) {
sec_queue_irq_uninit ( & info - > queues [ j ] ) ;
sec_queue_unconfig ( info , & info - > queues [ j ] ) ;
}
sec_base_exit ( info ) ;
return ret ;
}
static int sec_remove ( struct platform_device * pdev )
{
struct sec_dev_info * info = platform_get_drvdata ( pdev ) ;
int i ;
/* Unexpose as soon as possible, reuse during remove is fine */
sec_id_free ( info ) ;
sec_algs_unregister ( ) ;
for ( i = 0 ; i < SEC_Q_NUM ; i + + ) {
sec_queue_irq_uninit ( & info - > queues [ i ] ) ;
sec_queue_unconfig ( info , & info - > queues [ i ] ) ;
}
sec_base_exit ( info ) ;
return 0 ;
}
static const __maybe_unused struct of_device_id sec_match [ ] = {
{ . compatible = " hisilicon,hip06-sec " } ,
{ . compatible = " hisilicon,hip07-sec " } ,
{ }
} ;
MODULE_DEVICE_TABLE ( of , sec_match ) ;
static const __maybe_unused struct acpi_device_id sec_acpi_match [ ] = {
{ " HISI02C1 " , 0 } ,
{ }
} ;
MODULE_DEVICE_TABLE ( acpi , sec_acpi_match ) ;
static struct platform_driver sec_driver = {
. probe = sec_probe ,
. remove = sec_remove ,
. driver = {
. name = " hisi_sec_platform_driver " ,
. of_match_table = sec_match ,
. acpi_match_table = ACPI_PTR ( sec_acpi_match ) ,
} ,
} ;
module_platform_driver ( sec_driver ) ;
MODULE_LICENSE ( " GPL " ) ;
MODULE_DESCRIPTION ( " Hisilicon Security Accelerators " ) ;
MODULE_AUTHOR ( " Zaibo Xu <xuzaibo@huawei.com " ) ;
MODULE_AUTHOR ( " Jonathan Cameron <jonathan.cameron@huawei.com> " ) ;