2005-06-01 06:03:47 +04:00
/*
* drivers / cpufreq / cpufreq_conservative . c
*
* Copyright ( C ) 2001 Russell King
* ( C ) 2003 Venkatesh Pallipadi < venkatesh . pallipadi @ intel . com > .
* Jun Nakajima < jun . nakajima @ intel . com >
* ( C ) 2004 Alexander Clouter < alex - kernel @ digriz . org . uk >
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/smp.h>
# include <linux/init.h>
# include <linux/interrupt.h>
# include <linux/ctype.h>
# include <linux/cpufreq.h>
# include <linux/sysctl.h>
# include <linux/types.h>
# include <linux/fs.h>
# include <linux/sysfs.h>
2006-06-23 14:31:19 +04:00
# include <linux/cpu.h>
2005-06-01 06:03:47 +04:00
# include <linux/kmod.h>
# include <linux/workqueue.h>
# include <linux/jiffies.h>
# include <linux/kernel_stat.h>
# include <linux/percpu.h>
2006-01-14 02:54:22 +03:00
# include <linux/mutex.h>
2005-06-01 06:03:47 +04:00
/*
* dbs is used in this file as a shortform for demandbased switching
* It helps to keep variable names smaller , simpler
*/
# define DEF_FREQUENCY_UP_THRESHOLD (80)
# define DEF_FREQUENCY_DOWN_THRESHOLD (20)
2007-10-23 00:49:09 +04:00
/*
* The polling frequency of this governor depends on the capability of
2005-06-01 06:03:47 +04:00
* the processor . Default polling frequency is 1000 times the transition
2007-10-23 00:49:09 +04:00
* latency of the processor . The governor will work on any processor with
* transition latency < = 10 mS , using appropriate sampling
2005-06-01 06:03:47 +04:00
* rate .
2006-10-26 14:50:58 +04:00
* For CPUs with transition latency > 10 mS ( mostly drivers
* with CPUFREQ_ETERNAL ) , this governor will not work .
2005-06-01 06:03:47 +04:00
* All times here are in uS .
*/
2007-10-23 00:49:09 +04:00
static unsigned int def_sampling_rate ;
2006-03-22 12:54:10 +03:00
# define MIN_SAMPLING_RATE_RATIO (2)
/* for correct statistics, we need at least 10 ticks between each measure */
2006-10-26 14:50:58 +04:00
# define MIN_STAT_SAMPLING_RATE \
( MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs ( 10 ) )
# define MIN_SAMPLING_RATE \
( def_sampling_rate / MIN_SAMPLING_RATE_RATIO )
2005-06-01 06:03:47 +04:00
# define MAX_SAMPLING_RATE (500 * def_sampling_rate)
2006-03-22 12:54:10 +03:00
# define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
# define DEF_SAMPLING_DOWN_FACTOR (1)
# define MAX_SAMPLING_DOWN_FACTOR (10)
2007-10-03 00:28:12 +04:00
# define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
2005-06-01 06:03:47 +04:00
2006-11-22 17:57:56 +03:00
static void do_dbs_timer ( struct work_struct * work ) ;
2005-06-01 06:03:47 +04:00
struct cpu_dbs_info_s {
2007-10-23 00:49:09 +04:00
struct cpufreq_policy * cur_policy ;
unsigned int prev_cpu_idle_up ;
unsigned int prev_cpu_idle_down ;
unsigned int enable ;
unsigned int down_skip ;
unsigned int requested_freq ;
2005-06-01 06:03:47 +04:00
} ;
static DEFINE_PER_CPU ( struct cpu_dbs_info_s , cpu_dbs_info ) ;
static unsigned int dbs_enable ; /* number of CPUs using this policy */
2006-06-22 02:18:34 +04:00
/*
* DEADLOCK ALERT ! There is a ordering requirement between cpu_hotplug
* lock and dbs_mutex . cpu_hotplug lock should always be held before
* dbs_mutex . If any function that can potentially take cpu_hotplug lock
* ( like __cpufreq_driver_target ( ) ) is being called with dbs_mutex taken , then
* cpu_hotplug lock should be taken before that . Note that cpu_hotplug lock
* is recursive for the same process . - Venki
*/
2007-10-23 00:49:09 +04:00
static DEFINE_MUTEX ( dbs_mutex ) ;
2006-11-22 17:57:56 +03:00
static DECLARE_DELAYED_WORK ( dbs_work , do_dbs_timer ) ;
2005-06-01 06:03:47 +04:00
struct dbs_tuners {
2007-10-23 00:49:09 +04:00
unsigned int sampling_rate ;
unsigned int sampling_down_factor ;
unsigned int up_threshold ;
unsigned int down_threshold ;
unsigned int ignore_nice ;
unsigned int freq_step ;
2005-06-01 06:03:47 +04:00
} ;
static struct dbs_tuners dbs_tuners_ins = {
2007-10-23 00:49:09 +04:00
. up_threshold = DEF_FREQUENCY_UP_THRESHOLD ,
. down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD ,
. sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR ,
. ignore_nice = 0 ,
. freq_step = 5 ,
2005-06-01 06:03:47 +04:00
} ;
2005-06-01 06:03:49 +04:00
static inline unsigned int get_cpu_idle_time ( unsigned int cpu )
{
2006-10-26 14:50:58 +04:00
unsigned int add_nice = 0 , ret ;
if ( dbs_tuners_ins . ignore_nice )
add_nice = kstat_cpu ( cpu ) . cpustat . nice ;
2007-10-23 00:49:09 +04:00
ret = kstat_cpu ( cpu ) . cpustat . idle +
2005-06-01 06:03:49 +04:00
kstat_cpu ( cpu ) . cpustat . iowait +
2006-10-26 14:50:58 +04:00
add_nice ;
return ret ;
2005-06-01 06:03:49 +04:00
}
2007-10-22 11:50:13 +04:00
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier ( struct notifier_block * nb , unsigned long val ,
void * data )
{
struct cpufreq_freqs * freq = data ;
struct cpu_dbs_info_s * this_dbs_info = & per_cpu ( cpu_dbs_info ,
freq - > cpu ) ;
if ( ! this_dbs_info - > enable )
return 0 ;
this_dbs_info - > requested_freq = freq - > new ;
return 0 ;
}
static struct notifier_block dbs_cpufreq_notifier_block = {
. notifier_call = dbs_cpufreq_notifier
} ;
2005-06-01 06:03:47 +04:00
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max ( struct cpufreq_policy * policy , char * buf )
{
return sprintf ( buf , " %u \n " , MAX_SAMPLING_RATE ) ;
}
static ssize_t show_sampling_rate_min ( struct cpufreq_policy * policy , char * buf )
{
return sprintf ( buf , " %u \n " , MIN_SAMPLING_RATE ) ;
}
2007-10-23 00:49:09 +04:00
# define define_one_ro(_name) \
static struct freq_attr _name = \
2005-06-01 06:03:47 +04:00
__ATTR ( _name , 0444 , show_ # # _name , NULL )
define_one_ro ( sampling_rate_max ) ;
define_one_ro ( sampling_rate_min ) ;
/* cpufreq_conservative Governor Tunables */
# define show_one(file_name, object) \
static ssize_t show_ # # file_name \
( struct cpufreq_policy * unused , char * buf ) \
{ \
return sprintf ( buf , " %u \n " , dbs_tuners_ins . object ) ; \
}
show_one ( sampling_rate , sampling_rate ) ;
show_one ( sampling_down_factor , sampling_down_factor ) ;
show_one ( up_threshold , up_threshold ) ;
show_one ( down_threshold , down_threshold ) ;
2005-12-01 12:09:25 +03:00
show_one ( ignore_nice_load , ignore_nice ) ;
2005-06-01 06:03:47 +04:00
show_one ( freq_step , freq_step ) ;
2007-10-23 00:49:09 +04:00
static ssize_t store_sampling_down_factor ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
ret = sscanf ( buf , " %u " , & input ) ;
2006-03-22 12:54:10 +03:00
if ( ret ! = 1 | | input > MAX_SAMPLING_DOWN_FACTOR | | input < 1 )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
dbs_tuners_ins . sampling_down_factor = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2007-10-23 00:49:09 +04:00
static ssize_t store_sampling_rate ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
ret = sscanf ( buf , " %u " , & input ) ;
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
if ( ret ! = 1 | | input > MAX_SAMPLING_RATE | | input < MIN_SAMPLING_RATE ) {
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return - EINVAL ;
}
dbs_tuners_ins . sampling_rate = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2007-10-23 00:49:09 +04:00
static ssize_t store_up_threshold ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
ret = sscanf ( buf , " %u " , & input ) ;
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2006-04-02 07:07:07 +04:00
if ( ret ! = 1 | | input > 100 | | input < = dbs_tuners_ins . down_threshold ) {
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return - EINVAL ;
}
dbs_tuners_ins . up_threshold = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2007-10-23 00:49:09 +04:00
static ssize_t store_down_threshold ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
ret = sscanf ( buf , " %u " , & input ) ;
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2006-04-02 07:07:07 +04:00
if ( ret ! = 1 | | input > 100 | | input > = dbs_tuners_ins . up_threshold ) {
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return - EINVAL ;
}
dbs_tuners_ins . down_threshold = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2005-12-01 12:09:25 +03:00
static ssize_t store_ignore_nice_load ( struct cpufreq_policy * policy ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
unsigned int j ;
2007-10-23 00:49:09 +04:00
ret = sscanf ( buf , " %u " , & input ) ;
if ( ret ! = 1 )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
2007-10-23 00:49:09 +04:00
if ( input > 1 )
2005-06-01 06:03:47 +04:00
input = 1 ;
2007-10-23 00:49:09 +04:00
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2007-10-23 00:49:09 +04:00
if ( input = = dbs_tuners_ins . ignore_nice ) { /* nothing to do */
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
dbs_tuners_ins . ignore_nice = input ;
/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
2005-06-01 06:03:49 +04:00
for_each_online_cpu ( j ) {
2005-06-01 06:03:47 +04:00
struct cpu_dbs_info_s * j_dbs_info ;
j_dbs_info = & per_cpu ( cpu_dbs_info , j ) ;
2005-06-01 06:03:49 +04:00
j_dbs_info - > prev_cpu_idle_up = get_cpu_idle_time ( j ) ;
2005-06-01 06:03:47 +04:00
j_dbs_info - > prev_cpu_idle_down = j_dbs_info - > prev_cpu_idle_up ;
}
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
static ssize_t store_freq_step ( struct cpufreq_policy * policy ,
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
2007-10-23 00:49:09 +04:00
ret = sscanf ( buf , " %u " , & input ) ;
2005-06-01 06:03:47 +04:00
2007-10-23 00:49:09 +04:00
if ( ret ! = 1 )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
2007-10-23 00:49:09 +04:00
if ( input > 100 )
2005-06-01 06:03:47 +04:00
input = 100 ;
2007-10-23 00:49:09 +04:00
2005-06-01 06:03:47 +04:00
/* no need to test here if freq_step is zero as the user might actually
* want this , they would be crazy though : ) */
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
dbs_tuners_ins . freq_step = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
# define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR ( _name , 0644 , show_ # # _name , store_ # # _name )
define_one_rw ( sampling_rate ) ;
define_one_rw ( sampling_down_factor ) ;
define_one_rw ( up_threshold ) ;
define_one_rw ( down_threshold ) ;
2005-12-01 12:09:25 +03:00
define_one_rw ( ignore_nice_load ) ;
2005-06-01 06:03:47 +04:00
define_one_rw ( freq_step ) ;
static struct attribute * dbs_attributes [ ] = {
& sampling_rate_max . attr ,
& sampling_rate_min . attr ,
& sampling_rate . attr ,
& sampling_down_factor . attr ,
& up_threshold . attr ,
& down_threshold . attr ,
2005-12-01 12:09:25 +03:00
& ignore_nice_load . attr ,
2005-06-01 06:03:47 +04:00
& freq_step . attr ,
NULL
} ;
static struct attribute_group dbs_attr_group = {
. attrs = dbs_attributes ,
. name = " conservative " ,
} ;
/************************** sysfs end ************************/
static void dbs_check_cpu ( int cpu )
{
unsigned int idle_ticks , up_idle_ticks , down_idle_ticks ;
2006-03-22 12:59:16 +03:00
unsigned int tmp_idle_ticks , total_idle_ticks ;
2008-07-30 20:59:56 +04:00
unsigned int freq_target ;
2005-06-01 06:03:47 +04:00
unsigned int freq_down_sampling_rate ;
2006-03-22 12:59:16 +03:00
struct cpu_dbs_info_s * this_dbs_info = & per_cpu ( cpu_dbs_info , cpu ) ;
2005-06-01 06:03:47 +04:00
struct cpufreq_policy * policy ;
if ( ! this_dbs_info - > enable )
return ;
2006-03-22 12:59:16 +03:00
policy = this_dbs_info - > cur_policy ;
2007-10-23 00:49:09 +04:00
/*
* The default safe range is 20 % to 80 %
2005-06-01 06:03:47 +04:00
* Every sampling_rate , we check
2007-10-23 00:49:09 +04:00
* - If current idle time is less than 20 % , then we try to
* increase frequency
2005-06-01 06:03:47 +04:00
* Every sampling_rate * sampling_down_factor , we check
2007-10-23 00:49:09 +04:00
* - If current idle time is more than 80 % , then we try to
* decrease frequency
2005-06-01 06:03:47 +04:00
*
2007-10-23 00:49:09 +04:00
* Any frequency increase takes it to the maximum frequency .
* Frequency reduction happens at minimum steps of
* 5 % ( default ) of max_frequency
2005-06-01 06:03:47 +04:00
*/
/* Check for frequency increase */
2005-06-01 06:03:49 +04:00
idle_ticks = UINT_MAX ;
2005-06-01 06:03:47 +04:00
2006-03-22 12:59:16 +03:00
/* Check for frequency increase */
total_idle_ticks = get_cpu_idle_time ( cpu ) ;
tmp_idle_ticks = total_idle_ticks -
this_dbs_info - > prev_cpu_idle_up ;
this_dbs_info - > prev_cpu_idle_up = total_idle_ticks ;
if ( tmp_idle_ticks < idle_ticks )
idle_ticks = tmp_idle_ticks ;
2005-06-01 06:03:47 +04:00
/* Scale idle ticks by 100 and compare with up and down ticks */
idle_ticks * = 100 ;
up_idle_ticks = ( 100 - dbs_tuners_ins . up_threshold ) *
2006-03-22 12:54:10 +03:00
usecs_to_jiffies ( dbs_tuners_ins . sampling_rate ) ;
2005-06-01 06:03:47 +04:00
if ( idle_ticks < up_idle_ticks ) {
2006-03-22 13:00:18 +03:00
this_dbs_info - > down_skip = 0 ;
2006-03-22 12:59:16 +03:00
this_dbs_info - > prev_cpu_idle_down =
this_dbs_info - > prev_cpu_idle_up ;
2005-06-01 06:03:49 +04:00
2005-06-01 06:03:47 +04:00
/* if we are already at full speed then break out early */
2006-03-22 13:00:18 +03:00
if ( this_dbs_info - > requested_freq = = policy - > max )
2005-06-01 06:03:47 +04:00
return ;
2007-10-23 00:49:09 +04:00
2008-07-30 20:59:56 +04:00
freq_target = ( dbs_tuners_ins . freq_step * policy - > max ) / 100 ;
2005-06-01 06:03:47 +04:00
/* max freq cannot be less than 100. But who knows.... */
2008-07-30 20:59:56 +04:00
if ( unlikely ( freq_target = = 0 ) )
freq_target = 5 ;
2007-10-23 00:49:09 +04:00
2008-07-30 20:59:56 +04:00
this_dbs_info - > requested_freq + = freq_target ;
2006-03-22 13:00:18 +03:00
if ( this_dbs_info - > requested_freq > policy - > max )
this_dbs_info - > requested_freq = policy - > max ;
2005-06-01 06:03:47 +04:00
2006-03-22 13:00:18 +03:00
__cpufreq_driver_target ( policy , this_dbs_info - > requested_freq ,
2005-06-01 06:03:47 +04:00
CPUFREQ_RELATION_H ) ;
return ;
}
/* Check for frequency decrease */
2006-03-22 13:00:18 +03:00
this_dbs_info - > down_skip + + ;
if ( this_dbs_info - > down_skip < dbs_tuners_ins . sampling_down_factor )
2005-06-01 06:03:47 +04:00
return ;
2006-03-22 12:59:16 +03:00
/* Check for frequency decrease */
total_idle_ticks = this_dbs_info - > prev_cpu_idle_up ;
tmp_idle_ticks = total_idle_ticks -
this_dbs_info - > prev_cpu_idle_down ;
this_dbs_info - > prev_cpu_idle_down = total_idle_ticks ;
2005-06-01 06:03:47 +04:00
2006-03-22 12:59:16 +03:00
if ( tmp_idle_ticks < idle_ticks )
idle_ticks = tmp_idle_ticks ;
2005-06-01 06:03:47 +04:00
/* Scale idle ticks by 100 and compare with up and down ticks */
idle_ticks * = 100 ;
2006-03-22 13:00:18 +03:00
this_dbs_info - > down_skip = 0 ;
2005-06-01 06:03:47 +04:00
freq_down_sampling_rate = dbs_tuners_ins . sampling_rate *
dbs_tuners_ins . sampling_down_factor ;
down_idle_ticks = ( 100 - dbs_tuners_ins . down_threshold ) *
2006-03-22 12:54:10 +03:00
usecs_to_jiffies ( freq_down_sampling_rate ) ;
2005-06-01 06:03:47 +04:00
2005-06-01 06:03:49 +04:00
if ( idle_ticks > down_idle_ticks ) {
2006-03-22 12:54:10 +03:00
/*
* if we are already at the lowest speed then break out early
2005-06-01 06:03:47 +04:00
* or if we ' cannot ' reduce the speed as the user might want
2008-07-30 20:59:56 +04:00
* freq_target to be zero
2006-03-22 12:54:10 +03:00
*/
2006-03-22 13:00:18 +03:00
if ( this_dbs_info - > requested_freq = = policy - > min
2005-06-01 06:03:47 +04:00
| | dbs_tuners_ins . freq_step = = 0 )
return ;
2008-07-30 20:59:56 +04:00
freq_target = ( dbs_tuners_ins . freq_step * policy - > max ) / 100 ;
2005-06-01 06:03:47 +04:00
/* max freq cannot be less than 100. But who knows.... */
2008-07-30 20:59:56 +04:00
if ( unlikely ( freq_target = = 0 ) )
freq_target = 5 ;
2005-06-01 06:03:47 +04:00
2008-07-30 20:59:56 +04:00
this_dbs_info - > requested_freq - = freq_target ;
2006-03-22 13:00:18 +03:00
if ( this_dbs_info - > requested_freq < policy - > min )
this_dbs_info - > requested_freq = policy - > min ;
2005-06-01 06:03:47 +04:00
2006-03-22 13:00:18 +03:00
__cpufreq_driver_target ( policy , this_dbs_info - > requested_freq ,
2006-03-22 12:54:10 +03:00
CPUFREQ_RELATION_H ) ;
2005-06-01 06:03:47 +04:00
return ;
}
}
2006-11-22 17:57:56 +03:00
static void do_dbs_timer ( struct work_struct * work )
2007-10-23 00:49:09 +04:00
{
2005-06-01 06:03:47 +04:00
int i ;
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
for_each_online_cpu ( i )
dbs_check_cpu ( i ) ;
2007-10-23 00:49:09 +04:00
schedule_delayed_work ( & dbs_work ,
2005-06-01 06:03:47 +04:00
usecs_to_jiffies ( dbs_tuners_ins . sampling_rate ) ) ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2007-10-23 00:49:09 +04:00
}
2005-06-01 06:03:47 +04:00
static inline void dbs_timer_init ( void )
{
2008-07-07 21:16:20 +04:00
init_timer_deferrable ( & dbs_work . timer ) ;
2005-06-01 06:03:47 +04:00
schedule_delayed_work ( & dbs_work ,
usecs_to_jiffies ( dbs_tuners_ins . sampling_rate ) ) ;
return ;
}
static inline void dbs_timer_exit ( void )
{
cancel_delayed_work ( & dbs_work ) ;
return ;
}
static int cpufreq_governor_dbs ( struct cpufreq_policy * policy ,
unsigned int event )
{
unsigned int cpu = policy - > cpu ;
struct cpu_dbs_info_s * this_dbs_info ;
unsigned int j ;
2006-10-21 01:31:00 +04:00
int rc ;
2005-06-01 06:03:47 +04:00
this_dbs_info = & per_cpu ( cpu_dbs_info , cpu ) ;
switch ( event ) {
case CPUFREQ_GOV_START :
2007-10-23 00:49:09 +04:00
if ( ( ! cpu_online ( cpu ) ) | | ( ! policy - > cur ) )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
if ( this_dbs_info - > enable ) /* Already enabled */
break ;
2007-10-23 00:49:09 +04:00
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2006-10-21 01:31:00 +04:00
rc = sysfs_create_group ( & policy - > kobj , & dbs_attr_group ) ;
if ( rc ) {
mutex_unlock ( & dbs_mutex ) ;
return rc ;
}
2009-01-04 16:18:06 +03:00
for_each_cpu ( j , policy - > cpus ) {
2005-06-01 06:03:47 +04:00
struct cpu_dbs_info_s * j_dbs_info ;
j_dbs_info = & per_cpu ( cpu_dbs_info , j ) ;
j_dbs_info - > cur_policy = policy ;
2007-10-23 00:49:09 +04:00
2006-03-22 12:59:16 +03:00
j_dbs_info - > prev_cpu_idle_up = get_cpu_idle_time ( cpu ) ;
2005-06-01 06:03:47 +04:00
j_dbs_info - > prev_cpu_idle_down
= j_dbs_info - > prev_cpu_idle_up ;
}
this_dbs_info - > enable = 1 ;
2006-03-22 13:00:18 +03:00
this_dbs_info - > down_skip = 0 ;
this_dbs_info - > requested_freq = policy - > cur ;
2006-10-21 01:31:00 +04:00
2005-06-01 06:03:47 +04:00
dbs_enable + + ;
/*
* Start the timerschedule work , when this governor
* is used for first time
*/
if ( dbs_enable = = 1 ) {
unsigned int latency ;
/* policy latency is in nS. Convert it to uS first */
2006-03-22 12:54:10 +03:00
latency = policy - > cpuinfo . transition_latency / 1000 ;
if ( latency = = 0 )
latency = 1 ;
2005-06-01 06:03:47 +04:00
2006-03-22 12:56:23 +03:00
def_sampling_rate = 10 * latency *
2005-06-01 06:03:47 +04:00
DEF_SAMPLING_RATE_LATENCY_MULTIPLIER ;
2006-03-22 12:54:10 +03:00
if ( def_sampling_rate < MIN_STAT_SAMPLING_RATE )
def_sampling_rate = MIN_STAT_SAMPLING_RATE ;
2005-06-01 06:03:47 +04:00
dbs_tuners_ins . sampling_rate = def_sampling_rate ;
dbs_timer_init ( ) ;
2007-10-22 11:50:13 +04:00
cpufreq_register_notifier (
& dbs_cpufreq_notifier_block ,
CPUFREQ_TRANSITION_NOTIFIER ) ;
2005-06-01 06:03:47 +04:00
}
2007-10-23 00:49:09 +04:00
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
break ;
case CPUFREQ_GOV_STOP :
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
this_dbs_info - > enable = 0 ;
sysfs_remove_group ( & policy - > kobj , & dbs_attr_group ) ;
dbs_enable - - ;
/*
* Stop the timerschedule work , when this governor
* is used for first time
*/
2007-10-22 11:50:13 +04:00
if ( dbs_enable = = 0 ) {
2005-06-01 06:03:47 +04:00
dbs_timer_exit ( ) ;
2007-10-22 11:50:13 +04:00
cpufreq_unregister_notifier (
& dbs_cpufreq_notifier_block ,
CPUFREQ_TRANSITION_NOTIFIER ) ;
}
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
break ;
case CPUFREQ_GOV_LIMITS :
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
if ( policy - > max < this_dbs_info - > cur_policy - > cur )
__cpufreq_driver_target (
this_dbs_info - > cur_policy ,
2007-10-23 00:49:09 +04:00
policy - > max , CPUFREQ_RELATION_H ) ;
2005-06-01 06:03:47 +04:00
else if ( policy - > min > this_dbs_info - > cur_policy - > cur )
__cpufreq_driver_target (
this_dbs_info - > cur_policy ,
2007-10-23 00:49:09 +04:00
policy - > min , CPUFREQ_RELATION_L ) ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
break ;
}
return 0 ;
}
2008-09-20 18:50:08 +04:00
# ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
# endif
2007-10-03 00:28:12 +04:00
struct cpufreq_governor cpufreq_gov_conservative = {
. name = " conservative " ,
. governor = cpufreq_governor_dbs ,
. max_transition_latency = TRANSITION_LATENCY_LIMIT ,
. owner = THIS_MODULE ,
2005-06-01 06:03:47 +04:00
} ;
static int __init cpufreq_gov_dbs_init ( void )
{
2007-10-03 00:28:12 +04:00
return cpufreq_register_governor ( & cpufreq_gov_conservative ) ;
2005-06-01 06:03:47 +04:00
}
static void __exit cpufreq_gov_dbs_exit ( void )
{
/* Make sure that the scheduled work is indeed not running */
flush_scheduled_work ( ) ;
2007-10-03 00:28:12 +04:00
cpufreq_unregister_governor ( & cpufreq_gov_conservative ) ;
2005-06-01 06:03:47 +04:00
}
MODULE_AUTHOR ( " Alexander Clouter <alex-kernel@digriz.org.uk> " ) ;
MODULE_DESCRIPTION ( " 'cpufreq_conservative' - A dynamic cpufreq governor for "
" Low Latency Frequency Transition capable processors "
" optimised for use in a battery environment " ) ;
MODULE_LICENSE ( " GPL " ) ;
2008-01-18 02:21:08 +03:00
# ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall ( cpufreq_gov_dbs_init ) ;
# else
2005-06-01 06:03:47 +04:00
module_init ( cpufreq_gov_dbs_init ) ;
2008-01-18 02:21:08 +03:00
# endif
2005-06-01 06:03:47 +04:00
module_exit ( cpufreq_gov_dbs_exit ) ;