linux/scripts/clang-tools/gen_compile_commands.py

229 lines
7.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
# SPDX-License-Identifier: GPL-2.0
#
# Copyright (C) Google LLC, 2018
#
# Author: Tom Roeder <tmroeder@google.com>
#
"""A tool for generating compile_commands.json in the Linux kernel."""
import argparse
import json
import logging
import os
import re
import subprocess
import sys
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
_DEFAULT_OUTPUT = 'compile_commands.json'
_DEFAULT_LOG_LEVEL = 'WARNING'
_FILENAME_PATTERN = r'^\..*\.cmd$'
_LINE_PATTERN = r'^(saved)?cmd_[^ ]*\.o := (?P<command_prefix>.* )(?P<file_path>[^ ]*\.[cS]) *(;|$)'
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
_VALID_LOG_LEVELS = ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL']
gen_compile_commands: prune some directories If directories are passed to gen_compile_commands.py, os.walk() traverses all the subdirectories to search for .cmd files, but we know some of them are not worth traversing. Use the 'topdown' parameter of os.walk to prune them. Documentation about the 'topdown' option of os.walk: When topdown is True, the caller can modify the dirnames list in-place (perhaps using del or slice assignment), and walk() will only recurse into the subdirectories whose names remain in dirnames; this can be used to prune the search, impose a specific order of visiting, or even to inform walk() about directories the caller creates or renames before it resumes walk() again. Modifying dirnames when topdown is False has no effect on the behavior of the walk, because in bottom-up mode the directories in dirnames are generated before dirpath itself is generated. This commit prunes four directories, .git, Documentation, include, and tools. The first three do not contain any C files, so skipping them makes this script work slightly faster. My main motivation is the last one, tools/ directory. Commit 6ca4c6d25949 ("gen_compile_commands: do not support .cmd files under tools/ directory") stopped supporting the tools/ directory. The current code no longer picks up .cmd files from the tools/ directory. If you run: ./scripts/clang-tools/gen_compile_commands.py --log_level=INFO then, you will see several "File ... not found" log messages. This is expected, and I do not want to support the tools/ directory. However, without an explicit comment "do not support tools/", somebody might try to get it back. Clarify this. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Acked-by: Nathan Chancellor <nathan@kernel.org>
2021-02-12 01:11:54 +09:00
# The tools/ directory adopts a different build system, and produces .cmd
# files in a different format. Do not support it.
_EXCLUDE_DIRS = ['.git', 'Documentation', 'include', 'tools']
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
def parse_arguments():
"""Sets up and parses command-line arguments.
Returns:
log_level: A logging level to filter log output.
directory: The work directory where the objects were built.
ar: Command used for parsing .a archives.
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
output: Where to write the compile-commands JSON file.
paths: The list of files/directories to handle to find .cmd files.
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
"""
usage = 'Creates a compile_commands.json database from kernel .cmd files'
parser = argparse.ArgumentParser(description=usage)
directory_help = ('specify the output directory used for the kernel build '
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
'(defaults to the working directory)')
parser.add_argument('-d', '--directory', type=str, default='.',
help=directory_help)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
output_help = ('path to the output command database (defaults to ' +
_DEFAULT_OUTPUT + ')')
parser.add_argument('-o', '--output', type=str, default=_DEFAULT_OUTPUT,
help=output_help)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
log_level_help = ('the level of log messages to produce (defaults to ' +
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
_DEFAULT_LOG_LEVEL + ')')
parser.add_argument('--log_level', choices=_VALID_LOG_LEVELS,
default=_DEFAULT_LOG_LEVEL, help=log_level_help)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
ar_help = 'command used for parsing .a archives'
parser.add_argument('-a', '--ar', type=str, default='llvm-ar', help=ar_help)
paths_help = ('directories to search or files to parse '
'(files should be *.o, *.a, or modules.order). '
'If nothing is specified, the current directory is searched')
parser.add_argument('paths', type=str, nargs='*', help=paths_help)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
args = parser.parse_args()
return (args.log_level,
gen_compile_commands.py: fix path resolve with symlinks in it When a path contains relative symbolic links, os.path.abspath() might not follow the symlinks and instead return the absolute path with just the relative paths resolved, resulting in an incorrect path. 1. Say "drivers/hdf/" has some symlinks: # ls -l drivers/hdf/ total 364 drwxrwxr-x 2 ... 4096 ... evdev lrwxrwxrwx 1 ... 44 ... framework -> ../../../../../../drivers/hdf_core/framework -rw-rw-r-- 1 ... 359010 ... hdf_macro_test.h lrwxrwxrwx 1 ... 55 ... inner_api -> ../../../../../../drivers/hdf_core/interfaces/inner_api lrwxrwxrwx 1 ... 53 ... khdf -> ../../../../../../drivers/hdf_core/adapter/khdf/linux -rw-r--r-- 1 ... 74 ... Makefile drwxrwxr-x 3 ... 4096 ... wifi 2. One .cmd file records that: # head -1 ./framework/core/manager/src/.devmgr_service.o.cmd cmd_drivers/hdf/khdf/manager/../../../../framework/core/manager/src/devmgr_service.o := ... \ /path/to/src/drivers/hdf/khdf/manager/../../../../framework/core/manager/src/devmgr_service.c 3. os.path.abspath returns "/path/to/src/framework/core/manager/src/devmgr_service.c", not correct: # ./scripts/clang-tools/gen_compile_commands.py INFO: Could not add line from ./framework/core/manager/src/.devmgr_service.o.cmd: File \ /path/to/src/framework/core/manager/src/devmgr_service.c not found Use os.path.realpath(), which resolves the symlinks and normalizes the paths correctly. # cat compile_commands.json ... { "command": ... "directory": ... "file": "/path/to/bla/drivers/hdf_core/framework/core/manager/src/devmgr_service.c" }, ... Also fix it in parse_arguments(). Signed-off-by: Jialu Xu <xujialu@vimux.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-12-10 15:05:34 +08:00
os.path.realpath(args.directory),
args.output,
args.ar,
args.paths if len(args.paths) > 0 else [args.directory])
def cmdfiles_in_dir(directory):
"""Generate the iterator of .cmd files found under the directory.
Walk under the given directory, and yield every .cmd file found.
Args:
directory: The directory to search for .cmd files.
Yields:
The path to a .cmd file.
"""
filename_matcher = re.compile(_FILENAME_PATTERN)
gen_compile_commands: prune some directories If directories are passed to gen_compile_commands.py, os.walk() traverses all the subdirectories to search for .cmd files, but we know some of them are not worth traversing. Use the 'topdown' parameter of os.walk to prune them. Documentation about the 'topdown' option of os.walk: When topdown is True, the caller can modify the dirnames list in-place (perhaps using del or slice assignment), and walk() will only recurse into the subdirectories whose names remain in dirnames; this can be used to prune the search, impose a specific order of visiting, or even to inform walk() about directories the caller creates or renames before it resumes walk() again. Modifying dirnames when topdown is False has no effect on the behavior of the walk, because in bottom-up mode the directories in dirnames are generated before dirpath itself is generated. This commit prunes four directories, .git, Documentation, include, and tools. The first three do not contain any C files, so skipping them makes this script work slightly faster. My main motivation is the last one, tools/ directory. Commit 6ca4c6d25949 ("gen_compile_commands: do not support .cmd files under tools/ directory") stopped supporting the tools/ directory. The current code no longer picks up .cmd files from the tools/ directory. If you run: ./scripts/clang-tools/gen_compile_commands.py --log_level=INFO then, you will see several "File ... not found" log messages. This is expected, and I do not want to support the tools/ directory. However, without an explicit comment "do not support tools/", somebody might try to get it back. Clarify this. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Acked-by: Nathan Chancellor <nathan@kernel.org>
2021-02-12 01:11:54 +09:00
exclude_dirs = [ os.path.join(directory, d) for d in _EXCLUDE_DIRS ]
for dirpath, dirnames, filenames in os.walk(directory, topdown=True):
# Prune unwanted directories.
if dirpath in exclude_dirs:
dirnames[:] = []
continue
for filename in filenames:
if filename_matcher.match(filename):
yield os.path.join(dirpath, filename)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
def to_cmdfile(path):
"""Return the path of .cmd file used for the given build artifact
Args:
Path: file path
Returns:
The path to .cmd file
"""
dir, base = os.path.split(path)
return os.path.join(dir, '.' + base + '.cmd')
def cmdfiles_for_a(archive, ar):
"""Generate the iterator of .cmd files associated with the archive.
Parse the given archive, and yield every .cmd file used to build it.
Args:
archive: The archive to parse
Yields:
The path to every .cmd file found
"""
for obj in subprocess.check_output([ar, '-t', archive]).decode().split():
yield to_cmdfile(obj)
def cmdfiles_for_modorder(modorder):
"""Generate the iterator of .cmd files associated with the modules.order.
Parse the given modules.order, and yield every .cmd file used to build the
contained modules.
Args:
modorder: The modules.order file to parse
Yields:
The path to every .cmd file found
"""
with open(modorder) as f:
for line in f:
obj = line.rstrip()
base, ext = os.path.splitext(obj)
if ext != '.o':
sys.exit('{}: module path must end with .o'.format(obj))
mod = base + '.mod'
# Read from *.mod, to get a list of objects that compose the module.
with open(mod) as m:
for mod_line in m:
yield to_cmdfile(mod_line.rstrip())
def process_line(root_directory, command_prefix, file_path):
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
"""Extracts information from a .cmd line and creates an entry from it.
Args:
root_directory: The directory that was searched for .cmd files. Usually
used directly in the "directory" entry in compile_commands.json.
command_prefix: The extracted command line, up to the last element.
file_path: The .c file from the end of the extracted command.
Usually relative to root_directory, but sometimes absolute.
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
Returns:
An entry to append to compile_commands.
Raises:
ValueError: Could not find the extracted file based on file_path and
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
root_directory or file_directory.
"""
# The .cmd files are intended to be included directly by Make, so they
# escape the pound sign '#', either as '\#' or '$(pound)' (depending on the
# kernel version). The compile_commands.json file is not interepreted
# by Make, so this code replaces the escaped version with '#'.
prefix = command_prefix.replace(r'\#', '#').replace('$(pound)', '#')
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
gen_compile_commands.py: fix path resolve with symlinks in it When a path contains relative symbolic links, os.path.abspath() might not follow the symlinks and instead return the absolute path with just the relative paths resolved, resulting in an incorrect path. 1. Say "drivers/hdf/" has some symlinks: # ls -l drivers/hdf/ total 364 drwxrwxr-x 2 ... 4096 ... evdev lrwxrwxrwx 1 ... 44 ... framework -> ../../../../../../drivers/hdf_core/framework -rw-rw-r-- 1 ... 359010 ... hdf_macro_test.h lrwxrwxrwx 1 ... 55 ... inner_api -> ../../../../../../drivers/hdf_core/interfaces/inner_api lrwxrwxrwx 1 ... 53 ... khdf -> ../../../../../../drivers/hdf_core/adapter/khdf/linux -rw-r--r-- 1 ... 74 ... Makefile drwxrwxr-x 3 ... 4096 ... wifi 2. One .cmd file records that: # head -1 ./framework/core/manager/src/.devmgr_service.o.cmd cmd_drivers/hdf/khdf/manager/../../../../framework/core/manager/src/devmgr_service.o := ... \ /path/to/src/drivers/hdf/khdf/manager/../../../../framework/core/manager/src/devmgr_service.c 3. os.path.abspath returns "/path/to/src/framework/core/manager/src/devmgr_service.c", not correct: # ./scripts/clang-tools/gen_compile_commands.py INFO: Could not add line from ./framework/core/manager/src/.devmgr_service.o.cmd: File \ /path/to/src/framework/core/manager/src/devmgr_service.c not found Use os.path.realpath(), which resolves the symlinks and normalizes the paths correctly. # cat compile_commands.json ... { "command": ... "directory": ... "file": "/path/to/bla/drivers/hdf_core/framework/core/manager/src/devmgr_service.c" }, ... Also fix it in parse_arguments(). Signed-off-by: Jialu Xu <xujialu@vimux.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-12-10 15:05:34 +08:00
# Return the canonical path, eliminating any symbolic links encountered in the path.
abs_path = os.path.realpath(os.path.join(root_directory, file_path))
if not os.path.exists(abs_path):
raise ValueError('File %s not found' % abs_path)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
return {
'directory': root_directory,
'file': abs_path,
'command': prefix + file_path,
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
}
def main():
"""Walks through the directory and finds and parses .cmd files."""
log_level, directory, output, ar, paths = parse_arguments()
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
level = getattr(logging, log_level)
logging.basicConfig(format='%(levelname)s: %(message)s', level=level)
line_matcher = re.compile(_LINE_PATTERN)
compile_commands = []
for path in paths:
# If 'path' is a directory, handle all .cmd files under it.
# Otherwise, handle .cmd files associated with the file.
# built-in objects are linked via vmlinux.a
# Modules are listed in modules.order.
if os.path.isdir(path):
cmdfiles = cmdfiles_in_dir(path)
elif path.endswith('.a'):
cmdfiles = cmdfiles_for_a(path, ar)
elif path.endswith('modules.order'):
cmdfiles = cmdfiles_for_modorder(path)
else:
sys.exit('{}: unknown file type'.format(path))
for cmdfile in cmdfiles:
with open(cmdfile, 'rt') as f:
result = line_matcher.match(f.readline())
if result:
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
try:
entry = process_line(directory, result.group('command_prefix'),
result.group('file_path'))
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
compile_commands.append(entry)
except ValueError as err:
logging.info('Could not add line from %s: %s',
cmdfile, err)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
with open(output, 'wt') as f:
json.dump(sorted(compile_commands, key=lambda x: x["file"]), f, indent=2, sort_keys=True)
scripts: add a tool to produce a compile_commands.json file The LLVM/Clang project provides many tools for analyzing C source code. Many of these tools are based on LibTooling (https://clang.llvm.org/docs/LibTooling.html), which depends on a database of compiler flags. The standard container for this database is compile_commands.json, which consists of a list of JSON objects, each with "directory", "file", and "command" fields. Some build systems, like cmake or bazel, produce this compilation information directly. Naturally, Makefiles don't. However, the kernel makefiles already create .<target>.o.cmd files that contain all the information needed to build a compile_commands.json file. So, this commit adds scripts/gen_compile_commands.py, which recursively searches through a directory for .<target>.o.cmd files and extracts appropriate compile commands from them. It writes a compile_commands.json file that LibTooling-based tools can use. By default, gen_compile_commands.py starts its search in its working directory and (over)writes compile_commands.json in the working directory. However, it also supports --output and --directory flags for out-of-tree use. Note that while gen_compile_commands.py enables the use of clang-based tools, it does not require the kernel to be compiled with clang. E.g., the following sequence of commands produces a compile_commands.json file that works correctly with LibTooling. make defconfig make scripts/gen_compile_commands.py Also note that this script is written to work correctly in both Python 2 and Python 3, so it does not specify the Python version in its first line. For an example of the utility of this script: after running gen_compile_commands.json on the latest kernel version, I was able to use Vim + the YouCompleteMe pluging + clangd to automatically jump to definitions and declarations. Obviously, cscope and ctags provide some of this functionality; the advantage of supporting LibTooling is that it opens the door to many other clang-based tools that understand the code directly and do not rely on regular expressions and heuristics. Tested: Built several recent kernel versions and ran the script against them, testing tools like clangd (for editor/LSP support) and clang-check (for static analysis). Also extracted some test .cmd files from a kernel build and wrote a test script to check that the script behaved correctly with all permutations of the --output and --directory flags. Signed-off-by: Tom Roeder <tmroeder@google.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-18 14:49:07 -08:00
if __name__ == '__main__':
main()