linux/fs/proc/root.c

374 lines
8.7 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/proc/root.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* proc root directory handling functions
*/
#include <linux/uaccess.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/sched/stat.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/user_namespace.h>
#include <linux/fs_context.h>
#include <linux/mount.h>
#include <linux/pid_namespace.h>
#include <linux/fs_parser.h>
#include <linux/cred.h>
#include <linux/magic.h>
#include <linux/slab.h>
#include "internal.h"
struct proc_fs_context {
struct pid_namespace *pid_ns;
unsigned int mask;
enum proc_hidepid hidepid;
int gid;
enum proc_pidonly pidonly;
};
enum proc_param {
Opt_gid,
Opt_hidepid,
Opt_subset,
};
static const struct fs_parameter_spec proc_fs_parameters[] = {
fsparam_u32("gid", Opt_gid),
fsparam_string("hidepid", Opt_hidepid),
fsparam_string("subset", Opt_subset),
{}
};
static inline int valid_hidepid(unsigned int value)
{
return (value == HIDEPID_OFF ||
value == HIDEPID_NO_ACCESS ||
value == HIDEPID_INVISIBLE ||
value == HIDEPID_NOT_PTRACEABLE);
}
static int proc_parse_hidepid_param(struct fs_context *fc, struct fs_parameter *param)
{
struct proc_fs_context *ctx = fc->fs_private;
struct fs_parameter_spec hidepid_u32_spec = fsparam_u32("hidepid", Opt_hidepid);
struct fs_parse_result result;
int base = (unsigned long)hidepid_u32_spec.data;
if (param->type != fs_value_is_string)
return invalf(fc, "proc: unexpected type of hidepid value\n");
if (!kstrtouint(param->string, base, &result.uint_32)) {
if (!valid_hidepid(result.uint_32))
return invalf(fc, "proc: unknown value of hidepid - %s\n", param->string);
ctx->hidepid = result.uint_32;
return 0;
}
if (!strcmp(param->string, "off"))
ctx->hidepid = HIDEPID_OFF;
else if (!strcmp(param->string, "noaccess"))
ctx->hidepid = HIDEPID_NO_ACCESS;
else if (!strcmp(param->string, "invisible"))
ctx->hidepid = HIDEPID_INVISIBLE;
else if (!strcmp(param->string, "ptraceable"))
ctx->hidepid = HIDEPID_NOT_PTRACEABLE;
else
return invalf(fc, "proc: unknown value of hidepid - %s\n", param->string);
return 0;
}
static int proc_parse_subset_param(struct fs_context *fc, char *value)
{
struct proc_fs_context *ctx = fc->fs_private;
while (value) {
char *ptr = strchr(value, ',');
if (ptr != NULL)
*ptr++ = '\0';
if (*value != '\0') {
if (!strcmp(value, "pid")) {
ctx->pidonly = PROC_PIDONLY_ON;
} else {
return invalf(fc, "proc: unsupported subset option - %s\n", value);
}
}
value = ptr;
}
return 0;
}
static int proc_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
struct proc_fs_context *ctx = fc->fs_private;
struct fs_parse_result result;
int opt;
opt = fs_parse(fc, proc_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_gid:
ctx->gid = result.uint_32;
break;
case Opt_hidepid:
if (proc_parse_hidepid_param(fc, param))
return -EINVAL;
break;
case Opt_subset:
if (proc_parse_subset_param(fc, param->string) < 0)
return -EINVAL;
break;
default:
return -EINVAL;
}
ctx->mask |= 1 << opt;
return 0;
}
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
static void proc_apply_options(struct proc_fs_info *fs_info,
struct fs_context *fc,
struct user_namespace *user_ns)
{
struct proc_fs_context *ctx = fc->fs_private;
if (ctx->mask & (1 << Opt_gid))
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
fs_info->pid_gid = make_kgid(user_ns, ctx->gid);
if (ctx->mask & (1 << Opt_hidepid))
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
fs_info->hide_pid = ctx->hidepid;
if (ctx->mask & (1 << Opt_subset))
fs_info->pidonly = ctx->pidonly;
}
static int proc_fill_super(struct super_block *s, struct fs_context *fc)
{
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
struct proc_fs_context *ctx = fc->fs_private;
struct inode *root_inode;
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
struct proc_fs_info *fs_info;
int ret;
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
fs_info = kzalloc(sizeof(*fs_info), GFP_KERNEL);
if (!fs_info)
return -ENOMEM;
fs_info->pid_ns = get_pid_ns(ctx->pid_ns);
proc_apply_options(fs_info, fc, current_user_ns());
/* User space would break if executables or devices appear on proc */
s->s_iflags |= SB_I_USERNS_VISIBLE | SB_I_NOEXEC | SB_I_NODEV;
s->s_flags |= SB_NODIRATIME | SB_NOSUID | SB_NOEXEC;
s->s_blocksize = 1024;
s->s_blocksize_bits = 10;
s->s_magic = PROC_SUPER_MAGIC;
s->s_op = &proc_sops;
s->s_time_gran = 1;
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
s->s_fs_info = fs_info;
/*
* procfs isn't actually a stacking filesystem; however, there is
* too much magic going on inside it to permit stacking things on
* top of it
*/
s->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
/* procfs dentries and inodes don't require IO to create */
s->s_shrink.seeks = 0;
pde_get(&proc_root);
root_inode = proc_get_inode(s, &proc_root);
if (!root_inode) {
pr_err("proc_fill_super: get root inode failed\n");
return -ENOMEM;
}
s->s_root = d_make_root(root_inode);
if (!s->s_root) {
pr_err("proc_fill_super: allocate dentry failed\n");
return -ENOMEM;
}
ret = proc_setup_self(s);
if (ret) {
return ret;
}
return proc_setup_thread_self(s);
}
static int proc_reconfigure(struct fs_context *fc)
{
struct super_block *sb = fc->root->d_sb;
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
struct proc_fs_info *fs_info = proc_sb_info(sb);
fs: push sync_filesystem() down to the file system's remount_fs() Previously, the no-op "mount -o mount /dev/xxx" operation when the file system is already mounted read-write causes an implied, unconditional syncfs(). This seems pretty stupid, and it's certainly documented or guaraunteed to do this, nor is it particularly useful, except in the case where the file system was mounted rw and is getting remounted read-only. However, it's possible that there might be some file systems that are actually depending on this behavior. In most file systems, it's probably fine to only call sync_filesystem() when transitioning from read-write to read-only, and there are some file systems where this is not needed at all (for example, for a pseudo-filesystem or something like romfs). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: linux-fsdevel@vger.kernel.org Cc: Christoph Hellwig <hch@infradead.org> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Evgeniy Dushistov <dushistov@mail.ru> Cc: Jan Kara <jack@suse.cz> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Anders Larsen <al@alarsen.net> Cc: Phillip Lougher <phillip@squashfs.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: xfs@oss.sgi.com Cc: linux-btrfs@vger.kernel.org Cc: linux-cifs@vger.kernel.org Cc: samba-technical@lists.samba.org Cc: codalist@coda.cs.cmu.edu Cc: linux-ext4@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: fuse-devel@lists.sourceforge.net Cc: cluster-devel@redhat.com Cc: linux-mtd@lists.infradead.org Cc: jfs-discussion@lists.sourceforge.net Cc: linux-nfs@vger.kernel.org Cc: linux-nilfs@vger.kernel.org Cc: linux-ntfs-dev@lists.sourceforge.net Cc: ocfs2-devel@oss.oracle.com Cc: reiserfs-devel@vger.kernel.org
2014-03-13 18:14:33 +04:00
sync_filesystem(sb);
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
proc_apply_options(fs_info, fc, current_user_ns());
return 0;
}
static int proc_get_tree(struct fs_context *fc)
{
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
return get_tree_nodev(fc, proc_fill_super);
}
static void proc_fs_context_free(struct fs_context *fc)
{
struct proc_fs_context *ctx = fc->fs_private;
put_pid_ns(ctx->pid_ns);
kfree(ctx);
}
static const struct fs_context_operations proc_fs_context_ops = {
.free = proc_fs_context_free,
.parse_param = proc_parse_param,
.get_tree = proc_get_tree,
.reconfigure = proc_reconfigure,
};
static int proc_init_fs_context(struct fs_context *fc)
{
struct proc_fs_context *ctx;
ctx = kzalloc(sizeof(struct proc_fs_context), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->pid_ns = get_pid_ns(task_active_pid_ns(current));
put_user_ns(fc->user_ns);
fc->user_ns = get_user_ns(ctx->pid_ns->user_ns);
fc->fs_private = ctx;
fc->ops = &proc_fs_context_ops;
return 0;
}
static void proc_kill_sb(struct super_block *sb)
{
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
struct proc_fs_info *fs_info = proc_sb_info(sb);
if (!fs_info) {
kill_anon_super(sb);
return;
}
proc: Handle umounts cleanly syzbot writes: > KASAN: use-after-free Read in dput (2) > > proc_fill_super: allocate dentry failed > ================================================================== > BUG: KASAN: use-after-free in fast_dput fs/dcache.c:727 [inline] > BUG: KASAN: use-after-free in dput+0x53e/0xdf0 fs/dcache.c:846 > Read of size 4 at addr ffff88808a618cf0 by task syz-executor.0/8426 > > CPU: 0 PID: 8426 Comm: syz-executor.0 Not tainted 5.6.0-next-20200412-syzkaller #0 > Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 > Call Trace: > __dump_stack lib/dump_stack.c:77 [inline] > dump_stack+0x188/0x20d lib/dump_stack.c:118 > print_address_description.constprop.0.cold+0xd3/0x315 mm/kasan/report.c:382 > __kasan_report.cold+0x35/0x4d mm/kasan/report.c:511 > kasan_report+0x33/0x50 mm/kasan/common.c:625 > fast_dput fs/dcache.c:727 [inline] > dput+0x53e/0xdf0 fs/dcache.c:846 > proc_kill_sb+0x73/0xf0 fs/proc/root.c:195 > deactivate_locked_super+0x8c/0xf0 fs/super.c:335 > vfs_get_super+0x258/0x2d0 fs/super.c:1212 > vfs_get_tree+0x89/0x2f0 fs/super.c:1547 > do_new_mount fs/namespace.c:2813 [inline] > do_mount+0x1306/0x1b30 fs/namespace.c:3138 > __do_sys_mount fs/namespace.c:3347 [inline] > __se_sys_mount fs/namespace.c:3324 [inline] > __x64_sys_mount+0x18f/0x230 fs/namespace.c:3324 > do_syscall_64+0xf6/0x7d0 arch/x86/entry/common.c:295 > entry_SYSCALL_64_after_hwframe+0x49/0xb3 > RIP: 0033:0x45c889 > Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 > RSP: 002b:00007ffc1930ec48 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 > RAX: ffffffffffffffda RBX: 0000000001324914 RCX: 000000000045c889 > RDX: 0000000020000140 RSI: 0000000020000040 RDI: 0000000000000000 > RBP: 000000000076bf00 R08: 0000000000000000 R09: 0000000000000000 > R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000003 > R13: 0000000000000749 R14: 00000000004ca15a R15: 0000000000000013 Looking at the code now that it the internal mount of proc is no longer used it is possible to unmount proc. If proc is unmounted the fields of the pid namespace that were used for filesystem specific state are not reinitialized. Which means that proc_self and proc_thread_self can be pointers to already freed dentries. The reported user after free appears to be from mounting and unmounting proc followed by mounting proc again and using error injection to cause the new root dentry allocation to fail. This in turn results in proc_kill_sb running with proc_self and proc_thread_self still retaining their values from the previous mount of proc. Then calling dput on either proc_self of proc_thread_self will result in double put. Which KASAN sees as a use after free. Solve this by always reinitializing the filesystem state stored in the struct pid_namespace, when proc is unmounted. Reported-by: syzbot+72868dd424eb66c6b95f@syzkaller.appspotmail.com Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Fixes: 69879c01a0c3 ("proc: Remove the now unnecessary internal mount of proc") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-04-15 20:37:27 +03:00
dput(fs_info->proc_self);
dput(fs_info->proc_thread_self);
proc: Handle umounts cleanly syzbot writes: > KASAN: use-after-free Read in dput (2) > > proc_fill_super: allocate dentry failed > ================================================================== > BUG: KASAN: use-after-free in fast_dput fs/dcache.c:727 [inline] > BUG: KASAN: use-after-free in dput+0x53e/0xdf0 fs/dcache.c:846 > Read of size 4 at addr ffff88808a618cf0 by task syz-executor.0/8426 > > CPU: 0 PID: 8426 Comm: syz-executor.0 Not tainted 5.6.0-next-20200412-syzkaller #0 > Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 > Call Trace: > __dump_stack lib/dump_stack.c:77 [inline] > dump_stack+0x188/0x20d lib/dump_stack.c:118 > print_address_description.constprop.0.cold+0xd3/0x315 mm/kasan/report.c:382 > __kasan_report.cold+0x35/0x4d mm/kasan/report.c:511 > kasan_report+0x33/0x50 mm/kasan/common.c:625 > fast_dput fs/dcache.c:727 [inline] > dput+0x53e/0xdf0 fs/dcache.c:846 > proc_kill_sb+0x73/0xf0 fs/proc/root.c:195 > deactivate_locked_super+0x8c/0xf0 fs/super.c:335 > vfs_get_super+0x258/0x2d0 fs/super.c:1212 > vfs_get_tree+0x89/0x2f0 fs/super.c:1547 > do_new_mount fs/namespace.c:2813 [inline] > do_mount+0x1306/0x1b30 fs/namespace.c:3138 > __do_sys_mount fs/namespace.c:3347 [inline] > __se_sys_mount fs/namespace.c:3324 [inline] > __x64_sys_mount+0x18f/0x230 fs/namespace.c:3324 > do_syscall_64+0xf6/0x7d0 arch/x86/entry/common.c:295 > entry_SYSCALL_64_after_hwframe+0x49/0xb3 > RIP: 0033:0x45c889 > Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 > RSP: 002b:00007ffc1930ec48 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 > RAX: ffffffffffffffda RBX: 0000000001324914 RCX: 000000000045c889 > RDX: 0000000020000140 RSI: 0000000020000040 RDI: 0000000000000000 > RBP: 000000000076bf00 R08: 0000000000000000 R09: 0000000000000000 > R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000003 > R13: 0000000000000749 R14: 00000000004ca15a R15: 0000000000000013 Looking at the code now that it the internal mount of proc is no longer used it is possible to unmount proc. If proc is unmounted the fields of the pid namespace that were used for filesystem specific state are not reinitialized. Which means that proc_self and proc_thread_self can be pointers to already freed dentries. The reported user after free appears to be from mounting and unmounting proc followed by mounting proc again and using error injection to cause the new root dentry allocation to fail. This in turn results in proc_kill_sb running with proc_self and proc_thread_self still retaining their values from the previous mount of proc. Then calling dput on either proc_self of proc_thread_self will result in double put. Which KASAN sees as a use after free. Solve this by always reinitializing the filesystem state stored in the struct pid_namespace, when proc is unmounted. Reported-by: syzbot+72868dd424eb66c6b95f@syzkaller.appspotmail.com Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Fixes: 69879c01a0c3 ("proc: Remove the now unnecessary internal mount of proc") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-04-15 20:37:27 +03:00
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 17:10:52 +03:00
kill_anon_super(sb);
put_pid_ns(fs_info->pid_ns);
kfree(fs_info);
}
proc: fix NULL ->i_fop oops proc_kill_inodes() can clear ->i_fop in the middle of vfs_readdir resulting in NULL dereference during "file->f_op->readdir(file, buf, filler)". The solution is to remove proc_kill_inodes() completely: a) we don't have tricky modules implementing their tricky readdir hooks which could keeping this revoke from hell. b) In a situation when module is gone but PDE still alive, standard readdir will return only "." and "..", because pde->next was cleared by remove_proc_entry(). c) the race proc_kill_inode() destined to prevent is not completely fixed, just race window made smaller, because vfs_readdir() is run without sb_lock held and without file_list_lock held. Effectively, ->i_fop is cleared at random moment, which can't fix properly anything. BUG: unable to handle kernel NULL pointer dereference at virtual address 00000018 printing eip: c1061205 *pdpt = 0000000005b22001 *pde = 0000000000000000 Oops: 0000 [#1] PREEMPT SMP Modules linked in: foo af_packet ipv6 cpufreq_ondemand loop serio_raw sr_mod k8temp cdrom hwmon amd_rng Pid: 2033, comm: find Not tainted (2.6.24-rc1-b1d08ac064268d0ae2281e98bf5e82627e0f0c56 #2) EIP: 0060:[<c1061205>] EFLAGS: 00010246 CPU: 0 EIP is at vfs_readdir+0x47/0x74 EAX: c6b6a780 EBX: 00000000 ECX: c1061040 EDX: c5decf94 ESI: c6b6a780 EDI: fffffffe EBP: c9797c54 ESP: c5decf78 DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068 Process find (pid: 2033, ti=c5dec000 task=c64bba90 task.ti=c5dec000) Stack: c5decf94 c1061040 fffffff7 0805ffbc 00000000 c6b6a780 c1061295 0805ffbc 00000000 00000400 00000000 00000004 0805ffbc 4588eff4 c5dec000 c10026ba 00000004 0805ffbc 00000400 0805ffbc 4588eff4 bfdc6c70 000000dc 0000007b Call Trace: [<c1061040>] filldir64+0x0/0xc5 [<c1061295>] sys_getdents64+0x63/0xa5 [<c10026ba>] sysenter_past_esp+0x5f/0x85 ======================= Code: 49 83 78 18 00 74 43 8d 6b 74 bf fe ff ff ff 89 e8 e8 b8 c0 12 00 f6 83 2c 01 00 00 10 75 22 8b 5e 10 8b 4c 24 04 89 f0 8b 14 24 <ff> 53 18 f6 46 1a 04 89 c7 75 0b 8b 56 0c 8b 46 08 e8 c8 66 00 EIP: [<c1061205>] vfs_readdir+0x47/0x74 SS:ESP 0068:c5decf78 hch: "Nice, getting rid of this is a very good step formwards. Unfortunately we have another copy of this junk in security/selinux/selinuxfs.c:sel_remove_entries() which would need the same treatment." Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru> Acked-by: Christoph Hellwig <hch@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-29 03:21:23 +03:00
static struct file_system_type proc_fs_type = {
.name = "proc",
.init_fs_context = proc_init_fs_context,
.parameters = proc_fs_parameters,
.kill_sb = proc_kill_sb,
.fs_flags = FS_USERNS_MOUNT | FS_DISALLOW_NOTIFY_PERM,
};
void __init proc_root_init(void)
{
proc_init_kmemcache();
set_proc_pid_nlink();
proc_self_init();
proc_thread_self_init();
proc_symlink("mounts", NULL, "self/mounts");
proc_net_init();
proc_mkdir("fs", NULL);
proc_mkdir("driver", NULL);
proc_create_mount_point("fs/nfsd"); /* somewhere for the nfsd filesystem to be mounted */
#if defined(CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)
/* just give it a mountpoint */
proc_create_mount_point("openprom");
#endif
proc_tty_init();
proc_mkdir("bus", NULL);
proc_sys_init();
register_filesystem(&proc_fs_type);
}
static int proc_root_getattr(struct user_namespace *mnt_userns,
const struct path *path, struct kstat *stat,
statx: Add a system call to make enhanced file info available Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 19:46:22 +03:00
u32 request_mask, unsigned int query_flags)
{
generic_fillattr(&init_user_ns, d_inode(path->dentry), stat);
stat->nlink = proc_root.nlink + nr_processes();
return 0;
}
static struct dentry *proc_root_lookup(struct inode * dir, struct dentry * dentry, unsigned int flags)
{
if (!proc_pid_lookup(dentry, flags))
return NULL;
return proc_lookup(dir, dentry, flags);
}
static int proc_root_readdir(struct file *file, struct dir_context *ctx)
{
if (ctx->pos < FIRST_PROCESS_ENTRY) {
int error = proc_readdir(file, ctx);
if (unlikely(error <= 0))
return error;
ctx->pos = FIRST_PROCESS_ENTRY;
}
return proc_pid_readdir(file, ctx);
}
/*
* The root /proc directory is special, as it has the
* <pid> directories. Thus we don't use the generic
* directory handling functions for that..
*/
static const struct file_operations proc_root_operations = {
.read = generic_read_dir,
.iterate_shared = proc_root_readdir,
.llseek = generic_file_llseek,
};
/*
* proc root can do almost nothing..
*/
static const struct inode_operations proc_root_inode_operations = {
.lookup = proc_root_lookup,
.getattr = proc_root_getattr,
};
/*
* This is the root "inode" in the /proc tree..
*/
struct proc_dir_entry proc_root = {
.low_ino = PROC_ROOT_INO,
.namelen = 5,
.mode = S_IFDIR | S_IRUGO | S_IXUGO,
.nlink = 2,
.refcnt = REFCOUNT_INIT(1),
.proc_iops = &proc_root_inode_operations,
.proc_dir_ops = &proc_root_operations,
.parent = &proc_root,
.subdir = RB_ROOT,
.name = "/proc",
};