linux/net/bridge/br_fdb.c

1511 lines
38 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Forwarding database
* Linux ethernet bridge
*
* Authors:
* Lennert Buytenhek <buytenh@gnu.org>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/rculist.h>
#include <linux/spinlock.h>
#include <linux/times.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/jhash.h>
#include <linux/random.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/atomic.h>
#include <asm/unaligned.h>
#include <linux/if_vlan.h>
#include <net/switchdev.h>
#include <trace/events/bridge.h>
#include "br_private.h"
static const struct rhashtable_params br_fdb_rht_params = {
.head_offset = offsetof(struct net_bridge_fdb_entry, rhnode),
.key_offset = offsetof(struct net_bridge_fdb_entry, key),
.key_len = sizeof(struct net_bridge_fdb_key),
.automatic_shrinking = true,
};
static struct kmem_cache *br_fdb_cache __read_mostly;
int __init br_fdb_init(void)
{
br_fdb_cache = kmem_cache_create("bridge_fdb_cache",
sizeof(struct net_bridge_fdb_entry),
0,
SLAB_HWCACHE_ALIGN, NULL);
if (!br_fdb_cache)
return -ENOMEM;
return 0;
}
void br_fdb_fini(void)
{
kmem_cache_destroy(br_fdb_cache);
}
int br_fdb_hash_init(struct net_bridge *br)
{
return rhashtable_init(&br->fdb_hash_tbl, &br_fdb_rht_params);
}
void br_fdb_hash_fini(struct net_bridge *br)
{
rhashtable_destroy(&br->fdb_hash_tbl);
}
/* if topology_changing then use forward_delay (default 15 sec)
* otherwise keep longer (default 5 minutes)
*/
static inline unsigned long hold_time(const struct net_bridge *br)
{
return br->topology_change ? br->forward_delay : br->ageing_time;
}
static inline int has_expired(const struct net_bridge *br,
const struct net_bridge_fdb_entry *fdb)
{
return !test_bit(BR_FDB_STATIC, &fdb->flags) &&
!test_bit(BR_FDB_ADDED_BY_EXT_LEARN, &fdb->flags) &&
time_before_eq(fdb->updated + hold_time(br), jiffies);
}
static void fdb_rcu_free(struct rcu_head *head)
{
struct net_bridge_fdb_entry *ent
= container_of(head, struct net_bridge_fdb_entry, rcu);
kmem_cache_free(br_fdb_cache, ent);
}
static int fdb_to_nud(const struct net_bridge *br,
const struct net_bridge_fdb_entry *fdb)
{
if (test_bit(BR_FDB_LOCAL, &fdb->flags))
return NUD_PERMANENT;
else if (test_bit(BR_FDB_STATIC, &fdb->flags))
return NUD_NOARP;
else if (has_expired(br, fdb))
return NUD_STALE;
else
return NUD_REACHABLE;
}
static int fdb_fill_info(struct sk_buff *skb, const struct net_bridge *br,
const struct net_bridge_fdb_entry *fdb,
u32 portid, u32 seq, int type, unsigned int flags)
{
const struct net_bridge_port *dst = READ_ONCE(fdb->dst);
unsigned long now = jiffies;
struct nda_cacheinfo ci;
struct nlmsghdr *nlh;
struct ndmsg *ndm;
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
u32 ext_flags = 0;
nlh = nlmsg_put(skb, portid, seq, type, sizeof(*ndm), flags);
if (nlh == NULL)
return -EMSGSIZE;
ndm = nlmsg_data(nlh);
ndm->ndm_family = AF_BRIDGE;
ndm->ndm_pad1 = 0;
ndm->ndm_pad2 = 0;
ndm->ndm_flags = 0;
ndm->ndm_type = 0;
ndm->ndm_ifindex = dst ? dst->dev->ifindex : br->dev->ifindex;
ndm->ndm_state = fdb_to_nud(br, fdb);
if (test_bit(BR_FDB_OFFLOADED, &fdb->flags))
ndm->ndm_flags |= NTF_OFFLOADED;
if (test_bit(BR_FDB_ADDED_BY_EXT_LEARN, &fdb->flags))
ndm->ndm_flags |= NTF_EXT_LEARNED;
if (test_bit(BR_FDB_STICKY, &fdb->flags))
ndm->ndm_flags |= NTF_STICKY;
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
if (test_bit(BR_FDB_LOCKED, &fdb->flags))
ext_flags |= NTF_EXT_LOCKED;
if (nla_put(skb, NDA_LLADDR, ETH_ALEN, &fdb->key.addr))
goto nla_put_failure;
if (nla_put_u32(skb, NDA_MASTER, br->dev->ifindex))
goto nla_put_failure;
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
if (nla_put_u32(skb, NDA_FLAGS_EXT, ext_flags))
goto nla_put_failure;
ci.ndm_used = jiffies_to_clock_t(now - fdb->used);
ci.ndm_confirmed = 0;
ci.ndm_updated = jiffies_to_clock_t(now - fdb->updated);
ci.ndm_refcnt = 0;
if (nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
goto nla_put_failure;
if (fdb->key.vlan_id && nla_put(skb, NDA_VLAN, sizeof(u16),
&fdb->key.vlan_id))
goto nla_put_failure;
if (test_bit(BR_FDB_NOTIFY, &fdb->flags)) {
struct nlattr *nest = nla_nest_start(skb, NDA_FDB_EXT_ATTRS);
u8 notify_bits = FDB_NOTIFY_BIT;
if (!nest)
goto nla_put_failure;
if (test_bit(BR_FDB_NOTIFY_INACTIVE, &fdb->flags))
notify_bits |= FDB_NOTIFY_INACTIVE_BIT;
if (nla_put_u8(skb, NFEA_ACTIVITY_NOTIFY, notify_bits)) {
nla_nest_cancel(skb, nest);
goto nla_put_failure;
}
nla_nest_end(skb, nest);
}
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static inline size_t fdb_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ndmsg))
+ nla_total_size(ETH_ALEN) /* NDA_LLADDR */
+ nla_total_size(sizeof(u32)) /* NDA_MASTER */
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
+ nla_total_size(sizeof(u32)) /* NDA_FLAGS_EXT */
+ nla_total_size(sizeof(u16)) /* NDA_VLAN */
+ nla_total_size(sizeof(struct nda_cacheinfo))
+ nla_total_size(0) /* NDA_FDB_EXT_ATTRS */
+ nla_total_size(sizeof(u8)); /* NFEA_ACTIVITY_NOTIFY */
}
static void fdb_notify(struct net_bridge *br,
const struct net_bridge_fdb_entry *fdb, int type,
bool swdev_notify)
{
struct net *net = dev_net(br->dev);
struct sk_buff *skb;
int err = -ENOBUFS;
if (swdev_notify)
br_switchdev_fdb_notify(br, fdb, type);
skb = nlmsg_new(fdb_nlmsg_size(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = fdb_fill_info(skb, br, fdb, 0, 0, type, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in fdb_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
return;
errout:
rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
}
static struct net_bridge_fdb_entry *fdb_find_rcu(struct rhashtable *tbl,
const unsigned char *addr,
__u16 vid)
{
struct net_bridge_fdb_key key;
WARN_ON_ONCE(!rcu_read_lock_held());
key.vlan_id = vid;
memcpy(key.addr.addr, addr, sizeof(key.addr.addr));
return rhashtable_lookup(tbl, &key, br_fdb_rht_params);
}
/* requires bridge hash_lock */
static struct net_bridge_fdb_entry *br_fdb_find(struct net_bridge *br,
const unsigned char *addr,
__u16 vid)
{
struct net_bridge_fdb_entry *fdb;
lockdep_assert_held_once(&br->hash_lock);
rcu_read_lock();
fdb = fdb_find_rcu(&br->fdb_hash_tbl, addr, vid);
rcu_read_unlock();
return fdb;
}
struct net_device *br_fdb_find_port(const struct net_device *br_dev,
const unsigned char *addr,
__u16 vid)
{
struct net_bridge_fdb_entry *f;
struct net_device *dev = NULL;
struct net_bridge *br;
ASSERT_RTNL();
if (!netif_is_bridge_master(br_dev))
return NULL;
br = netdev_priv(br_dev);
rcu_read_lock();
f = br_fdb_find_rcu(br, addr, vid);
if (f && f->dst)
dev = f->dst->dev;
rcu_read_unlock();
return dev;
}
EXPORT_SYMBOL_GPL(br_fdb_find_port);
struct net_bridge_fdb_entry *br_fdb_find_rcu(struct net_bridge *br,
const unsigned char *addr,
__u16 vid)
{
return fdb_find_rcu(&br->fdb_hash_tbl, addr, vid);
}
/* When a static FDB entry is added, the mac address from the entry is
* added to the bridge private HW address list and all required ports
* are then updated with the new information.
* Called under RTNL.
*/
static void fdb_add_hw_addr(struct net_bridge *br, const unsigned char *addr)
{
int err;
struct net_bridge_port *p;
ASSERT_RTNL();
list_for_each_entry(p, &br->port_list, list) {
if (!br_promisc_port(p)) {
err = dev_uc_add(p->dev, addr);
if (err)
goto undo;
}
}
return;
undo:
list_for_each_entry_continue_reverse(p, &br->port_list, list) {
if (!br_promisc_port(p))
dev_uc_del(p->dev, addr);
}
}
/* When a static FDB entry is deleted, the HW address from that entry is
* also removed from the bridge private HW address list and updates all
* the ports with needed information.
* Called under RTNL.
*/
static void fdb_del_hw_addr(struct net_bridge *br, const unsigned char *addr)
{
struct net_bridge_port *p;
ASSERT_RTNL();
list_for_each_entry(p, &br->port_list, list) {
if (!br_promisc_port(p))
dev_uc_del(p->dev, addr);
}
}
static void fdb_delete(struct net_bridge *br, struct net_bridge_fdb_entry *f,
bool swdev_notify)
{
trace_fdb_delete(br, f);
if (test_bit(BR_FDB_STATIC, &f->flags))
fdb_del_hw_addr(br, f->key.addr.addr);
hlist_del_init_rcu(&f->fdb_node);
rhashtable_remove_fast(&br->fdb_hash_tbl, &f->rhnode,
br_fdb_rht_params);
fdb_notify(br, f, RTM_DELNEIGH, swdev_notify);
call_rcu(&f->rcu, fdb_rcu_free);
}
/* Delete a local entry if no other port had the same address. */
static void fdb_delete_local(struct net_bridge *br,
const struct net_bridge_port *p,
struct net_bridge_fdb_entry *f)
{
const unsigned char *addr = f->key.addr.addr;
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan_group *vg;
const struct net_bridge_vlan *v;
struct net_bridge_port *op;
u16 vid = f->key.vlan_id;
/* Maybe another port has same hw addr? */
list_for_each_entry(op, &br->port_list, list) {
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
vg = nbp_vlan_group(op);
if (op != p && ether_addr_equal(op->dev->dev_addr, addr) &&
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
(!vid || br_vlan_find(vg, vid))) {
f->dst = op;
clear_bit(BR_FDB_ADDED_BY_USER, &f->flags);
return;
}
}
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
vg = br_vlan_group(br);
v = br_vlan_find(vg, vid);
/* Maybe bridge device has same hw addr? */
if (p && ether_addr_equal(br->dev->dev_addr, addr) &&
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
(!vid || (v && br_vlan_should_use(v)))) {
f->dst = NULL;
clear_bit(BR_FDB_ADDED_BY_USER, &f->flags);
return;
}
fdb_delete(br, f, true);
}
void br_fdb_find_delete_local(struct net_bridge *br,
const struct net_bridge_port *p,
const unsigned char *addr, u16 vid)
{
struct net_bridge_fdb_entry *f;
spin_lock_bh(&br->hash_lock);
f = br_fdb_find(br, addr, vid);
if (f && test_bit(BR_FDB_LOCAL, &f->flags) &&
!test_bit(BR_FDB_ADDED_BY_USER, &f->flags) && f->dst == p)
fdb_delete_local(br, p, f);
spin_unlock_bh(&br->hash_lock);
}
static struct net_bridge_fdb_entry *fdb_create(struct net_bridge *br,
struct net_bridge_port *source,
const unsigned char *addr,
__u16 vid,
unsigned long flags)
{
struct net_bridge_fdb_entry *fdb;
int err;
fdb = kmem_cache_alloc(br_fdb_cache, GFP_ATOMIC);
if (!fdb)
return NULL;
memcpy(fdb->key.addr.addr, addr, ETH_ALEN);
WRITE_ONCE(fdb->dst, source);
fdb->key.vlan_id = vid;
fdb->flags = flags;
fdb->updated = fdb->used = jiffies;
err = rhashtable_lookup_insert_fast(&br->fdb_hash_tbl, &fdb->rhnode,
br_fdb_rht_params);
if (err) {
kmem_cache_free(br_fdb_cache, fdb);
return NULL;
}
hlist_add_head_rcu(&fdb->fdb_node, &br->fdb_list);
return fdb;
}
static int fdb_add_local(struct net_bridge *br, struct net_bridge_port *source,
const unsigned char *addr, u16 vid)
{
struct net_bridge_fdb_entry *fdb;
if (!is_valid_ether_addr(addr))
return -EINVAL;
fdb = br_fdb_find(br, addr, vid);
if (fdb) {
/* it is okay to have multiple ports with same
* address, just use the first one.
*/
if (test_bit(BR_FDB_LOCAL, &fdb->flags))
return 0;
br_warn(br, "adding interface %s with same address as a received packet (addr:%pM, vlan:%u)\n",
source ? source->dev->name : br->dev->name, addr, vid);
fdb_delete(br, fdb, true);
}
fdb = fdb_create(br, source, addr, vid,
BIT(BR_FDB_LOCAL) | BIT(BR_FDB_STATIC));
if (!fdb)
return -ENOMEM;
fdb_add_hw_addr(br, addr);
fdb_notify(br, fdb, RTM_NEWNEIGH, true);
return 0;
}
void br_fdb_changeaddr(struct net_bridge_port *p, const unsigned char *newaddr)
{
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan_group *vg;
struct net_bridge_fdb_entry *f;
struct net_bridge *br = p->br;
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan *v;
spin_lock_bh(&br->hash_lock);
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
vg = nbp_vlan_group(p);
hlist_for_each_entry(f, &br->fdb_list, fdb_node) {
if (f->dst == p && test_bit(BR_FDB_LOCAL, &f->flags) &&
!test_bit(BR_FDB_ADDED_BY_USER, &f->flags)) {
/* delete old one */
fdb_delete_local(br, p, f);
/* if this port has no vlan information
* configured, we can safely be done at
* this point.
*/
if (!vg || !vg->num_vlans)
goto insert;
}
}
insert:
/* insert new address, may fail if invalid address or dup. */
fdb_add_local(br, p, newaddr, 0);
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
if (!vg || !vg->num_vlans)
goto done;
/* Now add entries for every VLAN configured on the port.
* This function runs under RTNL so the bitmap will not change
* from under us.
*/
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
list_for_each_entry(v, &vg->vlan_list, vlist)
fdb_add_local(br, p, newaddr, v->vid);
done:
spin_unlock_bh(&br->hash_lock);
}
void br_fdb_change_mac_address(struct net_bridge *br, const u8 *newaddr)
{
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan_group *vg;
struct net_bridge_fdb_entry *f;
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan *v;
spin_lock_bh(&br->hash_lock);
/* If old entry was unassociated with any port, then delete it. */
f = br_fdb_find(br, br->dev->dev_addr, 0);
if (f && test_bit(BR_FDB_LOCAL, &f->flags) &&
!f->dst && !test_bit(BR_FDB_ADDED_BY_USER, &f->flags))
fdb_delete_local(br, NULL, f);
fdb_add_local(br, NULL, newaddr, 0);
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
vg = br_vlan_group(br);
if (!vg || !vg->num_vlans)
goto out;
/* Now remove and add entries for every VLAN configured on the
* bridge. This function runs under RTNL so the bitmap will not
* change from under us.
*/
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
list_for_each_entry(v, &vg->vlan_list, vlist) {
if (!br_vlan_should_use(v))
continue;
f = br_fdb_find(br, br->dev->dev_addr, v->vid);
if (f && test_bit(BR_FDB_LOCAL, &f->flags) &&
!f->dst && !test_bit(BR_FDB_ADDED_BY_USER, &f->flags))
fdb_delete_local(br, NULL, f);
fdb_add_local(br, NULL, newaddr, v->vid);
}
out:
spin_unlock_bh(&br->hash_lock);
}
void br_fdb_cleanup(struct work_struct *work)
{
struct net_bridge *br = container_of(work, struct net_bridge,
gc_work.work);
struct net_bridge_fdb_entry *f = NULL;
unsigned long delay = hold_time(br);
unsigned long work_delay = delay;
unsigned long now = jiffies;
/* this part is tricky, in order to avoid blocking learning and
* consequently forwarding, we rely on rcu to delete objects with
* delayed freeing allowing us to continue traversing
*/
rcu_read_lock();
hlist_for_each_entry_rcu(f, &br->fdb_list, fdb_node) {
unsigned long this_timer = f->updated + delay;
if (test_bit(BR_FDB_STATIC, &f->flags) ||
test_bit(BR_FDB_ADDED_BY_EXT_LEARN, &f->flags)) {
if (test_bit(BR_FDB_NOTIFY, &f->flags)) {
if (time_after(this_timer, now))
work_delay = min(work_delay,
this_timer - now);
else if (!test_and_set_bit(BR_FDB_NOTIFY_INACTIVE,
&f->flags))
fdb_notify(br, f, RTM_NEWNEIGH, false);
}
continue;
}
if (time_after(this_timer, now)) {
work_delay = min(work_delay, this_timer - now);
} else {
spin_lock_bh(&br->hash_lock);
if (!hlist_unhashed(&f->fdb_node))
fdb_delete(br, f, true);
spin_unlock_bh(&br->hash_lock);
}
}
rcu_read_unlock();
/* Cleanup minimum 10 milliseconds apart */
work_delay = max_t(unsigned long, work_delay, msecs_to_jiffies(10));
mod_delayed_work(system_long_wq, &br->gc_work, work_delay);
}
static bool __fdb_flush_matches(const struct net_bridge *br,
const struct net_bridge_fdb_entry *f,
const struct net_bridge_fdb_flush_desc *desc)
{
const struct net_bridge_port *dst = READ_ONCE(f->dst);
int port_ifidx = dst ? dst->dev->ifindex : br->dev->ifindex;
if (desc->vlan_id && desc->vlan_id != f->key.vlan_id)
return false;
if (desc->port_ifindex && desc->port_ifindex != port_ifidx)
return false;
if (desc->flags_mask && (f->flags & desc->flags_mask) != desc->flags)
return false;
return true;
}
/* Flush forwarding database entries matching the description */
void br_fdb_flush(struct net_bridge *br,
const struct net_bridge_fdb_flush_desc *desc)
{
struct net_bridge_fdb_entry *f;
rcu_read_lock();
hlist_for_each_entry_rcu(f, &br->fdb_list, fdb_node) {
if (!__fdb_flush_matches(br, f, desc))
continue;
spin_lock_bh(&br->hash_lock);
if (!hlist_unhashed(&f->fdb_node))
fdb_delete(br, f, true);
spin_unlock_bh(&br->hash_lock);
}
rcu_read_unlock();
}
static unsigned long __ndm_state_to_fdb_flags(u16 ndm_state)
{
unsigned long flags = 0;
if (ndm_state & NUD_PERMANENT)
__set_bit(BR_FDB_LOCAL, &flags);
if (ndm_state & NUD_NOARP)
__set_bit(BR_FDB_STATIC, &flags);
return flags;
}
static unsigned long __ndm_flags_to_fdb_flags(u8 ndm_flags)
{
unsigned long flags = 0;
if (ndm_flags & NTF_USE)
__set_bit(BR_FDB_ADDED_BY_USER, &flags);
if (ndm_flags & NTF_EXT_LEARNED)
__set_bit(BR_FDB_ADDED_BY_EXT_LEARN, &flags);
if (ndm_flags & NTF_OFFLOADED)
__set_bit(BR_FDB_OFFLOADED, &flags);
if (ndm_flags & NTF_STICKY)
__set_bit(BR_FDB_STICKY, &flags);
return flags;
}
static int __fdb_flush_validate_ifindex(const struct net_bridge *br,
int ifindex,
struct netlink_ext_ack *extack)
{
const struct net_device *dev;
dev = __dev_get_by_index(dev_net(br->dev), ifindex);
if (!dev) {
NL_SET_ERR_MSG_MOD(extack, "Unknown flush device ifindex");
return -ENODEV;
}
if (!netif_is_bridge_master(dev) && !netif_is_bridge_port(dev)) {
NL_SET_ERR_MSG_MOD(extack, "Flush device is not a bridge or bridge port");
return -EINVAL;
}
if (netif_is_bridge_master(dev) && dev != br->dev) {
NL_SET_ERR_MSG_MOD(extack,
"Flush bridge device does not match target bridge device");
return -EINVAL;
}
if (netif_is_bridge_port(dev)) {
struct net_bridge_port *p = br_port_get_rtnl(dev);
if (p->br != br) {
NL_SET_ERR_MSG_MOD(extack, "Port belongs to a different bridge device");
return -EINVAL;
}
}
return 0;
}
int br_fdb_delete_bulk(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev, u16 vid,
struct netlink_ext_ack *extack)
{
u8 ndm_flags = ndm->ndm_flags & ~FDB_FLUSH_IGNORED_NDM_FLAGS;
struct net_bridge_fdb_flush_desc desc = { .vlan_id = vid };
struct net_bridge_port *p = NULL;
struct net_bridge *br;
if (netif_is_bridge_master(dev)) {
br = netdev_priv(dev);
} else {
p = br_port_get_rtnl(dev);
if (!p) {
NL_SET_ERR_MSG_MOD(extack, "Device is not a bridge port");
return -EINVAL;
}
br = p->br;
}
if (ndm_flags & ~FDB_FLUSH_ALLOWED_NDM_FLAGS) {
NL_SET_ERR_MSG(extack, "Unsupported fdb flush ndm flag bits set");
return -EINVAL;
}
if (ndm->ndm_state & ~FDB_FLUSH_ALLOWED_NDM_STATES) {
NL_SET_ERR_MSG(extack, "Unsupported fdb flush ndm state bits set");
return -EINVAL;
}
desc.flags |= __ndm_state_to_fdb_flags(ndm->ndm_state);
desc.flags |= __ndm_flags_to_fdb_flags(ndm_flags);
if (tb[NDA_NDM_STATE_MASK]) {
u16 ndm_state_mask = nla_get_u16(tb[NDA_NDM_STATE_MASK]);
desc.flags_mask |= __ndm_state_to_fdb_flags(ndm_state_mask);
}
if (tb[NDA_NDM_FLAGS_MASK]) {
u8 ndm_flags_mask = nla_get_u8(tb[NDA_NDM_FLAGS_MASK]);
desc.flags_mask |= __ndm_flags_to_fdb_flags(ndm_flags_mask);
}
if (tb[NDA_IFINDEX]) {
int err, ifidx = nla_get_s32(tb[NDA_IFINDEX]);
err = __fdb_flush_validate_ifindex(br, ifidx, extack);
if (err)
return err;
desc.port_ifindex = ifidx;
} else if (p) {
/* flush was invoked with port device and NTF_MASTER */
desc.port_ifindex = p->dev->ifindex;
}
br_debug(br, "flushing port ifindex: %d vlan id: %u flags: 0x%lx flags mask: 0x%lx\n",
desc.port_ifindex, desc.vlan_id, desc.flags, desc.flags_mask);
br_fdb_flush(br, &desc);
return 0;
}
/* Flush all entries referring to a specific port.
* if do_all is set also flush static entries
* if vid is set delete all entries that match the vlan_id
*/
void br_fdb_delete_by_port(struct net_bridge *br,
const struct net_bridge_port *p,
u16 vid,
int do_all)
{
struct net_bridge_fdb_entry *f;
struct hlist_node *tmp;
spin_lock_bh(&br->hash_lock);
hlist_for_each_entry_safe(f, tmp, &br->fdb_list, fdb_node) {
if (f->dst != p)
continue;
if (!do_all)
if (test_bit(BR_FDB_STATIC, &f->flags) ||
(test_bit(BR_FDB_ADDED_BY_EXT_LEARN, &f->flags) &&
!test_bit(BR_FDB_OFFLOADED, &f->flags)) ||
(vid && f->key.vlan_id != vid))
continue;
if (test_bit(BR_FDB_LOCAL, &f->flags))
fdb_delete_local(br, p, f);
else
fdb_delete(br, f, true);
}
spin_unlock_bh(&br->hash_lock);
}
#if IS_ENABLED(CONFIG_ATM_LANE)
/* Interface used by ATM LANE hook to test
* if an addr is on some other bridge port */
int br_fdb_test_addr(struct net_device *dev, unsigned char *addr)
{
struct net_bridge_fdb_entry *fdb;
struct net_bridge_port *port;
int ret;
rcu_read_lock();
port = br_port_get_rcu(dev);
if (!port)
ret = 0;
else {
const struct net_bridge_port *dst = NULL;
fdb = br_fdb_find_rcu(port->br, addr, 0);
if (fdb)
dst = READ_ONCE(fdb->dst);
ret = dst && dst->dev != dev &&
dst->state == BR_STATE_FORWARDING;
}
rcu_read_unlock();
return ret;
}
#endif /* CONFIG_ATM_LANE */
/*
* Fill buffer with forwarding table records in
* the API format.
*/
int br_fdb_fillbuf(struct net_bridge *br, void *buf,
unsigned long maxnum, unsigned long skip)
{
struct net_bridge_fdb_entry *f;
struct __fdb_entry *fe = buf;
int num = 0;
memset(buf, 0, maxnum*sizeof(struct __fdb_entry));
rcu_read_lock();
hlist_for_each_entry_rcu(f, &br->fdb_list, fdb_node) {
if (num >= maxnum)
break;
if (has_expired(br, f))
continue;
/* ignore pseudo entry for local MAC address */
if (!f->dst)
continue;
if (skip) {
--skip;
continue;
}
/* convert from internal format to API */
memcpy(fe->mac_addr, f->key.addr.addr, ETH_ALEN);
/* due to ABI compat need to split into hi/lo */
fe->port_no = f->dst->port_no;
fe->port_hi = f->dst->port_no >> 8;
fe->is_local = test_bit(BR_FDB_LOCAL, &f->flags);
if (!test_bit(BR_FDB_STATIC, &f->flags))
fe->ageing_timer_value = jiffies_delta_to_clock_t(jiffies - f->updated);
++fe;
++num;
}
rcu_read_unlock();
return num;
}
/* Add entry for local address of interface */
int br_fdb_add_local(struct net_bridge *br, struct net_bridge_port *source,
const unsigned char *addr, u16 vid)
{
int ret;
spin_lock_bh(&br->hash_lock);
ret = fdb_add_local(br, source, addr, vid);
spin_unlock_bh(&br->hash_lock);
return ret;
}
/* returns true if the fdb was modified */
static bool __fdb_mark_active(struct net_bridge_fdb_entry *fdb)
{
return !!(test_bit(BR_FDB_NOTIFY_INACTIVE, &fdb->flags) &&
test_and_clear_bit(BR_FDB_NOTIFY_INACTIVE, &fdb->flags));
}
void br_fdb_update(struct net_bridge *br, struct net_bridge_port *source,
const unsigned char *addr, u16 vid, unsigned long flags)
{
struct net_bridge_fdb_entry *fdb;
/* some users want to always flood. */
if (hold_time(br) == 0)
return;
fdb = fdb_find_rcu(&br->fdb_hash_tbl, addr, vid);
if (likely(fdb)) {
/* attempt to update an entry for a local interface */
if (unlikely(test_bit(BR_FDB_LOCAL, &fdb->flags))) {
if (net_ratelimit())
br_warn(br, "received packet on %s with own address as source address (addr:%pM, vlan:%u)\n",
source->dev->name, addr, vid);
} else {
unsigned long now = jiffies;
bool fdb_modified = false;
if (now != fdb->updated) {
fdb->updated = now;
fdb_modified = __fdb_mark_active(fdb);
}
/* fastpath: update of existing entry */
if (unlikely(source != READ_ONCE(fdb->dst) &&
!test_bit(BR_FDB_STICKY, &fdb->flags))) {
br_switchdev_fdb_notify(br, fdb, RTM_DELNEIGH);
WRITE_ONCE(fdb->dst, source);
fdb_modified = true;
/* Take over HW learned entry */
if (unlikely(test_bit(BR_FDB_ADDED_BY_EXT_LEARN,
&fdb->flags)))
clear_bit(BR_FDB_ADDED_BY_EXT_LEARN,
&fdb->flags);
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
/* Clear locked flag when roaming to an
* unlocked port.
*/
if (unlikely(test_bit(BR_FDB_LOCKED, &fdb->flags)))
clear_bit(BR_FDB_LOCKED, &fdb->flags);
}
if (unlikely(test_bit(BR_FDB_ADDED_BY_USER, &flags)))
set_bit(BR_FDB_ADDED_BY_USER, &fdb->flags);
if (unlikely(fdb_modified)) {
trace_br_fdb_update(br, source, addr, vid, flags);
fdb_notify(br, fdb, RTM_NEWNEIGH, true);
}
}
} else {
spin_lock(&br->hash_lock);
fdb = fdb_create(br, source, addr, vid, flags);
if (fdb) {
trace_br_fdb_update(br, source, addr, vid, flags);
fdb_notify(br, fdb, RTM_NEWNEIGH, true);
}
/* else we lose race and someone else inserts
* it first, don't bother updating
*/
spin_unlock(&br->hash_lock);
}
}
/* Dump information about entries, in response to GETNEIGH */
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 10:43:56 +04:00
int br_fdb_dump(struct sk_buff *skb,
struct netlink_callback *cb,
struct net_device *dev,
struct net_device *filter_dev,
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 07:56:45 +03:00
int *idx)
{
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 10:43:56 +04:00
struct net_bridge *br = netdev_priv(dev);
struct net_bridge_fdb_entry *f;
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 07:56:45 +03:00
int err = 0;
if (!netif_is_bridge_master(dev))
return err;
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 07:56:45 +03:00
if (!filter_dev) {
err = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
if (err < 0)
return err;
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 07:56:45 +03:00
}
net: Do not call ndo_dflt_fdb_dump if ndo_fdb_dump is defined Add checking whether the call to ndo_dflt_fdb_dump is needed. It is not expected to call ndo_dflt_fdb_dump unconditionally by some drivers (i.e. qlcnic or macvlan) that defines own ndo_fdb_dump. Other drivers define own ndo_fdb_dump and don't want ndo_dflt_fdb_dump to be called at all. At the same time it is desirable to call the default dump function on a bridge device. Fix attributes that are passed to dev->netdev_ops->ndo_fdb_dump. Add extra checking in br_fdb_dump to avoid duplicate entries as now filter_dev can be NULL. Following tests for filtering have been performed before the change and after the patch was applied to make sure they are the same and it doesn't break the filtering algorithm. [root@localhost ~]# cd /root/iproute2-3.18.0/bridge [root@localhost bridge]# modprobe dummy [root@localhost bridge]# ./bridge fdb add f1:f2:f3:f4:f5:f6 dev dummy0 [root@localhost bridge]# brctl addbr br0 [root@localhost bridge]# brctl addif br0 dummy0 [root@localhost bridge]# ip link set dev br0 address 02:00:00:12:01:04 [root@localhost bridge]# # show all [root@localhost bridge]# ./bridge fdb show 33:33:00:00:00:01 dev p2p1 self permanent 01:00:5e:00:00:01 dev p2p1 self permanent 33:33:ff:ac:ce:32 dev p2p1 self permanent 33:33:00:00:02:02 dev p2p1 self permanent 01:00:5e:00:00:fb dev p2p1 self permanent 33:33:00:00:00:01 dev p7p1 self permanent 01:00:5e:00:00:01 dev p7p1 self permanent 33:33:ff:79:50:53 dev p7p1 self permanent 33:33:00:00:02:02 dev p7p1 self permanent 01:00:5e:00:00:fb dev p7p1 self permanent f2:46:50:85:6d:d9 dev dummy0 master br0 permanent f2:46:50:85:6d:d9 dev dummy0 vlan 1 master br0 permanent 33:33:00:00:00:01 dev dummy0 self permanent f1:f2:f3:f4:f5:f6 dev dummy0 self permanent 33:33:00:00:00:01 dev br0 self permanent 02:00:00:12:01:04 dev br0 vlan 1 master br0 permanent 02:00:00:12:01:04 dev br0 master br0 permanent [root@localhost bridge]# # filter by bridge [root@localhost bridge]# ./bridge fdb show br br0 f2:46:50:85:6d:d9 dev dummy0 master br0 permanent f2:46:50:85:6d:d9 dev dummy0 vlan 1 master br0 permanent 33:33:00:00:00:01 dev dummy0 self permanent f1:f2:f3:f4:f5:f6 dev dummy0 self permanent 33:33:00:00:00:01 dev br0 self permanent 02:00:00:12:01:04 dev br0 vlan 1 master br0 permanent 02:00:00:12:01:04 dev br0 master br0 permanent [root@localhost bridge]# # filter by port [root@localhost bridge]# ./bridge fdb show brport dummy0 f2:46:50:85:6d:d9 master br0 permanent f2:46:50:85:6d:d9 vlan 1 master br0 permanent 33:33:00:00:00:01 self permanent f1:f2:f3:f4:f5:f6 self permanent [root@localhost bridge]# # filter by port + bridge [root@localhost bridge]# ./bridge fdb show br br0 brport dummy0 f2:46:50:85:6d:d9 master br0 permanent f2:46:50:85:6d:d9 vlan 1 master br0 permanent 33:33:00:00:00:01 self permanent f1:f2:f3:f4:f5:f6 self permanent [root@localhost bridge]# Signed-off-by: Hubert Sokolowski <hubert.sokolowski@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-05 20:29:21 +03:00
rcu_read_lock();
hlist_for_each_entry_rcu(f, &br->fdb_list, fdb_node) {
if (*idx < cb->args[2])
goto skip;
if (filter_dev && (!f->dst || f->dst->dev != filter_dev)) {
if (filter_dev != dev)
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 10:43:56 +04:00
goto skip;
/* !f->dst is a special case for bridge
* It means the MAC belongs to the bridge
* Therefore need a little more filtering
* we only want to dump the !f->dst case
*/
if (f->dst)
net: Do not call ndo_dflt_fdb_dump if ndo_fdb_dump is defined Add checking whether the call to ndo_dflt_fdb_dump is needed. It is not expected to call ndo_dflt_fdb_dump unconditionally by some drivers (i.e. qlcnic or macvlan) that defines own ndo_fdb_dump. Other drivers define own ndo_fdb_dump and don't want ndo_dflt_fdb_dump to be called at all. At the same time it is desirable to call the default dump function on a bridge device. Fix attributes that are passed to dev->netdev_ops->ndo_fdb_dump. Add extra checking in br_fdb_dump to avoid duplicate entries as now filter_dev can be NULL. Following tests for filtering have been performed before the change and after the patch was applied to make sure they are the same and it doesn't break the filtering algorithm. [root@localhost ~]# cd /root/iproute2-3.18.0/bridge [root@localhost bridge]# modprobe dummy [root@localhost bridge]# ./bridge fdb add f1:f2:f3:f4:f5:f6 dev dummy0 [root@localhost bridge]# brctl addbr br0 [root@localhost bridge]# brctl addif br0 dummy0 [root@localhost bridge]# ip link set dev br0 address 02:00:00:12:01:04 [root@localhost bridge]# # show all [root@localhost bridge]# ./bridge fdb show 33:33:00:00:00:01 dev p2p1 self permanent 01:00:5e:00:00:01 dev p2p1 self permanent 33:33:ff:ac:ce:32 dev p2p1 self permanent 33:33:00:00:02:02 dev p2p1 self permanent 01:00:5e:00:00:fb dev p2p1 self permanent 33:33:00:00:00:01 dev p7p1 self permanent 01:00:5e:00:00:01 dev p7p1 self permanent 33:33:ff:79:50:53 dev p7p1 self permanent 33:33:00:00:02:02 dev p7p1 self permanent 01:00:5e:00:00:fb dev p7p1 self permanent f2:46:50:85:6d:d9 dev dummy0 master br0 permanent f2:46:50:85:6d:d9 dev dummy0 vlan 1 master br0 permanent 33:33:00:00:00:01 dev dummy0 self permanent f1:f2:f3:f4:f5:f6 dev dummy0 self permanent 33:33:00:00:00:01 dev br0 self permanent 02:00:00:12:01:04 dev br0 vlan 1 master br0 permanent 02:00:00:12:01:04 dev br0 master br0 permanent [root@localhost bridge]# # filter by bridge [root@localhost bridge]# ./bridge fdb show br br0 f2:46:50:85:6d:d9 dev dummy0 master br0 permanent f2:46:50:85:6d:d9 dev dummy0 vlan 1 master br0 permanent 33:33:00:00:00:01 dev dummy0 self permanent f1:f2:f3:f4:f5:f6 dev dummy0 self permanent 33:33:00:00:00:01 dev br0 self permanent 02:00:00:12:01:04 dev br0 vlan 1 master br0 permanent 02:00:00:12:01:04 dev br0 master br0 permanent [root@localhost bridge]# # filter by port [root@localhost bridge]# ./bridge fdb show brport dummy0 f2:46:50:85:6d:d9 master br0 permanent f2:46:50:85:6d:d9 vlan 1 master br0 permanent 33:33:00:00:00:01 self permanent f1:f2:f3:f4:f5:f6 self permanent [root@localhost bridge]# # filter by port + bridge [root@localhost bridge]# ./bridge fdb show br br0 brport dummy0 f2:46:50:85:6d:d9 master br0 permanent f2:46:50:85:6d:d9 vlan 1 master br0 permanent 33:33:00:00:00:01 self permanent f1:f2:f3:f4:f5:f6 self permanent [root@localhost bridge]# Signed-off-by: Hubert Sokolowski <hubert.sokolowski@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-05 20:29:21 +03:00
goto skip;
}
if (!filter_dev && f->dst)
goto skip;
err = fdb_fill_info(skb, br, f,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWNEIGH,
NLM_F_MULTI);
if (err < 0)
break;
skip:
*idx += 1;
}
rcu_read_unlock();
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 07:56:45 +03:00
return err;
}
int br_fdb_get(struct sk_buff *skb,
struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr,
u16 vid, u32 portid, u32 seq,
struct netlink_ext_ack *extack)
{
struct net_bridge *br = netdev_priv(dev);
struct net_bridge_fdb_entry *f;
int err = 0;
rcu_read_lock();
f = br_fdb_find_rcu(br, addr, vid);
if (!f) {
NL_SET_ERR_MSG(extack, "Fdb entry not found");
err = -ENOENT;
goto errout;
}
err = fdb_fill_info(skb, br, f, portid, seq,
RTM_NEWNEIGH, 0);
errout:
rcu_read_unlock();
return err;
}
/* returns true if the fdb is modified */
static bool fdb_handle_notify(struct net_bridge_fdb_entry *fdb, u8 notify)
{
bool modified = false;
/* allow to mark an entry as inactive, usually done on creation */
if ((notify & FDB_NOTIFY_INACTIVE_BIT) &&
!test_and_set_bit(BR_FDB_NOTIFY_INACTIVE, &fdb->flags))
modified = true;
if ((notify & FDB_NOTIFY_BIT) &&
!test_and_set_bit(BR_FDB_NOTIFY, &fdb->flags)) {
/* enabled activity tracking */
modified = true;
} else if (!(notify & FDB_NOTIFY_BIT) &&
test_and_clear_bit(BR_FDB_NOTIFY, &fdb->flags)) {
/* disabled activity tracking, clear notify state */
clear_bit(BR_FDB_NOTIFY_INACTIVE, &fdb->flags);
modified = true;
}
return modified;
}
/* Update (create or replace) forwarding database entry */
static int fdb_add_entry(struct net_bridge *br, struct net_bridge_port *source,
const u8 *addr, struct ndmsg *ndm, u16 flags, u16 vid,
struct nlattr *nfea_tb[])
{
bool is_sticky = !!(ndm->ndm_flags & NTF_STICKY);
bool refresh = !nfea_tb[NFEA_DONT_REFRESH];
struct net_bridge_fdb_entry *fdb;
u16 state = ndm->ndm_state;
bool modified = false;
u8 notify = 0;
/* If the port cannot learn allow only local and static entries */
if (source && !(state & NUD_PERMANENT) && !(state & NUD_NOARP) &&
!(source->state == BR_STATE_LEARNING ||
source->state == BR_STATE_FORWARDING))
return -EPERM;
if (!source && !(state & NUD_PERMANENT)) {
pr_info("bridge: RTM_NEWNEIGH %s without NUD_PERMANENT\n",
br->dev->name);
return -EINVAL;
}
if (is_sticky && (state & NUD_PERMANENT))
return -EINVAL;
if (nfea_tb[NFEA_ACTIVITY_NOTIFY]) {
notify = nla_get_u8(nfea_tb[NFEA_ACTIVITY_NOTIFY]);
if ((notify & ~BR_FDB_NOTIFY_SETTABLE_BITS) ||
(notify & BR_FDB_NOTIFY_SETTABLE_BITS) == FDB_NOTIFY_INACTIVE_BIT)
return -EINVAL;
}
fdb = br_fdb_find(br, addr, vid);
if (fdb == NULL) {
if (!(flags & NLM_F_CREATE))
return -ENOENT;
fdb = fdb_create(br, source, addr, vid, 0);
if (!fdb)
return -ENOMEM;
modified = true;
} else {
if (flags & NLM_F_EXCL)
return -EEXIST;
if (READ_ONCE(fdb->dst) != source) {
WRITE_ONCE(fdb->dst, source);
modified = true;
}
}
if (fdb_to_nud(br, fdb) != state) {
if (state & NUD_PERMANENT) {
set_bit(BR_FDB_LOCAL, &fdb->flags);
if (!test_and_set_bit(BR_FDB_STATIC, &fdb->flags))
fdb_add_hw_addr(br, addr);
} else if (state & NUD_NOARP) {
clear_bit(BR_FDB_LOCAL, &fdb->flags);
if (!test_and_set_bit(BR_FDB_STATIC, &fdb->flags))
fdb_add_hw_addr(br, addr);
} else {
clear_bit(BR_FDB_LOCAL, &fdb->flags);
if (test_and_clear_bit(BR_FDB_STATIC, &fdb->flags))
fdb_del_hw_addr(br, addr);
}
modified = true;
}
if (is_sticky != test_bit(BR_FDB_STICKY, &fdb->flags)) {
change_bit(BR_FDB_STICKY, &fdb->flags);
modified = true;
}
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
if (test_and_clear_bit(BR_FDB_LOCKED, &fdb->flags))
modified = true;
if (fdb_handle_notify(fdb, notify))
modified = true;
set_bit(BR_FDB_ADDED_BY_USER, &fdb->flags);
fdb->used = jiffies;
if (modified) {
if (refresh)
fdb->updated = jiffies;
fdb_notify(br, fdb, RTM_NEWNEIGH, true);
}
return 0;
}
static int __br_fdb_add(struct ndmsg *ndm, struct net_bridge *br,
struct net_bridge_port *p, const unsigned char *addr,
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
u16 nlh_flags, u16 vid, struct nlattr *nfea_tb[],
struct netlink_ext_ack *extack)
{
int err = 0;
if (ndm->ndm_flags & NTF_USE) {
if (!p) {
pr_info("bridge: RTM_NEWNEIGH %s with NTF_USE is not supported\n",
br->dev->name);
return -EINVAL;
}
if (!nbp_state_should_learn(p))
return 0;
local_bh_disable();
rcu_read_lock();
br_fdb_update(br, p, addr, vid, BIT(BR_FDB_ADDED_BY_USER));
rcu_read_unlock();
local_bh_enable();
} else if (ndm->ndm_flags & NTF_EXT_LEARNED) {
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
if (!p && !(ndm->ndm_state & NUD_PERMANENT)) {
NL_SET_ERR_MSG_MOD(extack,
"FDB entry towards bridge must be permanent");
return -EINVAL;
}
bridge: switchdev: Allow device drivers to install locked FDB entries When the bridge is offloaded to hardware, FDB entries are learned and aged-out by the hardware. Some device drivers synchronize the hardware and software FDBs by generating switchdev events towards the bridge. When a port is locked, the hardware must not learn autonomously, as otherwise any host will blindly gain authorization. Instead, the hardware should generate events regarding hosts that are trying to gain authorization and their MAC addresses should be notified by the device driver as locked FDB entries towards the bridge driver. Allow device drivers to notify the bridge driver about such entries by extending the 'switchdev_notifier_fdb_info' structure with the 'locked' bit. The bit can only be set by device drivers and not by the bridge driver. Prevent a locked entry from being installed if MAB is not enabled on the bridge port. If an entry already exists in the bridge driver, reject the locked entry if the current entry does not have the "locked" flag set or if it points to a different port. The same semantics are implemented in the software data path. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Petr Machata <petrm@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-08 13:47:08 +03:00
err = br_fdb_external_learn_add(br, p, addr, vid, false, true);
} else {
spin_lock_bh(&br->hash_lock);
err = fdb_add_entry(br, p, addr, ndm, nlh_flags, vid, nfea_tb);
spin_unlock_bh(&br->hash_lock);
}
return err;
}
static const struct nla_policy br_nda_fdb_pol[NFEA_MAX + 1] = {
[NFEA_ACTIVITY_NOTIFY] = { .type = NLA_U8 },
[NFEA_DONT_REFRESH] = { .type = NLA_FLAG },
};
/* Add new permanent fdb entry with RTM_NEWNEIGH */
int br_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid, u16 nlh_flags,
struct netlink_ext_ack *extack)
{
struct nlattr *nfea_tb[NFEA_MAX + 1], *attr;
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan_group *vg;
struct net_bridge_port *p = NULL;
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan *v;
struct net_bridge *br = NULL;
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
u32 ext_flags = 0;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 10:43:56 +04:00
int err = 0;
trace_br_fdb_add(ndm, dev, addr, vid, nlh_flags);
if (!(ndm->ndm_state & (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE))) {
pr_info("bridge: RTM_NEWNEIGH with invalid state %#x\n", ndm->ndm_state);
return -EINVAL;
}
if (is_zero_ether_addr(addr)) {
pr_info("bridge: RTM_NEWNEIGH with invalid ether address\n");
return -EINVAL;
}
if (netif_is_bridge_master(dev)) {
br = netdev_priv(dev);
vg = br_vlan_group(br);
} else {
p = br_port_get_rtnl(dev);
if (!p) {
pr_info("bridge: RTM_NEWNEIGH %s not a bridge port\n",
dev->name);
return -EINVAL;
}
br = p->br;
vg = nbp_vlan_group(p);
}
bridge: Add MAC Authentication Bypass (MAB) support Hosts that support 802.1X authentication are able to authenticate themselves by exchanging EAPOL frames with an authenticator (Ethernet bridge, in this case) and an authentication server. Access to the network is only granted by the authenticator to successfully authenticated hosts. The above is implemented in the bridge using the "locked" bridge port option. When enabled, link-local frames (e.g., EAPOL) can be locally received by the bridge, but all other frames are dropped unless the host is authenticated. That is, unless the user space control plane installed an FDB entry according to which the source address of the frame is located behind the locked ingress port. The entry can be dynamic, in which case learning needs to be enabled so that the entry will be refreshed by incoming traffic. There are deployments in which not all the devices connected to the authenticator (the bridge) support 802.1X. Such devices can include printers and cameras. One option to support such deployments is to unlock the bridge ports connecting these devices, but a slightly more secure option is to use MAB. When MAB is enabled, the MAC address of the connected device is used as the user name and password for the authentication. For MAB to work, the user space control plane needs to be notified about MAC addresses that are trying to gain access so that they will be compared against an allow list. This can be implemented via the regular learning process with the sole difference that learned FDB entries are installed with a new "locked" flag indicating that the entry cannot be used to authenticate the device. The flag cannot be set by user space, but user space can clear the flag by replacing the entry, thereby authenticating the device. Locked FDB entries implement the following semantics with regards to roaming, aging and forwarding: 1. Roaming: Locked FDB entries can roam to unlocked (authorized) ports, in which case the "locked" flag is cleared. FDB entries cannot roam to locked ports regardless of MAB being enabled or not. Therefore, locked FDB entries are only created if an FDB entry with the given {MAC, VID} does not already exist. This behavior prevents unauthenticated devices from disrupting traffic destined to already authenticated devices. 2. Aging: Locked FDB entries age and refresh by incoming traffic like regular entries. 3. Forwarding: Locked FDB entries forward traffic like regular entries. If user space detects an unauthorized MAC behind a locked port and wishes to prevent traffic with this MAC DA from reaching the host, it can do so using tc or a different mechanism. Enable the above behavior using a new bridge port option called "mab". It can only be enabled on a bridge port that is both locked and has learning enabled. Locked FDB entries are flushed from the port once MAB is disabled. A new option is added because there are pure 802.1X deployments that are not interested in notifications about locked FDB entries. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 22:39:21 +03:00
if (tb[NDA_FLAGS_EXT])
ext_flags = nla_get_u32(tb[NDA_FLAGS_EXT]);
if (ext_flags & NTF_EXT_LOCKED) {
NL_SET_ERR_MSG_MOD(extack, "Cannot add FDB entry with \"locked\" flag set");
return -EINVAL;
}
if (tb[NDA_FDB_EXT_ATTRS]) {
attr = tb[NDA_FDB_EXT_ATTRS];
err = nla_parse_nested(nfea_tb, NFEA_MAX, attr,
br_nda_fdb_pol, extack);
if (err)
return err;
} else {
memset(nfea_tb, 0, sizeof(struct nlattr *) * (NFEA_MAX + 1));
}
if (vid) {
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
v = br_vlan_find(vg, vid);
if (!v || !br_vlan_should_use(v)) {
pr_info("bridge: RTM_NEWNEIGH with unconfigured vlan %d on %s\n", vid, dev->name);
return -EINVAL;
}
/* VID was specified, so use it. */
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
err = __br_fdb_add(ndm, br, p, addr, nlh_flags, vid, nfea_tb,
extack);
} else {
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
err = __br_fdb_add(ndm, br, p, addr, nlh_flags, 0, nfea_tb,
extack);
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
if (err || !vg || !vg->num_vlans)
goto out;
/* We have vlans configured on this port and user didn't
* specify a VLAN. To be nice, add/update entry for every
* vlan on this port.
*/
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
list_for_each_entry(v, &vg->vlan_list, vlist) {
if (!br_vlan_should_use(v))
continue;
err = __br_fdb_add(ndm, br, p, addr, nlh_flags, v->vid,
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
nfea_tb, extack);
if (err)
goto out;
}
}
out:
return err;
}
static int fdb_delete_by_addr_and_port(struct net_bridge *br,
const struct net_bridge_port *p,
const u8 *addr, u16 vlan)
{
struct net_bridge_fdb_entry *fdb;
fdb = br_fdb_find(br, addr, vlan);
if (!fdb || READ_ONCE(fdb->dst) != p)
return -ENOENT;
fdb_delete(br, fdb, true);
return 0;
}
static int __br_fdb_delete(struct net_bridge *br,
const struct net_bridge_port *p,
const unsigned char *addr, u16 vid)
{
int err;
spin_lock_bh(&br->hash_lock);
err = fdb_delete_by_addr_and_port(br, p, addr, vid);
spin_unlock_bh(&br->hash_lock);
return err;
}
/* Remove neighbor entry with RTM_DELNEIGH */
int br_fdb_delete(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
struct netlink_ext_ack *extack)
{
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan_group *vg;
struct net_bridge_port *p = NULL;
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
struct net_bridge_vlan *v;
struct net_bridge *br;
int err;
if (netif_is_bridge_master(dev)) {
br = netdev_priv(dev);
vg = br_vlan_group(br);
} else {
p = br_port_get_rtnl(dev);
if (!p) {
pr_info("bridge: RTM_DELNEIGH %s not a bridge port\n",
dev->name);
return -EINVAL;
}
vg = nbp_vlan_group(p);
br = p->br;
}
if (vid) {
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
v = br_vlan_find(vg, vid);
if (!v) {
pr_info("bridge: RTM_DELNEIGH with unconfigured vlan %d on %s\n", vid, dev->name);
return -EINVAL;
}
err = __br_fdb_delete(br, p, addr, vid);
} else {
err = -ENOENT;
err &= __br_fdb_delete(br, p, addr, 0);
bridge: vlan: add per-vlan struct and move to rhashtables This patch changes the bridge vlan implementation to use rhashtables instead of bitmaps. The main motivation behind this change is that we need extensible per-vlan structures (both per-port and global) so more advanced features can be introduced and the vlan support can be extended. I've tried to break this up but the moment net_port_vlans is changed and the whole API goes away, thus this is a larger patch. A few short goals of this patch are: - Extensible per-vlan structs stored in rhashtables and a sorted list - Keep user-visible behaviour (compressed vlans etc) - Keep fastpath ingress/egress logic the same (optimizations to come later) Here's a brief list of some of the new features we'd like to introduce: - per-vlan counters - vlan ingress/egress mapping - per-vlan igmp configuration - vlan priorities - avoid fdb entries replication (e.g. local fdb scaling issues) The structure is kept single for both global and per-port entries so to avoid code duplication where possible and also because we'll soon introduce "port0 / aka bridge as port" which should simplify things further (thanks to Vlad for the suggestion!). Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port rhashtable, if an entry is added to a port it'll get a pointer to its global context so it can be quickly accessed later. There's also a sorted vlan list which is used for stable walks and some user-visible behaviour such as the vlan ranges, also for error paths. VLANs are stored in a "vlan group" which currently contains the rhashtable, sorted vlan list and the number of "real" vlan entries. A good side-effect of this change is that it resembles how hw keeps per-vlan data. One important note after this change is that if a VLAN is being looked up in the bridge's rhashtable for filtering purposes (or to check if it's an existing usable entry, not just a global context) then the new helper br_vlan_should_use() needs to be used if the vlan is found. In case the lookup is done only with a port's vlan group, then this check can be skipped. Things tested so far: - basic vlan ingress/egress - pvids - untagged vlans - undef CONFIG_BRIDGE_VLAN_FILTERING - adding/deleting vlans in different scenarios (with/without global ctx, while transmitting traffic, in ranges etc) - loading/removing the module while having/adding/deleting vlans - extracting bridge vlan information (user ABI), compressed requests - adding/deleting fdbs on vlans - bridge mac change, promisc mode - default pvid change - kmemleak ON during the whole time Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-25 20:00:11 +03:00
if (!vg || !vg->num_vlans)
return err;
list_for_each_entry(v, &vg->vlan_list, vlist) {
if (!br_vlan_should_use(v))
continue;
err &= __br_fdb_delete(br, p, addr, v->vid);
}
}
return err;
}
int br_fdb_sync_static(struct net_bridge *br, struct net_bridge_port *p)
{
struct net_bridge_fdb_entry *f, *tmp;
int err = 0;
ASSERT_RTNL();
/* the key here is that static entries change only under rtnl */
rcu_read_lock();
hlist_for_each_entry_rcu(f, &br->fdb_list, fdb_node) {
/* We only care for static entries */
if (!test_bit(BR_FDB_STATIC, &f->flags))
continue;
err = dev_uc_add(p->dev, f->key.addr.addr);
if (err)
goto rollback;
}
done:
rcu_read_unlock();
return err;
rollback:
hlist_for_each_entry_rcu(tmp, &br->fdb_list, fdb_node) {
/* We only care for static entries */
if (!test_bit(BR_FDB_STATIC, &tmp->flags))
continue;
if (tmp == f)
break;
dev_uc_del(p->dev, tmp->key.addr.addr);
}
goto done;
}
void br_fdb_unsync_static(struct net_bridge *br, struct net_bridge_port *p)
{
struct net_bridge_fdb_entry *f;
ASSERT_RTNL();
rcu_read_lock();
hlist_for_each_entry_rcu(f, &br->fdb_list, fdb_node) {
/* We only care for static entries */
if (!test_bit(BR_FDB_STATIC, &f->flags))
continue;
dev_uc_del(p->dev, f->key.addr.addr);
}
rcu_read_unlock();
}
int br_fdb_external_learn_add(struct net_bridge *br, struct net_bridge_port *p,
bridge: switchdev: Allow device drivers to install locked FDB entries When the bridge is offloaded to hardware, FDB entries are learned and aged-out by the hardware. Some device drivers synchronize the hardware and software FDBs by generating switchdev events towards the bridge. When a port is locked, the hardware must not learn autonomously, as otherwise any host will blindly gain authorization. Instead, the hardware should generate events regarding hosts that are trying to gain authorization and their MAC addresses should be notified by the device driver as locked FDB entries towards the bridge driver. Allow device drivers to notify the bridge driver about such entries by extending the 'switchdev_notifier_fdb_info' structure with the 'locked' bit. The bit can only be set by device drivers and not by the bridge driver. Prevent a locked entry from being installed if MAB is not enabled on the bridge port. If an entry already exists in the bridge driver, reject the locked entry if the current entry does not have the "locked" flag set or if it points to a different port. The same semantics are implemented in the software data path. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Petr Machata <petrm@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-08 13:47:08 +03:00
const unsigned char *addr, u16 vid, bool locked,
bool swdev_notify)
{
struct net_bridge_fdb_entry *fdb;
bool modified = false;
int err = 0;
trace_br_fdb_external_learn_add(br, p, addr, vid);
bridge: switchdev: Allow device drivers to install locked FDB entries When the bridge is offloaded to hardware, FDB entries are learned and aged-out by the hardware. Some device drivers synchronize the hardware and software FDBs by generating switchdev events towards the bridge. When a port is locked, the hardware must not learn autonomously, as otherwise any host will blindly gain authorization. Instead, the hardware should generate events regarding hosts that are trying to gain authorization and their MAC addresses should be notified by the device driver as locked FDB entries towards the bridge driver. Allow device drivers to notify the bridge driver about such entries by extending the 'switchdev_notifier_fdb_info' structure with the 'locked' bit. The bit can only be set by device drivers and not by the bridge driver. Prevent a locked entry from being installed if MAB is not enabled on the bridge port. If an entry already exists in the bridge driver, reject the locked entry if the current entry does not have the "locked" flag set or if it points to a different port. The same semantics are implemented in the software data path. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Petr Machata <petrm@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-08 13:47:08 +03:00
if (locked && (!p || !(p->flags & BR_PORT_MAB)))
return -EINVAL;
spin_lock_bh(&br->hash_lock);
fdb = br_fdb_find(br, addr, vid);
if (!fdb) {
unsigned long flags = BIT(BR_FDB_ADDED_BY_EXT_LEARN);
if (swdev_notify)
flags |= BIT(BR_FDB_ADDED_BY_USER);
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
if (!p)
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
flags |= BIT(BR_FDB_LOCAL);
bridge: switchdev: Allow device drivers to install locked FDB entries When the bridge is offloaded to hardware, FDB entries are learned and aged-out by the hardware. Some device drivers synchronize the hardware and software FDBs by generating switchdev events towards the bridge. When a port is locked, the hardware must not learn autonomously, as otherwise any host will blindly gain authorization. Instead, the hardware should generate events regarding hosts that are trying to gain authorization and their MAC addresses should be notified by the device driver as locked FDB entries towards the bridge driver. Allow device drivers to notify the bridge driver about such entries by extending the 'switchdev_notifier_fdb_info' structure with the 'locked' bit. The bit can only be set by device drivers and not by the bridge driver. Prevent a locked entry from being installed if MAB is not enabled on the bridge port. If an entry already exists in the bridge driver, reject the locked entry if the current entry does not have the "locked" flag set or if it points to a different port. The same semantics are implemented in the software data path. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Petr Machata <petrm@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-08 13:47:08 +03:00
if (locked)
flags |= BIT(BR_FDB_LOCKED);
fdb = fdb_create(br, p, addr, vid, flags);
if (!fdb) {
err = -ENOMEM;
goto err_unlock;
}
fdb_notify(br, fdb, RTM_NEWNEIGH, swdev_notify);
} else {
bridge: switchdev: Allow device drivers to install locked FDB entries When the bridge is offloaded to hardware, FDB entries are learned and aged-out by the hardware. Some device drivers synchronize the hardware and software FDBs by generating switchdev events towards the bridge. When a port is locked, the hardware must not learn autonomously, as otherwise any host will blindly gain authorization. Instead, the hardware should generate events regarding hosts that are trying to gain authorization and their MAC addresses should be notified by the device driver as locked FDB entries towards the bridge driver. Allow device drivers to notify the bridge driver about such entries by extending the 'switchdev_notifier_fdb_info' structure with the 'locked' bit. The bit can only be set by device drivers and not by the bridge driver. Prevent a locked entry from being installed if MAB is not enabled on the bridge port. If an entry already exists in the bridge driver, reject the locked entry if the current entry does not have the "locked" flag set or if it points to a different port. The same semantics are implemented in the software data path. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Petr Machata <petrm@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-08 13:47:08 +03:00
if (locked &&
(!test_bit(BR_FDB_LOCKED, &fdb->flags) ||
READ_ONCE(fdb->dst) != p)) {
err = -EINVAL;
goto err_unlock;
}
fdb->updated = jiffies;
if (READ_ONCE(fdb->dst) != p) {
WRITE_ONCE(fdb->dst, p);
modified = true;
}
if (test_bit(BR_FDB_ADDED_BY_EXT_LEARN, &fdb->flags)) {
/* Refresh entry */
fdb->used = jiffies;
} else if (!test_bit(BR_FDB_ADDED_BY_USER, &fdb->flags)) {
/* Take over SW learned entry */
set_bit(BR_FDB_ADDED_BY_EXT_LEARN, &fdb->flags);
modified = true;
}
bridge: switchdev: Allow device drivers to install locked FDB entries When the bridge is offloaded to hardware, FDB entries are learned and aged-out by the hardware. Some device drivers synchronize the hardware and software FDBs by generating switchdev events towards the bridge. When a port is locked, the hardware must not learn autonomously, as otherwise any host will blindly gain authorization. Instead, the hardware should generate events regarding hosts that are trying to gain authorization and their MAC addresses should be notified by the device driver as locked FDB entries towards the bridge driver. Allow device drivers to notify the bridge driver about such entries by extending the 'switchdev_notifier_fdb_info' structure with the 'locked' bit. The bit can only be set by device drivers and not by the bridge driver. Prevent a locked entry from being installed if MAB is not enabled on the bridge port. If an entry already exists in the bridge driver, reject the locked entry if the current entry does not have the "locked" flag set or if it points to a different port. The same semantics are implemented in the software data path. Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Petr Machata <petrm@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <razor@blackwall.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-08 13:47:08 +03:00
if (locked != test_bit(BR_FDB_LOCKED, &fdb->flags)) {
change_bit(BR_FDB_LOCKED, &fdb->flags);
modified = true;
}
if (swdev_notify)
set_bit(BR_FDB_ADDED_BY_USER, &fdb->flags);
if (!p)
net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry Currently it is possible to add broken extern_learn FDB entries to the bridge in two ways: 1. Entries pointing towards the bridge device that are not local/permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static 2. Entries pointing towards the bridge device or towards a port that are marked as local/permanent, however the bridge does not process the 'permanent' bit in any way, therefore they are recorded as though they aren't permanent: ip link add br0 type bridge bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent Since commit 52e4bec15546 ("net: bridge: switchdev: treat local FDBs the same as entries towards the bridge"), these incorrect FDB entries can even trigger NULL pointer dereferences inside the kernel. This is because that commit made the assumption that all FDB entries that are not local/permanent have a valid destination port. For context, local / permanent FDB entries either have fdb->dst == NULL, and these point towards the bridge device and are therefore local and not to be used for forwarding, or have fdb->dst == a net_bridge_port structure (but are to be treated in the same way, i.e. not for forwarding). That assumption _is_ correct as long as things are working correctly in the bridge driver, i.e. we cannot logically have fdb->dst == NULL under any circumstance for FDB entries that are not local. However, the extern_learn code path where FDB entries are managed by a user space controller show that it is possible for the bridge kernel driver to misinterpret the NUD flags of an entry transmitted by user space, and end up having fdb->dst == NULL while not being a local entry. This is invalid and should be rejected. Before, the two commands listed above both crashed the kernel in this check from br_switchdev_fdb_notify: struct net_device *dev = info.is_local ? br->dev : dst->dev; info.is_local == false, dst == NULL. After this patch, the invalid entry added by the first command is rejected: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn static; ip link del br0 Error: bridge: FDB entry towards bridge must be permanent. and the valid entry added by the second command is properly treated as a local address and does not crash br_switchdev_fdb_notify anymore: ip link add br0 type bridge && bridge fdb add 00:01:02:03:04:05 dev br0 self extern_learn permanent; ip link del br0 Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Reported-by: syzbot+9ba1174359adba5a5b7c@syzkaller.appspotmail.com Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Link: https://lore.kernel.org/r/20210801231730.7493-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-02 02:17:30 +03:00
set_bit(BR_FDB_LOCAL, &fdb->flags);
if (modified)
fdb_notify(br, fdb, RTM_NEWNEIGH, swdev_notify);
}
err_unlock:
spin_unlock_bh(&br->hash_lock);
return err;
}
int br_fdb_external_learn_del(struct net_bridge *br, struct net_bridge_port *p,
const unsigned char *addr, u16 vid,
bool swdev_notify)
{
struct net_bridge_fdb_entry *fdb;
int err = 0;
spin_lock_bh(&br->hash_lock);
fdb = br_fdb_find(br, addr, vid);
if (fdb && test_bit(BR_FDB_ADDED_BY_EXT_LEARN, &fdb->flags))
fdb_delete(br, fdb, swdev_notify);
else
err = -ENOENT;
spin_unlock_bh(&br->hash_lock);
return err;
}
void br_fdb_offloaded_set(struct net_bridge *br, struct net_bridge_port *p,
const unsigned char *addr, u16 vid, bool offloaded)
{
struct net_bridge_fdb_entry *fdb;
spin_lock_bh(&br->hash_lock);
fdb = br_fdb_find(br, addr, vid);
if (fdb && offloaded != test_bit(BR_FDB_OFFLOADED, &fdb->flags))
change_bit(BR_FDB_OFFLOADED, &fdb->flags);
spin_unlock_bh(&br->hash_lock);
}
void br_fdb_clear_offload(const struct net_device *dev, u16 vid)
{
struct net_bridge_fdb_entry *f;
struct net_bridge_port *p;
ASSERT_RTNL();
p = br_port_get_rtnl(dev);
if (!p)
return;
spin_lock_bh(&p->br->hash_lock);
hlist_for_each_entry(f, &p->br->fdb_list, fdb_node) {
if (f->dst == p && f->key.vlan_id == vid)
clear_bit(BR_FDB_OFFLOADED, &f->flags);
}
spin_unlock_bh(&p->br->hash_lock);
}
EXPORT_SYMBOL_GPL(br_fdb_clear_offload);