linux/fs/ceph/super.h

1400 lines
44 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _FS_CEPH_SUPER_H
#define _FS_CEPH_SUPER_H
#include <linux/ceph/ceph_debug.h>
#include <asm/unaligned.h>
#include <linux/backing-dev.h>
#include <linux/completion.h>
#include <linux/exportfs.h>
#include <linux/fs.h>
#include <linux/mempool.h>
#include <linux/pagemap.h>
#include <linux/wait.h>
#include <linux/writeback.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/posix_acl.h>
#include <linux/refcount.h>
#include <linux/security.h>
netfs: Add a netfs inode context Add a netfs_i_context struct that should be included in the network filesystem's own inode struct wrapper, directly after the VFS's inode struct, e.g.: struct my_inode { struct { /* These must be contiguous */ struct inode vfs_inode; struct netfs_i_context netfs_ctx; }; }; The netfs_i_context struct so far contains a single field for the network filesystem to use - the cache cookie: struct netfs_i_context { ... struct fscache_cookie *cache; }; Three functions are provided to help with this: (1) void netfs_i_context_init(struct inode *inode, const struct netfs_request_ops *ops); Initialise the netfs context and set the operations. (2) struct netfs_i_context *netfs_i_context(struct inode *inode); Find the netfs context from the VFS inode. (3) struct inode *netfs_inode(struct netfs_i_context *ctx); Find the VFS inode from the netfs context. Changes ======= ver #4) - Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a cache is present[3]. - Fix netfs_skip_folio_read() to zero out all of the page, not just some of it[3]. ver #3) - Split out the bit to move ceph cap-getting on readahead into ceph_init_request()[1]. - Stick in a comment to the netfs inode structs indicating the contiguity requirements[2]. ver #2) - Adjust documentation to match. - Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef". - Move the cap check from ceph_readahead() to ceph_init_request() to be called from netfslib. - Remove ceph_readahead() and use netfs_readahead() directly instead. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2] Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3] Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
2021-06-29 22:37:05 +01:00
#include <linux/netfs.h>
#include <linux/fscache.h>
#include <linux/hashtable.h>
#include <linux/ceph/libceph.h>
/* large granularity for statfs utilization stats to facilitate
* large volume sizes on 32-bit machines. */
#define CEPH_BLOCK_SHIFT 22 /* 4 MB */
#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
#define CEPH_4K_BLOCK_SHIFT 12 /* 4 KB */
#define CEPH_MOUNT_OPT_CLEANRECOVER (1<<1) /* auto reonnect (clean mode) after blocklisted */
#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
#define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */
#define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */
#define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */
#define CEPH_MOUNT_OPT_MOUNTWAIT (1<<12) /* mount waits if no mds is up */
#define CEPH_MOUNT_OPT_NOQUOTADF (1<<13) /* no root dir quota in statfs */
#define CEPH_MOUNT_OPT_NOCOPYFROM (1<<14) /* don't use RADOS 'copy-from' op */
ceph: perform asynchronous unlink if we have sufficient caps The MDS is getting a new lock-caching facility that will allow it to cache the necessary locks to allow asynchronous directory operations. Since the CEPH_CAP_FILE_* caps are currently unused on directories, we can repurpose those bits for this purpose. When performing an unlink, if we have Fx on the parent directory, and CEPH_CAP_DIR_UNLINK (aka Fr), and we know that the dentry being removed is the primary link, then then we can fire off an unlink request immediately and don't need to wait on reply before returning. In that situation, just fix up the dcache and link count and return immediately after issuing the call to the MDS. This does mean that we need to hold an extra reference to the inode being unlinked, and extra references to the caps to avoid races. Those references are put and error handling is done in the r_callback routine. If the operation ends up failing, then set a writeback error on the directory inode, and the inode itself that can be fetched later by an fsync on the dir. The behavior of dir caps is slightly different from caps on normal files. Because these are just considered an optimization, if the session is reconnected, we will not automatically reclaim them. They are instead considered lost until we do another synchronous op in the parent directory. Async dirops are enabled via the "nowsync" mount option, which is patterned after the xfs "wsync" mount option. For now, the default is "wsync", but eventually we may flip that. Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2019-04-02 15:35:56 -04:00
#define CEPH_MOUNT_OPT_ASYNC_DIROPS (1<<15) /* allow async directory ops */
#define CEPH_MOUNT_OPT_NOPAGECACHE (1<<16) /* bypass pagecache altogether */
#define CEPH_MOUNT_OPT_SPARSEREAD (1<<17) /* always do sparse reads */
#define CEPH_MOUNT_OPT_DEFAULT \
(CEPH_MOUNT_OPT_DCACHE | \
CEPH_MOUNT_OPT_NOCOPYFROM | \
CEPH_MOUNT_OPT_ASYNC_DIROPS)
#define ceph_set_mount_opt(fsc, opt) \
ceph: perform asynchronous unlink if we have sufficient caps The MDS is getting a new lock-caching facility that will allow it to cache the necessary locks to allow asynchronous directory operations. Since the CEPH_CAP_FILE_* caps are currently unused on directories, we can repurpose those bits for this purpose. When performing an unlink, if we have Fx on the parent directory, and CEPH_CAP_DIR_UNLINK (aka Fr), and we know that the dentry being removed is the primary link, then then we can fire off an unlink request immediately and don't need to wait on reply before returning. In that situation, just fix up the dcache and link count and return immediately after issuing the call to the MDS. This does mean that we need to hold an extra reference to the inode being unlinked, and extra references to the caps to avoid races. Those references are put and error handling is done in the r_callback routine. If the operation ends up failing, then set a writeback error on the directory inode, and the inode itself that can be fetched later by an fsync on the dir. The behavior of dir caps is slightly different from caps on normal files. Because these are just considered an optimization, if the session is reconnected, we will not automatically reclaim them. They are instead considered lost until we do another synchronous op in the parent directory. Async dirops are enabled via the "nowsync" mount option, which is patterned after the xfs "wsync" mount option. For now, the default is "wsync", but eventually we may flip that. Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2019-04-02 15:35:56 -04:00
(fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt
#define ceph_clear_mount_opt(fsc, opt) \
(fsc)->mount_options->flags &= ~CEPH_MOUNT_OPT_##opt
#define ceph_test_mount_opt(fsc, opt) \
(!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
/* max size of osd read request, limited by libceph */
#define CEPH_MAX_READ_SIZE CEPH_MSG_MAX_DATA_LEN
/* osd has a configurable limitaion of max write size.
* CEPH_MSG_MAX_DATA_LEN should be small enough. */
#define CEPH_MAX_WRITE_SIZE CEPH_MSG_MAX_DATA_LEN
#define CEPH_RASIZE_DEFAULT (8192*1024) /* max readahead */
#define CEPH_MAX_READDIR_DEFAULT 1024
#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
/*
* Delay telling the MDS we no longer want caps, in case we reopen
* the file. Delay a minimum amount of time, even if we send a cap
* message for some other reason. Otherwise, take the oppotunity to
* update the mds to avoid sending another message later.
*/
#define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT 5 /* cap release delay */
#define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT 60 /* cap release delay */
struct ceph_mount_options {
unsigned int flags;
unsigned int wsize; /* max write size */
unsigned int rsize; /* max read size */
unsigned int rasize; /* max readahead */
unsigned int congestion_kb; /* max writeback in flight */
unsigned int caps_wanted_delay_min, caps_wanted_delay_max;
int caps_max;
unsigned int max_readdir; /* max readdir result (entries) */
unsigned int max_readdir_bytes; /* max readdir result (bytes) */
bool new_dev_syntax;
/*
* everything above this point can be memcmp'd; everything below
* is handled in compare_mount_options()
*/
char *snapdir_name; /* default ".snap" */
char *mds_namespace; /* default NULL */
char *server_path; /* default NULL (means "/") */
char *fscache_uniq; /* default NULL */
char *mon_addr;
};
/* mount state */
enum {
CEPH_MOUNT_MOUNTING,
CEPH_MOUNT_MOUNTED,
CEPH_MOUNT_UNMOUNTING,
CEPH_MOUNT_UNMOUNTED,
CEPH_MOUNT_SHUTDOWN,
CEPH_MOUNT_RECOVER,
CEPH_MOUNT_FENCE_IO,
};
#define CEPH_ASYNC_CREATE_CONFLICT_BITS 8
struct ceph_fs_client {
struct super_block *sb;
struct list_head metric_wakeup;
struct ceph_mount_options *mount_options;
struct ceph_client *client;
int mount_state;
bool blocklisted;
bool have_copy_from2;
u32 filp_gen;
loff_t max_file_size;
struct ceph_mds_client *mdsc;
atomic_long_t writeback_count;
ceph: remove reliance on bdi congestion The bdi congestion tracking in not widely used and will be removed. CEPHfs is one of a small number of filesystems that uses it, setting just the async (write) congestion flags at what it determines are appropriate times. The only remaining effect of the async flag is to cause (some) WB_SYNC_NONE writes to be skipped. So instead of setting the flag, set an internal flag and change: - .writepages to do nothing if WB_SYNC_NONE and the flag is set - .writepage to return AOP_WRITEPAGE_ACTIVATE if WB_SYNC_NONE and the flag is set. The writepages change causes a behavioural change in that pageout() can now return PAGE_ACTIVATE instead of PAGE_KEEP, so SetPageActive() will be called on the page which (I think) wil further delay the next attempt at writeout. This might be a good thing. Link: https://lkml.kernel.org/r/164549983739.9187.14895675781408171186.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 14:39:04 -07:00
bool write_congested;
struct workqueue_struct *inode_wq;
struct workqueue_struct *cap_wq;
DECLARE_HASHTABLE(async_unlink_conflict, CEPH_ASYNC_CREATE_CONFLICT_BITS);
spinlock_t async_unlink_conflict_lock;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_dentry_lru, *debugfs_caps;
struct dentry *debugfs_congestion_kb;
struct dentry *debugfs_bdi;
struct dentry *debugfs_mdsc, *debugfs_mdsmap;
struct dentry *debugfs_status;
struct dentry *debugfs_mds_sessions;
struct dentry *debugfs_metrics_dir;
#endif
#ifdef CONFIG_CEPH_FSCACHE
struct fscache_volume *fscache;
#endif
};
/*
* File i/o capability. This tracks shared state with the metadata
* server that allows us to cache or writeback attributes or to read
* and write data. For any given inode, we should have one or more
* capabilities, one issued by each metadata server, and our
* cumulative access is the OR of all issued capabilities.
*
* Each cap is referenced by the inode's i_caps rbtree and by per-mds
* session capability lists.
*/
struct ceph_cap {
struct ceph_inode_info *ci;
struct rb_node ci_node; /* per-ci cap tree */
struct ceph_mds_session *session;
struct list_head session_caps; /* per-session caplist */
u64 cap_id; /* unique cap id (mds provided) */
union {
/* in-use caps */
struct {
int issued; /* latest, from the mds */
int implemented; /* implemented superset of
issued (for revocation) */
int mds; /* mds index for this cap */
int mds_wanted; /* caps wanted from this mds */
};
/* caps to release */
struct {
u64 cap_ino;
int queue_release;
};
};
u32 seq, issue_seq, mseq;
u32 cap_gen; /* active/stale cycle */
unsigned long last_used;
struct list_head caps_item;
};
#define CHECK_CAPS_AUTHONLY 1 /* only check auth cap */
#define CHECK_CAPS_FLUSH 2 /* flush any dirty caps */
#define CHECK_CAPS_NOINVAL 4 /* don't invalidate pagecache */
struct ceph_cap_flush {
u64 tid;
int caps;
bool wake; /* wake up flush waiters when finish ? */
bool is_capsnap; /* true means capsnap */
struct list_head g_list; // global
struct list_head i_list; // per inode
};
/*
* Snapped cap state that is pending flush to mds. When a snapshot occurs,
* we first complete any in-process sync writes and writeback any dirty
* data before flushing the snapped state (tracked here) back to the MDS.
*/
struct ceph_cap_snap {
refcount_t nref;
struct list_head ci_item;
struct ceph_cap_flush cap_flush;
u64 follows;
int issued, dirty;
struct ceph_snap_context *context;
umode_t mode;
kuid_t uid;
kgid_t gid;
struct ceph_buffer *xattr_blob;
u64 xattr_version;
u64 size;
u64 change_attr;
struct timespec64 mtime, atime, ctime, btime;
u64 time_warp_seq;
u64 truncate_size;
u32 truncate_seq;
int writing; /* a sync write is still in progress */
int dirty_pages; /* dirty pages awaiting writeback */
bool inline_data;
bool need_flush;
};
static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
{
if (refcount_dec_and_test(&capsnap->nref)) {
if (capsnap->xattr_blob)
ceph_buffer_put(capsnap->xattr_blob);
kmem_cache_free(ceph_cap_snap_cachep, capsnap);
}
}
/*
* The frag tree describes how a directory is fragmented, potentially across
* multiple metadata servers. It is also used to indicate points where
* metadata authority is delegated, and whether/where metadata is replicated.
*
* A _leaf_ frag will be present in the i_fragtree IFF there is
* delegation info. That is, if mds >= 0 || ndist > 0.
*/
#define CEPH_MAX_DIRFRAG_REP 4
struct ceph_inode_frag {
struct rb_node node;
/* fragtree state */
u32 frag;
int split_by; /* i.e. 2^(split_by) children */
/* delegation and replication info */
int mds; /* -1 if same authority as parent */
int ndist; /* >0 if replicated */
int dist[CEPH_MAX_DIRFRAG_REP];
};
/*
* We cache inode xattrs as an encoded blob until they are first used,
* at which point we parse them into an rbtree.
*/
struct ceph_inode_xattr {
struct rb_node node;
const char *name;
int name_len;
const char *val;
int val_len;
int dirty;
int should_free_name;
int should_free_val;
};
/*
* Ceph dentry state
*/
struct ceph_dentry_info {
struct dentry *dentry;
struct ceph_mds_session *lease_session;
struct list_head lease_list;
struct hlist_node hnode;
unsigned long flags;
int lease_shared_gen;
u32 lease_gen;
u32 lease_seq;
unsigned long lease_renew_after, lease_renew_from;
unsigned long time;
u64 offset;
};
#define CEPH_DENTRY_REFERENCED (1 << 0)
#define CEPH_DENTRY_LEASE_LIST (1 << 1)
#define CEPH_DENTRY_SHRINK_LIST (1 << 2)
#define CEPH_DENTRY_PRIMARY_LINK (1 << 3)
#define CEPH_DENTRY_ASYNC_UNLINK_BIT (4)
#define CEPH_DENTRY_ASYNC_UNLINK (1 << CEPH_DENTRY_ASYNC_UNLINK_BIT)
#define CEPH_DENTRY_ASYNC_CREATE_BIT (5)
#define CEPH_DENTRY_ASYNC_CREATE (1 << CEPH_DENTRY_ASYNC_CREATE_BIT)
struct ceph_inode_xattrs_info {
/*
* (still encoded) xattr blob. we avoid the overhead of parsing
* this until someone actually calls getxattr, etc.
*
* blob->vec.iov_len == 4 implies there are no xattrs; blob ==
* NULL means we don't know.
*/
struct ceph_buffer *blob, *prealloc_blob;
struct rb_root index;
bool dirty;
int count;
int names_size;
int vals_size;
u64 version, index_version;
};
/*
* Ceph inode.
*/
struct ceph_inode_info {
netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context While randstruct was satisfied with using an open-coded "void *" offset cast for the netfs_i_context <-> inode casting, __builtin_object_size() as used by FORTIFY_SOURCE was not as easily fooled. This was causing the following complaint[1] from gcc v12: In file included from include/linux/string.h:253, from include/linux/ceph/ceph_debug.h:7, from fs/ceph/inode.c:2: In function 'fortify_memset_chk', inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2, inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2: include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning] 242 | __write_overflow_field(p_size_field, size); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix this by embedding a struct inode into struct netfs_i_context (which should perhaps be renamed to struct netfs_inode). The struct inode vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode structs and vfs_inode is then simply changed to "netfs.inode" in those filesystems. Further, rename netfs_i_context to netfs_inode, get rid of the netfs_inode() function that converted a netfs_i_context pointer to an inode pointer (that can now be done with &ctx->inode) and rename the netfs_i_context() function to netfs_inode() (which is now a wrapper around container_of()). Most of the changes were done with: perl -p -i -e 's/vfs_inode/netfs.inode/'g \ `git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]` Kees suggested doing it with a pair structure[2] and a special declarator to insert that into the network filesystem's inode wrapper[3], but I think it's cleaner to embed it - and then it doesn't matter if struct randomisation reorders things. Dave Chinner suggested using a filesystem-specific VFS_I() function in each filesystem to convert that filesystem's own inode wrapper struct into the VFS inode struct[4]. Version #2: - Fix a couple of missed name changes due to a disabled cifs option. - Rename nfs_i_context to nfs_inode - Use "netfs" instead of "nic" as the member name in per-fs inode wrapper structs. [ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily disable '-Wattribute-warning' for now") that is no longer needed ] Fixes: bc899ee1c898 ("netfs: Add a netfs inode context") Reported-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Xiubo Li <xiubli@redhat.com> cc: Jonathan Corbet <corbet@lwn.net> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Steve French <smfrench@gmail.com> cc: William Kucharski <william.kucharski@oracle.com> cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> cc: Dave Chinner <david@fromorbit.com> cc: linux-doc@vger.kernel.org cc: v9fs-developer@lists.sourceforge.net cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: samba-technical@lists.samba.org cc: linux-fsdevel@vger.kernel.org cc: linux-hardening@vger.kernel.org Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2] Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3] Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4] Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-06-09 21:46:04 +01:00
struct netfs_inode netfs; /* Netfslib context and vfs inode */
struct ceph_vino i_vino; /* ceph ino + snap */
spinlock_t i_ceph_lock;
u64 i_version;
u64 i_inline_version;
u32 i_time_warp_seq;
unsigned long i_ceph_flags;
atomic64_t i_release_count;
atomic64_t i_ordered_count;
atomic64_t i_complete_seq[2];
struct ceph_dir_layout i_dir_layout;
struct ceph_file_layout i_layout;
struct ceph_file_layout i_cached_layout; // for async creates
char *i_symlink;
/* for dirs */
struct timespec64 i_rctime;
u64 i_rbytes, i_rfiles, i_rsubdirs, i_rsnaps;
u64 i_files, i_subdirs;
/* quotas */
u64 i_max_bytes, i_max_files;
s32 i_dir_pin;
struct rb_root i_fragtree;
int i_fragtree_nsplits;
struct mutex i_fragtree_mutex;
struct ceph_inode_xattrs_info i_xattrs;
/* capabilities. protected _both_ by i_ceph_lock and cap->session's
* s_mutex. */
struct rb_root i_caps; /* cap list */
struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
/*
* Link to the auth cap's session's s_cap_dirty list. s_cap_dirty
* is protected by the mdsc->cap_dirty_lock, but each individual item
* is also protected by the inode's i_ceph_lock. Walking s_cap_dirty
* requires the mdsc->cap_dirty_lock. List presence for an item can
* be tested under the i_ceph_lock. Changing anything requires both.
*/
struct list_head i_dirty_item;
/*
* Link to session's s_cap_flushing list. Protected in a similar
* fashion to i_dirty_item, but also by the s_mutex for changes. The
* s_cap_flushing list can be walked while holding either the s_mutex
* or msdc->cap_dirty_lock. List presence can also be checked while
* holding the i_ceph_lock for this inode.
*/
struct list_head i_flushing_item;
/* we need to track cap writeback on a per-cap-bit basis, to allow
* overlapping, pipelined cap flushes to the mds. we can probably
* reduce the tid to 8 bits if we're concerned about inode size. */
struct ceph_cap_flush *i_prealloc_cap_flush;
struct list_head i_cap_flush_list;
wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
unsigned long i_hold_caps_max; /* jiffies */
struct list_head i_cap_delay_list; /* for delayed cap release to mds */
struct ceph_cap_reservation i_cap_migration_resv;
struct list_head i_cap_snaps; /* snapped state pending flush to mds */
struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
dirty|flushing caps */
unsigned i_snap_caps; /* cap bits for snapped files */
unsigned long i_last_rd;
unsigned long i_last_wr;
int i_nr_by_mode[CEPH_FILE_MODE_BITS]; /* open file counts */
struct mutex i_truncate_mutex;
u32 i_truncate_seq; /* last truncate to smaller size */
u64 i_truncate_size; /* and the size we last truncated down to */
int i_truncate_pending; /* still need to call vmtruncate */
u64 i_max_size; /* max file size authorized by mds */
u64 i_reported_size; /* (max_)size reported to or requested of mds */
u64 i_wanted_max_size; /* offset we'd like to write too */
u64 i_requested_max_size; /* max_size we've requested */
/* held references to caps */
int i_pin_ref;
int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref, i_fx_ref;
int i_wrbuffer_ref, i_wrbuffer_ref_head;
atomic_t i_filelock_ref;
atomic_t i_shared_gen; /* increment each time we get FILE_SHARED */
u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
struct list_head i_unsafe_iops; /* uncommitted mds inode ops */
spinlock_t i_unsafe_lock;
union {
struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
struct ceph_snapid_map *i_snapid_map; /* snapid -> dev_t */
};
struct list_head i_snap_realm_item;
struct list_head i_snap_flush_item;
struct timespec64 i_btime;
struct timespec64 i_snap_btime;
struct work_struct i_work;
unsigned long i_work_mask;
#ifdef CONFIG_FS_ENCRYPTION
u32 fscrypt_auth_len;
u32 fscrypt_file_len;
u8 *fscrypt_auth;
u8 *fscrypt_file;
#endif
};
struct ceph_netfs_request_data {
int caps;
/*
* Maximum size of a file readahead request.
* The fadvise could update the bdi's default ra_pages.
*/
unsigned int file_ra_pages;
/* Set it if fadvise disables file readahead entirely */
bool file_ra_disabled;
};
static inline struct ceph_inode_info *
ceph_inode(const struct inode *inode)
{
netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context While randstruct was satisfied with using an open-coded "void *" offset cast for the netfs_i_context <-> inode casting, __builtin_object_size() as used by FORTIFY_SOURCE was not as easily fooled. This was causing the following complaint[1] from gcc v12: In file included from include/linux/string.h:253, from include/linux/ceph/ceph_debug.h:7, from fs/ceph/inode.c:2: In function 'fortify_memset_chk', inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2, inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2: include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning] 242 | __write_overflow_field(p_size_field, size); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix this by embedding a struct inode into struct netfs_i_context (which should perhaps be renamed to struct netfs_inode). The struct inode vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode structs and vfs_inode is then simply changed to "netfs.inode" in those filesystems. Further, rename netfs_i_context to netfs_inode, get rid of the netfs_inode() function that converted a netfs_i_context pointer to an inode pointer (that can now be done with &ctx->inode) and rename the netfs_i_context() function to netfs_inode() (which is now a wrapper around container_of()). Most of the changes were done with: perl -p -i -e 's/vfs_inode/netfs.inode/'g \ `git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]` Kees suggested doing it with a pair structure[2] and a special declarator to insert that into the network filesystem's inode wrapper[3], but I think it's cleaner to embed it - and then it doesn't matter if struct randomisation reorders things. Dave Chinner suggested using a filesystem-specific VFS_I() function in each filesystem to convert that filesystem's own inode wrapper struct into the VFS inode struct[4]. Version #2: - Fix a couple of missed name changes due to a disabled cifs option. - Rename nfs_i_context to nfs_inode - Use "netfs" instead of "nic" as the member name in per-fs inode wrapper structs. [ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily disable '-Wattribute-warning' for now") that is no longer needed ] Fixes: bc899ee1c898 ("netfs: Add a netfs inode context") Reported-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Xiubo Li <xiubli@redhat.com> cc: Jonathan Corbet <corbet@lwn.net> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Steve French <smfrench@gmail.com> cc: William Kucharski <william.kucharski@oracle.com> cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> cc: Dave Chinner <david@fromorbit.com> cc: linux-doc@vger.kernel.org cc: v9fs-developer@lists.sourceforge.net cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: samba-technical@lists.samba.org cc: linux-fsdevel@vger.kernel.org cc: linux-hardening@vger.kernel.org Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2] Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3] Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4] Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-06-09 21:46:04 +01:00
return container_of(inode, struct ceph_inode_info, netfs.inode);
}
static inline struct ceph_fs_client *
ceph_inode_to_client(const struct inode *inode)
{
return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
}
static inline struct ceph_fs_client *
ceph_sb_to_client(const struct super_block *sb)
{
return (struct ceph_fs_client *)sb->s_fs_info;
}
static inline struct ceph_mds_client *
ceph_sb_to_mdsc(const struct super_block *sb)
{
return (struct ceph_mds_client *)ceph_sb_to_client(sb)->mdsc;
}
static inline struct ceph_vino
ceph_vino(const struct inode *inode)
{
return ceph_inode(inode)->i_vino;
}
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
static inline u32 ceph_ino_to_ino32(u64 vino)
{
u32 ino = vino & 0xffffffff;
ino ^= vino >> 32;
if (!ino)
ino = 2;
return ino;
}
/*
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
* Inode numbers in cephfs are 64 bits, but inode->i_ino is 32-bits on
* some arches. We generally do not use this value inside the ceph driver, but
* we do want to set it to something, so that generic vfs code has an
* appropriate value for tracepoints and the like.
*/
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
static inline ino_t ceph_vino_to_ino_t(struct ceph_vino vino)
{
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
if (sizeof(ino_t) == sizeof(u32))
return ceph_ino_to_ino32(vino.ino);
return (ino_t)vino.ino;
}
/* for printf-style formatting */
#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
static inline u64 ceph_ino(struct inode *inode)
{
return ceph_inode(inode)->i_vino.ino;
}
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
static inline u64 ceph_snap(struct inode *inode)
{
return ceph_inode(inode)->i_vino.snap;
}
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
/**
* ceph_present_ino - format an inode number for presentation to userland
* @sb: superblock where the inode lives
* @ino: inode number to (possibly) convert
*
* If the user mounted with the ino32 option, then the 64-bit value needs
* to be converted to something that can fit inside 32 bits. Note that
* internal kernel code never uses this value, so this is entirely for
* userland consumption.
*/
static inline u64 ceph_present_ino(struct super_block *sb, u64 ino)
{
if (unlikely(ceph_test_mount_opt(ceph_sb_to_client(sb), INO32)))
return ceph_ino_to_ino32(ino);
return ino;
}
static inline u64 ceph_present_inode(struct inode *inode)
{
return ceph_present_ino(inode->i_sb, ceph_ino(inode));
}
static inline int ceph_ino_compare(struct inode *inode, void *data)
{
struct ceph_vino *pvino = (struct ceph_vino *)data;
struct ceph_inode_info *ci = ceph_inode(inode);
return ci->i_vino.ino == pvino->ino &&
ci->i_vino.snap == pvino->snap;
}
/*
* The MDS reserves a set of inodes for its own usage. These should never
* be accessible by clients, and so the MDS has no reason to ever hand these
* out. The range is CEPH_MDS_INO_MDSDIR_OFFSET..CEPH_INO_SYSTEM_BASE.
*
* These come from src/mds/mdstypes.h in the ceph sources.
*/
#define CEPH_MAX_MDS 0x100
#define CEPH_NUM_STRAY 10
#define CEPH_MDS_INO_MDSDIR_OFFSET (1 * CEPH_MAX_MDS)
#define CEPH_MDS_INO_LOG_OFFSET (2 * CEPH_MAX_MDS)
#define CEPH_INO_SYSTEM_BASE ((6*CEPH_MAX_MDS) + (CEPH_MAX_MDS * CEPH_NUM_STRAY))
static inline bool ceph_vino_is_reserved(const struct ceph_vino vino)
{
if (vino.ino >= CEPH_INO_SYSTEM_BASE ||
vino.ino < CEPH_MDS_INO_MDSDIR_OFFSET)
return false;
/* Don't warn on mdsdirs */
WARN_RATELIMIT(vino.ino >= CEPH_MDS_INO_LOG_OFFSET,
"Attempt to access reserved inode number 0x%llx",
vino.ino);
return true;
}
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
static inline struct inode *ceph_find_inode(struct super_block *sb,
struct ceph_vino vino)
{
if (ceph_vino_is_reserved(vino))
return NULL;
ceph: fix inode number handling on arches with 32-bit ino_t Tuan and Ulrich mentioned that they were hitting a problem on s390x, which has a 32-bit ino_t value, even though it's a 64-bit arch (for historical reasons). I think the current handling of inode numbers in the ceph driver is wrong. It tries to use 32-bit inode numbers on 32-bit arches, but that's actually not a problem. 32-bit arches can deal with 64-bit inode numbers just fine when userland code is compiled with LFS support (the common case these days). What we really want to do is just use 64-bit numbers everywhere, unless someone has mounted with the ino32 mount option. In that case, we want to ensure that we hash the inode number down to something that will fit in 32 bits before presenting the value to userland. Add new helper functions that do this, and only do the conversion before presenting these values to userland in getattr and readdir. The inode table hashvalue is changed to just cast the inode number to unsigned long, as low-order bits are the most likely to vary anyway. While it's not strictly required, we do want to put something in inode->i_ino. Instead of basing it on BITS_PER_LONG, however, base it on the size of the ino_t type. NOTE: This is a user-visible change on 32-bit arches: 1/ inode numbers will be seen to have changed between kernel versions. 32-bit arches will see large inode numbers now instead of the hashed ones they saw before. 2/ any really old software not built with LFS support may start failing stat() calls with -EOVERFLOW on inode numbers >2^32. Nothing much we can do about these, but hopefully the intersection of people running such code on ceph will be very small. The workaround for both problems is to mount with "-o ino32". [ idryomov: changelog tweak ] URL: https://tracker.ceph.com/issues/46828 Reported-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Reported-and-Tested-by: Tuan Hoang1 <Tuan.Hoang1@ibm.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: "Yan, Zheng" <zyan@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-08-18 08:03:48 -04:00
/*
* NB: The hashval will be run through the fs/inode.c hash function
* anyway, so there is no need to squash the inode number down to
* 32-bits first. Just use low-order bits on arches with 32-bit long.
*/
return ilookup5(sb, (unsigned long)vino.ino, ceph_ino_compare, &vino);
}
/*
* Ceph inode.
*/
#define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */
#define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */
#define CEPH_I_POOL_PERM (1 << 3) /* pool rd/wr bits are valid */
#define CEPH_I_POOL_RD (1 << 4) /* can read from pool */
#define CEPH_I_POOL_WR (1 << 5) /* can write to pool */
#define CEPH_I_SEC_INITED (1 << 6) /* security initialized */
#define CEPH_I_KICK_FLUSH (1 << 7) /* kick flushing caps */
#define CEPH_I_FLUSH_SNAPS (1 << 8) /* need flush snapss */
#define CEPH_I_ERROR_WRITE (1 << 9) /* have seen write errors */
#define CEPH_I_ERROR_FILELOCK (1 << 10) /* have seen file lock errors */
#define CEPH_I_ODIRECT (1 << 11) /* inode in direct I/O mode */
#define CEPH_ASYNC_CREATE_BIT (12) /* async create in flight for this */
#define CEPH_I_ASYNC_CREATE (1 << CEPH_ASYNC_CREATE_BIT)
#define CEPH_I_SHUTDOWN (1 << 13) /* inode is no longer usable */
#define CEPH_I_ASYNC_CHECK_CAPS (1 << 14) /* check caps immediately after async
creating finishes */
/*
* Masks of ceph inode work.
*/
#define CEPH_I_WORK_WRITEBACK 0
#define CEPH_I_WORK_INVALIDATE_PAGES 1
#define CEPH_I_WORK_VMTRUNCATE 2
#define CEPH_I_WORK_CHECK_CAPS 3
#define CEPH_I_WORK_FLUSH_SNAPS 4
/*
* We set the ERROR_WRITE bit when we start seeing write errors on an inode
* and then clear it when they start succeeding. Note that we do a lockless
* check first, and only take the lock if it looks like it needs to be changed.
* The write submission code just takes this as a hint, so we're not too
* worried if a few slip through in either direction.
*/
static inline void ceph_set_error_write(struct ceph_inode_info *ci)
{
if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) {
spin_lock(&ci->i_ceph_lock);
ci->i_ceph_flags |= CEPH_I_ERROR_WRITE;
spin_unlock(&ci->i_ceph_lock);
}
}
static inline void ceph_clear_error_write(struct ceph_inode_info *ci)
{
if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) {
spin_lock(&ci->i_ceph_lock);
ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE;
spin_unlock(&ci->i_ceph_lock);
}
}
static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
long long release_count,
long long ordered_count)
{
/*
* Makes sure operations that setup readdir cache (update page
* cache and i_size) are strongly ordered w.r.t. the following
* atomic64_set() operations.
*/
smp_mb();
atomic64_set(&ci->i_complete_seq[0], release_count);
atomic64_set(&ci->i_complete_seq[1], ordered_count);
}
static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
{
atomic64_inc(&ci->i_release_count);
}
static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci)
{
atomic64_inc(&ci->i_ordered_count);
}
static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
{
return atomic64_read(&ci->i_complete_seq[0]) ==
atomic64_read(&ci->i_release_count);
}
static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci)
{
return atomic64_read(&ci->i_complete_seq[0]) ==
atomic64_read(&ci->i_release_count) &&
atomic64_read(&ci->i_complete_seq[1]) ==
atomic64_read(&ci->i_ordered_count);
}
static inline void ceph_dir_clear_complete(struct inode *inode)
{
__ceph_dir_clear_complete(ceph_inode(inode));
}
static inline void ceph_dir_clear_ordered(struct inode *inode)
{
__ceph_dir_clear_ordered(ceph_inode(inode));
}
static inline bool ceph_dir_is_complete_ordered(struct inode *inode)
{
bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode));
smp_rmb();
return ret;
}
/* find a specific frag @f */
extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
u32 f);
/*
* choose fragment for value @v. copy frag content to pfrag, if leaf
* exists
*/
extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
struct ceph_inode_frag *pfrag,
int *found);
static inline struct ceph_dentry_info *ceph_dentry(const struct dentry *dentry)
{
return (struct ceph_dentry_info *)dentry->d_fsdata;
}
/*
* caps helpers
*/
static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
{
return !RB_EMPTY_ROOT(&ci->i_caps);
}
extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
extern int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask,
int t);
extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
struct ceph_cap *cap);
static inline int ceph_caps_issued(struct ceph_inode_info *ci)
{
int issued;
spin_lock(&ci->i_ceph_lock);
issued = __ceph_caps_issued(ci, NULL);
spin_unlock(&ci->i_ceph_lock);
return issued;
}
static inline int ceph_caps_issued_mask_metric(struct ceph_inode_info *ci,
int mask, int touch)
{
int r;
spin_lock(&ci->i_ceph_lock);
r = __ceph_caps_issued_mask_metric(ci, mask, touch);
spin_unlock(&ci->i_ceph_lock);
return r;
}
static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
{
return ci->i_dirty_caps | ci->i_flushing_caps;
}
extern struct ceph_cap_flush *ceph_alloc_cap_flush(void);
extern void ceph_free_cap_flush(struct ceph_cap_flush *cf);
extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
struct ceph_cap_flush **pcf);
extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
struct ceph_cap *ocap, int mask);
extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
extern int __ceph_caps_used(struct ceph_inode_info *ci);
static inline bool __ceph_is_file_opened(struct ceph_inode_info *ci)
{
return ci->i_nr_by_mode[0];
}
extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
extern int __ceph_caps_wanted(struct ceph_inode_info *ci);
/* what the mds thinks we want */
extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check);
extern void ceph_caps_init(struct ceph_mds_client *mdsc);
extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
extern void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc,
struct ceph_mount_options *fsopt);
extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx, int need);
extern void ceph_unreserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx);
extern void ceph_reservation_status(struct ceph_fs_client *client,
int *total, int *avail, int *used,
int *reserved, int *min);
extern void change_auth_cap_ses(struct ceph_inode_info *ci,
struct ceph_mds_session *session);
/*
* we keep buffered readdir results attached to file->private_data
*/
#define CEPH_F_SYNC 1
#define CEPH_F_ATEND 2
struct ceph_file_info {
short fmode; /* initialized on open */
short flags; /* CEPH_F_* */
spinlock_t rw_contexts_lock;
struct list_head rw_contexts;
u32 filp_gen;
};
struct ceph_dir_file_info {
struct ceph_file_info file_info;
/* readdir: position within the dir */
u32 frag;
struct ceph_mds_request *last_readdir;
/* readdir: position within a frag */
unsigned next_offset; /* offset of next chunk (last_name's + 1) */
char *last_name; /* last entry in previous chunk */
long long dir_release_count;
long long dir_ordered_count;
int readdir_cache_idx;
/* used for -o dirstat read() on directory thing */
char *dir_info;
int dir_info_len;
};
struct ceph_rw_context {
struct list_head list;
struct task_struct *thread;
int caps;
};
#define CEPH_DEFINE_RW_CONTEXT(_name, _caps) \
struct ceph_rw_context _name = { \
.thread = current, \
.caps = _caps, \
}
static inline void ceph_add_rw_context(struct ceph_file_info *cf,
struct ceph_rw_context *ctx)
{
spin_lock(&cf->rw_contexts_lock);
list_add(&ctx->list, &cf->rw_contexts);
spin_unlock(&cf->rw_contexts_lock);
}
static inline void ceph_del_rw_context(struct ceph_file_info *cf,
struct ceph_rw_context *ctx)
{
spin_lock(&cf->rw_contexts_lock);
list_del(&ctx->list);
spin_unlock(&cf->rw_contexts_lock);
}
static inline struct ceph_rw_context*
ceph_find_rw_context(struct ceph_file_info *cf)
{
struct ceph_rw_context *ctx, *found = NULL;
spin_lock(&cf->rw_contexts_lock);
list_for_each_entry(ctx, &cf->rw_contexts, list) {
if (ctx->thread == current) {
found = ctx;
break;
}
}
spin_unlock(&cf->rw_contexts_lock);
return found;
}
struct ceph_readdir_cache_control {
struct page *page;
struct dentry **dentries;
int index;
};
/*
* A "snap realm" describes a subset of the file hierarchy sharing
* the same set of snapshots that apply to it. The realms themselves
* are organized into a hierarchy, such that children inherit (some of)
* the snapshots of their parents.
*
* All inodes within the realm that have capabilities are linked into a
* per-realm list.
*/
struct ceph_snap_realm {
u64 ino;
struct inode *inode;
atomic_t nref;
struct rb_node node;
u64 created, seq;
u64 parent_ino;
u64 parent_since; /* snapid when our current parent became so */
u64 *prior_parent_snaps; /* snaps inherited from any parents we */
u32 num_prior_parent_snaps; /* had prior to parent_since */
u64 *snaps; /* snaps specific to this realm */
u32 num_snaps;
struct ceph_snap_realm *parent;
struct list_head children; /* list of child realms */
struct list_head child_item;
struct list_head empty_item; /* if i have ref==0 */
struct list_head dirty_item; /* if realm needs new context */
struct list_head rebuild_item; /* rebuild snap realms _downward_ in hierarchy */
/* the current set of snaps for this realm */
struct ceph_snap_context *cached_context;
struct list_head inodes_with_caps;
spinlock_t inodes_with_caps_lock;
};
static inline int default_congestion_kb(void)
{
int congestion_kb;
/*
* Copied from NFS
*
* congestion size, scale with available memory.
*
* 64MB: 8192k
* 128MB: 11585k
* 256MB: 16384k
* 512MB: 23170k
* 1GB: 32768k
* 2GB: 46340k
* 4GB: 65536k
* 8GB: 92681k
* 16GB: 131072k
*
* This allows larger machines to have larger/more transfers.
* Limit the default to 256M
*/
congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
if (congestion_kb > 256*1024)
congestion_kb = 256*1024;
return congestion_kb;
}
/* super.c */
extern int ceph_force_reconnect(struct super_block *sb);
/* snap.c */
struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
u64 ino);
extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
extern int ceph_update_snap_trace(struct ceph_mds_client *m,
void *p, void *e, bool deletion,
struct ceph_snap_realm **realm_ret);
void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm);
extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg);
extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
struct ceph_cap_snap *capsnap);
extern void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc);
extern struct ceph_snapid_map *ceph_get_snapid_map(struct ceph_mds_client *mdsc,
u64 snap);
extern void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
struct ceph_snapid_map *sm);
extern void ceph_trim_snapid_map(struct ceph_mds_client *mdsc);
extern void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc);
void ceph_umount_begin(struct super_block *sb);
/*
* a cap_snap is "pending" if it is still awaiting an in-progress
* sync write (that may/may not still update size, mtime, etc.).
*/
static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
{
return !list_empty(&ci->i_cap_snaps) &&
list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap,
ci_item)->writing;
}
/* inode.c */
struct ceph_mds_reply_info_in;
struct ceph_mds_reply_dirfrag;
struct ceph_acl_sec_ctx;
extern const struct inode_operations ceph_file_iops;
extern struct inode *ceph_alloc_inode(struct super_block *sb);
extern void ceph_evict_inode(struct inode *inode);
extern void ceph_free_inode(struct inode *inode);
struct inode *ceph_new_inode(struct inode *dir, struct dentry *dentry,
umode_t *mode, struct ceph_acl_sec_ctx *as_ctx);
void ceph_as_ctx_to_req(struct ceph_mds_request *req,
struct ceph_acl_sec_ctx *as_ctx);
extern struct inode *ceph_get_inode(struct super_block *sb,
struct ceph_vino vino,
struct inode *newino);
extern struct inode *ceph_get_snapdir(struct inode *parent);
extern int ceph_fill_file_size(struct inode *inode, int issued,
u32 truncate_seq, u64 truncate_size, u64 size);
extern void ceph_fill_file_time(struct inode *inode, int issued,
u64 time_warp_seq, struct timespec64 *ctime,
struct timespec64 *mtime,
struct timespec64 *atime);
extern int ceph_fill_inode(struct inode *inode, struct page *locked_page,
struct ceph_mds_reply_info_in *iinfo,
struct ceph_mds_reply_dirfrag *dirinfo,
struct ceph_mds_session *session, int cap_fmode,
struct ceph_cap_reservation *caps_reservation);
extern int ceph_fill_trace(struct super_block *sb,
struct ceph_mds_request *req);
extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
struct ceph_mds_session *session);
extern int ceph_inode_holds_cap(struct inode *inode, int mask);
extern bool ceph_inode_set_size(struct inode *inode, loff_t size);
extern void __ceph_do_pending_vmtruncate(struct inode *inode);
void ceph_queue_inode_work(struct inode *inode, int work_bit);
static inline void ceph_queue_vmtruncate(struct inode *inode)
{
ceph_queue_inode_work(inode, CEPH_I_WORK_VMTRUNCATE);
}
static inline void ceph_queue_invalidate(struct inode *inode)
{
ceph_queue_inode_work(inode, CEPH_I_WORK_INVALIDATE_PAGES);
}
static inline void ceph_queue_writeback(struct inode *inode)
{
ceph_queue_inode_work(inode, CEPH_I_WORK_WRITEBACK);
}
static inline void ceph_queue_check_caps(struct inode *inode)
{
ceph_queue_inode_work(inode, CEPH_I_WORK_CHECK_CAPS);
}
static inline void ceph_queue_flush_snaps(struct inode *inode)
{
ceph_queue_inode_work(inode, CEPH_I_WORK_FLUSH_SNAPS);
}
extern int ceph_try_to_choose_auth_mds(struct inode *inode, int mask);
extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page,
int mask, bool force);
static inline int ceph_do_getattr(struct inode *inode, int mask, bool force)
{
return __ceph_do_getattr(inode, NULL, mask, force);
}
extern int ceph_permission(struct mnt_idmap *idmap,
struct inode *inode, int mask);
struct ceph_iattr {
struct ceph_fscrypt_auth *fscrypt_auth;
};
extern int __ceph_setattr(struct inode *inode, struct iattr *attr,
struct ceph_iattr *cia);
extern int ceph_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *attr);
extern int ceph_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
statx: Add a system call to make enhanced file info available Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 16:46:22 +00:00
u32 request_mask, unsigned int flags);
void ceph_inode_shutdown(struct inode *inode);
static inline bool ceph_inode_is_shutdown(struct inode *inode)
{
unsigned long flags = READ_ONCE(ceph_inode(inode)->i_ceph_flags);
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
int state = READ_ONCE(fsc->mount_state);
return (flags & CEPH_I_SHUTDOWN) || state >= CEPH_MOUNT_SHUTDOWN;
}
/* xattr.c */
int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int);
int ceph_do_getvxattr(struct inode *inode, const char *name, void *value, size_t size);
ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
ceph: fix buffer free while holding i_ceph_lock in __ceph_build_xattrs_blob() Calling ceph_buffer_put() in __ceph_build_xattrs_blob() may result in freeing the i_xattrs.blob buffer while holding the i_ceph_lock. This can be fixed by having this function returning the old blob buffer and have the callers of this function freeing it when the lock is released. The following backtrace was triggered by fstests generic/117. BUG: sleeping function called from invalid context at mm/vmalloc.c:2283 in_atomic(): 1, irqs_disabled(): 0, pid: 649, name: fsstress 4 locks held by fsstress/649: #0: 00000000a7478e7e (&type->s_umount_key#19){++++}, at: iterate_supers+0x77/0xf0 #1: 00000000f8de1423 (&(&ci->i_ceph_lock)->rlock){+.+.}, at: ceph_check_caps+0x7b/0xc60 #2: 00000000562f2b27 (&s->s_mutex){+.+.}, at: ceph_check_caps+0x3bd/0xc60 #3: 00000000f83ce16a (&mdsc->snap_rwsem){++++}, at: ceph_check_caps+0x3ed/0xc60 CPU: 1 PID: 649 Comm: fsstress Not tainted 5.2.0+ #439 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x67/0x90 ___might_sleep.cold+0x9f/0xb1 vfree+0x4b/0x60 ceph_buffer_release+0x1b/0x60 __ceph_build_xattrs_blob+0x12b/0x170 __send_cap+0x302/0x540 ? __lock_acquire+0x23c/0x1e40 ? __mark_caps_flushing+0x15c/0x280 ? _raw_spin_unlock+0x24/0x30 ceph_check_caps+0x5f0/0xc60 ceph_flush_dirty_caps+0x7c/0x150 ? __ia32_sys_fdatasync+0x20/0x20 ceph_sync_fs+0x5a/0x130 iterate_supers+0x8f/0xf0 ksys_sync+0x4f/0xb0 __ia32_sys_sync+0xa/0x10 do_syscall_64+0x50/0x1c0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fc6409ab617 Signed-off-by: Luis Henriques <lhenriques@suse.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2019-07-19 15:32:21 +01:00
extern struct ceph_buffer *__ceph_build_xattrs_blob(struct ceph_inode_info *ci);
extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
extern const struct xattr_handler *ceph_xattr_handlers[];
struct ceph_acl_sec_ctx {
#ifdef CONFIG_CEPH_FS_POSIX_ACL
void *default_acl;
void *acl;
#endif
#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
void *sec_ctx;
u32 sec_ctxlen;
#endif
struct ceph_pagelist *pagelist;
};
#ifdef CONFIG_SECURITY
extern bool ceph_security_xattr_deadlock(struct inode *in);
extern bool ceph_security_xattr_wanted(struct inode *in);
#else
static inline bool ceph_security_xattr_deadlock(struct inode *in)
{
return false;
}
static inline bool ceph_security_xattr_wanted(struct inode *in)
{
return false;
}
#endif
#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
extern int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
struct ceph_acl_sec_ctx *ctx);
static inline void ceph_security_invalidate_secctx(struct inode *inode)
{
security_inode_invalidate_secctx(inode);
}
#else
static inline int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
struct ceph_acl_sec_ctx *ctx)
{
return 0;
}
static inline void ceph_security_invalidate_secctx(struct inode *inode)
{
}
#endif
void ceph_release_acl_sec_ctx(struct ceph_acl_sec_ctx *as_ctx);
/* acl.c */
#ifdef CONFIG_CEPH_FS_POSIX_ACL
struct posix_acl *ceph_get_acl(struct inode *, int, bool);
int ceph_set_acl(struct mnt_idmap *idmap,
fs: pass dentry to set acl method The current way of setting and getting posix acls through the generic xattr interface is error prone and type unsafe. The vfs needs to interpret and fixup posix acls before storing or reporting it to userspace. Various hacks exist to make this work. The code is hard to understand and difficult to maintain in it's current form. Instead of making this work by hacking posix acls through xattr handlers we are building a dedicated posix acl api around the get and set inode operations. This removes a lot of hackiness and makes the codepaths easier to maintain. A lot of background can be found in [1]. Since some filesystem rely on the dentry being available to them when setting posix acls (e.g., 9p and cifs) they cannot rely on set acl inode operation. But since ->set_acl() is required in order to use the generic posix acl xattr handlers filesystems that do not implement this inode operation cannot use the handler and need to implement their own dedicated posix acl handlers. Update the ->set_acl() inode method to take a dentry argument. This allows all filesystems to rely on ->set_acl(). As far as I can tell all codepaths can be switched to rely on the dentry instead of just the inode. Note that the original motivation for passing the dentry separate from the inode instead of just the dentry in the xattr handlers was because of security modules that call security_d_instantiate(). This hook is called during d_instantiate_new(), d_add(), __d_instantiate_anon(), and d_splice_alias() to initialize the inode's security context and possibly to set security.* xattrs. Since this only affects security.* xattrs this is completely irrelevant for posix acls. Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1] Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-09-23 10:29:39 +02:00
struct dentry *dentry, struct posix_acl *acl, int type);
int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
struct ceph_acl_sec_ctx *as_ctx);
void ceph_init_inode_acls(struct inode *inode,
struct ceph_acl_sec_ctx *as_ctx);
static inline void ceph_forget_all_cached_acls(struct inode *inode)
{
forget_all_cached_acls(inode);
}
#else
#define ceph_get_acl NULL
#define ceph_set_acl NULL
static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
struct ceph_acl_sec_ctx *as_ctx)
{
return 0;
}
static inline void ceph_init_inode_acls(struct inode *inode,
struct ceph_acl_sec_ctx *as_ctx)
{
}
static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
{
return 0;
}
static inline void ceph_forget_all_cached_acls(struct inode *inode)
{
}
#endif
/* caps.c */
extern const char *ceph_cap_string(int c);
extern void ceph_handle_caps(struct ceph_mds_session *session,
struct ceph_msg *msg);
extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx);
extern void ceph_add_cap(struct inode *inode,
struct ceph_mds_session *session, u64 cap_id,
unsigned issued, unsigned wanted,
unsigned cap, unsigned seq, u64 realmino, int flags,
struct ceph_cap **new_cap);
extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
extern void ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
extern void __ceph_remove_caps(struct ceph_inode_info *ci);
extern void ceph_put_cap(struct ceph_mds_client *mdsc,
struct ceph_cap *cap);
extern int ceph_is_any_caps(struct inode *inode);
extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
int datasync);
extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session);
extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session);
void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session,
struct ceph_inode_info *ci);
extern struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci,
int mds);
extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
int mds);
extern void ceph_take_cap_refs(struct ceph_inode_info *ci, int caps,
bool snap_rwsem_locked);
extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
extern void ceph_put_cap_refs_async(struct ceph_inode_info *ci, int had);
extern void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci,
int had);
extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
struct ceph_snap_context *snapc);
extern void __ceph_remove_capsnap(struct inode *inode,
struct ceph_cap_snap *capsnap,
bool *wake_ci, bool *wake_mdsc);
extern void ceph_remove_capsnap(struct inode *inode,
struct ceph_cap_snap *capsnap,
bool *wake_ci, bool *wake_mdsc);
extern void ceph_flush_snaps(struct ceph_inode_info *ci,
struct ceph_mds_session **psession);
extern bool __ceph_should_report_size(struct ceph_inode_info *ci);
extern void ceph_check_caps(struct ceph_inode_info *ci, int flags);
extern unsigned long ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
extern int ceph_drop_caps_for_unlink(struct inode *inode);
extern int ceph_encode_inode_release(void **p, struct inode *inode,
int mds, int drop, int unless, int force);
extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
struct inode *dir,
int mds, int drop, int unless);
extern int ceph_get_caps(struct file *filp, int need, int want,
loff_t endoff, int *got);
extern int ceph_try_get_caps(struct inode *inode,
int need, int want, bool nonblock, int *got);
/* for counting open files by mode */
extern void ceph_get_fmode(struct ceph_inode_info *ci, int mode, int count);
extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode, int count);
extern void __ceph_touch_fmode(struct ceph_inode_info *ci,
struct ceph_mds_client *mdsc, int fmode);
/* addr.c */
extern const struct address_space_operations ceph_aops;
netfs: Add a netfs inode context Add a netfs_i_context struct that should be included in the network filesystem's own inode struct wrapper, directly after the VFS's inode struct, e.g.: struct my_inode { struct { /* These must be contiguous */ struct inode vfs_inode; struct netfs_i_context netfs_ctx; }; }; The netfs_i_context struct so far contains a single field for the network filesystem to use - the cache cookie: struct netfs_i_context { ... struct fscache_cookie *cache; }; Three functions are provided to help with this: (1) void netfs_i_context_init(struct inode *inode, const struct netfs_request_ops *ops); Initialise the netfs context and set the operations. (2) struct netfs_i_context *netfs_i_context(struct inode *inode); Find the netfs context from the VFS inode. (3) struct inode *netfs_inode(struct netfs_i_context *ctx); Find the VFS inode from the netfs context. Changes ======= ver #4) - Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a cache is present[3]. - Fix netfs_skip_folio_read() to zero out all of the page, not just some of it[3]. ver #3) - Split out the bit to move ceph cap-getting on readahead into ceph_init_request()[1]. - Stick in a comment to the netfs inode structs indicating the contiguity requirements[2]. ver #2) - Adjust documentation to match. - Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef". - Move the cap check from ceph_readahead() to ceph_init_request() to be called from netfslib. - Remove ceph_readahead() and use netfs_readahead() directly instead. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2] Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3] Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
2021-06-29 22:37:05 +01:00
extern const struct netfs_request_ops ceph_netfs_ops;
extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
extern int ceph_uninline_data(struct file *file);
extern int ceph_pool_perm_check(struct inode *inode, int need);
extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc);
int ceph_purge_inode_cap(struct inode *inode, struct ceph_cap *cap, bool *invalidate);
static inline bool ceph_has_inline_data(struct ceph_inode_info *ci)
{
if (ci->i_inline_version == CEPH_INLINE_NONE ||
ci->i_inline_version == 1) /* initial version, no data */
return false;
return true;
}
/* file.c */
extern const struct file_operations ceph_file_fops;
extern int ceph_renew_caps(struct inode *inode, int fmode);
extern int ceph_open(struct inode *inode, struct file *file);
extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
struct file *file, unsigned flags, umode_t mode);
extern int ceph_release(struct inode *inode, struct file *filp);
extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
char *data, size_t len);
/* dir.c */
extern const struct file_operations ceph_dir_fops;
extern const struct file_operations ceph_snapdir_fops;
extern const struct inode_operations ceph_dir_iops;
extern const struct inode_operations ceph_snapdir_iops;
extern const struct dentry_operations ceph_dentry_ops;
extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order);
extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
extern struct dentry *ceph_handle_snapdir(struct ceph_mds_request *req,
struct dentry *dentry);
extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
struct dentry *dentry, int err);
extern void __ceph_dentry_lease_touch(struct ceph_dentry_info *di);
extern void __ceph_dentry_dir_lease_touch(struct ceph_dentry_info *di);
extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
extern int ceph_trim_dentries(struct ceph_mds_client *mdsc);
extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl);
/* ioctl.c */
extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
/* export.c */
extern const struct export_operations ceph_export_ops;
struct inode *ceph_lookup_inode(struct super_block *sb, u64 ino);
/* locks.c */
extern __init void ceph_flock_init(void);
extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
ceph: ceph_pagelist_append might sleep while atomic Ceph's encode_caps_cb() worked hard to not call __page_cache_alloc() while holding a lock, but it's spoiled because ceph_pagelist_addpage() always calls kmap(), which might sleep. Here's the result: [13439.295457] ceph: mds0 reconnect start [13439.300572] BUG: sleeping function called from invalid context at include/linux/highmem.h:58 [13439.309243] in_atomic(): 1, irqs_disabled(): 0, pid: 12059, name: kworker/1:1 . . . [13439.376225] Call Trace: [13439.378757] [<ffffffff81076f4c>] __might_sleep+0xfc/0x110 [13439.384353] [<ffffffffa03f4ce0>] ceph_pagelist_append+0x120/0x1b0 [libceph] [13439.391491] [<ffffffffa0448fe9>] ceph_encode_locks+0x89/0x190 [ceph] [13439.398035] [<ffffffff814ee849>] ? _raw_spin_lock+0x49/0x50 [13439.403775] [<ffffffff811cadf5>] ? lock_flocks+0x15/0x20 [13439.409277] [<ffffffffa045e2af>] encode_caps_cb+0x41f/0x4a0 [ceph] [13439.415622] [<ffffffff81196748>] ? igrab+0x28/0x70 [13439.420610] [<ffffffffa045e9f8>] ? iterate_session_caps+0xe8/0x250 [ceph] [13439.427584] [<ffffffffa045ea25>] iterate_session_caps+0x115/0x250 [ceph] [13439.434499] [<ffffffffa045de90>] ? set_request_path_attr+0x2d0/0x2d0 [ceph] [13439.441646] [<ffffffffa0462888>] send_mds_reconnect+0x238/0x450 [ceph] [13439.448363] [<ffffffffa0464542>] ? ceph_mdsmap_decode+0x5e2/0x770 [ceph] [13439.455250] [<ffffffffa0462e42>] check_new_map+0x352/0x500 [ceph] [13439.461534] [<ffffffffa04631ad>] ceph_mdsc_handle_map+0x1bd/0x260 [ceph] [13439.468432] [<ffffffff814ebc7e>] ? mutex_unlock+0xe/0x10 [13439.473934] [<ffffffffa043c612>] extra_mon_dispatch+0x22/0x30 [ceph] [13439.480464] [<ffffffffa03f6c2c>] dispatch+0xbc/0x110 [libceph] [13439.486492] [<ffffffffa03eec3d>] process_message+0x1ad/0x1d0 [libceph] [13439.493190] [<ffffffffa03f1498>] ? read_partial_message+0x3e8/0x520 [libceph] . . . [13439.587132] ceph: mds0 reconnect success [13490.720032] ceph: mds0 caps stale [13501.235257] ceph: mds0 recovery completed [13501.300419] ceph: mds0 caps renewed Fix it up by encoding locks into a buffer first, and when the number of encoded locks is stable, copy that into a ceph_pagelist. [elder@inktank.com: abbreviated the stack info a bit.] Cc: stable@vger.kernel.org # 3.4+ Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Alex Elder <elder@inktank.com>
2013-05-15 13:03:35 -05:00
extern int ceph_encode_locks_to_buffer(struct inode *inode,
struct ceph_filelock *flocks,
int num_fcntl_locks,
int num_flock_locks);
extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
struct ceph_pagelist *pagelist,
int num_fcntl_locks, int num_flock_locks);
/* debugfs.c */
extern void ceph_fs_debugfs_init(struct ceph_fs_client *client);
extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
/* quota.c */
enum quota_get_realm {
QUOTA_GET_MAX_FILES,
QUOTA_GET_MAX_BYTES,
QUOTA_GET_ANY
};
static inline bool __ceph_has_quota(struct ceph_inode_info *ci,
enum quota_get_realm which)
{
bool has_quota = false;
switch (which) {
case QUOTA_GET_MAX_BYTES:
has_quota = !!ci->i_max_bytes;
break;
case QUOTA_GET_MAX_FILES:
has_quota = !!ci->i_max_files;
break;
default:
has_quota = !!(ci->i_max_files || ci->i_max_bytes);
}
return has_quota;
}
extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc);
static inline void __ceph_update_quota(struct ceph_inode_info *ci,
u64 max_bytes, u64 max_files)
{
bool had_quota, has_quota;
had_quota = __ceph_has_quota(ci, QUOTA_GET_ANY);
ci->i_max_bytes = max_bytes;
ci->i_max_files = max_files;
has_quota = __ceph_has_quota(ci, QUOTA_GET_ANY);
if (had_quota != has_quota)
netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context While randstruct was satisfied with using an open-coded "void *" offset cast for the netfs_i_context <-> inode casting, __builtin_object_size() as used by FORTIFY_SOURCE was not as easily fooled. This was causing the following complaint[1] from gcc v12: In file included from include/linux/string.h:253, from include/linux/ceph/ceph_debug.h:7, from fs/ceph/inode.c:2: In function 'fortify_memset_chk', inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2, inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2: include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning] 242 | __write_overflow_field(p_size_field, size); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix this by embedding a struct inode into struct netfs_i_context (which should perhaps be renamed to struct netfs_inode). The struct inode vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode structs and vfs_inode is then simply changed to "netfs.inode" in those filesystems. Further, rename netfs_i_context to netfs_inode, get rid of the netfs_inode() function that converted a netfs_i_context pointer to an inode pointer (that can now be done with &ctx->inode) and rename the netfs_i_context() function to netfs_inode() (which is now a wrapper around container_of()). Most of the changes were done with: perl -p -i -e 's/vfs_inode/netfs.inode/'g \ `git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]` Kees suggested doing it with a pair structure[2] and a special declarator to insert that into the network filesystem's inode wrapper[3], but I think it's cleaner to embed it - and then it doesn't matter if struct randomisation reorders things. Dave Chinner suggested using a filesystem-specific VFS_I() function in each filesystem to convert that filesystem's own inode wrapper struct into the VFS inode struct[4]. Version #2: - Fix a couple of missed name changes due to a disabled cifs option. - Rename nfs_i_context to nfs_inode - Use "netfs" instead of "nic" as the member name in per-fs inode wrapper structs. [ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily disable '-Wattribute-warning' for now") that is no longer needed ] Fixes: bc899ee1c898 ("netfs: Add a netfs inode context") Reported-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Xiubo Li <xiubli@redhat.com> cc: Jonathan Corbet <corbet@lwn.net> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Steve French <smfrench@gmail.com> cc: William Kucharski <william.kucharski@oracle.com> cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> cc: Dave Chinner <david@fromorbit.com> cc: linux-doc@vger.kernel.org cc: v9fs-developer@lists.sourceforge.net cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: samba-technical@lists.samba.org cc: linux-fsdevel@vger.kernel.org cc: linux-hardening@vger.kernel.org Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2] Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3] Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4] Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-06-09 21:46:04 +01:00
ceph_adjust_quota_realms_count(&ci->netfs.inode, has_quota);
}
extern void ceph_handle_quota(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg);
extern bool ceph_quota_is_max_files_exceeded(struct inode *inode);
extern bool ceph_quota_is_same_realm(struct inode *old, struct inode *new);
extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode,
loff_t newlen);
extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode,
loff_t newlen);
extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc,
struct kstatfs *buf);
extern void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc);
#endif /* _FS_CEPH_SUPER_H */