linux/drivers/tty/serial/of_serial.c

266 lines
6.6 KiB
C
Raw Normal View History

/*
* Serial Port driver for Open Firmware platform devices
*
* Copyright (C) 2006 Arnd Bergmann <arnd@arndb.de>, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/init.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <linux/serial_reg.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_serial.h>
#include <linux/of_platform.h>
#include <linux/nwpserial.h>
#include <linux/clk.h>
struct of_serial_info {
struct clk *clk;
int type;
int line;
};
#ifdef CONFIG_ARCH_TEGRA
void tegra_serial_handle_break(struct uart_port *p)
{
unsigned int status, tmout = 10000;
do {
status = p->serial_in(p, UART_LSR);
if (status & (UART_LSR_FIFOE | UART_LSR_BRK_ERROR_BITS))
status = p->serial_in(p, UART_RX);
else
break;
if (--tmout == 0)
break;
udelay(1);
} while (1);
}
/* FIXME remove this export when tegra finishes conversion to open firmware */
EXPORT_SYMBOL_GPL(tegra_serial_handle_break);
#endif
/*
* Fill a struct uart_port for a given device node
*/
static int __devinit of_platform_serial_setup(struct platform_device *ofdev,
int type, struct uart_port *port,
struct of_serial_info *info)
{
struct resource resource;
struct device_node *np = ofdev->dev.of_node;
u32 clk, spd, prop;
int ret;
memset(port, 0, sizeof *port);
if (of_property_read_u32(np, "clock-frequency", &clk)) {
/* Get clk rate through clk driver if present */
info->clk = clk_get(&ofdev->dev, NULL);
if (IS_ERR(info->clk)) {
dev_warn(&ofdev->dev,
"clk or clock-frequency not defined\n");
return PTR_ERR(info->clk);
}
clk_prepare_enable(info->clk);
clk = clk_get_rate(info->clk);
}
/* If current-speed was set, then try not to change it. */
if (of_property_read_u32(np, "current-speed", &spd) == 0)
port->custom_divisor = clk / (16 * spd);
ret = of_address_to_resource(np, 0, &resource);
if (ret) {
dev_warn(&ofdev->dev, "invalid address\n");
goto out;
}
spin_lock_init(&port->lock);
port->mapbase = resource.start;
/* Check for shifted address mapping */
if (of_property_read_u32(np, "reg-offset", &prop) == 0)
port->mapbase += prop;
/* Check for registers offset within the devices address range */
if (of_property_read_u32(np, "reg-shift", &prop) == 0)
port->regshift = prop;
port->irq = irq_of_parse_and_map(np, 0);
port->iotype = UPIO_MEM;
if (of_property_read_u32(np, "reg-io-width", &prop) == 0) {
switch (prop) {
case 1:
port->iotype = UPIO_MEM;
break;
case 4:
port->iotype = UPIO_MEM32;
break;
default:
dev_warn(&ofdev->dev, "unsupported reg-io-width (%d)\n",
prop);
ret = -EINVAL;
goto out;
}
}
port->type = type;
port->uartclk = clk;
port->flags = UPF_SHARE_IRQ | UPF_BOOT_AUTOCONF | UPF_IOREMAP
| UPF_FIXED_PORT | UPF_FIXED_TYPE;
if (of_find_property(np, "no-loopback-test", NULL))
port->flags |= UPF_SKIP_TEST;
port->dev = &ofdev->dev;
if (type == PORT_TEGRA)
port->handle_break = tegra_serial_handle_break;
return 0;
out:
if (info->clk)
clk_disable_unprepare(info->clk);
return ret;
}
/*
* Try to register a serial port
*/
static struct of_device_id of_platform_serial_table[];
static int __devinit of_platform_serial_probe(struct platform_device *ofdev)
{
const struct of_device_id *match;
struct of_serial_info *info;
struct uart_port port;
int port_type;
int ret;
match = of_match_device(of_platform_serial_table, &ofdev->dev);
if (!match)
return -EINVAL;
if (of_find_property(ofdev->dev.of_node, "used-by-rtas", NULL))
return -EBUSY;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
port_type = (unsigned long)match->data;
ret = of_platform_serial_setup(ofdev, port_type, &port, info);
if (ret)
goto out;
switch (port_type) {
#ifdef CONFIG_SERIAL_8250
case PORT_8250 ... PORT_MAX_8250:
{
/* For now the of bindings don't support the extra
8250 specific bits */
struct uart_8250_port port8250;
memset(&port8250, 0, sizeof(port8250));
port8250.port = port;
ret = serial8250_register_8250_port(&port8250);
break;
}
#endif
#ifdef CONFIG_SERIAL_OF_PLATFORM_NWPSERIAL
case PORT_NWPSERIAL:
ret = nwpserial_register_port(&port);
break;
#endif
default:
/* need to add code for these */
case PORT_UNKNOWN:
dev_info(&ofdev->dev, "Unknown serial port found, ignored\n");
ret = -ENODEV;
break;
}
if (ret < 0)
goto out;
info->type = port_type;
info->line = ret;
dev_set_drvdata(&ofdev->dev, info);
return 0;
out:
kfree(info);
irq_dispose_mapping(port.irq);
return ret;
}
/*
* Release a line
*/
static int of_platform_serial_remove(struct platform_device *ofdev)
{
struct of_serial_info *info = dev_get_drvdata(&ofdev->dev);
switch (info->type) {
#ifdef CONFIG_SERIAL_8250
case PORT_8250 ... PORT_MAX_8250:
serial8250_unregister_port(info->line);
break;
#endif
#ifdef CONFIG_SERIAL_OF_PLATFORM_NWPSERIAL
case PORT_NWPSERIAL:
nwpserial_unregister_port(info->line);
break;
#endif
default:
/* need to add code for these */
break;
}
if (info->clk)
clk_disable_unprepare(info->clk);
kfree(info);
return 0;
}
/*
* A few common types, add more as needed.
*/
static struct of_device_id __devinitdata of_platform_serial_table[] = {
{ .compatible = "ns8250", .data = (void *)PORT_8250, },
{ .compatible = "ns16450", .data = (void *)PORT_16450, },
{ .compatible = "ns16550a", .data = (void *)PORT_16550A, },
{ .compatible = "ns16550", .data = (void *)PORT_16550, },
{ .compatible = "ns16750", .data = (void *)PORT_16750, },
{ .compatible = "ns16850", .data = (void *)PORT_16850, },
{ .compatible = "nvidia,tegra20-uart", .data = (void *)PORT_TEGRA, },
{ .compatible = "nxp,lpc3220-uart", .data = (void *)PORT_LPC3220, },
#ifdef CONFIG_SERIAL_OF_PLATFORM_NWPSERIAL
{ .compatible = "ibm,qpace-nwp-serial",
.data = (void *)PORT_NWPSERIAL, },
#endif
{ .type = "serial", .data = (void *)PORT_UNKNOWN, },
{ /* end of list */ },
};
static struct platform_driver of_platform_serial_driver = {
.driver = {
.name = "of_serial",
.owner = THIS_MODULE,
.of_match_table = of_platform_serial_table,
},
.probe = of_platform_serial_probe,
.remove = of_platform_serial_remove,
};
module_platform_driver(of_platform_serial_driver);
MODULE_AUTHOR("Arnd Bergmann <arnd@arndb.de>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Serial Port driver for Open Firmware platform devices");