linux/fs/bcachefs/sysfs.c

1033 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* bcache sysfs interfaces
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#ifndef NO_BCACHEFS_SYSFS
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "sysfs.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_key_cache.h"
#include "btree_update.h"
#include "btree_gc.h"
#include "buckets.h"
#include "clock.h"
#include "compress.h"
#include "disk_groups.h"
#include "ec.h"
#include "inode.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "move.h"
#include "movinggc.h"
#include "nocow_locking.h"
#include "opts.h"
#include "rebalance.h"
#include "replicas.h"
#include "super-io.h"
#include "tests.h"
#include <linux/blkdev.h>
#include <linux/sort.h>
#include <linux/sched/clock.h>
#include "util.h"
#define SYSFS_OPS(type) \
const struct sysfs_ops type ## _sysfs_ops = { \
.show = type ## _show, \
.store = type ## _store \
}
#define SHOW(fn) \
static ssize_t fn ## _to_text(struct printbuf *, \
struct kobject *, struct attribute *); \
\
static ssize_t fn ## _show(struct kobject *kobj, struct attribute *attr,\
char *buf) \
{ \
struct printbuf out = PRINTBUF; \
ssize_t ret = fn ## _to_text(&out, kobj, attr); \
\
if (out.pos && out.buf[out.pos - 1] != '\n') \
prt_newline(&out); \
\
if (!ret && out.allocation_failure) \
ret = -ENOMEM; \
\
if (!ret) { \
ret = min_t(size_t, out.pos, PAGE_SIZE - 1); \
memcpy(buf, out.buf, ret); \
} \
printbuf_exit(&out); \
return bch2_err_class(ret); \
} \
\
static ssize_t fn ## _to_text(struct printbuf *out, struct kobject *kobj,\
struct attribute *attr)
#define STORE(fn) \
static ssize_t fn ## _store_inner(struct kobject *, struct attribute *,\
const char *, size_t); \
\
static ssize_t fn ## _store(struct kobject *kobj, struct attribute *attr,\
const char *buf, size_t size) \
{ \
return bch2_err_class(fn##_store_inner(kobj, attr, buf, size)); \
} \
\
static ssize_t fn ## _store_inner(struct kobject *kobj, struct attribute *attr,\
const char *buf, size_t size)
#define __sysfs_attribute(_name, _mode) \
static struct attribute sysfs_##_name = \
{ .name = #_name, .mode = _mode }
#define write_attribute(n) __sysfs_attribute(n, 0200)
#define read_attribute(n) __sysfs_attribute(n, 0444)
#define rw_attribute(n) __sysfs_attribute(n, 0644)
#define sysfs_printf(file, fmt, ...) \
do { \
if (attr == &sysfs_ ## file) \
prt_printf(out, fmt "\n", __VA_ARGS__); \
} while (0)
#define sysfs_print(file, var) \
do { \
if (attr == &sysfs_ ## file) \
snprint(out, var); \
} while (0)
#define sysfs_hprint(file, val) \
do { \
if (attr == &sysfs_ ## file) \
prt_human_readable_s64(out, val); \
} while (0)
#define sysfs_strtoul(file, var) \
do { \
if (attr == &sysfs_ ## file) \
return strtoul_safe(buf, var) ?: (ssize_t) size; \
} while (0)
#define sysfs_strtoul_clamp(file, var, min, max) \
do { \
if (attr == &sysfs_ ## file) \
return strtoul_safe_clamp(buf, var, min, max) \
?: (ssize_t) size; \
} while (0)
#define strtoul_or_return(cp) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (_r) \
return _r; \
_v; \
})
write_attribute(trigger_gc);
write_attribute(trigger_discards);
write_attribute(trigger_invalidates);
write_attribute(trigger_journal_flush);
write_attribute(prune_cache);
write_attribute(btree_wakeup);
rw_attribute(btree_gc_periodic);
rw_attribute(gc_gens_pos);
read_attribute(uuid);
read_attribute(minor);
read_attribute(flags);
read_attribute(bucket_size);
read_attribute(first_bucket);
read_attribute(nbuckets);
rw_attribute(durability);
read_attribute(io_done);
read_attribute(io_errors);
write_attribute(io_errors_reset);
read_attribute(io_latency_read);
read_attribute(io_latency_write);
read_attribute(io_latency_stats_read);
read_attribute(io_latency_stats_write);
read_attribute(congested);
read_attribute(btree_write_stats);
read_attribute(btree_cache_size);
read_attribute(compression_stats);
read_attribute(journal_debug);
read_attribute(btree_cache);
read_attribute(btree_key_cache);
read_attribute(stripes_heap);
read_attribute(open_buckets);
read_attribute(open_buckets_partial);
read_attribute(write_points);
read_attribute(nocow_lock_table);
#ifdef BCH_WRITE_REF_DEBUG
read_attribute(write_refs);
static const char * const bch2_write_refs[] = {
#define x(n) #n,
BCH_WRITE_REFS()
#undef x
NULL
};
static void bch2_write_refs_to_text(struct printbuf *out, struct bch_fs *c)
{
bch2_printbuf_tabstop_push(out, 24);
for (unsigned i = 0; i < ARRAY_SIZE(c->writes); i++) {
prt_str(out, bch2_write_refs[i]);
prt_tab(out);
prt_printf(out, "%li", atomic_long_read(&c->writes[i]));
prt_newline(out);
}
}
#endif
read_attribute(internal_uuid);
read_attribute(disk_groups);
read_attribute(has_data);
read_attribute(alloc_debug);
#define x(t, n, ...) read_attribute(t);
BCH_PERSISTENT_COUNTERS()
#undef x
rw_attribute(discard);
rw_attribute(label);
rw_attribute(copy_gc_enabled);
read_attribute(copy_gc_wait);
rw_attribute(rebalance_enabled);
sysfs_pd_controller_attribute(rebalance);
bcachefs: rebalance_work This adds a new btree, rebalance_work, to eliminate scanning required for finding extents that need work done on them in the background - i.e. for the background_target and background_compression options. rebalance_work is a bitset btree, where a KEY_TYPE_set corresponds to an extent in the extents or reflink btree at the same pos. A new extent field is added, bch_extent_rebalance, which indicates that this extent has work that needs to be done in the background - and which options to use. This allows per-inode options to be propagated to indirect extents - at least in some circumstances. In this patch, changing IO options on a file will not propagate the new options to indirect extents pointed to by that file. Updating (setting/clearing) the rebalance_work btree is done by the extent trigger, which looks at the bch_extent_rebalance field. Scanning is still requrired after changing IO path options - either just for a given inode, or for the whole filesystem. We indicate that scanning is required by adding a KEY_TYPE_cookie key to the rebalance_work btree: the cookie counter is so that we can detect that scanning is still required when an option has been flipped mid-way through an existing scan. Future possible work: - Propagate options to indirect extents when being changed - Add other IO path options - nr_replicas, ec, to rebalance_work so they can be applied in the background when they change - Add a counter, for bcachefs fs usage output, showing the pending amount of rebalance work: we'll probably want to do this after the disk space accounting rewrite (moving it to a new btree) Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-20 13:33:14 -04:00
read_attribute(rebalance_status);
rw_attribute(promote_whole_extents);
read_attribute(new_stripes);
read_attribute(io_timers_read);
read_attribute(io_timers_write);
read_attribute(moving_ctxts);
#ifdef CONFIG_BCACHEFS_TESTS
write_attribute(perf_test);
#endif /* CONFIG_BCACHEFS_TESTS */
#define x(_name) \
static struct attribute sysfs_time_stat_##_name = \
{ .name = #_name, .mode = 0444 };
BCH_TIME_STATS()
#undef x
static struct attribute sysfs_state_rw = {
.name = "state",
.mode = 0444,
};
static size_t bch2_btree_cache_size(struct bch_fs *c)
{
size_t ret = 0;
struct btree *b;
mutex_lock(&c->btree_cache.lock);
list_for_each_entry(b, &c->btree_cache.live, list)
ret += btree_buf_bytes(b);
mutex_unlock(&c->btree_cache.lock);
return ret;
}
static int bch2_compression_stats_to_text(struct printbuf *out, struct bch_fs *c)
{
struct btree_trans *trans;
enum btree_id id;
struct compression_type_stats {
u64 nr_extents;
u64 sectors_compressed;
u64 sectors_uncompressed;
} s[BCH_COMPRESSION_TYPE_NR];
u64 compressed_incompressible = 0;
int ret = 0;
memset(s, 0, sizeof(s));
if (!test_bit(BCH_FS_started, &c->flags))
return -EPERM;
trans = bch2_trans_get(c);
for (id = 0; id < BTREE_ID_NR; id++) {
if (!btree_type_has_ptrs(id))
continue;
ret = for_each_btree_key(trans, iter, id, POS_MIN,
BTREE_ITER_ALL_SNAPSHOTS, k, ({
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
struct bch_extent_crc_unpacked crc;
const union bch_extent_entry *entry;
bool compressed = false, incompressible = false;
bkey_for_each_crc(k.k, ptrs, crc, entry) {
incompressible |= crc.compression_type == BCH_COMPRESSION_TYPE_incompressible;
compressed |= crc_is_compressed(crc);
if (crc_is_compressed(crc)) {
s[crc.compression_type].nr_extents++;
s[crc.compression_type].sectors_compressed += crc.compressed_size;
s[crc.compression_type].sectors_uncompressed += crc.uncompressed_size;
}
}
compressed_incompressible += compressed && incompressible;
if (!compressed) {
unsigned t = incompressible ? BCH_COMPRESSION_TYPE_incompressible : 0;
s[t].nr_extents++;
s[t].sectors_compressed += k.k->size;
s[t].sectors_uncompressed += k.k->size;
}
0;
}));
}
bch2_trans_put(trans);
if (ret)
return ret;
prt_str(out, "type");
printbuf_tabstop_push(out, 12);
prt_tab(out);
prt_str(out, "compressed");
printbuf_tabstop_push(out, 16);
prt_tab_rjust(out);
prt_str(out, "uncompressed");
printbuf_tabstop_push(out, 16);
prt_tab_rjust(out);
prt_str(out, "average extent size");
printbuf_tabstop_push(out, 24);
prt_tab_rjust(out);
prt_newline(out);
for (unsigned i = 0; i < ARRAY_SIZE(s); i++) {
bch2_prt_compression_type(out, i);
prt_tab(out);
prt_human_readable_u64(out, s[i].sectors_compressed << 9);
prt_tab_rjust(out);
prt_human_readable_u64(out, s[i].sectors_uncompressed << 9);
prt_tab_rjust(out);
prt_human_readable_u64(out, s[i].nr_extents
? div_u64(s[i].sectors_uncompressed << 9, s[i].nr_extents)
: 0);
prt_tab_rjust(out);
prt_newline(out);
}
if (compressed_incompressible) {
prt_printf(out, "%llu compressed & incompressible extents", compressed_incompressible);
prt_newline(out);
}
return 0;
}
static void bch2_gc_gens_pos_to_text(struct printbuf *out, struct bch_fs *c)
{
prt_printf(out, "%s: ", bch2_btree_id_str(c->gc_gens_btree));
bch2_bpos_to_text(out, c->gc_gens_pos);
prt_printf(out, "\n");
}
static void bch2_btree_wakeup_all(struct bch_fs *c)
{
struct btree_trans *trans;
seqmutex_lock(&c->btree_trans_lock);
list_for_each_entry(trans, &c->btree_trans_list, list) {
struct btree_bkey_cached_common *b = READ_ONCE(trans->locking);
if (b)
six_lock_wakeup_all(&b->lock);
}
seqmutex_unlock(&c->btree_trans_lock);
}
SHOW(bch2_fs)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
sysfs_print(minor, c->minor);
sysfs_printf(internal_uuid, "%pU", c->sb.uuid.b);
if (attr == &sysfs_flags)
prt_bitflags(out, bch2_fs_flag_strs, c->flags);
sysfs_hprint(btree_cache_size, bch2_btree_cache_size(c));
if (attr == &sysfs_btree_write_stats)
bch2_btree_write_stats_to_text(out, c);
sysfs_printf(btree_gc_periodic, "%u", (int) c->btree_gc_periodic);
if (attr == &sysfs_gc_gens_pos)
bch2_gc_gens_pos_to_text(out, c);
sysfs_printf(copy_gc_enabled, "%i", c->copy_gc_enabled);
sysfs_printf(rebalance_enabled, "%i", c->rebalance.enabled);
sysfs_pd_controller_show(rebalance, &c->rebalance.pd); /* XXX */
if (attr == &sysfs_copy_gc_wait)
bch2_copygc_wait_to_text(out, c);
bcachefs: rebalance_work This adds a new btree, rebalance_work, to eliminate scanning required for finding extents that need work done on them in the background - i.e. for the background_target and background_compression options. rebalance_work is a bitset btree, where a KEY_TYPE_set corresponds to an extent in the extents or reflink btree at the same pos. A new extent field is added, bch_extent_rebalance, which indicates that this extent has work that needs to be done in the background - and which options to use. This allows per-inode options to be propagated to indirect extents - at least in some circumstances. In this patch, changing IO options on a file will not propagate the new options to indirect extents pointed to by that file. Updating (setting/clearing) the rebalance_work btree is done by the extent trigger, which looks at the bch_extent_rebalance field. Scanning is still requrired after changing IO path options - either just for a given inode, or for the whole filesystem. We indicate that scanning is required by adding a KEY_TYPE_cookie key to the rebalance_work btree: the cookie counter is so that we can detect that scanning is still required when an option has been flipped mid-way through an existing scan. Future possible work: - Propagate options to indirect extents when being changed - Add other IO path options - nr_replicas, ec, to rebalance_work so they can be applied in the background when they change - Add a counter, for bcachefs fs usage output, showing the pending amount of rebalance work: we'll probably want to do this after the disk space accounting rewrite (moving it to a new btree) Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-20 13:33:14 -04:00
if (attr == &sysfs_rebalance_status)
bch2_rebalance_status_to_text(out, c);
sysfs_print(promote_whole_extents, c->promote_whole_extents);
/* Debugging: */
if (attr == &sysfs_journal_debug)
bch2_journal_debug_to_text(out, &c->journal);
if (attr == &sysfs_btree_cache)
bch2_btree_cache_to_text(out, c);
if (attr == &sysfs_btree_key_cache)
bch2_btree_key_cache_to_text(out, &c->btree_key_cache);
if (attr == &sysfs_stripes_heap)
bch2_stripes_heap_to_text(out, c);
if (attr == &sysfs_open_buckets)
bch2_open_buckets_to_text(out, c);
if (attr == &sysfs_open_buckets_partial)
bch2_open_buckets_partial_to_text(out, c);
if (attr == &sysfs_write_points)
bch2_write_points_to_text(out, c);
if (attr == &sysfs_compression_stats)
bch2_compression_stats_to_text(out, c);
if (attr == &sysfs_new_stripes)
bch2_new_stripes_to_text(out, c);
if (attr == &sysfs_io_timers_read)
bch2_io_timers_to_text(out, &c->io_clock[READ]);
if (attr == &sysfs_io_timers_write)
bch2_io_timers_to_text(out, &c->io_clock[WRITE]);
if (attr == &sysfs_moving_ctxts)
bch2_fs_moving_ctxts_to_text(out, c);
#ifdef BCH_WRITE_REF_DEBUG
if (attr == &sysfs_write_refs)
bch2_write_refs_to_text(out, c);
#endif
if (attr == &sysfs_nocow_lock_table)
bch2_nocow_locks_to_text(out, &c->nocow_locks);
if (attr == &sysfs_disk_groups)
bch2_disk_groups_to_text(out, c);
return 0;
}
STORE(bch2_fs)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
if (attr == &sysfs_btree_gc_periodic) {
ssize_t ret = strtoul_safe(buf, c->btree_gc_periodic)
?: (ssize_t) size;
wake_up_process(c->gc_thread);
return ret;
}
if (attr == &sysfs_copy_gc_enabled) {
ssize_t ret = strtoul_safe(buf, c->copy_gc_enabled)
?: (ssize_t) size;
if (c->copygc_thread)
wake_up_process(c->copygc_thread);
return ret;
}
if (attr == &sysfs_rebalance_enabled) {
ssize_t ret = strtoul_safe(buf, c->rebalance.enabled)
?: (ssize_t) size;
rebalance_wakeup(c);
return ret;
}
sysfs_pd_controller_store(rebalance, &c->rebalance.pd);
sysfs_strtoul(promote_whole_extents, c->promote_whole_extents);
/* Debugging: */
if (!test_bit(BCH_FS_started, &c->flags))
return -EPERM;
/* Debugging: */
if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_sysfs))
return -EROFS;
if (attr == &sysfs_prune_cache) {
struct shrink_control sc;
sc.gfp_mask = GFP_KERNEL;
sc.nr_to_scan = strtoul_or_return(buf);
Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-02 19:38:47 -10:00
c->btree_cache.shrink->scan_objects(c->btree_cache.shrink, &sc);
}
if (attr == &sysfs_btree_wakeup)
bch2_btree_wakeup_all(c);
if (attr == &sysfs_trigger_gc) {
/*
* Full gc is currently incompatible with btree key cache:
*/
#if 0
down_read(&c->state_lock);
bch2_gc(c, false, false);
up_read(&c->state_lock);
#else
bch2_gc_gens(c);
#endif
}
if (attr == &sysfs_trigger_discards)
bch2_do_discards(c);
if (attr == &sysfs_trigger_invalidates)
bch2_do_invalidates(c);
if (attr == &sysfs_trigger_journal_flush) {
bch2_journal_flush_all_pins(&c->journal);
bch2_journal_meta(&c->journal);
}
#ifdef CONFIG_BCACHEFS_TESTS
if (attr == &sysfs_perf_test) {
char *tmp = kstrdup(buf, GFP_KERNEL), *p = tmp;
char *test = strsep(&p, " \t\n");
char *nr_str = strsep(&p, " \t\n");
char *threads_str = strsep(&p, " \t\n");
unsigned threads;
u64 nr;
int ret = -EINVAL;
if (threads_str &&
!(ret = kstrtouint(threads_str, 10, &threads)) &&
!(ret = bch2_strtoull_h(nr_str, &nr)))
ret = bch2_btree_perf_test(c, test, nr, threads);
kfree(tmp);
if (ret)
size = ret;
}
#endif
bch2_write_ref_put(c, BCH_WRITE_REF_sysfs);
return size;
}
SYSFS_OPS(bch2_fs);
struct attribute *bch2_fs_files[] = {
&sysfs_minor,
&sysfs_btree_cache_size,
&sysfs_btree_write_stats,
&sysfs_promote_whole_extents,
&sysfs_compression_stats,
#ifdef CONFIG_BCACHEFS_TESTS
&sysfs_perf_test,
#endif
NULL
};
/* counters dir */
SHOW(bch2_fs_counters)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, counters_kobj);
u64 counter = 0;
u64 counter_since_mount = 0;
printbuf_tabstop_push(out, 32);
#define x(t, ...) \
if (attr == &sysfs_##t) { \
counter = percpu_u64_get(&c->counters[BCH_COUNTER_##t]);\
counter_since_mount = counter - c->counters_on_mount[BCH_COUNTER_##t];\
prt_printf(out, "since mount:"); \
prt_tab(out); \
prt_human_readable_u64(out, counter_since_mount); \
prt_newline(out); \
\
prt_printf(out, "since filesystem creation:"); \
prt_tab(out); \
prt_human_readable_u64(out, counter); \
prt_newline(out); \
}
BCH_PERSISTENT_COUNTERS()
#undef x
return 0;
}
STORE(bch2_fs_counters) {
return 0;
}
SYSFS_OPS(bch2_fs_counters);
struct attribute *bch2_fs_counters_files[] = {
#define x(t, ...) \
&sysfs_##t,
BCH_PERSISTENT_COUNTERS()
#undef x
NULL
};
/* internal dir - just a wrapper */
SHOW(bch2_fs_internal)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, internal);
return bch2_fs_to_text(out, &c->kobj, attr);
}
STORE(bch2_fs_internal)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, internal);
return bch2_fs_store(&c->kobj, attr, buf, size);
}
SYSFS_OPS(bch2_fs_internal);
struct attribute *bch2_fs_internal_files[] = {
&sysfs_flags,
&sysfs_journal_debug,
&sysfs_btree_cache,
&sysfs_btree_key_cache,
&sysfs_new_stripes,
&sysfs_stripes_heap,
&sysfs_open_buckets,
&sysfs_open_buckets_partial,
&sysfs_write_points,
#ifdef BCH_WRITE_REF_DEBUG
&sysfs_write_refs,
#endif
&sysfs_nocow_lock_table,
&sysfs_io_timers_read,
&sysfs_io_timers_write,
&sysfs_trigger_gc,
&sysfs_trigger_discards,
&sysfs_trigger_invalidates,
&sysfs_trigger_journal_flush,
&sysfs_prune_cache,
&sysfs_btree_wakeup,
&sysfs_gc_gens_pos,
&sysfs_copy_gc_enabled,
&sysfs_copy_gc_wait,
&sysfs_rebalance_enabled,
bcachefs: rebalance_work This adds a new btree, rebalance_work, to eliminate scanning required for finding extents that need work done on them in the background - i.e. for the background_target and background_compression options. rebalance_work is a bitset btree, where a KEY_TYPE_set corresponds to an extent in the extents or reflink btree at the same pos. A new extent field is added, bch_extent_rebalance, which indicates that this extent has work that needs to be done in the background - and which options to use. This allows per-inode options to be propagated to indirect extents - at least in some circumstances. In this patch, changing IO options on a file will not propagate the new options to indirect extents pointed to by that file. Updating (setting/clearing) the rebalance_work btree is done by the extent trigger, which looks at the bch_extent_rebalance field. Scanning is still requrired after changing IO path options - either just for a given inode, or for the whole filesystem. We indicate that scanning is required by adding a KEY_TYPE_cookie key to the rebalance_work btree: the cookie counter is so that we can detect that scanning is still required when an option has been flipped mid-way through an existing scan. Future possible work: - Propagate options to indirect extents when being changed - Add other IO path options - nr_replicas, ec, to rebalance_work so they can be applied in the background when they change - Add a counter, for bcachefs fs usage output, showing the pending amount of rebalance work: we'll probably want to do this after the disk space accounting rewrite (moving it to a new btree) Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-20 13:33:14 -04:00
&sysfs_rebalance_status,
sysfs_pd_controller_files(rebalance),
&sysfs_moving_ctxts,
&sysfs_internal_uuid,
&sysfs_disk_groups,
NULL
};
/* options */
SHOW(bch2_fs_opts_dir)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, opts_dir);
const struct bch_option *opt = container_of(attr, struct bch_option, attr);
int id = opt - bch2_opt_table;
u64 v = bch2_opt_get_by_id(&c->opts, id);
bch2_opt_to_text(out, c, c->disk_sb.sb, opt, v, OPT_SHOW_FULL_LIST);
prt_char(out, '\n');
return 0;
}
STORE(bch2_fs_opts_dir)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, opts_dir);
const struct bch_option *opt = container_of(attr, struct bch_option, attr);
int ret, id = opt - bch2_opt_table;
char *tmp;
u64 v;
/*
* We don't need to take c->writes for correctness, but it eliminates an
* unsightly error message in the dmesg log when we're RO:
*/
if (unlikely(!bch2_write_ref_tryget(c, BCH_WRITE_REF_sysfs)))
return -EROFS;
tmp = kstrdup(buf, GFP_KERNEL);
if (!tmp) {
ret = -ENOMEM;
goto err;
}
ret = bch2_opt_parse(c, opt, strim(tmp), &v, NULL);
kfree(tmp);
if (ret < 0)
goto err;
ret = bch2_opt_check_may_set(c, id, v);
if (ret < 0)
goto err;
bch2_opt_set_sb(c, opt, v);
bch2_opt_set_by_id(&c->opts, id, v);
if (v &&
(id == Opt_background_target ||
id == Opt_background_compression ||
(id == Opt_compression && !c->opts.background_compression)))
bcachefs: rebalance_work This adds a new btree, rebalance_work, to eliminate scanning required for finding extents that need work done on them in the background - i.e. for the background_target and background_compression options. rebalance_work is a bitset btree, where a KEY_TYPE_set corresponds to an extent in the extents or reflink btree at the same pos. A new extent field is added, bch_extent_rebalance, which indicates that this extent has work that needs to be done in the background - and which options to use. This allows per-inode options to be propagated to indirect extents - at least in some circumstances. In this patch, changing IO options on a file will not propagate the new options to indirect extents pointed to by that file. Updating (setting/clearing) the rebalance_work btree is done by the extent trigger, which looks at the bch_extent_rebalance field. Scanning is still requrired after changing IO path options - either just for a given inode, or for the whole filesystem. We indicate that scanning is required by adding a KEY_TYPE_cookie key to the rebalance_work btree: the cookie counter is so that we can detect that scanning is still required when an option has been flipped mid-way through an existing scan. Future possible work: - Propagate options to indirect extents when being changed - Add other IO path options - nr_replicas, ec, to rebalance_work so they can be applied in the background when they change - Add a counter, for bcachefs fs usage output, showing the pending amount of rebalance work: we'll probably want to do this after the disk space accounting rewrite (moving it to a new btree) Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-20 13:33:14 -04:00
bch2_set_rebalance_needs_scan(c, 0);
ret = size;
err:
bch2_write_ref_put(c, BCH_WRITE_REF_sysfs);
return ret;
}
SYSFS_OPS(bch2_fs_opts_dir);
struct attribute *bch2_fs_opts_dir_files[] = { NULL };
int bch2_opts_create_sysfs_files(struct kobject *kobj)
{
const struct bch_option *i;
int ret;
for (i = bch2_opt_table;
i < bch2_opt_table + bch2_opts_nr;
i++) {
if (!(i->flags & OPT_FS))
continue;
ret = sysfs_create_file(kobj, &i->attr);
if (ret)
return ret;
}
return 0;
}
/* time stats */
SHOW(bch2_fs_time_stats)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, time_stats);
#define x(name) \
if (attr == &sysfs_time_stat_##name) \
bch2_time_stats_to_text(out, &c->times[BCH_TIME_##name]);
BCH_TIME_STATS()
#undef x
return 0;
}
STORE(bch2_fs_time_stats)
{
return size;
}
SYSFS_OPS(bch2_fs_time_stats);
struct attribute *bch2_fs_time_stats_files[] = {
#define x(name) \
&sysfs_time_stat_##name,
BCH_TIME_STATS()
#undef x
NULL
};
static void dev_alloc_debug_to_text(struct printbuf *out, struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
struct bch_dev_usage stats = bch2_dev_usage_read(ca);
unsigned i, nr[BCH_DATA_NR];
memset(nr, 0, sizeof(nr));
for (i = 0; i < ARRAY_SIZE(c->open_buckets); i++)
nr[c->open_buckets[i].data_type]++;
printbuf_tabstop_push(out, 8);
printbuf_tabstop_push(out, 16);
printbuf_tabstop_push(out, 16);
printbuf_tabstop_push(out, 16);
printbuf_tabstop_push(out, 16);
bch2_dev_usage_to_text(out, &stats);
prt_newline(out);
prt_printf(out, "reserves:");
prt_newline(out);
for (i = 0; i < BCH_WATERMARK_NR; i++) {
prt_str(out, bch2_watermarks[i]);
prt_tab(out);
prt_u64(out, bch2_dev_buckets_reserved(ca, i));
prt_tab_rjust(out);
prt_newline(out);
}
prt_newline(out);
printbuf_tabstops_reset(out);
printbuf_tabstop_push(out, 24);
prt_str(out, "freelist_wait");
prt_tab(out);
prt_str(out, c->freelist_wait.list.first ? "waiting" : "empty");
prt_newline(out);
prt_str(out, "open buckets allocated");
prt_tab(out);
prt_u64(out, OPEN_BUCKETS_COUNT - c->open_buckets_nr_free);
prt_newline(out);
prt_str(out, "open buckets this dev");
prt_tab(out);
prt_u64(out, ca->nr_open_buckets);
prt_newline(out);
prt_str(out, "open buckets total");
prt_tab(out);
prt_u64(out, OPEN_BUCKETS_COUNT);
prt_newline(out);
prt_str(out, "open_buckets_wait");
prt_tab(out);
prt_str(out, c->open_buckets_wait.list.first ? "waiting" : "empty");
prt_newline(out);
prt_str(out, "open_buckets_btree");
prt_tab(out);
prt_u64(out, nr[BCH_DATA_btree]);
prt_newline(out);
prt_str(out, "open_buckets_user");
prt_tab(out);
prt_u64(out, nr[BCH_DATA_user]);
prt_newline(out);
prt_str(out, "buckets_to_invalidate");
prt_tab(out);
prt_u64(out, should_invalidate_buckets(ca, stats));
prt_newline(out);
prt_str(out, "btree reserve cache");
prt_tab(out);
prt_u64(out, c->btree_reserve_cache_nr);
prt_newline(out);
}
static const char * const bch2_rw[] = {
"read",
"write",
NULL
};
static void dev_io_done_to_text(struct printbuf *out, struct bch_dev *ca)
{
int rw, i;
for (rw = 0; rw < 2; rw++) {
prt_printf(out, "%s:\n", bch2_rw[rw]);
for (i = 1; i < BCH_DATA_NR; i++)
prt_printf(out, "%-12s:%12llu\n",
bch2_data_type_str(i),
percpu_u64_get(&ca->io_done->sectors[rw][i]) << 9);
}
}
SHOW(bch2_dev)
{
struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
struct bch_fs *c = ca->fs;
sysfs_printf(uuid, "%pU\n", ca->uuid.b);
sysfs_print(bucket_size, bucket_bytes(ca));
sysfs_print(first_bucket, ca->mi.first_bucket);
sysfs_print(nbuckets, ca->mi.nbuckets);
sysfs_print(durability, ca->mi.durability);
sysfs_print(discard, ca->mi.discard);
if (attr == &sysfs_label) {
if (ca->mi.group)
bch2_disk_path_to_text(out, c, ca->mi.group - 1);
prt_char(out, '\n');
}
if (attr == &sysfs_has_data) {
prt_bitflags(out, __bch2_data_types, bch2_dev_has_data(c, ca));
prt_char(out, '\n');
}
if (attr == &sysfs_state_rw) {
prt_string_option(out, bch2_member_states, ca->mi.state);
prt_char(out, '\n');
}
if (attr == &sysfs_io_done)
dev_io_done_to_text(out, ca);
if (attr == &sysfs_io_errors)
bch2_dev_io_errors_to_text(out, ca);
sysfs_print(io_latency_read, atomic64_read(&ca->cur_latency[READ]));
sysfs_print(io_latency_write, atomic64_read(&ca->cur_latency[WRITE]));
if (attr == &sysfs_io_latency_stats_read)
bch2_time_stats_to_text(out, &ca->io_latency[READ].stats);
if (attr == &sysfs_io_latency_stats_write)
bch2_time_stats_to_text(out, &ca->io_latency[WRITE].stats);
sysfs_printf(congested, "%u%%",
clamp(atomic_read(&ca->congested), 0, CONGESTED_MAX)
* 100 / CONGESTED_MAX);
if (attr == &sysfs_alloc_debug)
dev_alloc_debug_to_text(out, ca);
return 0;
}
STORE(bch2_dev)
{
struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
struct bch_fs *c = ca->fs;
struct bch_member *mi;
if (attr == &sysfs_discard) {
bool v = strtoul_or_return(buf);
mutex_lock(&c->sb_lock);
mi = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
if (v != BCH_MEMBER_DISCARD(mi)) {
SET_BCH_MEMBER_DISCARD(mi, v);
bch2_write_super(c);
}
mutex_unlock(&c->sb_lock);
}
if (attr == &sysfs_durability) {
u64 v = strtoul_or_return(buf);
mutex_lock(&c->sb_lock);
mi = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
if (v + 1 != BCH_MEMBER_DURABILITY(mi)) {
SET_BCH_MEMBER_DURABILITY(mi, v + 1);
bch2_write_super(c);
}
mutex_unlock(&c->sb_lock);
}
if (attr == &sysfs_label) {
char *tmp;
int ret;
tmp = kstrdup(buf, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = bch2_dev_group_set(c, ca, strim(tmp));
kfree(tmp);
if (ret)
return ret;
}
if (attr == &sysfs_io_errors_reset)
bch2_dev_errors_reset(ca);
return size;
}
SYSFS_OPS(bch2_dev);
struct attribute *bch2_dev_files[] = {
&sysfs_uuid,
&sysfs_bucket_size,
&sysfs_first_bucket,
&sysfs_nbuckets,
&sysfs_durability,
/* settings: */
&sysfs_discard,
&sysfs_state_rw,
&sysfs_label,
&sysfs_has_data,
&sysfs_io_done,
&sysfs_io_errors,
&sysfs_io_errors_reset,
&sysfs_io_latency_read,
&sysfs_io_latency_write,
&sysfs_io_latency_stats_read,
&sysfs_io_latency_stats_write,
&sysfs_congested,
/* debug: */
&sysfs_alloc_debug,
NULL
};
#endif /* _BCACHEFS_SYSFS_H_ */