blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 01:50:22 +04:00
/*
* File : arch / blackfin / mach - bf533 / cpu . c
* Based on :
* Author : michael . kang @ analog . com
*
* Created :
* Description : clock scaling for the bf533
*
* Modified :
* Copyright 2004 - 2006 Analog Devices Inc .
*
* Bugs : Enter bugs at http : //blackfin.uclinux.org/
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , see the file COPYING , or write
* to the Free Software Foundation , Inc . ,
* 51 Franklin St , Fifth Floor , Boston , MA 02110 - 1301 USA
*/
# include <linux/kernel.h>
# include <linux/types.h>
# include <linux/init.h>
# include <linux/cpufreq.h>
# include <asm/dpmc.h>
# include <linux/fs.h>
# include <asm/bfin-global.h>
/* CONFIG_CLKIN_HZ=11059200 */
# define VCO5 (CONFIG_CLKIN_HZ*45) /*497664000 */
# define VCO4 (CONFIG_CLKIN_HZ*36) /*398131200 */
# define VCO3 (CONFIG_CLKIN_HZ*27) /*298598400 */
# define VCO2 (CONFIG_CLKIN_HZ*18) /*199065600 */
# define VCO1 (CONFIG_CLKIN_HZ*9) /*99532800 */
# define VCO(x) VCO##x
# define FREQ(x) {VCO(x),VCO(x) / 4},{VCO(x),VCO(x) / 2},{VCO(x),VCO(x)}
/* frequency */
static struct cpufreq_frequency_table bf533_freq_table [ ] = {
FREQ ( 1 ) ,
FREQ ( 3 ) ,
{ VCO4 , VCO4 / 2 } , { VCO4 , VCO4 } ,
FREQ ( 5 ) ,
{ 0 , CPUFREQ_TABLE_END } ,
} ;
/*
* dpmc_fops - > ioctl ( )
* static int dpmc_ioctl ( struct inode * inode , struct file * file , unsigned int cmd , unsigned long arg )
*/
static int bf533_getfreq ( unsigned int cpu )
{
unsigned long cclk_mhz , vco_mhz ;
/* The driver only support single cpu */
if ( cpu = = 0 )
dpmc_fops . ioctl ( NULL , NULL , IOCTL_GET_CORECLOCK , & cclk_mhz ) ;
else
cclk_mhz = - 1 ;
return cclk_mhz ;
}
static int bf533_target ( struct cpufreq_policy * policy ,
unsigned int target_freq , unsigned int relation )
{
unsigned long cclk_mhz ;
unsigned long vco_mhz ;
unsigned long flags ;
unsigned int index , vco_index ;
int i ;
struct cpufreq_freqs freqs ;
2007-07-12 18:58:21 +04:00
if ( cpufreq_frequency_table_target ( policy , bf533_freq_table , target_freq , relation , & index ) )
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix! Tinyboards.
The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000. Since then ADI has put this core into its Blackfin
processor family of devices. The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.
The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc
This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/
We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 01:50:22 +04:00
return - EINVAL ;
cclk_mhz = bf533_freq_table [ index ] . frequency ;
vco_mhz = bf533_freq_table [ index ] . index ;
dpmc_fops . ioctl ( NULL , NULL , IOCTL_CHANGE_FREQUENCY , & vco_mhz ) ;
freqs . old = bf533_getfreq ( 0 ) ;
freqs . new = cclk_mhz ;
freqs . cpu = 0 ;
pr_debug ( " cclk begin change to cclk %d,vco=%d,index=%d,target=%d,oldfreq=%d \n " ,
cclk_mhz , vco_mhz , index , target_freq , freqs . old ) ;
cpufreq_notify_transition ( & freqs , CPUFREQ_PRECHANGE ) ;
local_irq_save ( flags ) ;
dpmc_fops . ioctl ( NULL , NULL , IOCTL_SET_CCLK , & cclk_mhz ) ;
local_irq_restore ( flags ) ;
cpufreq_notify_transition ( & freqs , CPUFREQ_POSTCHANGE ) ;
vco_mhz = get_vco ( ) ;
cclk_mhz = get_cclk ( ) ;
return 0 ;
}
/* make sure that only the "userspace" governor is run -- anything else wouldn't make sense on
* this platform , anyway .
*/
static int bf533_verify_speed ( struct cpufreq_policy * policy )
{
return cpufreq_frequency_table_verify ( policy , & bf533_freq_table ) ;
}
static int __init __bf533_cpu_init ( struct cpufreq_policy * policy )
{
int result ;
if ( policy - > cpu ! = 0 )
return - EINVAL ;
policy - > cpuinfo . transition_latency = CPUFREQ_ETERNAL ;
/*Now ,only support one cpu */
policy - > cur = bf533_getfreq ( 0 ) ;
cpufreq_frequency_table_get_attr ( bf533_freq_table , policy - > cpu ) ;
return cpufreq_frequency_table_cpuinfo ( policy , bf533_freq_table ) ;
}
static struct freq_attr * bf533_freq_attr [ ] = {
& cpufreq_freq_attr_scaling_available_freqs ,
NULL ,
} ;
static struct cpufreq_driver bf533_driver = {
. verify = bf533_verify_speed ,
. target = bf533_target ,
. get = bf533_getfreq ,
. init = __bf533_cpu_init ,
. name = " bf533 " ,
. owner = THIS_MODULE ,
. attr = bf533_freq_attr ,
} ;
static int __init bf533_cpu_init ( void )
{
return cpufreq_register_driver ( & bf533_driver ) ;
}
static void __exit bf533_cpu_exit ( void )
{
cpufreq_unregister_driver ( & bf533_driver ) ;
}
MODULE_AUTHOR ( " Mickael Kang " ) ;
MODULE_DESCRIPTION ( " cpufreq driver for BF533 CPU " ) ;
MODULE_LICENSE ( " GPL " ) ;
module_init ( bf533_cpu_init ) ;
module_exit ( bf533_cpu_exit ) ;