2013-11-12 21:46:16 +04:00
/*
* AMD Cryptographic Coprocessor ( CCP ) driver
*
* Copyright ( C ) 2013 Advanced Micro Devices , Inc .
*
* Author : Tom Lendacky < thomas . lendacky @ amd . com >
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# include <linux/module.h>
# include <linux/kernel.h>
# include <linux/pci.h>
# include <linux/pci_ids.h>
# include <linux/kthread.h>
# include <linux/sched.h>
# include <linux/interrupt.h>
# include <linux/spinlock.h>
# include <linux/mutex.h>
# include <linux/delay.h>
# include <linux/ccp.h>
# include <linux/scatterlist.h>
# include <crypto/scatterwalk.h>
2014-01-25 02:18:02 +04:00
# include <crypto/sha.h>
2013-11-12 21:46:16 +04:00
# include "ccp-dev.h"
enum ccp_memtype {
CCP_MEMTYPE_SYSTEM = 0 ,
CCP_MEMTYPE_KSB ,
CCP_MEMTYPE_LOCAL ,
CCP_MEMTYPE__LAST ,
} ;
struct ccp_dma_info {
dma_addr_t address ;
unsigned int offset ;
unsigned int length ;
enum dma_data_direction dir ;
} ;
struct ccp_dm_workarea {
struct device * dev ;
struct dma_pool * dma_pool ;
unsigned int length ;
u8 * address ;
struct ccp_dma_info dma ;
} ;
struct ccp_sg_workarea {
struct scatterlist * sg ;
unsigned int nents ;
unsigned int length ;
struct scatterlist * dma_sg ;
struct device * dma_dev ;
unsigned int dma_count ;
enum dma_data_direction dma_dir ;
2014-01-06 23:34:17 +04:00
unsigned int sg_used ;
2013-11-12 21:46:16 +04:00
2014-01-06 23:34:17 +04:00
u64 bytes_left ;
2013-11-12 21:46:16 +04:00
} ;
struct ccp_data {
struct ccp_sg_workarea sg_wa ;
struct ccp_dm_workarea dm_wa ;
} ;
struct ccp_mem {
enum ccp_memtype type ;
union {
struct ccp_dma_info dma ;
u32 ksb ;
} u ;
} ;
struct ccp_aes_op {
enum ccp_aes_type type ;
enum ccp_aes_mode mode ;
enum ccp_aes_action action ;
} ;
struct ccp_xts_aes_op {
enum ccp_aes_action action ;
enum ccp_xts_aes_unit_size unit_size ;
} ;
struct ccp_sha_op {
enum ccp_sha_type type ;
u64 msg_bits ;
} ;
struct ccp_rsa_op {
u32 mod_size ;
u32 input_len ;
} ;
struct ccp_passthru_op {
enum ccp_passthru_bitwise bit_mod ;
enum ccp_passthru_byteswap byte_swap ;
} ;
struct ccp_ecc_op {
enum ccp_ecc_function function ;
} ;
struct ccp_op {
struct ccp_cmd_queue * cmd_q ;
u32 jobid ;
u32 ioc ;
u32 soc ;
u32 ksb_key ;
u32 ksb_ctx ;
u32 init ;
u32 eom ;
struct ccp_mem src ;
struct ccp_mem dst ;
union {
struct ccp_aes_op aes ;
struct ccp_xts_aes_op xts ;
struct ccp_sha_op sha ;
struct ccp_rsa_op rsa ;
struct ccp_passthru_op passthru ;
struct ccp_ecc_op ecc ;
} u ;
} ;
2014-01-25 02:18:02 +04:00
/* SHA initial context values */
static const __be32 ccp_sha1_init [ CCP_SHA_CTXSIZE / sizeof ( __be32 ) ] = {
cpu_to_be32 ( SHA1_H0 ) , cpu_to_be32 ( SHA1_H1 ) ,
cpu_to_be32 ( SHA1_H2 ) , cpu_to_be32 ( SHA1_H3 ) ,
cpu_to_be32 ( SHA1_H4 ) , 0 , 0 , 0 ,
} ;
static const __be32 ccp_sha224_init [ CCP_SHA_CTXSIZE / sizeof ( __be32 ) ] = {
cpu_to_be32 ( SHA224_H0 ) , cpu_to_be32 ( SHA224_H1 ) ,
cpu_to_be32 ( SHA224_H2 ) , cpu_to_be32 ( SHA224_H3 ) ,
cpu_to_be32 ( SHA224_H4 ) , cpu_to_be32 ( SHA224_H5 ) ,
cpu_to_be32 ( SHA224_H6 ) , cpu_to_be32 ( SHA224_H7 ) ,
} ;
static const __be32 ccp_sha256_init [ CCP_SHA_CTXSIZE / sizeof ( __be32 ) ] = {
cpu_to_be32 ( SHA256_H0 ) , cpu_to_be32 ( SHA256_H1 ) ,
cpu_to_be32 ( SHA256_H2 ) , cpu_to_be32 ( SHA256_H3 ) ,
cpu_to_be32 ( SHA256_H4 ) , cpu_to_be32 ( SHA256_H5 ) ,
cpu_to_be32 ( SHA256_H6 ) , cpu_to_be32 ( SHA256_H7 ) ,
} ;
2013-11-12 21:46:16 +04:00
/* The CCP cannot perform zero-length sha operations so the caller
* is required to buffer data for the final operation . However , a
* sha operation for a message with a total length of zero is valid
* so known values are required to supply the result .
*/
static const u8 ccp_sha1_zero [ CCP_SHA_CTXSIZE ] = {
0xda , 0x39 , 0xa3 , 0xee , 0x5e , 0x6b , 0x4b , 0x0d ,
0x32 , 0x55 , 0xbf , 0xef , 0x95 , 0x60 , 0x18 , 0x90 ,
0xaf , 0xd8 , 0x07 , 0x09 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
} ;
static const u8 ccp_sha224_zero [ CCP_SHA_CTXSIZE ] = {
0xd1 , 0x4a , 0x02 , 0x8c , 0x2a , 0x3a , 0x2b , 0xc9 ,
0x47 , 0x61 , 0x02 , 0xbb , 0x28 , 0x82 , 0x34 , 0xc4 ,
0x15 , 0xa2 , 0xb0 , 0x1f , 0x82 , 0x8e , 0xa6 , 0x2a ,
0xc5 , 0xb3 , 0xe4 , 0x2f , 0x00 , 0x00 , 0x00 , 0x00 ,
} ;
static const u8 ccp_sha256_zero [ CCP_SHA_CTXSIZE ] = {
0xe3 , 0xb0 , 0xc4 , 0x42 , 0x98 , 0xfc , 0x1c , 0x14 ,
0x9a , 0xfb , 0xf4 , 0xc8 , 0x99 , 0x6f , 0xb9 , 0x24 ,
0x27 , 0xae , 0x41 , 0xe4 , 0x64 , 0x9b , 0x93 , 0x4c ,
0xa4 , 0x95 , 0x99 , 0x1b , 0x78 , 0x52 , 0xb8 , 0x55 ,
} ;
static u32 ccp_addr_lo ( struct ccp_dma_info * info )
{
return lower_32_bits ( info - > address + info - > offset ) ;
}
static u32 ccp_addr_hi ( struct ccp_dma_info * info )
{
return upper_32_bits ( info - > address + info - > offset ) & 0x0000ffff ;
}
static int ccp_do_cmd ( struct ccp_op * op , u32 * cr , unsigned int cr_count )
{
struct ccp_cmd_queue * cmd_q = op - > cmd_q ;
struct ccp_device * ccp = cmd_q - > ccp ;
void __iomem * cr_addr ;
u32 cr0 , cmd ;
unsigned int i ;
int ret = 0 ;
/* We could read a status register to see how many free slots
* are actually available , but reading that register resets it
* and you could lose some error information .
*/
cmd_q - > free_slots - - ;
cr0 = ( cmd_q - > id < < REQ0_CMD_Q_SHIFT )
| ( op - > jobid < < REQ0_JOBID_SHIFT )
| REQ0_WAIT_FOR_WRITE ;
if ( op - > soc )
cr0 | = REQ0_STOP_ON_COMPLETE
| REQ0_INT_ON_COMPLETE ;
if ( op - > ioc | | ! cmd_q - > free_slots )
cr0 | = REQ0_INT_ON_COMPLETE ;
/* Start at CMD_REQ1 */
cr_addr = ccp - > io_regs + CMD_REQ0 + CMD_REQ_INCR ;
mutex_lock ( & ccp - > req_mutex ) ;
/* Write CMD_REQ1 through CMD_REQx first */
for ( i = 0 ; i < cr_count ; i + + , cr_addr + = CMD_REQ_INCR )
iowrite32 ( * ( cr + i ) , cr_addr ) ;
/* Tell the CCP to start */
wmb ( ) ;
iowrite32 ( cr0 , ccp - > io_regs + CMD_REQ0 ) ;
mutex_unlock ( & ccp - > req_mutex ) ;
if ( cr0 & REQ0_INT_ON_COMPLETE ) {
/* Wait for the job to complete */
ret = wait_event_interruptible ( cmd_q - > int_queue ,
cmd_q - > int_rcvd ) ;
if ( ret | | cmd_q - > cmd_error ) {
/* On error delete all related jobs from the queue */
cmd = ( cmd_q - > id < < DEL_Q_ID_SHIFT )
| op - > jobid ;
iowrite32 ( cmd , ccp - > io_regs + DEL_CMD_Q_JOB ) ;
if ( ! ret )
ret = - EIO ;
} else if ( op - > soc ) {
/* Delete just head job from the queue on SoC */
cmd = DEL_Q_ACTIVE
| ( cmd_q - > id < < DEL_Q_ID_SHIFT )
| op - > jobid ;
iowrite32 ( cmd , ccp - > io_regs + DEL_CMD_Q_JOB ) ;
}
cmd_q - > free_slots = CMD_Q_DEPTH ( cmd_q - > q_status ) ;
cmd_q - > int_rcvd = 0 ;
}
return ret ;
}
static int ccp_perform_aes ( struct ccp_op * op )
{
u32 cr [ 6 ] ;
/* Fill out the register contents for REQ1 through REQ6 */
cr [ 0 ] = ( CCP_ENGINE_AES < < REQ1_ENGINE_SHIFT )
| ( op - > u . aes . type < < REQ1_AES_TYPE_SHIFT )
| ( op - > u . aes . mode < < REQ1_AES_MODE_SHIFT )
| ( op - > u . aes . action < < REQ1_AES_ACTION_SHIFT )
| ( op - > ksb_key < < REQ1_KEY_KSB_SHIFT ) ;
cr [ 1 ] = op - > src . u . dma . length - 1 ;
cr [ 2 ] = ccp_addr_lo ( & op - > src . u . dma ) ;
cr [ 3 ] = ( op - > ksb_ctx < < REQ4_KSB_SHIFT )
| ( CCP_MEMTYPE_SYSTEM < < REQ4_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > src . u . dma ) ;
cr [ 4 ] = ccp_addr_lo ( & op - > dst . u . dma ) ;
cr [ 5 ] = ( CCP_MEMTYPE_SYSTEM < < REQ6_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > dst . u . dma ) ;
if ( op - > u . aes . mode = = CCP_AES_MODE_CFB )
cr [ 0 ] | = ( ( 0x7f ) < < REQ1_AES_CFB_SIZE_SHIFT ) ;
if ( op - > eom )
cr [ 0 ] | = REQ1_EOM ;
if ( op - > init )
cr [ 0 ] | = REQ1_INIT ;
return ccp_do_cmd ( op , cr , ARRAY_SIZE ( cr ) ) ;
}
static int ccp_perform_xts_aes ( struct ccp_op * op )
{
u32 cr [ 6 ] ;
/* Fill out the register contents for REQ1 through REQ6 */
cr [ 0 ] = ( CCP_ENGINE_XTS_AES_128 < < REQ1_ENGINE_SHIFT )
| ( op - > u . xts . action < < REQ1_AES_ACTION_SHIFT )
| ( op - > u . xts . unit_size < < REQ1_XTS_AES_SIZE_SHIFT )
| ( op - > ksb_key < < REQ1_KEY_KSB_SHIFT ) ;
cr [ 1 ] = op - > src . u . dma . length - 1 ;
cr [ 2 ] = ccp_addr_lo ( & op - > src . u . dma ) ;
cr [ 3 ] = ( op - > ksb_ctx < < REQ4_KSB_SHIFT )
| ( CCP_MEMTYPE_SYSTEM < < REQ4_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > src . u . dma ) ;
cr [ 4 ] = ccp_addr_lo ( & op - > dst . u . dma ) ;
cr [ 5 ] = ( CCP_MEMTYPE_SYSTEM < < REQ6_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > dst . u . dma ) ;
if ( op - > eom )
cr [ 0 ] | = REQ1_EOM ;
if ( op - > init )
cr [ 0 ] | = REQ1_INIT ;
return ccp_do_cmd ( op , cr , ARRAY_SIZE ( cr ) ) ;
}
static int ccp_perform_sha ( struct ccp_op * op )
{
u32 cr [ 6 ] ;
/* Fill out the register contents for REQ1 through REQ6 */
cr [ 0 ] = ( CCP_ENGINE_SHA < < REQ1_ENGINE_SHIFT )
| ( op - > u . sha . type < < REQ1_SHA_TYPE_SHIFT )
| REQ1_INIT ;
cr [ 1 ] = op - > src . u . dma . length - 1 ;
cr [ 2 ] = ccp_addr_lo ( & op - > src . u . dma ) ;
cr [ 3 ] = ( op - > ksb_ctx < < REQ4_KSB_SHIFT )
| ( CCP_MEMTYPE_SYSTEM < < REQ4_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > src . u . dma ) ;
if ( op - > eom ) {
cr [ 0 ] | = REQ1_EOM ;
cr [ 4 ] = lower_32_bits ( op - > u . sha . msg_bits ) ;
cr [ 5 ] = upper_32_bits ( op - > u . sha . msg_bits ) ;
} else {
cr [ 4 ] = 0 ;
cr [ 5 ] = 0 ;
}
return ccp_do_cmd ( op , cr , ARRAY_SIZE ( cr ) ) ;
}
static int ccp_perform_rsa ( struct ccp_op * op )
{
u32 cr [ 6 ] ;
/* Fill out the register contents for REQ1 through REQ6 */
cr [ 0 ] = ( CCP_ENGINE_RSA < < REQ1_ENGINE_SHIFT )
| ( op - > u . rsa . mod_size < < REQ1_RSA_MOD_SIZE_SHIFT )
| ( op - > ksb_key < < REQ1_KEY_KSB_SHIFT )
| REQ1_EOM ;
cr [ 1 ] = op - > u . rsa . input_len - 1 ;
cr [ 2 ] = ccp_addr_lo ( & op - > src . u . dma ) ;
cr [ 3 ] = ( op - > ksb_ctx < < REQ4_KSB_SHIFT )
| ( CCP_MEMTYPE_SYSTEM < < REQ4_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > src . u . dma ) ;
cr [ 4 ] = ccp_addr_lo ( & op - > dst . u . dma ) ;
cr [ 5 ] = ( CCP_MEMTYPE_SYSTEM < < REQ6_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > dst . u . dma ) ;
return ccp_do_cmd ( op , cr , ARRAY_SIZE ( cr ) ) ;
}
static int ccp_perform_passthru ( struct ccp_op * op )
{
u32 cr [ 6 ] ;
/* Fill out the register contents for REQ1 through REQ6 */
cr [ 0 ] = ( CCP_ENGINE_PASSTHRU < < REQ1_ENGINE_SHIFT )
| ( op - > u . passthru . bit_mod < < REQ1_PT_BW_SHIFT )
| ( op - > u . passthru . byte_swap < < REQ1_PT_BS_SHIFT ) ;
if ( op - > src . type = = CCP_MEMTYPE_SYSTEM )
cr [ 1 ] = op - > src . u . dma . length - 1 ;
else
cr [ 1 ] = op - > dst . u . dma . length - 1 ;
if ( op - > src . type = = CCP_MEMTYPE_SYSTEM ) {
cr [ 2 ] = ccp_addr_lo ( & op - > src . u . dma ) ;
cr [ 3 ] = ( CCP_MEMTYPE_SYSTEM < < REQ4_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > src . u . dma ) ;
if ( op - > u . passthru . bit_mod ! = CCP_PASSTHRU_BITWISE_NOOP )
cr [ 3 ] | = ( op - > ksb_key < < REQ4_KSB_SHIFT ) ;
} else {
cr [ 2 ] = op - > src . u . ksb * CCP_KSB_BYTES ;
cr [ 3 ] = ( CCP_MEMTYPE_KSB < < REQ4_MEMTYPE_SHIFT ) ;
}
if ( op - > dst . type = = CCP_MEMTYPE_SYSTEM ) {
cr [ 4 ] = ccp_addr_lo ( & op - > dst . u . dma ) ;
cr [ 5 ] = ( CCP_MEMTYPE_SYSTEM < < REQ6_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > dst . u . dma ) ;
} else {
cr [ 4 ] = op - > dst . u . ksb * CCP_KSB_BYTES ;
cr [ 5 ] = ( CCP_MEMTYPE_KSB < < REQ6_MEMTYPE_SHIFT ) ;
}
if ( op - > eom )
cr [ 0 ] | = REQ1_EOM ;
return ccp_do_cmd ( op , cr , ARRAY_SIZE ( cr ) ) ;
}
static int ccp_perform_ecc ( struct ccp_op * op )
{
u32 cr [ 6 ] ;
/* Fill out the register contents for REQ1 through REQ6 */
cr [ 0 ] = REQ1_ECC_AFFINE_CONVERT
| ( CCP_ENGINE_ECC < < REQ1_ENGINE_SHIFT )
| ( op - > u . ecc . function < < REQ1_ECC_FUNCTION_SHIFT )
| REQ1_EOM ;
cr [ 1 ] = op - > src . u . dma . length - 1 ;
cr [ 2 ] = ccp_addr_lo ( & op - > src . u . dma ) ;
cr [ 3 ] = ( CCP_MEMTYPE_SYSTEM < < REQ4_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > src . u . dma ) ;
cr [ 4 ] = ccp_addr_lo ( & op - > dst . u . dma ) ;
cr [ 5 ] = ( CCP_MEMTYPE_SYSTEM < < REQ6_MEMTYPE_SHIFT )
| ccp_addr_hi ( & op - > dst . u . dma ) ;
return ccp_do_cmd ( op , cr , ARRAY_SIZE ( cr ) ) ;
}
static u32 ccp_alloc_ksb ( struct ccp_device * ccp , unsigned int count )
{
int start ;
for ( ; ; ) {
mutex_lock ( & ccp - > ksb_mutex ) ;
start = ( u32 ) bitmap_find_next_zero_area ( ccp - > ksb ,
ccp - > ksb_count ,
ccp - > ksb_start ,
count , 0 ) ;
if ( start < = ccp - > ksb_count ) {
bitmap_set ( ccp - > ksb , start , count ) ;
mutex_unlock ( & ccp - > ksb_mutex ) ;
break ;
}
ccp - > ksb_avail = 0 ;
mutex_unlock ( & ccp - > ksb_mutex ) ;
/* Wait for KSB entries to become available */
if ( wait_event_interruptible ( ccp - > ksb_queue , ccp - > ksb_avail ) )
return 0 ;
}
return KSB_START + start ;
}
static void ccp_free_ksb ( struct ccp_device * ccp , unsigned int start ,
unsigned int count )
{
if ( ! start )
return ;
mutex_lock ( & ccp - > ksb_mutex ) ;
bitmap_clear ( ccp - > ksb , start - KSB_START , count ) ;
ccp - > ksb_avail = 1 ;
mutex_unlock ( & ccp - > ksb_mutex ) ;
wake_up_interruptible_all ( & ccp - > ksb_queue ) ;
}
static u32 ccp_gen_jobid ( struct ccp_device * ccp )
{
return atomic_inc_return ( & ccp - > current_id ) & CCP_JOBID_MASK ;
}
static void ccp_sg_free ( struct ccp_sg_workarea * wa )
{
if ( wa - > dma_count )
dma_unmap_sg ( wa - > dma_dev , wa - > dma_sg , wa - > nents , wa - > dma_dir ) ;
wa - > dma_count = 0 ;
}
static int ccp_init_sg_workarea ( struct ccp_sg_workarea * wa , struct device * dev ,
2014-01-06 23:34:17 +04:00
struct scatterlist * sg , u64 len ,
2013-11-12 21:46:16 +04:00
enum dma_data_direction dma_dir )
{
memset ( wa , 0 , sizeof ( * wa ) ) ;
wa - > sg = sg ;
if ( ! sg )
return 0 ;
wa - > nents = sg_nents ( sg ) ;
wa - > length = sg - > length ;
wa - > bytes_left = len ;
wa - > sg_used = 0 ;
if ( len = = 0 )
return 0 ;
if ( dma_dir = = DMA_NONE )
return 0 ;
wa - > dma_sg = sg ;
wa - > dma_dev = dev ;
wa - > dma_dir = dma_dir ;
wa - > dma_count = dma_map_sg ( dev , sg , wa - > nents , dma_dir ) ;
if ( ! wa - > dma_count )
return - ENOMEM ;
return 0 ;
}
static void ccp_update_sg_workarea ( struct ccp_sg_workarea * wa , unsigned int len )
{
2014-01-06 23:34:17 +04:00
unsigned int nbytes = min_t ( u64 , len , wa - > bytes_left ) ;
2013-11-12 21:46:16 +04:00
if ( ! wa - > sg )
return ;
wa - > sg_used + = nbytes ;
wa - > bytes_left - = nbytes ;
if ( wa - > sg_used = = wa - > sg - > length ) {
wa - > sg = sg_next ( wa - > sg ) ;
wa - > sg_used = 0 ;
}
}
static void ccp_dm_free ( struct ccp_dm_workarea * wa )
{
if ( wa - > length < = CCP_DMAPOOL_MAX_SIZE ) {
if ( wa - > address )
dma_pool_free ( wa - > dma_pool , wa - > address ,
wa - > dma . address ) ;
} else {
if ( wa - > dma . address )
dma_unmap_single ( wa - > dev , wa - > dma . address , wa - > length ,
wa - > dma . dir ) ;
kfree ( wa - > address ) ;
}
wa - > address = NULL ;
wa - > dma . address = 0 ;
}
static int ccp_init_dm_workarea ( struct ccp_dm_workarea * wa ,
struct ccp_cmd_queue * cmd_q ,
unsigned int len ,
enum dma_data_direction dir )
{
memset ( wa , 0 , sizeof ( * wa ) ) ;
if ( ! len )
return 0 ;
wa - > dev = cmd_q - > ccp - > dev ;
wa - > length = len ;
if ( len < = CCP_DMAPOOL_MAX_SIZE ) {
wa - > dma_pool = cmd_q - > dma_pool ;
wa - > address = dma_pool_alloc ( wa - > dma_pool , GFP_KERNEL ,
& wa - > dma . address ) ;
if ( ! wa - > address )
return - ENOMEM ;
wa - > dma . length = CCP_DMAPOOL_MAX_SIZE ;
memset ( wa - > address , 0 , CCP_DMAPOOL_MAX_SIZE ) ;
} else {
wa - > address = kzalloc ( len , GFP_KERNEL ) ;
if ( ! wa - > address )
return - ENOMEM ;
wa - > dma . address = dma_map_single ( wa - > dev , wa - > address , len ,
dir ) ;
if ( ! wa - > dma . address )
return - ENOMEM ;
wa - > dma . length = len ;
}
wa - > dma . dir = dir ;
return 0 ;
}
static void ccp_set_dm_area ( struct ccp_dm_workarea * wa , unsigned int wa_offset ,
struct scatterlist * sg , unsigned int sg_offset ,
unsigned int len )
{
WARN_ON ( ! wa - > address ) ;
scatterwalk_map_and_copy ( wa - > address + wa_offset , sg , sg_offset , len ,
0 ) ;
}
static void ccp_get_dm_area ( struct ccp_dm_workarea * wa , unsigned int wa_offset ,
struct scatterlist * sg , unsigned int sg_offset ,
unsigned int len )
{
WARN_ON ( ! wa - > address ) ;
scatterwalk_map_and_copy ( wa - > address + wa_offset , sg , sg_offset , len ,
1 ) ;
}
static void ccp_reverse_set_dm_area ( struct ccp_dm_workarea * wa ,
struct scatterlist * sg ,
unsigned int len , unsigned int se_len ,
bool sign_extend )
{
unsigned int nbytes , sg_offset , dm_offset , ksb_len , i ;
u8 buffer [ CCP_REVERSE_BUF_SIZE ] ;
BUG_ON ( se_len > sizeof ( buffer ) ) ;
sg_offset = len ;
dm_offset = 0 ;
nbytes = len ;
while ( nbytes ) {
ksb_len = min_t ( unsigned int , nbytes , se_len ) ;
sg_offset - = ksb_len ;
scatterwalk_map_and_copy ( buffer , sg , sg_offset , ksb_len , 0 ) ;
for ( i = 0 ; i < ksb_len ; i + + )
wa - > address [ dm_offset + i ] = buffer [ ksb_len - i - 1 ] ;
dm_offset + = ksb_len ;
nbytes - = ksb_len ;
if ( ( ksb_len ! = se_len ) & & sign_extend ) {
/* Must sign-extend to nearest sign-extend length */
if ( wa - > address [ dm_offset - 1 ] & 0x80 )
memset ( wa - > address + dm_offset , 0xff ,
se_len - ksb_len ) ;
}
}
}
static void ccp_reverse_get_dm_area ( struct ccp_dm_workarea * wa ,
struct scatterlist * sg ,
unsigned int len )
{
unsigned int nbytes , sg_offset , dm_offset , ksb_len , i ;
u8 buffer [ CCP_REVERSE_BUF_SIZE ] ;
sg_offset = 0 ;
dm_offset = len ;
nbytes = len ;
while ( nbytes ) {
ksb_len = min_t ( unsigned int , nbytes , sizeof ( buffer ) ) ;
dm_offset - = ksb_len ;
for ( i = 0 ; i < ksb_len ; i + + )
buffer [ ksb_len - i - 1 ] = wa - > address [ dm_offset + i ] ;
scatterwalk_map_and_copy ( buffer , sg , sg_offset , ksb_len , 1 ) ;
sg_offset + = ksb_len ;
nbytes - = ksb_len ;
}
}
static void ccp_free_data ( struct ccp_data * data , struct ccp_cmd_queue * cmd_q )
{
ccp_dm_free ( & data - > dm_wa ) ;
ccp_sg_free ( & data - > sg_wa ) ;
}
static int ccp_init_data ( struct ccp_data * data , struct ccp_cmd_queue * cmd_q ,
2014-01-06 23:34:17 +04:00
struct scatterlist * sg , u64 sg_len ,
2013-11-12 21:46:16 +04:00
unsigned int dm_len ,
enum dma_data_direction dir )
{
int ret ;
memset ( data , 0 , sizeof ( * data ) ) ;
ret = ccp_init_sg_workarea ( & data - > sg_wa , cmd_q - > ccp - > dev , sg , sg_len ,
dir ) ;
if ( ret )
goto e_err ;
ret = ccp_init_dm_workarea ( & data - > dm_wa , cmd_q , dm_len , dir ) ;
if ( ret )
goto e_err ;
return 0 ;
e_err :
ccp_free_data ( data , cmd_q ) ;
return ret ;
}
static unsigned int ccp_queue_buf ( struct ccp_data * data , unsigned int from )
{
struct ccp_sg_workarea * sg_wa = & data - > sg_wa ;
struct ccp_dm_workarea * dm_wa = & data - > dm_wa ;
unsigned int buf_count , nbytes ;
/* Clear the buffer if setting it */
if ( ! from )
memset ( dm_wa - > address , 0 , dm_wa - > length ) ;
if ( ! sg_wa - > sg )
return 0 ;
2014-01-06 23:34:17 +04:00
/* Perform the copy operation
* nbytes will always be < = UINT_MAX because dm_wa - > length is
* an unsigned int
*/
nbytes = min_t ( u64 , sg_wa - > bytes_left , dm_wa - > length ) ;
2013-11-12 21:46:16 +04:00
scatterwalk_map_and_copy ( dm_wa - > address , sg_wa - > sg , sg_wa - > sg_used ,
nbytes , from ) ;
/* Update the structures and generate the count */
buf_count = 0 ;
while ( sg_wa - > bytes_left & & ( buf_count < dm_wa - > length ) ) {
2014-01-06 23:34:17 +04:00
nbytes = min ( sg_wa - > sg - > length - sg_wa - > sg_used ,
dm_wa - > length - buf_count ) ;
nbytes = min_t ( u64 , sg_wa - > bytes_left , nbytes ) ;
2013-11-12 21:46:16 +04:00
buf_count + = nbytes ;
ccp_update_sg_workarea ( sg_wa , nbytes ) ;
}
return buf_count ;
}
static unsigned int ccp_fill_queue_buf ( struct ccp_data * data )
{
return ccp_queue_buf ( data , 0 ) ;
}
static unsigned int ccp_empty_queue_buf ( struct ccp_data * data )
{
return ccp_queue_buf ( data , 1 ) ;
}
static void ccp_prepare_data ( struct ccp_data * src , struct ccp_data * dst ,
struct ccp_op * op , unsigned int block_size ,
bool blocksize_op )
{
unsigned int sg_src_len , sg_dst_len , op_len ;
/* The CCP can only DMA from/to one address each per operation. This
* requires that we find the smallest DMA area between the source
2014-01-06 23:34:17 +04:00
* and destination . The resulting len values will always be < = UINT_MAX
* because the dma length is an unsigned int .
2013-11-12 21:46:16 +04:00
*/
2014-01-06 23:34:17 +04:00
sg_src_len = sg_dma_len ( src - > sg_wa . sg ) - src - > sg_wa . sg_used ;
sg_src_len = min_t ( u64 , src - > sg_wa . bytes_left , sg_src_len ) ;
2013-11-12 21:46:16 +04:00
if ( dst ) {
2014-01-06 23:34:17 +04:00
sg_dst_len = sg_dma_len ( dst - > sg_wa . sg ) - dst - > sg_wa . sg_used ;
sg_dst_len = min_t ( u64 , src - > sg_wa . bytes_left , sg_dst_len ) ;
2013-11-12 21:46:16 +04:00
op_len = min ( sg_src_len , sg_dst_len ) ;
} else
op_len = sg_src_len ;
/* The data operation length will be at least block_size in length
* or the smaller of available sg room remaining for the source or
* the destination
*/
op_len = max ( op_len , block_size ) ;
/* Unless we have to buffer data, there's no reason to wait */
op - > soc = 0 ;
if ( sg_src_len < block_size ) {
/* Not enough data in the sg element, so it
* needs to be buffered into a blocksize chunk
*/
int cp_len = ccp_fill_queue_buf ( src ) ;
op - > soc = 1 ;
op - > src . u . dma . address = src - > dm_wa . dma . address ;
op - > src . u . dma . offset = 0 ;
op - > src . u . dma . length = ( blocksize_op ) ? block_size : cp_len ;
} else {
/* Enough data in the sg element, but we need to
* adjust for any previously copied data
*/
op - > src . u . dma . address = sg_dma_address ( src - > sg_wa . sg ) ;
op - > src . u . dma . offset = src - > sg_wa . sg_used ;
op - > src . u . dma . length = op_len & ~ ( block_size - 1 ) ;
ccp_update_sg_workarea ( & src - > sg_wa , op - > src . u . dma . length ) ;
}
if ( dst ) {
if ( sg_dst_len < block_size ) {
/* Not enough room in the sg element or we're on the
* last piece of data ( when using padding ) , so the
* output needs to be buffered into a blocksize chunk
*/
op - > soc = 1 ;
op - > dst . u . dma . address = dst - > dm_wa . dma . address ;
op - > dst . u . dma . offset = 0 ;
op - > dst . u . dma . length = op - > src . u . dma . length ;
} else {
/* Enough room in the sg element, but we need to
* adjust for any previously used area
*/
op - > dst . u . dma . address = sg_dma_address ( dst - > sg_wa . sg ) ;
op - > dst . u . dma . offset = dst - > sg_wa . sg_used ;
op - > dst . u . dma . length = op - > src . u . dma . length ;
}
}
}
static void ccp_process_data ( struct ccp_data * src , struct ccp_data * dst ,
struct ccp_op * op )
{
op - > init = 0 ;
if ( dst ) {
if ( op - > dst . u . dma . address = = dst - > dm_wa . dma . address )
ccp_empty_queue_buf ( dst ) ;
else
ccp_update_sg_workarea ( & dst - > sg_wa ,
op - > dst . u . dma . length ) ;
}
}
static int ccp_copy_to_from_ksb ( struct ccp_cmd_queue * cmd_q ,
struct ccp_dm_workarea * wa , u32 jobid , u32 ksb ,
u32 byte_swap , bool from )
{
struct ccp_op op ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = jobid ;
op . eom = 1 ;
if ( from ) {
op . soc = 1 ;
op . src . type = CCP_MEMTYPE_KSB ;
op . src . u . ksb = ksb ;
op . dst . type = CCP_MEMTYPE_SYSTEM ;
op . dst . u . dma . address = wa - > dma . address ;
op . dst . u . dma . length = wa - > length ;
} else {
op . src . type = CCP_MEMTYPE_SYSTEM ;
op . src . u . dma . address = wa - > dma . address ;
op . src . u . dma . length = wa - > length ;
op . dst . type = CCP_MEMTYPE_KSB ;
op . dst . u . ksb = ksb ;
}
op . u . passthru . byte_swap = byte_swap ;
return ccp_perform_passthru ( & op ) ;
}
static int ccp_copy_to_ksb ( struct ccp_cmd_queue * cmd_q ,
struct ccp_dm_workarea * wa , u32 jobid , u32 ksb ,
u32 byte_swap )
{
return ccp_copy_to_from_ksb ( cmd_q , wa , jobid , ksb , byte_swap , false ) ;
}
static int ccp_copy_from_ksb ( struct ccp_cmd_queue * cmd_q ,
struct ccp_dm_workarea * wa , u32 jobid , u32 ksb ,
u32 byte_swap )
{
return ccp_copy_to_from_ksb ( cmd_q , wa , jobid , ksb , byte_swap , true ) ;
}
static int ccp_run_aes_cmac_cmd ( struct ccp_cmd_queue * cmd_q ,
struct ccp_cmd * cmd )
{
struct ccp_aes_engine * aes = & cmd - > u . aes ;
struct ccp_dm_workarea key , ctx ;
struct ccp_data src ;
struct ccp_op op ;
unsigned int dm_offset ;
int ret ;
if ( ! ( ( aes - > key_len = = AES_KEYSIZE_128 ) | |
( aes - > key_len = = AES_KEYSIZE_192 ) | |
( aes - > key_len = = AES_KEYSIZE_256 ) ) )
return - EINVAL ;
if ( aes - > src_len & ( AES_BLOCK_SIZE - 1 ) )
return - EINVAL ;
if ( aes - > iv_len ! = AES_BLOCK_SIZE )
return - EINVAL ;
if ( ! aes - > key | | ! aes - > iv | | ! aes - > src )
return - EINVAL ;
if ( aes - > cmac_final ) {
if ( aes - > cmac_key_len ! = AES_BLOCK_SIZE )
return - EINVAL ;
if ( ! aes - > cmac_key )
return - EINVAL ;
}
BUILD_BUG_ON ( CCP_AES_KEY_KSB_COUNT ! = 1 ) ;
BUILD_BUG_ON ( CCP_AES_CTX_KSB_COUNT ! = 1 ) ;
ret = - EIO ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
op . ksb_key = cmd_q - > ksb_key ;
op . ksb_ctx = cmd_q - > ksb_ctx ;
op . init = 1 ;
op . u . aes . type = aes - > type ;
op . u . aes . mode = aes - > mode ;
op . u . aes . action = aes - > action ;
/* All supported key sizes fit in a single (32-byte) KSB entry
* and must be in little endian format . Use the 256 - bit byte
* swap passthru option to convert from big endian to little
* endian .
*/
ret = ccp_init_dm_workarea ( & key , cmd_q ,
CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES ,
DMA_TO_DEVICE ) ;
if ( ret )
return ret ;
dm_offset = CCP_KSB_BYTES - aes - > key_len ;
ccp_set_dm_area ( & key , dm_offset , aes - > key , 0 , aes - > key_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & key , op . jobid , op . ksb_key ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_key ;
}
/* The AES context fits in a single (32-byte) KSB entry and
* must be in little endian format . Use the 256 - bit byte swap
* passthru option to convert from big endian to little endian .
*/
ret = ccp_init_dm_workarea ( & ctx , cmd_q ,
CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES ,
DMA_BIDIRECTIONAL ) ;
if ( ret )
goto e_key ;
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE ;
ccp_set_dm_area ( & ctx , dm_offset , aes - > iv , 0 , aes - > iv_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_ctx ;
}
/* Send data to the CCP AES engine */
ret = ccp_init_data ( & src , cmd_q , aes - > src , aes - > src_len ,
AES_BLOCK_SIZE , DMA_TO_DEVICE ) ;
if ( ret )
goto e_ctx ;
while ( src . sg_wa . bytes_left ) {
ccp_prepare_data ( & src , NULL , & op , AES_BLOCK_SIZE , true ) ;
if ( aes - > cmac_final & & ! src . sg_wa . bytes_left ) {
op . eom = 1 ;
/* Push the K1/K2 key to the CCP now */
ret = ccp_copy_from_ksb ( cmd_q , & ctx , op . jobid ,
op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_src ;
}
ccp_set_dm_area ( & ctx , 0 , aes - > cmac_key , 0 ,
aes - > cmac_key_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_src ;
}
}
ret = ccp_perform_aes ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_src ;
}
ccp_process_data ( & src , NULL , & op ) ;
}
/* Retrieve the AES context - convert from LE to BE using
* 32 - byte ( 256 - bit ) byteswapping
*/
ret = ccp_copy_from_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_src ;
}
/* ...but we only need AES_BLOCK_SIZE bytes */
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE ;
ccp_get_dm_area ( & ctx , dm_offset , aes - > iv , 0 , aes - > iv_len ) ;
e_src :
ccp_free_data ( & src , cmd_q ) ;
e_ctx :
ccp_dm_free ( & ctx ) ;
e_key :
ccp_dm_free ( & key ) ;
return ret ;
}
static int ccp_run_aes_cmd ( struct ccp_cmd_queue * cmd_q , struct ccp_cmd * cmd )
{
struct ccp_aes_engine * aes = & cmd - > u . aes ;
struct ccp_dm_workarea key , ctx ;
struct ccp_data src , dst ;
struct ccp_op op ;
unsigned int dm_offset ;
bool in_place = false ;
int ret ;
if ( aes - > mode = = CCP_AES_MODE_CMAC )
return ccp_run_aes_cmac_cmd ( cmd_q , cmd ) ;
if ( ! ( ( aes - > key_len = = AES_KEYSIZE_128 ) | |
( aes - > key_len = = AES_KEYSIZE_192 ) | |
( aes - > key_len = = AES_KEYSIZE_256 ) ) )
return - EINVAL ;
if ( ( ( aes - > mode = = CCP_AES_MODE_ECB ) | |
( aes - > mode = = CCP_AES_MODE_CBC ) | |
( aes - > mode = = CCP_AES_MODE_CFB ) ) & &
( aes - > src_len & ( AES_BLOCK_SIZE - 1 ) ) )
return - EINVAL ;
if ( ! aes - > key | | ! aes - > src | | ! aes - > dst )
return - EINVAL ;
if ( aes - > mode ! = CCP_AES_MODE_ECB ) {
if ( aes - > iv_len ! = AES_BLOCK_SIZE )
return - EINVAL ;
if ( ! aes - > iv )
return - EINVAL ;
}
BUILD_BUG_ON ( CCP_AES_KEY_KSB_COUNT ! = 1 ) ;
BUILD_BUG_ON ( CCP_AES_CTX_KSB_COUNT ! = 1 ) ;
ret = - EIO ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
op . ksb_key = cmd_q - > ksb_key ;
op . ksb_ctx = cmd_q - > ksb_ctx ;
op . init = ( aes - > mode = = CCP_AES_MODE_ECB ) ? 0 : 1 ;
op . u . aes . type = aes - > type ;
op . u . aes . mode = aes - > mode ;
op . u . aes . action = aes - > action ;
/* All supported key sizes fit in a single (32-byte) KSB entry
* and must be in little endian format . Use the 256 - bit byte
* swap passthru option to convert from big endian to little
* endian .
*/
ret = ccp_init_dm_workarea ( & key , cmd_q ,
CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES ,
DMA_TO_DEVICE ) ;
if ( ret )
return ret ;
dm_offset = CCP_KSB_BYTES - aes - > key_len ;
ccp_set_dm_area ( & key , dm_offset , aes - > key , 0 , aes - > key_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & key , op . jobid , op . ksb_key ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_key ;
}
/* The AES context fits in a single (32-byte) KSB entry and
* must be in little endian format . Use the 256 - bit byte swap
* passthru option to convert from big endian to little endian .
*/
ret = ccp_init_dm_workarea ( & ctx , cmd_q ,
CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES ,
DMA_BIDIRECTIONAL ) ;
if ( ret )
goto e_key ;
if ( aes - > mode ! = CCP_AES_MODE_ECB ) {
/* Load the AES context - conver to LE */
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE ;
ccp_set_dm_area ( & ctx , dm_offset , aes - > iv , 0 , aes - > iv_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_ctx ;
}
}
/* Prepare the input and output data workareas. For in-place
* operations we need to set the dma direction to BIDIRECTIONAL
* and copy the src workarea to the dst workarea .
*/
if ( sg_virt ( aes - > src ) = = sg_virt ( aes - > dst ) )
in_place = true ;
ret = ccp_init_data ( & src , cmd_q , aes - > src , aes - > src_len ,
AES_BLOCK_SIZE ,
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE ) ;
if ( ret )
goto e_ctx ;
if ( in_place )
dst = src ;
else {
ret = ccp_init_data ( & dst , cmd_q , aes - > dst , aes - > src_len ,
AES_BLOCK_SIZE , DMA_FROM_DEVICE ) ;
if ( ret )
goto e_src ;
}
/* Send data to the CCP AES engine */
while ( src . sg_wa . bytes_left ) {
ccp_prepare_data ( & src , & dst , & op , AES_BLOCK_SIZE , true ) ;
if ( ! src . sg_wa . bytes_left ) {
op . eom = 1 ;
/* Since we don't retrieve the AES context in ECB
* mode we have to wait for the operation to complete
* on the last piece of data
*/
if ( aes - > mode = = CCP_AES_MODE_ECB )
op . soc = 1 ;
}
ret = ccp_perform_aes ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
ccp_process_data ( & src , & dst , & op ) ;
}
if ( aes - > mode ! = CCP_AES_MODE_ECB ) {
/* Retrieve the AES context - convert from LE to BE using
* 32 - byte ( 256 - bit ) byteswapping
*/
ret = ccp_copy_from_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
/* ...but we only need AES_BLOCK_SIZE bytes */
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE ;
ccp_get_dm_area ( & ctx , dm_offset , aes - > iv , 0 , aes - > iv_len ) ;
}
e_dst :
if ( ! in_place )
ccp_free_data ( & dst , cmd_q ) ;
e_src :
ccp_free_data ( & src , cmd_q ) ;
e_ctx :
ccp_dm_free ( & ctx ) ;
e_key :
ccp_dm_free ( & key ) ;
return ret ;
}
static int ccp_run_xts_aes_cmd ( struct ccp_cmd_queue * cmd_q ,
struct ccp_cmd * cmd )
{
struct ccp_xts_aes_engine * xts = & cmd - > u . xts ;
struct ccp_dm_workarea key , ctx ;
struct ccp_data src , dst ;
struct ccp_op op ;
unsigned int unit_size , dm_offset ;
bool in_place = false ;
int ret ;
switch ( xts - > unit_size ) {
case CCP_XTS_AES_UNIT_SIZE_16 :
unit_size = 16 ;
break ;
case CCP_XTS_AES_UNIT_SIZE_512 :
unit_size = 512 ;
break ;
case CCP_XTS_AES_UNIT_SIZE_1024 :
unit_size = 1024 ;
break ;
case CCP_XTS_AES_UNIT_SIZE_2048 :
unit_size = 2048 ;
break ;
case CCP_XTS_AES_UNIT_SIZE_4096 :
unit_size = 4096 ;
break ;
default :
return - EINVAL ;
}
if ( xts - > key_len ! = AES_KEYSIZE_128 )
return - EINVAL ;
if ( ! xts - > final & & ( xts - > src_len & ( AES_BLOCK_SIZE - 1 ) ) )
return - EINVAL ;
if ( xts - > iv_len ! = AES_BLOCK_SIZE )
return - EINVAL ;
if ( ! xts - > key | | ! xts - > iv | | ! xts - > src | | ! xts - > dst )
return - EINVAL ;
BUILD_BUG_ON ( CCP_XTS_AES_KEY_KSB_COUNT ! = 1 ) ;
BUILD_BUG_ON ( CCP_XTS_AES_CTX_KSB_COUNT ! = 1 ) ;
ret = - EIO ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
op . ksb_key = cmd_q - > ksb_key ;
op . ksb_ctx = cmd_q - > ksb_ctx ;
op . init = 1 ;
op . u . xts . action = xts - > action ;
op . u . xts . unit_size = xts - > unit_size ;
/* All supported key sizes fit in a single (32-byte) KSB entry
* and must be in little endian format . Use the 256 - bit byte
* swap passthru option to convert from big endian to little
* endian .
*/
ret = ccp_init_dm_workarea ( & key , cmd_q ,
CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES ,
DMA_TO_DEVICE ) ;
if ( ret )
return ret ;
dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128 ;
ccp_set_dm_area ( & key , dm_offset , xts - > key , 0 , xts - > key_len ) ;
ccp_set_dm_area ( & key , 0 , xts - > key , dm_offset , xts - > key_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & key , op . jobid , op . ksb_key ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_key ;
}
/* The AES context fits in a single (32-byte) KSB entry and
* for XTS is already in little endian format so no byte swapping
* is needed .
*/
ret = ccp_init_dm_workarea ( & ctx , cmd_q ,
CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES ,
DMA_BIDIRECTIONAL ) ;
if ( ret )
goto e_key ;
ccp_set_dm_area ( & ctx , 0 , xts - > iv , 0 , xts - > iv_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_NOOP ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_ctx ;
}
/* Prepare the input and output data workareas. For in-place
* operations we need to set the dma direction to BIDIRECTIONAL
* and copy the src workarea to the dst workarea .
*/
if ( sg_virt ( xts - > src ) = = sg_virt ( xts - > dst ) )
in_place = true ;
ret = ccp_init_data ( & src , cmd_q , xts - > src , xts - > src_len ,
unit_size ,
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE ) ;
if ( ret )
goto e_ctx ;
if ( in_place )
dst = src ;
else {
ret = ccp_init_data ( & dst , cmd_q , xts - > dst , xts - > src_len ,
unit_size , DMA_FROM_DEVICE ) ;
if ( ret )
goto e_src ;
}
/* Send data to the CCP AES engine */
while ( src . sg_wa . bytes_left ) {
ccp_prepare_data ( & src , & dst , & op , unit_size , true ) ;
if ( ! src . sg_wa . bytes_left )
op . eom = 1 ;
ret = ccp_perform_xts_aes ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
ccp_process_data ( & src , & dst , & op ) ;
}
/* Retrieve the AES context - convert from LE to BE using
* 32 - byte ( 256 - bit ) byteswapping
*/
ret = ccp_copy_from_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
/* ...but we only need AES_BLOCK_SIZE bytes */
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE ;
ccp_get_dm_area ( & ctx , dm_offset , xts - > iv , 0 , xts - > iv_len ) ;
e_dst :
if ( ! in_place )
ccp_free_data ( & dst , cmd_q ) ;
e_src :
ccp_free_data ( & src , cmd_q ) ;
e_ctx :
ccp_dm_free ( & ctx ) ;
e_key :
ccp_dm_free ( & key ) ;
return ret ;
}
static int ccp_run_sha_cmd ( struct ccp_cmd_queue * cmd_q , struct ccp_cmd * cmd )
{
struct ccp_sha_engine * sha = & cmd - > u . sha ;
struct ccp_dm_workarea ctx ;
struct ccp_data src ;
struct ccp_op op ;
int ret ;
if ( sha - > ctx_len ! = CCP_SHA_CTXSIZE )
return - EINVAL ;
if ( ! sha - > ctx )
return - EINVAL ;
if ( ! sha - > final & & ( sha - > src_len & ( CCP_SHA_BLOCKSIZE - 1 ) ) )
return - EINVAL ;
if ( ! sha - > src_len ) {
const u8 * sha_zero ;
/* Not final, just return */
if ( ! sha - > final )
return 0 ;
/* CCP can't do a zero length sha operation so the caller
* must buffer the data .
*/
if ( sha - > msg_bits )
return - EINVAL ;
/* A sha operation for a message with a total length of zero,
* return known result .
*/
switch ( sha - > type ) {
case CCP_SHA_TYPE_1 :
sha_zero = ccp_sha1_zero ;
break ;
case CCP_SHA_TYPE_224 :
sha_zero = ccp_sha224_zero ;
break ;
case CCP_SHA_TYPE_256 :
sha_zero = ccp_sha256_zero ;
break ;
default :
return - EINVAL ;
}
scatterwalk_map_and_copy ( ( void * ) sha_zero , sha - > ctx , 0 ,
sha - > ctx_len , 1 ) ;
return 0 ;
}
if ( ! sha - > src )
return - EINVAL ;
BUILD_BUG_ON ( CCP_SHA_KSB_COUNT ! = 1 ) ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
op . ksb_ctx = cmd_q - > ksb_ctx ;
op . u . sha . type = sha - > type ;
op . u . sha . msg_bits = sha - > msg_bits ;
/* The SHA context fits in a single (32-byte) KSB entry and
* must be in little endian format . Use the 256 - bit byte swap
* passthru option to convert from big endian to little endian .
*/
ret = ccp_init_dm_workarea ( & ctx , cmd_q ,
CCP_SHA_KSB_COUNT * CCP_KSB_BYTES ,
DMA_BIDIRECTIONAL ) ;
if ( ret )
return ret ;
2014-01-25 02:18:02 +04:00
if ( sha - > first ) {
const __be32 * init ;
switch ( sha - > type ) {
case CCP_SHA_TYPE_1 :
init = ccp_sha1_init ;
break ;
case CCP_SHA_TYPE_224 :
init = ccp_sha224_init ;
break ;
case CCP_SHA_TYPE_256 :
init = ccp_sha256_init ;
break ;
default :
ret = - EINVAL ;
goto e_ctx ;
}
memcpy ( ctx . address , init , CCP_SHA_CTXSIZE ) ;
} else
ccp_set_dm_area ( & ctx , 0 , sha - > ctx , 0 , sha - > ctx_len ) ;
2013-11-12 21:46:16 +04:00
ret = ccp_copy_to_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_ctx ;
}
/* Send data to the CCP SHA engine */
ret = ccp_init_data ( & src , cmd_q , sha - > src , sha - > src_len ,
CCP_SHA_BLOCKSIZE , DMA_TO_DEVICE ) ;
if ( ret )
goto e_ctx ;
while ( src . sg_wa . bytes_left ) {
ccp_prepare_data ( & src , NULL , & op , CCP_SHA_BLOCKSIZE , false ) ;
if ( sha - > final & & ! src . sg_wa . bytes_left )
op . eom = 1 ;
ret = ccp_perform_sha ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_data ;
}
ccp_process_data ( & src , NULL , & op ) ;
}
/* Retrieve the SHA context - convert from LE to BE using
* 32 - byte ( 256 - bit ) byteswapping to BE
*/
ret = ccp_copy_from_ksb ( cmd_q , & ctx , op . jobid , op . ksb_ctx ,
CCP_PASSTHRU_BYTESWAP_256BIT ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_data ;
}
ccp_get_dm_area ( & ctx , 0 , sha - > ctx , 0 , sha - > ctx_len ) ;
2014-01-25 02:18:02 +04:00
if ( sha - > final & & sha - > opad ) {
/* HMAC operation, recursively perform final SHA */
struct ccp_cmd hmac_cmd ;
struct scatterlist sg ;
u64 block_size , digest_size ;
u8 * hmac_buf ;
switch ( sha - > type ) {
case CCP_SHA_TYPE_1 :
block_size = SHA1_BLOCK_SIZE ;
digest_size = SHA1_DIGEST_SIZE ;
break ;
case CCP_SHA_TYPE_224 :
block_size = SHA224_BLOCK_SIZE ;
digest_size = SHA224_DIGEST_SIZE ;
break ;
case CCP_SHA_TYPE_256 :
block_size = SHA256_BLOCK_SIZE ;
digest_size = SHA256_DIGEST_SIZE ;
break ;
default :
ret = - EINVAL ;
goto e_data ;
}
if ( sha - > opad_len ! = block_size ) {
ret = - EINVAL ;
goto e_data ;
}
hmac_buf = kmalloc ( block_size + digest_size , GFP_KERNEL ) ;
if ( ! hmac_buf ) {
ret = - ENOMEM ;
goto e_data ;
}
sg_init_one ( & sg , hmac_buf , block_size + digest_size ) ;
scatterwalk_map_and_copy ( hmac_buf , sha - > opad , 0 , block_size , 0 ) ;
memcpy ( hmac_buf + block_size , ctx . address , digest_size ) ;
memset ( & hmac_cmd , 0 , sizeof ( hmac_cmd ) ) ;
hmac_cmd . engine = CCP_ENGINE_SHA ;
hmac_cmd . u . sha . type = sha - > type ;
hmac_cmd . u . sha . ctx = sha - > ctx ;
hmac_cmd . u . sha . ctx_len = sha - > ctx_len ;
hmac_cmd . u . sha . src = & sg ;
hmac_cmd . u . sha . src_len = block_size + digest_size ;
hmac_cmd . u . sha . opad = NULL ;
hmac_cmd . u . sha . opad_len = 0 ;
hmac_cmd . u . sha . first = 1 ;
hmac_cmd . u . sha . final = 1 ;
hmac_cmd . u . sha . msg_bits = ( block_size + digest_size ) < < 3 ;
ret = ccp_run_sha_cmd ( cmd_q , & hmac_cmd ) ;
if ( ret )
cmd - > engine_error = hmac_cmd . engine_error ;
kfree ( hmac_buf ) ;
}
2013-11-12 21:46:16 +04:00
e_data :
ccp_free_data ( & src , cmd_q ) ;
e_ctx :
ccp_dm_free ( & ctx ) ;
return ret ;
}
static int ccp_run_rsa_cmd ( struct ccp_cmd_queue * cmd_q , struct ccp_cmd * cmd )
{
struct ccp_rsa_engine * rsa = & cmd - > u . rsa ;
struct ccp_dm_workarea exp , src ;
struct ccp_data dst ;
struct ccp_op op ;
unsigned int ksb_count , i_len , o_len ;
int ret ;
if ( rsa - > key_size > CCP_RSA_MAX_WIDTH )
return - EINVAL ;
if ( ! rsa - > exp | | ! rsa - > mod | | ! rsa - > src | | ! rsa - > dst )
return - EINVAL ;
/* The RSA modulus must precede the message being acted upon, so
* it must be copied to a DMA area where the message and the
* modulus can be concatenated . Therefore the input buffer
* length required is twice the output buffer length ( which
* must be a multiple of 256 - bits ) .
*/
o_len = ( ( rsa - > key_size + 255 ) / 256 ) * 32 ;
i_len = o_len * 2 ;
ksb_count = o_len / CCP_KSB_BYTES ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
op . ksb_key = ccp_alloc_ksb ( cmd_q - > ccp , ksb_count ) ;
if ( ! op . ksb_key )
return - EIO ;
/* The RSA exponent may span multiple (32-byte) KSB entries and must
* be in little endian format . Reverse copy each 32 - byte chunk
* of the exponent ( En chunk to E0 chunk , E ( n - 1 ) chunk to E1 chunk )
* and each byte within that chunk and do not perform any byte swap
* operations on the passthru operation .
*/
ret = ccp_init_dm_workarea ( & exp , cmd_q , o_len , DMA_TO_DEVICE ) ;
if ( ret )
goto e_ksb ;
ccp_reverse_set_dm_area ( & exp , rsa - > exp , rsa - > exp_len , CCP_KSB_BYTES ,
true ) ;
ret = ccp_copy_to_ksb ( cmd_q , & exp , op . jobid , op . ksb_key ,
CCP_PASSTHRU_BYTESWAP_NOOP ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_exp ;
}
/* Concatenate the modulus and the message. Both the modulus and
* the operands must be in little endian format . Since the input
* is in big endian format it must be converted .
*/
ret = ccp_init_dm_workarea ( & src , cmd_q , i_len , DMA_TO_DEVICE ) ;
if ( ret )
goto e_exp ;
ccp_reverse_set_dm_area ( & src , rsa - > mod , rsa - > mod_len , CCP_KSB_BYTES ,
true ) ;
src . address + = o_len ; /* Adjust the address for the copy operation */
ccp_reverse_set_dm_area ( & src , rsa - > src , rsa - > src_len , CCP_KSB_BYTES ,
true ) ;
src . address - = o_len ; /* Reset the address to original value */
/* Prepare the output area for the operation */
ret = ccp_init_data ( & dst , cmd_q , rsa - > dst , rsa - > mod_len ,
o_len , DMA_FROM_DEVICE ) ;
if ( ret )
goto e_src ;
op . soc = 1 ;
op . src . u . dma . address = src . dma . address ;
op . src . u . dma . offset = 0 ;
op . src . u . dma . length = i_len ;
op . dst . u . dma . address = dst . dm_wa . dma . address ;
op . dst . u . dma . offset = 0 ;
op . dst . u . dma . length = o_len ;
op . u . rsa . mod_size = rsa - > key_size ;
op . u . rsa . input_len = i_len ;
ret = ccp_perform_rsa ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
ccp_reverse_get_dm_area ( & dst . dm_wa , rsa - > dst , rsa - > mod_len ) ;
e_dst :
ccp_free_data ( & dst , cmd_q ) ;
e_src :
ccp_dm_free ( & src ) ;
e_exp :
ccp_dm_free ( & exp ) ;
e_ksb :
ccp_free_ksb ( cmd_q - > ccp , op . ksb_key , ksb_count ) ;
return ret ;
}
static int ccp_run_passthru_cmd ( struct ccp_cmd_queue * cmd_q ,
struct ccp_cmd * cmd )
{
struct ccp_passthru_engine * pt = & cmd - > u . passthru ;
struct ccp_dm_workarea mask ;
struct ccp_data src , dst ;
struct ccp_op op ;
bool in_place = false ;
unsigned int i ;
int ret ;
if ( ! pt - > final & & ( pt - > src_len & ( CCP_PASSTHRU_BLOCKSIZE - 1 ) ) )
return - EINVAL ;
if ( ! pt - > src | | ! pt - > dst )
return - EINVAL ;
if ( pt - > bit_mod ! = CCP_PASSTHRU_BITWISE_NOOP ) {
if ( pt - > mask_len ! = CCP_PASSTHRU_MASKSIZE )
return - EINVAL ;
if ( ! pt - > mask )
return - EINVAL ;
}
BUILD_BUG_ON ( CCP_PASSTHRU_KSB_COUNT ! = 1 ) ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
if ( pt - > bit_mod ! = CCP_PASSTHRU_BITWISE_NOOP ) {
/* Load the mask */
op . ksb_key = cmd_q - > ksb_key ;
ret = ccp_init_dm_workarea ( & mask , cmd_q ,
CCP_PASSTHRU_KSB_COUNT *
CCP_KSB_BYTES ,
DMA_TO_DEVICE ) ;
if ( ret )
return ret ;
ccp_set_dm_area ( & mask , 0 , pt - > mask , 0 , pt - > mask_len ) ;
ret = ccp_copy_to_ksb ( cmd_q , & mask , op . jobid , op . ksb_key ,
CCP_PASSTHRU_BYTESWAP_NOOP ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_mask ;
}
}
/* Prepare the input and output data workareas. For in-place
* operations we need to set the dma direction to BIDIRECTIONAL
* and copy the src workarea to the dst workarea .
*/
if ( sg_virt ( pt - > src ) = = sg_virt ( pt - > dst ) )
in_place = true ;
ret = ccp_init_data ( & src , cmd_q , pt - > src , pt - > src_len ,
CCP_PASSTHRU_MASKSIZE ,
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE ) ;
if ( ret )
goto e_mask ;
if ( in_place )
dst = src ;
else {
ret = ccp_init_data ( & dst , cmd_q , pt - > dst , pt - > src_len ,
CCP_PASSTHRU_MASKSIZE , DMA_FROM_DEVICE ) ;
if ( ret )
goto e_src ;
}
/* Send data to the CCP Passthru engine
* Because the CCP engine works on a single source and destination
* dma address at a time , each entry in the source scatterlist
* ( after the dma_map_sg call ) must be less than or equal to the
* ( remaining ) length in the destination scatterlist entry and the
* length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
*/
dst . sg_wa . sg_used = 0 ;
for ( i = 1 ; i < = src . sg_wa . dma_count ; i + + ) {
if ( ! dst . sg_wa . sg | |
( dst . sg_wa . sg - > length < src . sg_wa . sg - > length ) ) {
ret = - EINVAL ;
goto e_dst ;
}
if ( i = = src . sg_wa . dma_count ) {
op . eom = 1 ;
op . soc = 1 ;
}
op . src . type = CCP_MEMTYPE_SYSTEM ;
op . src . u . dma . address = sg_dma_address ( src . sg_wa . sg ) ;
op . src . u . dma . offset = 0 ;
op . src . u . dma . length = sg_dma_len ( src . sg_wa . sg ) ;
op . dst . type = CCP_MEMTYPE_SYSTEM ;
op . dst . u . dma . address = sg_dma_address ( dst . sg_wa . sg ) ;
2014-02-09 05:59:14 +04:00
op . dst . u . dma . offset = dst . sg_wa . sg_used ;
op . dst . u . dma . length = op . src . u . dma . length ;
2013-11-12 21:46:16 +04:00
ret = ccp_perform_passthru ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
dst . sg_wa . sg_used + = src . sg_wa . sg - > length ;
if ( dst . sg_wa . sg_used = = dst . sg_wa . sg - > length ) {
dst . sg_wa . sg = sg_next ( dst . sg_wa . sg ) ;
dst . sg_wa . sg_used = 0 ;
}
src . sg_wa . sg = sg_next ( src . sg_wa . sg ) ;
}
e_dst :
if ( ! in_place )
ccp_free_data ( & dst , cmd_q ) ;
e_src :
ccp_free_data ( & src , cmd_q ) ;
e_mask :
if ( pt - > bit_mod ! = CCP_PASSTHRU_BITWISE_NOOP )
ccp_dm_free ( & mask ) ;
return ret ;
}
static int ccp_run_ecc_mm_cmd ( struct ccp_cmd_queue * cmd_q , struct ccp_cmd * cmd )
{
struct ccp_ecc_engine * ecc = & cmd - > u . ecc ;
struct ccp_dm_workarea src , dst ;
struct ccp_op op ;
int ret ;
u8 * save ;
if ( ! ecc - > u . mm . operand_1 | |
( ecc - > u . mm . operand_1_len > CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
if ( ecc - > function ! = CCP_ECC_FUNCTION_MINV_384BIT )
if ( ! ecc - > u . mm . operand_2 | |
( ecc - > u . mm . operand_2_len > CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
if ( ! ecc - > u . mm . result | |
( ecc - > u . mm . result_len < CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
/* Concatenate the modulus and the operands. Both the modulus and
* the operands must be in little endian format . Since the input
* is in big endian format it must be converted and placed in a
* fixed length buffer .
*/
ret = ccp_init_dm_workarea ( & src , cmd_q , CCP_ECC_SRC_BUF_SIZE ,
DMA_TO_DEVICE ) ;
if ( ret )
return ret ;
/* Save the workarea address since it is updated in order to perform
* the concatenation
*/
save = src . address ;
/* Copy the ECC modulus */
ccp_reverse_set_dm_area ( & src , ecc - > mod , ecc - > mod_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
/* Copy the first operand */
ccp_reverse_set_dm_area ( & src , ecc - > u . mm . operand_1 ,
ecc - > u . mm . operand_1_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
if ( ecc - > function ! = CCP_ECC_FUNCTION_MINV_384BIT ) {
/* Copy the second operand */
ccp_reverse_set_dm_area ( & src , ecc - > u . mm . operand_2 ,
ecc - > u . mm . operand_2_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
}
/* Restore the workarea address */
src . address = save ;
/* Prepare the output area for the operation */
ret = ccp_init_dm_workarea ( & dst , cmd_q , CCP_ECC_DST_BUF_SIZE ,
DMA_FROM_DEVICE ) ;
if ( ret )
goto e_src ;
op . soc = 1 ;
op . src . u . dma . address = src . dma . address ;
op . src . u . dma . offset = 0 ;
op . src . u . dma . length = src . length ;
op . dst . u . dma . address = dst . dma . address ;
op . dst . u . dma . offset = 0 ;
op . dst . u . dma . length = dst . length ;
op . u . ecc . function = cmd - > u . ecc . function ;
ret = ccp_perform_ecc ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
ecc - > ecc_result = le16_to_cpup (
( const __le16 * ) ( dst . address + CCP_ECC_RESULT_OFFSET ) ) ;
if ( ! ( ecc - > ecc_result & CCP_ECC_RESULT_SUCCESS ) ) {
ret = - EIO ;
goto e_dst ;
}
/* Save the ECC result */
ccp_reverse_get_dm_area ( & dst , ecc - > u . mm . result , CCP_ECC_MODULUS_BYTES ) ;
e_dst :
ccp_dm_free ( & dst ) ;
e_src :
ccp_dm_free ( & src ) ;
return ret ;
}
static int ccp_run_ecc_pm_cmd ( struct ccp_cmd_queue * cmd_q , struct ccp_cmd * cmd )
{
struct ccp_ecc_engine * ecc = & cmd - > u . ecc ;
struct ccp_dm_workarea src , dst ;
struct ccp_op op ;
int ret ;
u8 * save ;
if ( ! ecc - > u . pm . point_1 . x | |
( ecc - > u . pm . point_1 . x_len > CCP_ECC_MODULUS_BYTES ) | |
! ecc - > u . pm . point_1 . y | |
( ecc - > u . pm . point_1 . y_len > CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
if ( ecc - > function = = CCP_ECC_FUNCTION_PADD_384BIT ) {
if ( ! ecc - > u . pm . point_2 . x | |
( ecc - > u . pm . point_2 . x_len > CCP_ECC_MODULUS_BYTES ) | |
! ecc - > u . pm . point_2 . y | |
( ecc - > u . pm . point_2 . y_len > CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
} else {
if ( ! ecc - > u . pm . domain_a | |
( ecc - > u . pm . domain_a_len > CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
if ( ecc - > function = = CCP_ECC_FUNCTION_PMUL_384BIT )
if ( ! ecc - > u . pm . scalar | |
( ecc - > u . pm . scalar_len > CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
}
if ( ! ecc - > u . pm . result . x | |
( ecc - > u . pm . result . x_len < CCP_ECC_MODULUS_BYTES ) | |
! ecc - > u . pm . result . y | |
( ecc - > u . pm . result . y_len < CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
memset ( & op , 0 , sizeof ( op ) ) ;
op . cmd_q = cmd_q ;
op . jobid = ccp_gen_jobid ( cmd_q - > ccp ) ;
/* Concatenate the modulus and the operands. Both the modulus and
* the operands must be in little endian format . Since the input
* is in big endian format it must be converted and placed in a
* fixed length buffer .
*/
ret = ccp_init_dm_workarea ( & src , cmd_q , CCP_ECC_SRC_BUF_SIZE ,
DMA_TO_DEVICE ) ;
if ( ret )
return ret ;
/* Save the workarea address since it is updated in order to perform
* the concatenation
*/
save = src . address ;
/* Copy the ECC modulus */
ccp_reverse_set_dm_area ( & src , ecc - > mod , ecc - > mod_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
/* Copy the first point X and Y coordinate */
ccp_reverse_set_dm_area ( & src , ecc - > u . pm . point_1 . x ,
ecc - > u . pm . point_1 . x_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
ccp_reverse_set_dm_area ( & src , ecc - > u . pm . point_1 . y ,
ecc - > u . pm . point_1 . y_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
/* Set the first point Z coordianate to 1 */
* ( src . address ) = 0x01 ;
src . address + = CCP_ECC_OPERAND_SIZE ;
if ( ecc - > function = = CCP_ECC_FUNCTION_PADD_384BIT ) {
/* Copy the second point X and Y coordinate */
ccp_reverse_set_dm_area ( & src , ecc - > u . pm . point_2 . x ,
ecc - > u . pm . point_2 . x_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
ccp_reverse_set_dm_area ( & src , ecc - > u . pm . point_2 . y ,
ecc - > u . pm . point_2 . y_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
/* Set the second point Z coordianate to 1 */
* ( src . address ) = 0x01 ;
src . address + = CCP_ECC_OPERAND_SIZE ;
} else {
/* Copy the Domain "a" parameter */
ccp_reverse_set_dm_area ( & src , ecc - > u . pm . domain_a ,
ecc - > u . pm . domain_a_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
if ( ecc - > function = = CCP_ECC_FUNCTION_PMUL_384BIT ) {
/* Copy the scalar value */
ccp_reverse_set_dm_area ( & src , ecc - > u . pm . scalar ,
ecc - > u . pm . scalar_len ,
CCP_ECC_OPERAND_SIZE , true ) ;
src . address + = CCP_ECC_OPERAND_SIZE ;
}
}
/* Restore the workarea address */
src . address = save ;
/* Prepare the output area for the operation */
ret = ccp_init_dm_workarea ( & dst , cmd_q , CCP_ECC_DST_BUF_SIZE ,
DMA_FROM_DEVICE ) ;
if ( ret )
goto e_src ;
op . soc = 1 ;
op . src . u . dma . address = src . dma . address ;
op . src . u . dma . offset = 0 ;
op . src . u . dma . length = src . length ;
op . dst . u . dma . address = dst . dma . address ;
op . dst . u . dma . offset = 0 ;
op . dst . u . dma . length = dst . length ;
op . u . ecc . function = cmd - > u . ecc . function ;
ret = ccp_perform_ecc ( & op ) ;
if ( ret ) {
cmd - > engine_error = cmd_q - > cmd_error ;
goto e_dst ;
}
ecc - > ecc_result = le16_to_cpup (
( const __le16 * ) ( dst . address + CCP_ECC_RESULT_OFFSET ) ) ;
if ( ! ( ecc - > ecc_result & CCP_ECC_RESULT_SUCCESS ) ) {
ret = - EIO ;
goto e_dst ;
}
/* Save the workarea address since it is updated as we walk through
* to copy the point math result
*/
save = dst . address ;
/* Save the ECC result X and Y coordinates */
ccp_reverse_get_dm_area ( & dst , ecc - > u . pm . result . x ,
CCP_ECC_MODULUS_BYTES ) ;
dst . address + = CCP_ECC_OUTPUT_SIZE ;
ccp_reverse_get_dm_area ( & dst , ecc - > u . pm . result . y ,
CCP_ECC_MODULUS_BYTES ) ;
dst . address + = CCP_ECC_OUTPUT_SIZE ;
/* Restore the workarea address */
dst . address = save ;
e_dst :
ccp_dm_free ( & dst ) ;
e_src :
ccp_dm_free ( & src ) ;
return ret ;
}
static int ccp_run_ecc_cmd ( struct ccp_cmd_queue * cmd_q , struct ccp_cmd * cmd )
{
struct ccp_ecc_engine * ecc = & cmd - > u . ecc ;
ecc - > ecc_result = 0 ;
if ( ! ecc - > mod | |
( ecc - > mod_len > CCP_ECC_MODULUS_BYTES ) )
return - EINVAL ;
switch ( ecc - > function ) {
case CCP_ECC_FUNCTION_MMUL_384BIT :
case CCP_ECC_FUNCTION_MADD_384BIT :
case CCP_ECC_FUNCTION_MINV_384BIT :
return ccp_run_ecc_mm_cmd ( cmd_q , cmd ) ;
case CCP_ECC_FUNCTION_PADD_384BIT :
case CCP_ECC_FUNCTION_PMUL_384BIT :
case CCP_ECC_FUNCTION_PDBL_384BIT :
return ccp_run_ecc_pm_cmd ( cmd_q , cmd ) ;
default :
return - EINVAL ;
}
}
int ccp_run_cmd ( struct ccp_cmd_queue * cmd_q , struct ccp_cmd * cmd )
{
int ret ;
cmd - > engine_error = 0 ;
cmd_q - > cmd_error = 0 ;
cmd_q - > int_rcvd = 0 ;
cmd_q - > free_slots = CMD_Q_DEPTH ( ioread32 ( cmd_q - > reg_status ) ) ;
switch ( cmd - > engine ) {
case CCP_ENGINE_AES :
ret = ccp_run_aes_cmd ( cmd_q , cmd ) ;
break ;
case CCP_ENGINE_XTS_AES_128 :
ret = ccp_run_xts_aes_cmd ( cmd_q , cmd ) ;
break ;
case CCP_ENGINE_SHA :
ret = ccp_run_sha_cmd ( cmd_q , cmd ) ;
break ;
case CCP_ENGINE_RSA :
ret = ccp_run_rsa_cmd ( cmd_q , cmd ) ;
break ;
case CCP_ENGINE_PASSTHRU :
ret = ccp_run_passthru_cmd ( cmd_q , cmd ) ;
break ;
case CCP_ENGINE_ECC :
ret = ccp_run_ecc_cmd ( cmd_q , cmd ) ;
break ;
default :
ret = - EINVAL ;
}
return ret ;
}