105 lines
3.1 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 15:30:36 +09:00
#
# Counter devices
#
menuconfig COUNTER
tristate "Counter support"
help
This enables counter device support through the Generic Counter
interface. You only need to enable this, if you also want to enable
one or more of the counter device drivers below.
if COUNTER
config 104_QUAD_8
tristate "ACCES 104-QUAD-8 driver"
depends on PC104 && X86
select ISA_BUS_API
help
Say yes here to build support for the ACCES 104-QUAD-8 quadrature
encoder counter/interface device family (104-QUAD-8, 104-QUAD-4).
A counter's respective error flag may be cleared by performing a write
operation on the respective count value attribute. Although the
104-QUAD-8 counters have a 25-bit range, only the lower 24 bits may be
counter: 104-quad-8: Add IRQ support for the ACCES 104-QUAD-8 The LSI/CSI LS7266R1 chip provides programmable output via the FLG pins. When interrupts are enabled on the ACCES 104-QUAD-8, they occur whenever FLG1 is active. Four functions are available for the FLG1 signal: Carry, Compare, Carry-Borrow, and Index. Carry: Interrupt generated on active low Carry signal. Carry signal toggles every time the respective channel's counter overflows. Compare: Interrupt generated on active low Compare signal. Compare signal toggles every time respective channel's preset register is equal to the respective channel's counter. Carry-Borrow: Interrupt generated on active low Carry signal and active low Borrow signal. Carry signal toggles every time the respective channel's counter overflows. Borrow signal toggles every time the respective channel's counter underflows. Index: Interrupt generated on active high Index signal. These four functions correspond respectivefly to the following four Counter event types: COUNTER_EVENT_OVERFLOW, COUNTER_EVENT_THRESHOLD, COUNTER_EVENT_OVERFLOW_UNDERFLOW, and COUNTER_EVENT_INDEX. Interrupts push Counter events to event channel X, where 'X' is the respective channel whose FLG1 activated. This patch adds IRQ support for the ACCES 104-QUAD-8. The interrupt line numbers for the devices may be configured via the irq array module parameter. Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Link: https://lore.kernel.org/r/e3a28e100840e3a336fa93fce77445f0e9d9a674.1632884256.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-09-29 12:16:06 +09:00
set, either directly or via the counter's preset attribute.
The base port addresses for the devices may be configured via the base
counter: 104-quad-8: Add IRQ support for the ACCES 104-QUAD-8 The LSI/CSI LS7266R1 chip provides programmable output via the FLG pins. When interrupts are enabled on the ACCES 104-QUAD-8, they occur whenever FLG1 is active. Four functions are available for the FLG1 signal: Carry, Compare, Carry-Borrow, and Index. Carry: Interrupt generated on active low Carry signal. Carry signal toggles every time the respective channel's counter overflows. Compare: Interrupt generated on active low Compare signal. Compare signal toggles every time respective channel's preset register is equal to the respective channel's counter. Carry-Borrow: Interrupt generated on active low Carry signal and active low Borrow signal. Carry signal toggles every time the respective channel's counter overflows. Borrow signal toggles every time the respective channel's counter underflows. Index: Interrupt generated on active high Index signal. These four functions correspond respectivefly to the following four Counter event types: COUNTER_EVENT_OVERFLOW, COUNTER_EVENT_THRESHOLD, COUNTER_EVENT_OVERFLOW_UNDERFLOW, and COUNTER_EVENT_INDEX. Interrupts push Counter events to event channel X, where 'X' is the respective channel whose FLG1 activated. This patch adds IRQ support for the ACCES 104-QUAD-8. The interrupt line numbers for the devices may be configured via the irq array module parameter. Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Link: https://lore.kernel.org/r/e3a28e100840e3a336fa93fce77445f0e9d9a674.1632884256.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-09-29 12:16:06 +09:00
array module parameter. The interrupt line numbers for the devices may
be configured via the irq array module parameter.
config INTERRUPT_CNT
tristate "Interrupt counter driver"
depends on GPIOLIB
help
Select this option to enable interrupt counter driver. Any interrupt
source can be used by this driver as the event source.
To compile this driver as a module, choose M here: the
module will be called interrupt-cnt.
config STM32_TIMER_CNT
tristate "STM32 Timer encoder counter driver"
depends on MFD_STM32_TIMERS || COMPILE_TEST
help
Select this option to enable STM32 Timer quadrature encoder
and counter driver.
To compile this driver as a module, choose M here: the
module will be called stm32-timer-cnt.
config STM32_LPTIMER_CNT
tristate "STM32 LP Timer encoder counter driver"
depends on MFD_STM32_LPTIMER || COMPILE_TEST
help
Select this option to enable STM32 Low-Power Timer quadrature encoder
and counter driver.
To compile this driver as a module, choose M here: the
module will be called stm32-lptimer-cnt.
config TI_EQEP
tristate "TI eQEP counter driver"
depends on (SOC_AM33XX || COMPILE_TEST)
select REGMAP_MMIO
help
Select this option to enable the Texas Instruments Enhanced Quadrature
Encoder Pulse (eQEP) counter driver.
To compile this driver as a module, choose M here: the module will be
called ti-eqep.
config FTM_QUADDEC
tristate "Flex Timer Module Quadrature decoder driver"
depends on HAS_IOMEM && OF
help
Select this option to enable the Flex Timer Quadrature decoder
driver.
To compile this driver as a module, choose M here: the
module will be called ftm-quaddec.
config MICROCHIP_TCB_CAPTURE
tristate "Microchip Timer Counter Capture driver"
depends on HAS_IOMEM && OF
select REGMAP_MMIO
help
Select this option to enable the Microchip Timer Counter Block
capture driver.
To compile this driver as a module, choose M here: the
module will be called microchip-tcb-capture.
config INTEL_QEP
tristate "Intel Quadrature Encoder Peripheral driver"
depends on PCI
help
Select this option to enable the Intel Quadrature Encoder Peripheral
driver.
To compile this driver as a module, choose M here: the module
will be called intel-qep.
endif # COUNTER