linux/block/blk-stat.c

253 lines
5.5 KiB
C
Raw Normal View History

/*
* Block stat tracking code
*
* Copyright (C) 2016 Jens Axboe
*/
#include <linux/kernel.h>
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
#include <linux/rculist.h>
#include <linux/blk-mq.h>
#include "blk-stat.h"
#include "blk-mq.h"
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 01:19:42 +03:00
#include "blk.h"
#define BLK_RQ_STAT_BATCH 64
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct blk_queue_stats {
struct list_head callbacks;
spinlock_t lock;
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 01:19:42 +03:00
bool enable_accounting;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
};
static void blk_stat_init(struct blk_rq_stat *stat)
{
stat->min = -1ULL;
stat->max = stat->nr_samples = stat->mean = 0;
stat->batch = stat->nr_batch = 0;
}
static void blk_stat_flush_batch(struct blk_rq_stat *stat)
{
const s32 nr_batch = READ_ONCE(stat->nr_batch);
const s32 nr_samples = READ_ONCE(stat->nr_samples);
if (!nr_batch)
return;
if (!nr_samples)
stat->mean = div64_s64(stat->batch, nr_batch);
else {
stat->mean = div64_s64((stat->mean * nr_samples) +
stat->batch,
nr_batch + nr_samples);
}
stat->nr_samples += nr_batch;
stat->nr_batch = stat->batch = 0;
}
static void blk_stat_sum(struct blk_rq_stat *dst, struct blk_rq_stat *src)
{
blk_stat_flush_batch(src);
if (!src->nr_samples)
return;
dst->min = min(dst->min, src->min);
dst->max = max(dst->max, src->max);
if (!dst->nr_samples)
dst->mean = src->mean;
else {
dst->mean = div64_s64((src->mean * src->nr_samples) +
(dst->mean * dst->nr_samples),
dst->nr_samples + src->nr_samples);
}
dst->nr_samples += src->nr_samples;
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
static void __blk_stat_add(struct blk_rq_stat *stat, u64 value)
{
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
stat->min = min(stat->min, value);
stat->max = max(stat->max, value);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
if (stat->batch + value < stat->batch ||
stat->nr_batch + 1 == BLK_RQ_STAT_BATCH)
blk_stat_flush_batch(stat);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
stat->batch += value;
stat->nr_batch++;
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
void blk_stat_add(struct request *rq)
{
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct request_queue *q = rq->q;
struct blk_stat_callback *cb;
struct blk_rq_stat *stat;
int bucket;
s64 now, value;
now = __blk_stat_time(ktime_to_ns(ktime_get()));
if (now < blk_stat_time(&rq->issue_stat))
return;
value = now - blk_stat_time(&rq->issue_stat);
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 01:19:42 +03:00
blk_throtl_stat_add(rq, value);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
rcu_read_lock();
list_for_each_entry_rcu(cb, &q->stats->callbacks, list) {
if (!blk_stat_is_active(cb))
continue;
bucket = cb->bucket_fn(rq);
if (bucket < 0)
continue;
stat = &get_cpu_ptr(cb->cpu_stat)[bucket];
__blk_stat_add(stat, value);
put_cpu_ptr(cb->cpu_stat);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
rcu_read_unlock();
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
static void blk_stat_timer_fn(unsigned long data)
{
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct blk_stat_callback *cb = (void *)data;
unsigned int bucket;
int cpu;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
for (bucket = 0; bucket < cb->buckets; bucket++)
blk_stat_init(&cb->stat[bucket]);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
for_each_online_cpu(cpu) {
struct blk_rq_stat *cpu_stat;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
cpu_stat = per_cpu_ptr(cb->cpu_stat, cpu);
for (bucket = 0; bucket < cb->buckets; bucket++) {
blk_stat_sum(&cb->stat[bucket], &cpu_stat[bucket]);
blk_stat_init(&cpu_stat[bucket]);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
cb->timer_fn(cb);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct blk_stat_callback *
blk_stat_alloc_callback(void (*timer_fn)(struct blk_stat_callback *),
int (*bucket_fn)(const struct request *),
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
unsigned int buckets, void *data)
{
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct blk_stat_callback *cb;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
cb = kmalloc(sizeof(*cb), GFP_KERNEL);
if (!cb)
return NULL;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
cb->stat = kmalloc_array(buckets, sizeof(struct blk_rq_stat),
GFP_KERNEL);
if (!cb->stat) {
kfree(cb);
return NULL;
}
cb->cpu_stat = __alloc_percpu(buckets * sizeof(struct blk_rq_stat),
__alignof__(struct blk_rq_stat));
if (!cb->cpu_stat) {
kfree(cb->stat);
kfree(cb);
return NULL;
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
cb->timer_fn = timer_fn;
cb->bucket_fn = bucket_fn;
cb->data = data;
cb->buckets = buckets;
setup_timer(&cb->timer, blk_stat_timer_fn, (unsigned long)cb);
return cb;
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
EXPORT_SYMBOL_GPL(blk_stat_alloc_callback);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
void blk_stat_add_callback(struct request_queue *q,
struct blk_stat_callback *cb)
{
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
unsigned int bucket;
int cpu;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
for_each_possible_cpu(cpu) {
struct blk_rq_stat *cpu_stat;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
cpu_stat = per_cpu_ptr(cb->cpu_stat, cpu);
for (bucket = 0; bucket < cb->buckets; bucket++)
blk_stat_init(&cpu_stat[bucket]);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
spin_lock(&q->stats->lock);
list_add_tail_rcu(&cb->list, &q->stats->callbacks);
set_bit(QUEUE_FLAG_STATS, &q->queue_flags);
spin_unlock(&q->stats->lock);
}
EXPORT_SYMBOL_GPL(blk_stat_add_callback);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
void blk_stat_remove_callback(struct request_queue *q,
struct blk_stat_callback *cb)
{
spin_lock(&q->stats->lock);
list_del_rcu(&cb->list);
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 01:19:42 +03:00
if (list_empty(&q->stats->callbacks) && !q->stats->enable_accounting)
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
clear_bit(QUEUE_FLAG_STATS, &q->queue_flags);
spin_unlock(&q->stats->lock);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
del_timer_sync(&cb->timer);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
EXPORT_SYMBOL_GPL(blk_stat_remove_callback);
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
static void blk_stat_free_callback_rcu(struct rcu_head *head)
{
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct blk_stat_callback *cb;
cb = container_of(head, struct blk_stat_callback, rcu);
free_percpu(cb->cpu_stat);
kfree(cb->stat);
kfree(cb);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
void blk_stat_free_callback(struct blk_stat_callback *cb)
{
if (cb)
call_rcu(&cb->rcu, blk_stat_free_callback_rcu);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
EXPORT_SYMBOL_GPL(blk_stat_free_callback);
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 01:19:42 +03:00
void blk_stat_enable_accounting(struct request_queue *q)
{
spin_lock(&q->stats->lock);
q->stats->enable_accounting = true;
set_bit(QUEUE_FLAG_STATS, &q->queue_flags);
spin_unlock(&q->stats->lock);
}
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct blk_queue_stats *blk_alloc_queue_stats(void)
{
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
struct blk_queue_stats *stats;
stats = kmalloc(sizeof(*stats), GFP_KERNEL);
if (!stats)
return NULL;
INIT_LIST_HEAD(&stats->callbacks);
spin_lock_init(&stats->lock);
blk-throttle: add a mechanism to estimate IO latency User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 01:19:42 +03:00
stats->enable_accounting = false;
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
return stats;
}
void blk_free_queue_stats(struct blk_queue_stats *stats)
{
if (!stats)
return;
WARN_ON(!list_empty(&stats->callbacks));
blk-stat: convert to callback-based statistics reporting Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-21 18:56:08 +03:00
kfree(stats);
}