ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
/*
* APEI Generic Hardware Error Source support
*
* Generic Hardware Error Source provides a way to report platform
* hardware errors ( such as that from chipset ) . It works in so called
* " Firmware First " mode , that is , hardware errors are reported to
* firmware firstly , then reported to Linux by firmware . This way ,
* some non - standard hardware error registers or non - standard hardware
* link can be checked by firmware to produce more hardware error
* information for Linux .
*
* For more information about Generic Hardware Error Source , please
* refer to ACPI Specification version 4.0 , section 17.3 .2 .6
*
* Now , only SCI notification type and memory errors are
* supported . More notification type and hardware error type will be
* added later .
*
* Copyright 2010 Intel Corp .
* Author : Huang Ying < ying . huang @ intel . com >
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation ;
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/init.h>
# include <linux/acpi.h>
# include <linux/io.h>
# include <linux/interrupt.h>
# include <linux/cper.h>
# include <linux/kdebug.h>
2010-08-02 15:48:24 +08:00
# include <linux/platform_device.h>
# include <linux/mutex.h>
2010-12-07 10:22:31 +08:00
# include <linux/ratelimit.h>
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
# include <acpi/apei.h>
# include <acpi/atomicio.h>
# include <acpi/hed.h>
# include <asm/mce.h>
# include "apei-internal.h"
# define GHES_PFX "GHES: "
# define GHES_ESTATUS_MAX_SIZE 65536
/*
* One struct ghes is created for each generic hardware error
* source .
*
* It provides the context for APEI hardware error timer / IRQ / SCI / NMI
* handler . Handler for one generic hardware error source is only
* triggered after the previous one is done . So handler can uses
* struct ghes without locking .
*
* estatus : memory buffer for error status block , allocated during
* HEST parsing .
*/
# define GHES_TO_CLEAR 0x0001
struct ghes {
struct acpi_hest_generic * generic ;
struct acpi_hest_generic_status * estatus ;
struct list_head list ;
u64 buffer_paddr ;
unsigned long flags ;
} ;
/*
* Error source lists , one list for each notification method . The
* members in lists are struct ghes .
*
* The list members are only added in HEST parsing and deleted during
* module_exit , that is , single - threaded . So no lock is needed for
* that .
*
* But the mutual exclusion is needed between members adding / deleting
* and timer / IRQ / SCI / NMI handler , which may traverse the list . RCU is
* used for that .
*/
static LIST_HEAD ( ghes_sci ) ;
2010-08-02 15:48:24 +08:00
static DEFINE_MUTEX ( ghes_list_mutex ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
static struct ghes * ghes_new ( struct acpi_hest_generic * generic )
{
struct ghes * ghes ;
unsigned int error_block_length ;
int rc ;
ghes = kzalloc ( sizeof ( * ghes ) , GFP_KERNEL ) ;
if ( ! ghes )
return ERR_PTR ( - ENOMEM ) ;
ghes - > generic = generic ;
INIT_LIST_HEAD ( & ghes - > list ) ;
rc = acpi_pre_map_gar ( & generic - > error_status_address ) ;
if ( rc )
goto err_free ;
error_block_length = generic - > error_block_length ;
if ( error_block_length > GHES_ESTATUS_MAX_SIZE ) {
pr_warning ( FW_WARN GHES_PFX
" Error status block length is too long: %u for "
" generic hardware error source: %d. \n " ,
error_block_length , generic - > header . source_id ) ;
error_block_length = GHES_ESTATUS_MAX_SIZE ;
}
ghes - > estatus = kmalloc ( error_block_length , GFP_KERNEL ) ;
if ( ! ghes - > estatus ) {
rc = - ENOMEM ;
goto err_unmap ;
}
return ghes ;
err_unmap :
acpi_post_unmap_gar ( & generic - > error_status_address ) ;
err_free :
kfree ( ghes ) ;
return ERR_PTR ( rc ) ;
}
static void ghes_fini ( struct ghes * ghes )
{
kfree ( ghes - > estatus ) ;
acpi_post_unmap_gar ( & ghes - > generic - > error_status_address ) ;
}
enum {
2010-08-02 15:48:23 +08:00
GHES_SEV_NO = 0x0 ,
GHES_SEV_CORRECTED = 0x1 ,
GHES_SEV_RECOVERABLE = 0x2 ,
GHES_SEV_PANIC = 0x3 ,
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
} ;
static inline int ghes_severity ( int severity )
{
switch ( severity ) {
2010-08-02 15:48:23 +08:00
case CPER_SEV_INFORMATIONAL :
return GHES_SEV_NO ;
case CPER_SEV_CORRECTED :
return GHES_SEV_CORRECTED ;
case CPER_SEV_RECOVERABLE :
return GHES_SEV_RECOVERABLE ;
case CPER_SEV_FATAL :
return GHES_SEV_PANIC ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
default :
/* Unkown, go panic */
2010-08-02 15:48:23 +08:00
return GHES_SEV_PANIC ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
}
}
/* SCI handler run in work queue, so ioremap can be used here */
static int ghes_copy_tofrom_phys ( void * buffer , u64 paddr , u32 len ,
int from_phys )
{
void * vaddr ;
vaddr = ioremap_cache ( paddr , len ) ;
if ( ! vaddr )
return - ENOMEM ;
if ( from_phys )
memcpy ( buffer , vaddr , len ) ;
else
memcpy ( vaddr , buffer , len ) ;
iounmap ( vaddr ) ;
return 0 ;
}
static int ghes_read_estatus ( struct ghes * ghes , int silent )
{
struct acpi_hest_generic * g = ghes - > generic ;
u64 buf_paddr ;
u32 len ;
int rc ;
rc = acpi_atomic_read ( & buf_paddr , & g - > error_status_address ) ;
if ( rc ) {
if ( ! silent & & printk_ratelimit ( ) )
pr_warning ( FW_WARN GHES_PFX
" Failed to read error status block address for hardware error source: %d. \n " ,
g - > header . source_id ) ;
return - EIO ;
}
if ( ! buf_paddr )
return - ENOENT ;
rc = ghes_copy_tofrom_phys ( ghes - > estatus , buf_paddr ,
sizeof ( * ghes - > estatus ) , 1 ) ;
if ( rc )
return rc ;
if ( ! ghes - > estatus - > block_status )
return - ENOENT ;
ghes - > buffer_paddr = buf_paddr ;
ghes - > flags | = GHES_TO_CLEAR ;
rc = - EIO ;
len = apei_estatus_len ( ghes - > estatus ) ;
if ( len < sizeof ( * ghes - > estatus ) )
goto err_read_block ;
if ( len > ghes - > generic - > error_block_length )
goto err_read_block ;
if ( apei_estatus_check_header ( ghes - > estatus ) )
goto err_read_block ;
rc = ghes_copy_tofrom_phys ( ghes - > estatus + 1 ,
buf_paddr + sizeof ( * ghes - > estatus ) ,
len - sizeof ( * ghes - > estatus ) , 1 ) ;
if ( rc )
return rc ;
if ( apei_estatus_check ( ghes - > estatus ) )
goto err_read_block ;
rc = 0 ;
err_read_block :
if ( rc & & ! silent )
pr_warning ( FW_WARN GHES_PFX
" Failed to read error status block! \n " ) ;
return rc ;
}
static void ghes_clear_estatus ( struct ghes * ghes )
{
ghes - > estatus - > block_status = 0 ;
if ( ! ( ghes - > flags & GHES_TO_CLEAR ) )
return ;
ghes_copy_tofrom_phys ( ghes - > estatus , ghes - > buffer_paddr ,
sizeof ( ghes - > estatus - > block_status ) , 0 ) ;
ghes - > flags & = ~ GHES_TO_CLEAR ;
}
static void ghes_do_proc ( struct ghes * ghes )
{
2010-08-02 15:48:23 +08:00
int sev , processed = 0 ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
struct acpi_hest_generic_data * gdata ;
2010-08-02 15:48:23 +08:00
sev = ghes_severity ( ghes - > estatus - > error_severity ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
apei_estatus_for_each_section ( ghes - > estatus , gdata ) {
# ifdef CONFIG_X86_MCE
if ( ! uuid_le_cmp ( * ( uuid_le * ) gdata - > section_type ,
CPER_SEC_PLATFORM_MEM ) ) {
apei_mce_report_mem_error (
2010-08-02 15:48:23 +08:00
sev = = GHES_SEV_CORRECTED ,
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
( struct cper_sec_mem_err * ) ( gdata + 1 ) ) ;
processed = 1 ;
}
# endif
}
2010-12-07 10:22:31 +08:00
}
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
2010-12-07 10:22:31 +08:00
static void ghes_print_estatus ( const char * pfx , struct ghes * ghes )
{
/* Not more than 2 messages every 5 seconds */
static DEFINE_RATELIMIT_STATE ( ratelimit , 5 * HZ , 2 ) ;
if ( pfx = = NULL ) {
if ( ghes_severity ( ghes - > estatus - > error_severity ) < =
GHES_SEV_CORRECTED )
pfx = KERN_WARNING HW_ERR ;
else
pfx = KERN_ERR HW_ERR ;
}
if ( __ratelimit ( & ratelimit ) ) {
printk (
" %s " " Hardware error from APEI Generic Hardware Error Source: %d \n " ,
pfx , ghes - > generic - > header . source_id ) ;
apei_estatus_print ( pfx , ghes - > estatus ) ;
}
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
}
static int ghes_proc ( struct ghes * ghes )
{
int rc ;
rc = ghes_read_estatus ( ghes , 0 ) ;
if ( rc )
goto out ;
2010-12-07 10:22:31 +08:00
ghes_print_estatus ( NULL , ghes ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
ghes_do_proc ( ghes ) ;
out :
ghes_clear_estatus ( ghes ) ;
return 0 ;
}
static int ghes_notify_sci ( struct notifier_block * this ,
unsigned long event , void * data )
{
struct ghes * ghes ;
int ret = NOTIFY_DONE ;
rcu_read_lock ( ) ;
list_for_each_entry_rcu ( ghes , & ghes_sci , list ) {
if ( ! ghes_proc ( ghes ) )
ret = NOTIFY_OK ;
}
rcu_read_unlock ( ) ;
return ret ;
}
static struct notifier_block ghes_notifier_sci = {
. notifier_call = ghes_notify_sci ,
} ;
2010-08-02 15:48:24 +08:00
static int __devinit ghes_probe ( struct platform_device * ghes_dev )
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
{
struct acpi_hest_generic * generic ;
struct ghes * ghes = NULL ;
2010-08-02 15:48:24 +08:00
int rc = - EINVAL ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
2010-09-29 19:53:53 +08:00
generic = * ( struct acpi_hest_generic * * ) ghes_dev - > dev . platform_data ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
if ( ! generic - > enabled )
2010-08-02 15:48:24 +08:00
return - ENODEV ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
if ( generic - > error_block_length <
sizeof ( struct acpi_hest_generic_status ) ) {
pr_warning ( FW_BUG GHES_PFX
" Invalid error block length: %u for generic hardware error source: %d \n " ,
generic - > error_block_length ,
generic - > header . source_id ) ;
goto err ;
}
if ( generic - > records_to_preallocate = = 0 ) {
pr_warning ( FW_BUG GHES_PFX
" Invalid records to preallocate: %u for generic hardware error source: %d \n " ,
generic - > records_to_preallocate ,
generic - > header . source_id ) ;
goto err ;
}
ghes = ghes_new ( generic ) ;
if ( IS_ERR ( ghes ) ) {
rc = PTR_ERR ( ghes ) ;
ghes = NULL ;
goto err ;
}
2010-08-02 15:48:24 +08:00
if ( generic - > notify . type = = ACPI_HEST_NOTIFY_SCI ) {
mutex_lock ( & ghes_list_mutex ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
if ( list_empty ( & ghes_sci ) )
register_acpi_hed_notifier ( & ghes_notifier_sci ) ;
list_add_rcu ( & ghes - > list , & ghes_sci ) ;
2010-08-02 15:48:24 +08:00
mutex_unlock ( & ghes_list_mutex ) ;
} else {
unsigned char * notify = NULL ;
switch ( generic - > notify . type ) {
case ACPI_HEST_NOTIFY_POLLED :
notify = " POLL " ;
break ;
case ACPI_HEST_NOTIFY_EXTERNAL :
case ACPI_HEST_NOTIFY_LOCAL :
notify = " IRQ " ;
break ;
case ACPI_HEST_NOTIFY_NMI :
notify = " NMI " ;
break ;
}
if ( notify ) {
pr_warning ( GHES_PFX
" Generic hardware error source: %d notified via %s is not supported! \n " ,
generic - > header . source_id , notify ) ;
} else {
pr_warning ( FW_WARN GHES_PFX
" Unknown notification type: %u for generic hardware error source: %d \n " ,
generic - > notify . type , generic - > header . source_id ) ;
}
rc = - ENODEV ;
goto err ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
}
2010-08-02 15:48:24 +08:00
platform_set_drvdata ( ghes_dev , ghes ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
return 0 ;
err :
2010-08-02 15:48:24 +08:00
if ( ghes ) {
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
ghes_fini ( ghes ) ;
2010-08-02 15:48:24 +08:00
kfree ( ghes ) ;
}
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
return rc ;
}
2010-08-02 15:48:24 +08:00
static int __devexit ghes_remove ( struct platform_device * ghes_dev )
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
{
2010-08-02 15:48:24 +08:00
struct ghes * ghes ;
struct acpi_hest_generic * generic ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
2010-08-02 15:48:24 +08:00
ghes = platform_get_drvdata ( ghes_dev ) ;
generic = ghes - > generic ;
switch ( generic - > notify . type ) {
case ACPI_HEST_NOTIFY_SCI :
mutex_lock ( & ghes_list_mutex ) ;
list_del_rcu ( & ghes - > list ) ;
if ( list_empty ( & ghes_sci ) )
unregister_acpi_hed_notifier ( & ghes_notifier_sci ) ;
mutex_unlock ( & ghes_list_mutex ) ;
break ;
default :
BUG ( ) ;
break ;
}
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
synchronize_rcu ( ) ;
2010-08-02 15:48:24 +08:00
ghes_fini ( ghes ) ;
kfree ( ghes ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
2010-08-02 15:48:24 +08:00
platform_set_drvdata ( ghes_dev , NULL ) ;
return 0 ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
}
2010-08-02 15:48:24 +08:00
static struct platform_driver ghes_platform_driver = {
. driver = {
. name = " GHES " ,
. owner = THIS_MODULE ,
} ,
. probe = ghes_probe ,
. remove = ghes_remove ,
} ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
static int __init ghes_init ( void )
{
if ( acpi_disabled )
return - ENODEV ;
if ( hest_disable ) {
pr_info ( GHES_PFX " HEST is not enabled! \n " ) ;
return - EINVAL ;
}
2010-08-02 15:48:24 +08:00
return platform_driver_register ( & ghes_platform_driver ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
}
static void __exit ghes_exit ( void )
{
2010-08-02 15:48:24 +08:00
platform_driver_unregister ( & ghes_platform_driver ) ;
ACPI, APEI, Generic Hardware Error Source memory error support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-18 14:35:20 +08:00
}
module_init ( ghes_init ) ;
module_exit ( ghes_exit ) ;
MODULE_AUTHOR ( " Huang Ying " ) ;
MODULE_DESCRIPTION ( " APEI Generic Hardware Error Source support " ) ;
MODULE_LICENSE ( " GPL " ) ;
2010-08-02 15:48:24 +08:00
MODULE_ALIAS ( " platform:GHES " ) ;