2005-04-16 15:20:36 -07:00
# ifndef __ASM_SH64_BITOPS_H
# define __ASM_SH64_BITOPS_H
/*
* This file is subject to the terms and conditions of the GNU General Public
* License . See the file " COPYING " in the main directory of this archive
* for more details .
*
* include / asm - sh64 / bitops . h
*
* Copyright ( C ) 2000 , 2001 Paolo Alberelli
* Copyright ( C ) 2003 Paul Mundt
*/
# ifdef __KERNEL__
# include <linux/compiler.h>
# include <asm/system.h>
/* For __swab32 */
# include <asm/byteorder.h>
static __inline__ void set_bit ( int nr , volatile void * addr )
{
int mask ;
volatile unsigned int * a = addr ;
unsigned long flags ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
local_irq_save ( flags ) ;
* a | = mask ;
local_irq_restore ( flags ) ;
}
static inline void __set_bit ( int nr , void * addr )
{
int mask ;
unsigned int * a = addr ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
* a | = mask ;
}
/*
* clear_bit ( ) doesn ' t provide any barrier for the compiler .
*/
# define smp_mb__before_clear_bit() barrier()
# define smp_mb__after_clear_bit() barrier()
static inline void clear_bit ( int nr , volatile unsigned long * a )
{
int mask ;
unsigned long flags ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
local_irq_save ( flags ) ;
* a & = ~ mask ;
local_irq_restore ( flags ) ;
}
static inline void __clear_bit ( int nr , volatile unsigned long * a )
{
int mask ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
* a & = ~ mask ;
}
static __inline__ void change_bit ( int nr , volatile void * addr )
{
int mask ;
volatile unsigned int * a = addr ;
unsigned long flags ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
local_irq_save ( flags ) ;
* a ^ = mask ;
local_irq_restore ( flags ) ;
}
static __inline__ void __change_bit ( int nr , volatile void * addr )
{
int mask ;
volatile unsigned int * a = addr ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
* a ^ = mask ;
}
static __inline__ int test_and_set_bit ( int nr , volatile void * addr )
{
int mask , retval ;
volatile unsigned int * a = addr ;
unsigned long flags ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
local_irq_save ( flags ) ;
retval = ( mask & * a ) ! = 0 ;
* a | = mask ;
local_irq_restore ( flags ) ;
return retval ;
}
static __inline__ int __test_and_set_bit ( int nr , volatile void * addr )
{
int mask , retval ;
volatile unsigned int * a = addr ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
retval = ( mask & * a ) ! = 0 ;
* a | = mask ;
return retval ;
}
static __inline__ int test_and_clear_bit ( int nr , volatile void * addr )
{
int mask , retval ;
volatile unsigned int * a = addr ;
unsigned long flags ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
local_irq_save ( flags ) ;
retval = ( mask & * a ) ! = 0 ;
* a & = ~ mask ;
local_irq_restore ( flags ) ;
return retval ;
}
static __inline__ int __test_and_clear_bit ( int nr , volatile void * addr )
{
int mask , retval ;
volatile unsigned int * a = addr ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
retval = ( mask & * a ) ! = 0 ;
* a & = ~ mask ;
return retval ;
}
static __inline__ int test_and_change_bit ( int nr , volatile void * addr )
{
int mask , retval ;
volatile unsigned int * a = addr ;
unsigned long flags ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
local_irq_save ( flags ) ;
retval = ( mask & * a ) ! = 0 ;
* a ^ = mask ;
local_irq_restore ( flags ) ;
return retval ;
}
static __inline__ int __test_and_change_bit ( int nr , volatile void * addr )
{
int mask , retval ;
volatile unsigned int * a = addr ;
a + = nr > > 5 ;
mask = 1 < < ( nr & 0x1f ) ;
retval = ( mask & * a ) ! = 0 ;
* a ^ = mask ;
return retval ;
}
static __inline__ int test_bit ( int nr , const volatile void * addr )
{
return 1UL & ( ( ( const volatile unsigned int * ) addr ) [ nr > > 5 ] > > ( nr & 31 ) ) ;
}
static __inline__ unsigned long ffz ( unsigned long word )
{
unsigned long result , __d2 , __d3 ;
__asm__ ( " gettr tr0, %2 \n \t "
" pta $+32, tr0 \n \t "
" andi %1, 1, %3 \n \t "
" beq %3, r63, tr0 \n \t "
" pta $+4, tr0 \n "
" 0: \n \t "
" shlri.l %1, 1, %1 \n \t "
" addi %0, 1, %0 \n \t "
" andi %1, 1, %3 \n \t "
" beqi %3, 1, tr0 \n "
" 1: \n \t "
" ptabs %2, tr0 \n \t "
: " =r " ( result ) , " =r " ( word ) , " =r " ( __d2 ) , " =r " ( __d3 )
: " 0 " ( 0L ) , " 1 " ( word ) ) ;
return result ;
}
/**
* __ffs - find first bit in word
* @ word : The word to search
*
* Undefined if no bit exists , so code should check against 0 first .
*/
static inline unsigned long __ffs ( unsigned long word )
{
int r = 0 ;
if ( ! word )
return 0 ;
if ( ! ( word & 0xffff ) ) {
word > > = 16 ;
r + = 16 ;
}
if ( ! ( word & 0xff ) ) {
word > > = 8 ;
r + = 8 ;
}
if ( ! ( word & 0xf ) ) {
word > > = 4 ;
r + = 4 ;
}
if ( ! ( word & 3 ) ) {
word > > = 2 ;
r + = 2 ;
}
if ( ! ( word & 1 ) ) {
word > > = 1 ;
r + = 1 ;
}
return r ;
}
/**
* find_next_bit - find the next set bit in a memory region
* @ addr : The address to base the search on
* @ offset : The bitnumber to start searching at
* @ size : The maximum size to search
*/
static inline unsigned long find_next_bit ( const unsigned long * addr ,
unsigned long size , unsigned long offset )
{
unsigned int * p = ( ( unsigned int * ) addr ) + ( offset > > 5 ) ;
unsigned int result = offset & ~ 31UL ;
unsigned int tmp ;
if ( offset > = size )
return size ;
size - = result ;
offset & = 31UL ;
if ( offset ) {
tmp = * p + + ;
tmp & = ~ 0UL < < offset ;
if ( size < 32 )
goto found_first ;
if ( tmp )
goto found_middle ;
size - = 32 ;
result + = 32 ;
}
while ( size > = 32 ) {
if ( ( tmp = * p + + ) ! = 0 )
goto found_middle ;
result + = 32 ;
size - = 32 ;
}
if ( ! size )
return result ;
tmp = * p ;
found_first :
tmp & = ~ 0UL > > ( 32 - size ) ;
if ( tmp = = 0UL ) /* Are any bits set? */
return result + size ; /* Nope. */
found_middle :
return result + __ffs ( tmp ) ;
}
/**
* find_first_bit - find the first set bit in a memory region
* @ addr : The address to start the search at
* @ size : The maximum size to search
*
* Returns the bit - number of the first set bit , not the number of the byte
* containing a bit .
*/
# define find_first_bit(addr, size) \
find_next_bit ( ( addr ) , ( size ) , 0 )
static inline int find_next_zero_bit ( void * addr , int size , int offset )
{
unsigned long * p = ( ( unsigned long * ) addr ) + ( offset > > 5 ) ;
unsigned long result = offset & ~ 31UL ;
unsigned long tmp ;
if ( offset > = size )
return size ;
size - = result ;
offset & = 31UL ;
if ( offset ) {
tmp = * ( p + + ) ;
tmp | = ~ 0UL > > ( 32 - offset ) ;
if ( size < 32 )
goto found_first ;
if ( ~ tmp )
goto found_middle ;
size - = 32 ;
result + = 32 ;
}
while ( size & ~ 31UL ) {
if ( ~ ( tmp = * ( p + + ) ) )
goto found_middle ;
result + = 32 ;
size - = 32 ;
}
if ( ! size )
return result ;
tmp = * p ;
found_first :
tmp | = ~ 0UL < < size ;
found_middle :
return result + ffz ( tmp ) ;
}
# define find_first_zero_bit(addr, size) \
find_next_zero_bit ( ( addr ) , ( size ) , 0 )
/*
* hweightN : returns the hamming weight ( i . e . the number
* of bits set ) of a N - bit word
*/
# define hweight32(x) generic_hweight32(x)
# define hweight16(x) generic_hweight16(x)
# define hweight8(x) generic_hweight8(x)
/*
* Every architecture must define this function . It ' s the fastest
* way of searching a 140 - bit bitmap where the first 100 bits are
* unlikely to be set . It ' s guaranteed that at least one of the 140
* bits is cleared .
*/
static inline int sched_find_first_bit ( unsigned long * b )
{
if ( unlikely ( b [ 0 ] ) )
return __ffs ( b [ 0 ] ) ;
if ( unlikely ( b [ 1 ] ) )
return __ffs ( b [ 1 ] ) + 32 ;
if ( unlikely ( b [ 2 ] ) )
return __ffs ( b [ 2 ] ) + 64 ;
if ( b [ 3 ] )
return __ffs ( b [ 3 ] ) + 96 ;
return __ffs ( b [ 4 ] ) + 128 ;
}
/*
* ffs : find first bit set . This is defined the same way as
* the libc and compiler builtin ffs routines , therefore
* differs in spirit from the above ffz ( man ffs ) .
*/
# define ffs(x) generic_ffs(x)
/*
* hweightN : returns the hamming weight ( i . e . the number
* of bits set ) of a N - bit word
*/
# define hweight32(x) generic_hweight32(x)
# define hweight16(x) generic_hweight16(x)
# define hweight8(x) generic_hweight8(x)
# ifdef __LITTLE_ENDIAN__
# define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
# define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
# define ext2_test_bit(nr, addr) test_bit((nr), (addr))
# define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
# define ext2_find_next_zero_bit(addr, size, offset) \
find_next_zero_bit ( ( addr ) , ( size ) , ( offset ) )
# else
static __inline__ int ext2_set_bit ( int nr , volatile void * addr )
{
int mask , retval ;
unsigned long flags ;
volatile unsigned char * ADDR = ( unsigned char * ) addr ;
ADDR + = nr > > 3 ;
mask = 1 < < ( nr & 0x07 ) ;
local_irq_save ( flags ) ;
retval = ( mask & * ADDR ) ! = 0 ;
* ADDR | = mask ;
local_irq_restore ( flags ) ;
return retval ;
}
static __inline__ int ext2_clear_bit ( int nr , volatile void * addr )
{
int mask , retval ;
unsigned long flags ;
volatile unsigned char * ADDR = ( unsigned char * ) addr ;
ADDR + = nr > > 3 ;
mask = 1 < < ( nr & 0x07 ) ;
local_irq_save ( flags ) ;
retval = ( mask & * ADDR ) ! = 0 ;
* ADDR & = ~ mask ;
local_irq_restore ( flags ) ;
return retval ;
}
static __inline__ int ext2_test_bit ( int nr , const volatile void * addr )
{
int mask ;
const volatile unsigned char * ADDR = ( const unsigned char * ) addr ;
ADDR + = nr > > 3 ;
mask = 1 < < ( nr & 0x07 ) ;
return ( ( mask & * ADDR ) ! = 0 ) ;
}
# define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit ( ( addr ) , ( size ) , 0 )
static __inline__ unsigned long ext2_find_next_zero_bit ( void * addr , unsigned long size , unsigned long offset )
{
unsigned long * p = ( ( unsigned long * ) addr ) + ( offset > > 5 ) ;
unsigned long result = offset & ~ 31UL ;
unsigned long tmp ;
if ( offset > = size )
return size ;
size - = result ;
offset & = 31UL ;
if ( offset ) {
/* We hold the little endian value in tmp, but then the
* shift is illegal . So we could keep a big endian value
* in tmp , like this :
*
* tmp = __swab32 ( * ( p + + ) ) ;
* tmp | = ~ 0UL > > ( 32 - offset ) ;
*
* but this would decrease preformance , so we change the
* shift :
*/
tmp = * ( p + + ) ;
tmp | = __swab32 ( ~ 0UL > > ( 32 - offset ) ) ;
if ( size < 32 )
goto found_first ;
if ( ~ tmp )
goto found_middle ;
size - = 32 ;
result + = 32 ;
}
while ( size & ~ 31UL ) {
if ( ~ ( tmp = * ( p + + ) ) )
goto found_middle ;
result + = 32 ;
size - = 32 ;
}
if ( ! size )
return result ;
tmp = * p ;
found_first :
/* tmp is little endian, so we would have to swab the shift,
* see above . But then we have to swab tmp below for ffz , so
* we might as well do this here .
*/
return result + ffz ( __swab32 ( tmp ) | ( ~ 0UL < < size ) ) ;
found_middle :
return result + ffz ( __swab32 ( tmp ) ) ;
}
# endif
# define ext2_set_bit_atomic(lock, nr, addr) \
( { \
int ret ; \
spin_lock ( lock ) ; \
ret = ext2_set_bit ( ( nr ) , ( addr ) ) ; \
spin_unlock ( lock ) ; \
ret ; \
} )
# define ext2_clear_bit_atomic(lock, nr, addr) \
( { \
int ret ; \
spin_lock ( lock ) ; \
ret = ext2_clear_bit ( ( nr ) , ( addr ) ) ; \
spin_unlock ( lock ) ; \
ret ; \
} )
/* Bitmap functions for the minix filesystem. */
# define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
# define minix_set_bit(nr,addr) set_bit(nr,addr)
# define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
# define minix_test_bit(nr,addr) test_bit(nr,addr)
# define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
# define ffs(x) generic_ffs(x)
# define fls(x) generic_fls(x)
2005-12-21 19:30:53 -08:00
# define fls64(x) generic_fls64(x)
2005-04-16 15:20:36 -07:00
# endif /* __KERNEL__ */
# endif /* __ASM_SH64_BITOPS_H */