linux/arch/x86/crypto/serpent_avx2_glue.c

392 lines
11 KiB
C
Raw Normal View History

/*
* Glue Code for x86_64/AVX2 assembler optimized version of Serpent
*
* Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <crypto/ablk_helper.h>
#include <crypto/algapi.h>
#include <crypto/ctr.h>
#include <crypto/lrw.h>
#include <crypto/xts.h>
#include <crypto/serpent.h>
#include <asm/fpu/api.h>
#include <asm/crypto/serpent-avx.h>
#include <asm/crypto/glue_helper.h>
#define SERPENT_AVX2_PARALLEL_BLOCKS 16
/* 16-way AVX2 parallel cipher functions */
asmlinkage void serpent_ecb_enc_16way(struct serpent_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void serpent_ecb_dec_16way(struct serpent_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void serpent_cbc_dec_16way(void *ctx, u128 *dst, const u128 *src);
asmlinkage void serpent_ctr_16way(void *ctx, u128 *dst, const u128 *src,
le128 *iv);
asmlinkage void serpent_xts_enc_16way(struct serpent_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
asmlinkage void serpent_xts_dec_16way(struct serpent_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
static const struct common_glue_ctx serpent_enc = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_enc_16way) }
}, {
.num_blocks = 8,
.fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_enc_8way_avx) }
}, {
.num_blocks = 1,
.fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_encrypt) }
} }
};
static const struct common_glue_ctx serpent_ctr = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_ctr_16way) }
}, {
.num_blocks = 8,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_ctr_8way_avx) }
}, {
.num_blocks = 1,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(__serpent_crypt_ctr) }
} }
};
static const struct common_glue_ctx serpent_enc_xts = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc_16way) }
}, {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc_8way_avx) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc) }
} }
};
static const struct common_glue_ctx serpent_dec = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_dec_16way) }
}, {
.num_blocks = 8,
.fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_dec_8way_avx) }
}, {
.num_blocks = 1,
.fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_decrypt) }
} }
};
static const struct common_glue_ctx serpent_dec_cbc = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(serpent_cbc_dec_16way) }
}, {
.num_blocks = 8,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(serpent_cbc_dec_8way_avx) }
}, {
.num_blocks = 1,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(__serpent_decrypt) }
} }
};
static const struct common_glue_ctx serpent_dec_xts = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec_16way) }
}, {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec_8way_avx) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec) }
} }
};
static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ecb_crypt_128bit(&serpent_enc, desc, dst, src, nbytes);
}
static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ecb_crypt_128bit(&serpent_dec, desc, dst, src, nbytes);
}
static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(__serpent_encrypt), desc,
dst, src, nbytes);
}
static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_cbc_decrypt_128bit(&serpent_dec_cbc, desc, dst, src,
nbytes);
}
static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ctr_crypt_128bit(&serpent_ctr, desc, dst, src, nbytes);
}
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
return glue_xts_crypt_128bit(&serpent_enc_xts, desc, dst, src, nbytes,
XTS_TWEAK_CAST(__serpent_encrypt),
&ctx->tweak_ctx, &ctx->crypt_ctx);
}
static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
return glue_xts_crypt_128bit(&serpent_dec_xts, desc, dst, src, nbytes,
XTS_TWEAK_CAST(__serpent_encrypt),
&ctx->tweak_ctx, &ctx->crypt_ctx);
}
static struct crypto_alg srp_algs[] = { {
.cra_name = "__ecb-serpent-avx2",
.cra_driver_name = "__driver-ecb-serpent-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_INTERNAL,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct serpent_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE,
.max_keysize = SERPENT_MAX_KEY_SIZE,
.setkey = serpent_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "__cbc-serpent-avx2",
.cra_driver_name = "__driver-cbc-serpent-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_INTERNAL,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct serpent_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE,
.max_keysize = SERPENT_MAX_KEY_SIZE,
.setkey = serpent_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
}, {
.cra_name = "__ctr-serpent-avx2",
.cra_driver_name = "__driver-ctr-serpent-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct serpent_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE,
.max_keysize = SERPENT_MAX_KEY_SIZE,
.ivsize = SERPENT_BLOCK_SIZE,
.setkey = serpent_setkey,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
}, {
.cra_name = "__xts-serpent-avx2",
.cra_driver_name = "__driver-xts-serpent-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_INTERNAL,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct serpent_xts_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE * 2,
.max_keysize = SERPENT_MAX_KEY_SIZE * 2,
.ivsize = SERPENT_BLOCK_SIZE,
.setkey = xts_serpent_setkey,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
},
},
}, {
.cra_name = "ecb(serpent)",
.cra_driver_name = "ecb-serpent-avx2",
.cra_priority = 600,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE,
.max_keysize = SERPENT_MAX_KEY_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "cbc(serpent)",
.cra_driver_name = "cbc-serpent-avx2",
.cra_priority = 600,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE,
.max_keysize = SERPENT_MAX_KEY_SIZE,
.ivsize = SERPENT_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = __ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "ctr(serpent)",
.cra_driver_name = "ctr-serpent-avx2",
.cra_priority = 600,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE,
.max_keysize = SERPENT_MAX_KEY_SIZE,
.ivsize = SERPENT_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_encrypt,
.geniv = "chainiv",
},
},
}, {
.cra_name = "xts(serpent)",
.cra_driver_name = "xts-serpent-avx2",
.cra_priority = 600,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = SERPENT_MIN_KEY_SIZE * 2,
.max_keysize = SERPENT_MAX_KEY_SIZE * 2,
.ivsize = SERPENT_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
} };
static int __init init(void)
{
const char *feature_name;
if (!boot_cpu_has(X86_FEATURE_AVX2) || !boot_cpu_has(X86_FEATURE_OSXSAVE)) {
pr_info("AVX2 instructions are not detected.\n");
return -ENODEV;
}
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 16:31:26 -07:00
if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM,
&feature_name)) {
pr_info("CPU feature '%s' is not supported.\n", feature_name);
return -ENODEV;
}
return crypto_register_algs(srp_algs, ARRAY_SIZE(srp_algs));
}
static void __exit fini(void)
{
crypto_unregister_algs(srp_algs, ARRAY_SIZE(srp_algs));
}
module_init(init);
module_exit(fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Serpent Cipher Algorithm, AVX2 optimized");
MODULE_ALIAS_CRYPTO("serpent");
MODULE_ALIAS_CRYPTO("serpent-asm");