2005-04-17 02:20:36 +04:00
/*
* Device driver for the SYMBIOS / LSILOGIC 53 C8XX and 53 C1010 family
* of PCI - SCSI IO processors .
*
* Copyright ( C ) 1999 - 2001 Gerard Roudier < groudier @ free . fr >
*
* This driver is derived from the Linux sym53c8xx driver .
* Copyright ( C ) 1998 - 2000 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux - 1.2 .13 .
*
* The original ncr driver has been written for 386 bsd and FreeBSD by
* Wolfgang Stanglmeier < wolf @ cologne . de >
* Stefan Esser < se @ mi . Uni - Koeln . de >
* Copyright ( C ) 1994 Wolfgang Stanglmeier
*
* Other major contributions :
*
* NVRAM detection and reading .
* Copyright ( C ) 1997 Richard Waltham < dormouse @ farsrobt . demon . co . uk >
*
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
2005-10-31 02:03:48 +03:00
# include <linux/gfp.h>
2005-04-17 02:20:36 +04:00
# ifndef SYM_HIPD_H
# define SYM_HIPD_H
/*
* Generic driver options .
*
* They may be defined in platform specific headers , if they
* are useful .
*
* SYM_OPT_HANDLE_DEVICE_QUEUEING
* When this option is set , the driver will use a queue per
* device and handle QUEUE FULL status requeuing internally .
*
* SYM_OPT_LIMIT_COMMAND_REORDERING
* When this option is set , the driver tries to limit tagged
* command reordering to some reasonnable value .
* ( set for Linux )
*/
#if 0
# define SYM_OPT_HANDLE_DEVICE_QUEUEING
# define SYM_OPT_LIMIT_COMMAND_REORDERING
# endif
/*
* Active debugging tags and verbosity .
* Both DEBUG_FLAGS and sym_verbose can be redefined
* by the platform specific code to something else .
*/
# define DEBUG_ALLOC (0x0001)
# define DEBUG_PHASE (0x0002)
# define DEBUG_POLL (0x0004)
# define DEBUG_QUEUE (0x0008)
# define DEBUG_RESULT (0x0010)
# define DEBUG_SCATTER (0x0020)
# define DEBUG_SCRIPT (0x0040)
# define DEBUG_TINY (0x0080)
# define DEBUG_TIMING (0x0100)
# define DEBUG_NEGO (0x0200)
# define DEBUG_TAGS (0x0400)
# define DEBUG_POINTER (0x0800)
# ifndef DEBUG_FLAGS
# define DEBUG_FLAGS (0x0000)
# endif
# ifndef sym_verbose
# define sym_verbose (np->verbose)
# endif
/*
* These ones should have been already defined .
*/
# ifndef assert
# define assert(expression) { \
if ( ! ( expression ) ) { \
( void ) panic ( \
" assertion \" %s \" failed: file \" %s \" , line %d \n " , \
# expression, \
__FILE__ , __LINE__ ) ; \
} \
}
# endif
/*
* Number of tasks per device we want to handle .
*/
# if SYM_CONF_MAX_TAG_ORDER > 8
# error "more than 256 tags per logical unit not allowed."
# endif
# define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
/*
* Donnot use more tasks that we can handle .
*/
# ifndef SYM_CONF_MAX_TAG
# define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
# endif
# if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
# undef SYM_CONF_MAX_TAG
# define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
# endif
/*
* This one means ' NO TAG for this job '
*/
# define NO_TAG (256)
/*
* Number of SCSI targets .
*/
# if SYM_CONF_MAX_TARGET > 16
# error "more than 16 targets not allowed."
# endif
/*
* Number of logical units per target .
*/
# if SYM_CONF_MAX_LUN > 64
# error "more than 64 logical units per target not allowed."
# endif
/*
* Asynchronous pre - scaler ( ns ) . Shall be 40 for
* the SCSI timings to be compliant .
*/
# define SYM_CONF_MIN_ASYNC (40)
2005-07-27 22:45:17 +04:00
/*
* MEMORY ALLOCATOR .
*/
# define SYM_MEM_WARN 1 /* Warn on failed operations */
# define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
# define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
# define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
2005-04-17 02:20:36 +04:00
/*
* Shortest memory chunk is ( 1 < < SYM_MEM_SHIFT ) , currently 16.
* Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized .
* ( 1 PAGE at a time is just fine ) .
*/
# define SYM_MEM_SHIFT 4
# define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
# define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
/*
* Number of entries in the START and DONE queues .
*
* We limit to 1 PAGE in order to succeed allocation of
* these queues . Each entry is 8 bytes long ( 2 DWORDS ) .
*/
# ifdef SYM_CONF_MAX_START
# define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
# else
# define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
# define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
# endif
# if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE / 8
# undef SYM_CONF_MAX_QUEUE
# define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE / 8)
# undef SYM_CONF_MAX_START
# define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
# endif
/*
* For this one , we want a short name : - )
*/
# define MAX_QUEUE SYM_CONF_MAX_QUEUE
/*
* Common definitions for both bus space based and legacy IO methods .
*/
# define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
# define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
# define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
# define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
# define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
# define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
# define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
# define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
# define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
# define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
# define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
# define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
# define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
# define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
# define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
# define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
# define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
# define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
/*
* We normally want the chip to have a consistent view
* of driver internal data structures when we restart it .
* Thus these macros .
*/
# define OUTL_DSP(np, v) \
do { \
MEMORY_WRITE_BARRIER ( ) ; \
OUTL ( np , nc_dsp , ( v ) ) ; \
} while ( 0 )
# define OUTONB_STD() \
do { \
MEMORY_WRITE_BARRIER ( ) ; \
OUTONB ( np , nc_dcntl , ( STD | NOCOM ) ) ; \
} while ( 0 )
/*
* Command control block states .
*/
# define HS_IDLE (0)
# define HS_BUSY (1)
# define HS_NEGOTIATE (2) /* sync/wide data transfer*/
# define HS_DISCONNECT (3) /* Disconnected by target */
# define HS_WAIT (4) /* waiting for resource */
# define HS_DONEMASK (0x80)
# define HS_COMPLETE (4|HS_DONEMASK)
# define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
# define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
# define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
/*
* Software Interrupt Codes
*/
# define SIR_BAD_SCSI_STATUS (1)
# define SIR_SEL_ATN_NO_MSG_OUT (2)
# define SIR_MSG_RECEIVED (3)
# define SIR_MSG_WEIRD (4)
# define SIR_NEGO_FAILED (5)
# define SIR_NEGO_PROTO (6)
# define SIR_SCRIPT_STOPPED (7)
# define SIR_REJECT_TO_SEND (8)
# define SIR_SWIDE_OVERRUN (9)
# define SIR_SODL_UNDERRUN (10)
# define SIR_RESEL_NO_MSG_IN (11)
# define SIR_RESEL_NO_IDENTIFY (12)
# define SIR_RESEL_BAD_LUN (13)
# define SIR_TARGET_SELECTED (14)
# define SIR_RESEL_BAD_I_T_L (15)
# define SIR_RESEL_BAD_I_T_L_Q (16)
# define SIR_ABORT_SENT (17)
# define SIR_RESEL_ABORTED (18)
# define SIR_MSG_OUT_DONE (19)
# define SIR_COMPLETE_ERROR (20)
# define SIR_DATA_OVERRUN (21)
# define SIR_BAD_PHASE (22)
# if SYM_CONF_DMA_ADDRESSING_MODE == 2
# define SIR_DMAP_DIRTY (23)
# define SIR_MAX (23)
# else
# define SIR_MAX (22)
# endif
/*
* Extended error bit codes .
* xerr_status field of struct sym_ccb .
*/
# define XE_EXTRA_DATA (1) /* unexpected data phase */
# define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
# define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
# define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
# define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
/*
* Negotiation status .
* nego_status field of struct sym_ccb .
*/
# define NS_SYNC (1)
# define NS_WIDE (2)
# define NS_PPR (3)
/*
* A CCB hashed table is used to retrieve CCB address
* from DSA value .
*/
# define CCB_HASH_SHIFT 8
# define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
# define CCB_HASH_MASK (CCB_HASH_SIZE-1)
# if 1
# define CCB_HASH_CODE(dsa) \
( ( ( dsa ) > > ( _LGRU16_ ( sizeof ( struct sym_ccb ) ) ) ) & CCB_HASH_MASK )
# else
# define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
# endif
# if SYM_CONF_DMA_ADDRESSING_MODE == 2
/*
* We may want to use segment registers for 64 bit DMA .
* 16 segments registers - > up to 64 GB addressable .
*/
# define SYM_DMAP_SHIFT (4)
# define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
# define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
# endif
/*
* Device flags .
*/
# define SYM_DISC_ENABLED (1)
# define SYM_TAGS_ENABLED (1<<1)
# define SYM_SCAN_BOOT_DISABLED (1<<2)
# define SYM_SCAN_LUNS_DISABLED (1<<3)
/*
* Host adapter miscellaneous flags .
*/
# define SYM_AVOID_BUS_RESET (1)
/*
* Misc .
*/
# define SYM_SNOOP_TIMEOUT (10000000)
# define BUS_8_BIT 0
# define BUS_16_BIT 1
/*
* Gather negotiable parameters value
*/
struct sym_trans {
u8 period ;
u8 offset ;
unsigned int width : 1 ;
unsigned int iu : 1 ;
unsigned int dt : 1 ;
unsigned int qas : 1 ;
unsigned int check_nego : 1 ;
} ;
/*
* Global TCB HEADER .
*
* Due to lack of indirect addressing on earlier NCR chips ,
* this substructure is copied from the TCB to a global
* address after selection .
* For SYMBIOS chips that support LOAD / STORE this copy is
* not needed and thus not performed .
*/
struct sym_tcbh {
/*
* Scripts bus addresses of LUN table accessed from scripts .
* LUN # 0 is a special case , since multi - lun devices are rare ,
* and we we want to speed - up the general case and not waste
* resources .
*/
u32 luntbl_sa ; /* bus address of this table */
u32 lun0_sa ; /* bus address of LCB #0 */
/*
* Actual SYNC / WIDE IO registers value for this target .
* ' sval ' , ' wval ' and ' uval ' are read from SCRIPTS and
* so have alignment constraints .
*/
/*0*/ u_char uval ; /* -> SCNTL4 register */
/*1*/ u_char sval ; /* -> SXFER io register */
/*2*/ u_char filler1 ;
/*3*/ u_char wval ; /* -> SCNTL3 io register */
} ;
/*
* Target Control Block
*/
struct sym_tcb {
/*
* TCB header .
* Assumed at offset 0.
*/
/*0*/ struct sym_tcbh head ;
/*
* LUN table used by the SCRIPTS processor .
* An array of bus addresses is used on reselection .
*/
u32 * luntbl ; /* LCBs bus address table */
/*
* LUN table used by the C code .
*/
struct sym_lcb * lun0p ; /* LCB of LUN #0 (usual case) */
# if SYM_CONF_MAX_LUN > 1
struct sym_lcb * * lunmp ; /* Other LCBs [1..MAX_LUN] */
# endif
# ifdef SYM_HAVE_STCB
/*
* O / S specific data structure .
*/
struct sym_stcb s ;
# endif
/* Transfer goal */
struct sym_trans tgoal ;
/*
* Keep track of the CCB used for the negotiation in order
* to ensure that only 1 negotiation is queued at a time .
*/
struct sym_ccb * nego_cp ; /* CCB used for the nego */
/*
* Set when we want to reset the device .
*/
u_char to_reset ;
/*
* Other user settable limits and options .
* These limits are read from the NVRAM if present .
*/
2005-11-30 07:08:44 +03:00
unsigned char usrflags ;
unsigned char usr_period ;
unsigned char usr_width ;
unsigned short usrtags ;
2005-05-20 22:15:43 +04:00
struct scsi_target * starget ;
2005-04-17 02:20:36 +04:00
} ;
/*
* Global LCB HEADER .
*
* Due to lack of indirect addressing on earlier NCR chips ,
* this substructure is copied from the LCB to a global
* address after selection .
* For SYMBIOS chips that support LOAD / STORE this copy is
* not needed and thus not performed .
*/
struct sym_lcbh {
/*
* SCRIPTS address jumped by SCRIPTS on reselection .
* For not probed logical units , this address points to
* SCRIPTS that deal with bad LU handling ( must be at
* offset zero of the LCB for that reason ) .
*/
/*0*/ u32 resel_sa ;
/*
* Task ( bus address of a CCB ) read from SCRIPTS that points
* to the unique ITL nexus allowed to be disconnected .
*/
u32 itl_task_sa ;
/*
* Task table bus address ( read from SCRIPTS ) .
*/
u32 itlq_tbl_sa ;
} ;
/*
* Logical Unit Control Block
*/
struct sym_lcb {
/*
* TCB header .
* Assumed at offset 0.
*/
/*0*/ struct sym_lcbh head ;
/*
* Task table read from SCRIPTS that contains pointers to
* ITLQ nexuses . The bus address read from SCRIPTS is
* inside the header .
*/
u32 * itlq_tbl ; /* Kernel virtual address */
/*
* Busy CCBs management .
*/
u_short busy_itlq ; /* Number of busy tagged CCBs */
u_short busy_itl ; /* Number of busy untagged CCBs */
/*
* Circular tag allocation buffer .
*/
u_short ia_tag ; /* Tag allocation index */
u_short if_tag ; /* Tag release index */
u_char * cb_tags ; /* Circular tags buffer */
/*
* O / S specific data structure .
*/
# ifdef SYM_HAVE_SLCB
struct sym_slcb s ;
# endif
# ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
/*
* Optionnaly the driver can handle device queueing ,
* and requeues internally command to redo .
*/
SYM_QUEHEAD waiting_ccbq ;
SYM_QUEHEAD started_ccbq ;
int num_sgood ;
u_short started_tags ;
u_short started_no_tag ;
u_short started_max ;
u_short started_limit ;
# endif
# ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
/*
* Optionally the driver can try to prevent SCSI
* IOs from being reordered too much .
*/
u_char tags_si ; /* Current index to tags sum */
u_short tags_sum [ 2 ] ; /* Tags sum counters */
u_short tags_since ; /* # of tags since last switch */
# endif
/*
* Set when we want to clear all tasks .
*/
u_char to_clear ;
/*
* Capabilities .
*/
u_char user_flags ;
u_char curr_flags ;
} ;
/*
* Action from SCRIPTS on a task .
* Is part of the CCB , but is also used separately to plug
* error handling action to perform from SCRIPTS .
*/
struct sym_actscr {
u32 start ; /* Jumped by SCRIPTS after selection */
u32 restart ; /* Jumped by SCRIPTS on relection */
} ;
/*
* Phase mismatch context .
*
* It is part of the CCB and is used as parameters for the
* DATA pointer . We need two contexts to handle correctly the
* SAVED DATA POINTER .
*/
struct sym_pmc {
struct sym_tblmove sg ; /* Updated interrupted SG block */
u32 ret ; /* SCRIPT return address */
} ;
/*
* LUN control block lookup .
* We use a direct pointer for LUN # 0 , and a table of
* pointers which is only allocated for devices that support
* LUN ( s ) > 0.
*/
# if SYM_CONF_MAX_LUN <= 1
# define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
# else
# define sym_lp(tp, lun) \
( ! lun ) ? ( tp ) - > lun0p : ( tp ) - > lunmp ? ( tp ) - > lunmp [ ( lun ) ] : NULL
# endif
/*
* Status are used by the host and the script processor .
*
* The last four bytes ( status [ 4 ] ) are copied to the
* scratchb register ( declared as scr0 . . scr3 ) just after the
* select / reselect , and copied back just after disconnecting .
* Inside the script the XX_REG are used .
*/
/*
* Last four bytes ( script )
*/
# define HX_REG scr0
# define HX_PRT nc_scr0
# define HS_REG scr1
# define HS_PRT nc_scr1
# define SS_REG scr2
# define SS_PRT nc_scr2
# define HF_REG scr3
# define HF_PRT nc_scr3
/*
* Last four bytes ( host )
*/
# define host_xflags phys.head.status[0]
# define host_status phys.head.status[1]
# define ssss_status phys.head.status[2]
# define host_flags phys.head.status[3]
/*
* Host flags
*/
# define HF_IN_PM0 1u
# define HF_IN_PM1 (1u<<1)
# define HF_ACT_PM (1u<<2)
# define HF_DP_SAVED (1u<<3)
# define HF_SENSE (1u<<4)
# define HF_EXT_ERR (1u<<5)
# define HF_DATA_IN (1u<<6)
# ifdef SYM_CONF_IARB_SUPPORT
# define HF_HINT_IARB (1u<<7)
# endif
/*
* More host flags
*/
# if SYM_CONF_DMA_ADDRESSING_MODE == 2
# define HX_DMAP_DIRTY (1u<<7)
# endif
/*
* Global CCB HEADER .
*
* Due to lack of indirect addressing on earlier NCR chips ,
* this substructure is copied from the ccb to a global
* address after selection ( or reselection ) and copied back
* before disconnect .
* For SYMBIOS chips that support LOAD / STORE this copy is
* not needed and thus not performed .
*/
struct sym_ccbh {
/*
* Start and restart SCRIPTS addresses ( must be at 0 ) .
*/
/*0*/ struct sym_actscr go ;
/*
* SCRIPTS jump address that deal with data pointers .
* ' savep ' points to the position in the script responsible
* for the actual transfer of data .
* It ' s written on reception of a SAVE_DATA_POINTER message .
*/
u32 savep ; /* Jump address to saved data pointer */
u32 lastp ; /* SCRIPTS address at end of data */
/*
* Status fields .
*/
u8 status [ 4 ] ;
} ;
/*
* GET / SET the value of the data pointer used by SCRIPTS .
*
* We must distinguish between the LOAD / STORE - based SCRIPTS
* that use directly the header in the CCB , and the NCR - GENERIC
* SCRIPTS that use the copy of the header in the HCB .
*/
# if SYM_CONF_GENERIC_SUPPORT
# define sym_set_script_dp(np, cp, dp) \
do { \
if ( np - > features & FE_LDSTR ) \
cp - > phys . head . lastp = cpu_to_scr ( dp ) ; \
else \
np - > ccb_head . lastp = cpu_to_scr ( dp ) ; \
} while ( 0 )
# define sym_get_script_dp(np, cp) \
scr_to_cpu ( ( np - > features & FE_LDSTR ) ? \
cp - > phys . head . lastp : np - > ccb_head . lastp )
# else
# define sym_set_script_dp(np, cp, dp) \
do { \
cp - > phys . head . lastp = cpu_to_scr ( dp ) ; \
} while ( 0 )
# define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
# endif
/*
* Data Structure Block
*
* During execution of a ccb by the script processor , the
* DSA ( data structure address ) register points to this
* substructure of the ccb .
*/
struct sym_dsb {
/*
* CCB header .
* Also assumed at offset 0 of the sym_ccb structure .
*/
/*0*/ struct sym_ccbh head ;
/*
* Phase mismatch contexts .
* We need two to handle correctly the SAVED DATA POINTER .
* MUST BOTH BE AT OFFSET < 256 , due to using 8 bit arithmetic
* for address calculation from SCRIPTS .
*/
struct sym_pmc pm0 ;
struct sym_pmc pm1 ;
/*
* Table data for Script
*/
struct sym_tblsel select ;
struct sym_tblmove smsg ;
struct sym_tblmove smsg_ext ;
struct sym_tblmove cmd ;
struct sym_tblmove sense ;
struct sym_tblmove wresid ;
struct sym_tblmove data [ SYM_CONF_MAX_SG ] ;
} ;
/*
* Our Command Control Block
*/
struct sym_ccb {
/*
* This is the data structure which is pointed by the DSA
* register when it is executed by the script processor .
* It must be the first entry .
*/
struct sym_dsb phys ;
/*
* Pointer to CAM ccb and related stuff .
*/
struct scsi_cmnd * cmd ; /* CAM scsiio ccb */
u8 cdb_buf [ 16 ] ; /* Copy of CDB */
# define SYM_SNS_BBUF_LEN 32
u8 sns_bbuf [ SYM_SNS_BBUF_LEN ] ; /* Bounce buffer for sense data */
int data_len ; /* Total data length */
int segments ; /* Number of SG segments */
u8 order ; /* Tag type (if tagged command) */
2005-05-20 22:15:43 +04:00
unsigned char odd_byte_adjustment ; /* odd-sized req on wide bus */
2005-04-17 02:20:36 +04:00
u_char nego_status ; /* Negotiation status */
u_char xerr_status ; /* Extended error flags */
u32 extra_bytes ; /* Extraneous bytes transferred */
/*
* Message areas .
* We prepare a message to be sent after selection .
* We may use a second one if the command is rescheduled
* due to CHECK_CONDITION or COMMAND TERMINATED .
* Contents are IDENTIFY and SIMPLE_TAG .
* While negotiating sync or wide transfer ,
* a SDTR or WDTR message is appended .
*/
u_char scsi_smsg [ 12 ] ;
u_char scsi_smsg2 [ 12 ] ;
/*
* Auto request sense related fields .
*/
u_char sensecmd [ 6 ] ; /* Request Sense command */
u_char sv_scsi_status ; /* Saved SCSI status */
u_char sv_xerr_status ; /* Saved extended status */
int sv_resid ; /* Saved residual */
/*
* Other fields .
*/
u32 ccb_ba ; /* BUS address of this CCB */
u_short tag ; /* Tag for this transfer */
/* NO_TAG means no tag */
u_char target ;
u_char lun ;
struct sym_ccb * link_ccbh ; /* Host adapter CCB hash chain */
SYM_QUEHEAD link_ccbq ; /* Link to free/busy CCB queue */
u32 startp ; /* Initial data pointer */
u32 goalp ; /* Expected last data pointer */
int ext_sg ; /* Extreme data pointer, used */
int ext_ofs ; /* to calculate the residual. */
# ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
SYM_QUEHEAD link2_ccbq ; /* Link for device queueing */
u_char started ; /* CCB queued to the squeue */
# endif
u_char to_abort ; /* Want this IO to be aborted */
# ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
u_char tags_si ; /* Lun tags sum index (0,1) */
# endif
} ;
2005-05-20 22:15:43 +04:00
# define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
2005-04-17 02:20:36 +04:00
typedef struct device * m_pool_ident_t ;
/*
* Host Control Block
*/
struct sym_hcb {
/*
* Global headers .
* Due to poorness of addressing capabilities , earlier
* chips ( 810 , 815 , 825 ) copy part of the data structures
* ( CCB , TCB and LCB ) in fixed areas .
*/
# if SYM_CONF_GENERIC_SUPPORT
struct sym_ccbh ccb_head ;
struct sym_tcbh tcb_head ;
struct sym_lcbh lcb_head ;
# endif
/*
* Idle task and invalid task actions and
* their bus addresses .
*/
struct sym_actscr idletask , notask , bad_itl , bad_itlq ;
u32 idletask_ba , notask_ba , bad_itl_ba , bad_itlq_ba ;
/*
* Dummy lun table to protect us against target
* returning bad lun number on reselection .
*/
u32 * badluntbl ; /* Table physical address */
u32 badlun_sa ; /* SCRIPT handler BUS address */
/*
* Bus address of this host control block .
*/
u32 hcb_ba ;
/*
* Bit 32 - 63 of the on - chip RAM bus address in LE format .
* The START_RAM64 script loads the MMRS and MMWS from this
* field .
*/
u32 scr_ram_seg ;
/*
* Initial value of some IO register bits .
* These values are assumed to have been set by BIOS , and may
* be used to probe adapter implementation differences .
*/
u_char sv_scntl0 , sv_scntl3 , sv_dmode , sv_dcntl , sv_ctest3 , sv_ctest4 ,
sv_ctest5 , sv_gpcntl , sv_stest2 , sv_stest4 , sv_scntl4 ,
sv_stest1 ;
/*
* Actual initial value of IO register bits used by the
* driver . They are loaded at initialisation according to
* features that are to be enabled / disabled .
*/
u_char rv_scntl0 , rv_scntl3 , rv_dmode , rv_dcntl , rv_ctest3 , rv_ctest4 ,
rv_ctest5 , rv_stest2 , rv_ccntl0 , rv_ccntl1 , rv_scntl4 ;
/*
* Target data .
*/
struct sym_tcb target [ SYM_CONF_MAX_TARGET ] ;
/*
* Target control block bus address array used by the SCRIPT
* on reselection .
*/
u32 * targtbl ;
u32 targtbl_ba ;
/*
* DMA pool handle for this HBA .
*/
m_pool_ident_t bus_dmat ;
/*
* O / S specific data structure
*/
struct sym_shcb s ;
/*
* Physical bus addresses of the chip .
*/
u32 mmio_ba ; /* MMIO 32 bit BUS address */
u32 ram_ba ; /* RAM 32 bit BUS address */
/*
* SCRIPTS virtual and physical bus addresses .
* ' script ' is loaded in the on - chip RAM if present .
* ' scripth ' stays in main memory for all chips except the
* 53 C895A , 53 C896 and 53 C1010 that provide 8 K on - chip RAM .
*/
u_char * scripta0 ; /* Copy of scripts A, B, Z */
u_char * scriptb0 ;
u_char * scriptz0 ;
u32 scripta_ba ; /* Actual scripts A, B, Z */
u32 scriptb_ba ; /* 32 bit bus addresses. */
u32 scriptz_ba ;
u_short scripta_sz ; /* Actual size of script A, B, Z*/
u_short scriptb_sz ;
u_short scriptz_sz ;
/*
* Bus addresses , setup and patch methods for
* the selected firmware .
*/
struct sym_fwa_ba fwa_bas ; /* Useful SCRIPTA bus addresses */
struct sym_fwb_ba fwb_bas ; /* Useful SCRIPTB bus addresses */
struct sym_fwz_ba fwz_bas ; /* Useful SCRIPTZ bus addresses */
void ( * fw_setup ) ( struct sym_hcb * np , struct sym_fw * fw ) ;
2007-10-05 23:55:13 +04:00
void ( * fw_patch ) ( struct Scsi_Host * ) ;
2005-04-17 02:20:36 +04:00
char * fw_name ;
/*
* General controller parameters and configuration .
*/
u_int features ; /* Chip features map */
u_char myaddr ; /* SCSI id of the adapter */
u_char maxburst ; /* log base 2 of dwords burst */
u_char maxwide ; /* Maximum transfer width */
u_char minsync ; /* Min sync period factor (ST) */
u_char maxsync ; /* Max sync period factor (ST) */
u_char maxoffs ; /* Max scsi offset (ST) */
u_char minsync_dt ; /* Min sync period factor (DT) */
u_char maxsync_dt ; /* Max sync period factor (DT) */
u_char maxoffs_dt ; /* Max scsi offset (DT) */
u_char multiplier ; /* Clock multiplier (1,2,4) */
u_char clock_divn ; /* Number of clock divisors */
u32 clock_khz ; /* SCSI clock frequency in KHz */
u32 pciclk_khz ; /* Estimated PCI clock in KHz */
/*
* Start queue management .
* It is filled up by the host processor and accessed by the
* SCRIPTS processor in order to start SCSI commands .
*/
volatile /* Prevent code optimizations */
u32 * squeue ; /* Start queue virtual address */
u32 squeue_ba ; /* Start queue BUS address */
u_short squeueput ; /* Next free slot of the queue */
u_short actccbs ; /* Number of allocated CCBs */
/*
* Command completion queue .
* It is the same size as the start queue to avoid overflow .
*/
u_short dqueueget ; /* Next position to scan */
volatile /* Prevent code optimizations */
u32 * dqueue ; /* Completion (done) queue */
u32 dqueue_ba ; /* Done queue BUS address */
/*
* Miscellaneous buffers accessed by the scripts - processor .
* They shall be DWORD aligned , because they may be read or
* written with a script command .
*/
u_char msgout [ 8 ] ; /* Buffer for MESSAGE OUT */
u_char msgin [ 8 ] ; /* Buffer for MESSAGE IN */
u32 lastmsg ; /* Last SCSI message sent */
u32 scratch ; /* Scratch for SCSI receive */
/* Also used for cache test */
/*
* Miscellaneous configuration and status parameters .
*/
u_char usrflags ; /* Miscellaneous user flags */
u_char scsi_mode ; /* Current SCSI BUS mode */
u_char verbose ; /* Verbosity for this controller*/
/*
* CCB lists and queue .
*/
struct sym_ccb * * ccbh ; /* CCBs hashed by DSA value */
/* CCB_HASH_SIZE lists of CCBs */
SYM_QUEHEAD free_ccbq ; /* Queue of available CCBs */
SYM_QUEHEAD busy_ccbq ; /* Queue of busy CCBs */
/*
* During error handling and / or recovery ,
* active CCBs that are to be completed with
* error or requeued are moved from the busy_ccbq
* to the comp_ccbq prior to completion .
*/
SYM_QUEHEAD comp_ccbq ;
# ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
SYM_QUEHEAD dummy_ccbq ;
# endif
/*
* IMMEDIATE ARBITRATION ( IARB ) control .
*
* We keep track in ' last_cp ' of the last CCB that has been
* queued to the SCRIPTS processor and clear ' last_cp ' when
* this CCB completes . If last_cp is not zero at the moment
* we queue a new CCB , we set a flag in ' last_cp ' that is
* used by the SCRIPTS as a hint for setting IARB .
* We donnot set more than ' iarb_max ' consecutive hints for
* IARB in order to leave devices a chance to reselect .
* By the way , any non zero value of ' iarb_max ' is unfair . : )
*/
# ifdef SYM_CONF_IARB_SUPPORT
u_short iarb_max ; /* Max. # consecutive IARB hints*/
u_short iarb_count ; /* Actual # of these hints */
struct sym_ccb * last_cp ;
# endif
/*
* Command abort handling .
* We need to synchronize tightly with the SCRIPTS
* processor in order to handle things correctly .
*/
u_char abrt_msg [ 4 ] ; /* Message to send buffer */
struct sym_tblmove abrt_tbl ; /* Table for the MOV of it */
struct sym_tblsel abrt_sel ; /* Sync params for selection */
u_char istat_sem ; /* Tells the chip to stop (SEM) */
/*
* 64 bit DMA handling .
*/
# if SYM_CONF_DMA_ADDRESSING_MODE != 0
u_char use_dac ; /* Use PCI DAC cycles */
# if SYM_CONF_DMA_ADDRESSING_MODE == 2
u_char dmap_dirty ; /* Dma segments registers dirty */
u32 dmap_bah [ SYM_DMAP_SIZE ] ; /* Segment registers map */
# endif
# endif
} ;
2007-10-05 23:55:09 +04:00
# if SYM_CONF_DMA_ADDRESSING_MODE == 0
# define use_dac(np) 0
# define set_dac(np) do { } while (0)
# else
# define use_dac(np) (np)->use_dac
# define set_dac(np) (np)->use_dac = 1
# endif
2005-04-17 02:20:36 +04:00
# define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
/*
* FIRMWARES ( sym_fw . c )
*/
struct sym_fw * sym_find_firmware ( struct sym_chip * chip ) ;
void sym_fw_bind_script ( struct sym_hcb * np , u32 * start , int len ) ;
/*
* Driver methods called from O / S specific code .
*/
char * sym_driver_name ( void ) ;
void sym_print_xerr ( struct scsi_cmnd * cmd , int x_status ) ;
int sym_reset_scsi_bus ( struct sym_hcb * np , int enab_int ) ;
struct sym_chip * sym_lookup_chip_table ( u_short device_id , u_char revision ) ;
# ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
void sym_start_next_ccbs ( struct sym_hcb * np , struct sym_lcb * lp , int maxn ) ;
2006-03-28 20:03:44 +04:00
# else
void sym_put_start_queue ( struct sym_hcb * np , struct sym_ccb * cp ) ;
2005-04-17 02:20:36 +04:00
# endif
2007-10-05 23:55:13 +04:00
void sym_start_up ( struct Scsi_Host * , int reason ) ;
2007-10-05 23:55:12 +04:00
irqreturn_t sym_interrupt ( struct Scsi_Host * ) ;
2005-04-17 02:20:36 +04:00
int sym_clear_tasks ( struct sym_hcb * np , int cam_status , int target , int lun , int task ) ;
struct sym_ccb * sym_get_ccb ( struct sym_hcb * np , struct scsi_cmnd * cmd , u_char tag_order ) ;
void sym_free_ccb ( struct sym_hcb * np , struct sym_ccb * cp ) ;
struct sym_lcb * sym_alloc_lcb ( struct sym_hcb * np , u_char tn , u_char ln ) ;
int sym_queue_scsiio ( struct sym_hcb * np , struct scsi_cmnd * csio , struct sym_ccb * cp ) ;
int sym_abort_scsiio ( struct sym_hcb * np , struct scsi_cmnd * ccb , int timed_out ) ;
int sym_reset_scsi_target ( struct sym_hcb * np , int target ) ;
void sym_hcb_free ( struct sym_hcb * np ) ;
int sym_hcb_attach ( struct Scsi_Host * shost , struct sym_fw * fw , struct sym_nvram * nvram ) ;
/*
* Build a scatter / gather entry .
*
* For 64 bit systems , we use the 8 upper bits of the size field
* to provide bus address bits 32 - 39 to the SCRIPTS processor .
* This allows the 895 A , 896 , 1010 to address up to 1 TB of memory .
*/
# if SYM_CONF_DMA_ADDRESSING_MODE == 0
2007-10-05 23:55:09 +04:00
# define DMA_DAC_MASK DMA_32BIT_MASK
2005-04-17 02:20:36 +04:00
# define sym_build_sge(np, data, badd, len) \
do { \
( data ) - > addr = cpu_to_scr ( badd ) ; \
( data ) - > size = cpu_to_scr ( len ) ; \
} while ( 0 )
# elif SYM_CONF_DMA_ADDRESSING_MODE == 1
2007-10-05 23:55:09 +04:00
# define DMA_DAC_MASK DMA_40BIT_MASK
2005-04-17 02:20:36 +04:00
# define sym_build_sge(np, data, badd, len) \
do { \
( data ) - > addr = cpu_to_scr ( badd ) ; \
( data ) - > size = cpu_to_scr ( ( ( ( badd ) > > 8 ) & 0xff000000 ) + len ) ; \
} while ( 0 )
# elif SYM_CONF_DMA_ADDRESSING_MODE == 2
2007-10-05 23:55:09 +04:00
# define DMA_DAC_MASK DMA_64BIT_MASK
2005-04-17 02:20:36 +04:00
int sym_lookup_dmap ( struct sym_hcb * np , u32 h , int s ) ;
static __inline void
sym_build_sge ( struct sym_hcb * np , struct sym_tblmove * data , u64 badd , int len )
{
u32 h = ( badd > > 32 ) ;
int s = ( h & SYM_DMAP_MASK ) ;
if ( h ! = np - > dmap_bah [ s ] )
goto bad ;
good :
( data ) - > addr = cpu_to_scr ( badd ) ;
( data ) - > size = cpu_to_scr ( ( s < < 24 ) + len ) ;
return ;
bad :
s = sym_lookup_dmap ( np , h , s ) ;
goto good ;
}
# else
# error "Unsupported DMA addressing mode"
# endif
/*
* MEMORY ALLOCATOR .
*/
# define sym_get_mem_cluster() \
( void * ) __get_free_pages ( GFP_ATOMIC , SYM_MEM_PAGE_ORDER )
# define sym_free_mem_cluster(p) \
free_pages ( ( unsigned long ) p , SYM_MEM_PAGE_ORDER )
/*
* Link between free memory chunks of a given size .
*/
typedef struct sym_m_link {
struct sym_m_link * next ;
} * m_link_p ;
/*
* Virtual to bus physical translation for a given cluster .
* Such a structure is only useful with DMA abstraction .
*/
typedef struct sym_m_vtob { /* Virtual to Bus address translation */
struct sym_m_vtob * next ;
void * vaddr ; /* Virtual address */
dma_addr_t baddr ; /* Bus physical address */
} * m_vtob_p ;
/* Hash this stuff a bit to speed up translations */
# define VTOB_HASH_SHIFT 5
# define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
# define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
# define VTOB_HASH_CODE(m) \
( ( ( ( unsigned long ) ( m ) ) > > SYM_MEM_CLUSTER_SHIFT ) & VTOB_HASH_MASK )
/*
* Memory pool of a given kind .
* Ideally , we want to use :
* 1 ) 1 pool for memory we donnot need to involve in DMA .
* 2 ) The same pool for controllers that require same DMA
* constraints and features .
* The OS specific m_pool_id_t thing and the sym_m_pool_match ( )
* method are expected to tell the driver about .
*/
typedef struct sym_m_pool {
m_pool_ident_t dev_dmat ; /* Identifies the pool (see above) */
void * ( * get_mem_cluster ) ( struct sym_m_pool * ) ;
# ifdef SYM_MEM_FREE_UNUSED
void ( * free_mem_cluster ) ( struct sym_m_pool * , void * ) ;
# endif
# define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
# define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
int nump ;
m_vtob_p vtob [ VTOB_HASH_SIZE ] ;
struct sym_m_pool * next ;
struct sym_m_link h [ SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1 ] ;
} * m_pool_p ;
/*
* Alloc , free and translate addresses to bus physical
* for DMAable memory .
*/
void * __sym_calloc_dma ( m_pool_ident_t dev_dmat , int size , char * name ) ;
void __sym_mfree_dma ( m_pool_ident_t dev_dmat , void * m , int size , char * name ) ;
dma_addr_t __vtobus ( m_pool_ident_t dev_dmat , void * m ) ;
/*
* Verbs used by the driver code for DMAable memory handling .
* The _uvptv_ macro avoids a nasty warning about pointer to volatile
* being discarded .
*/
# define _uvptv_(p) ((void *)((u_long)(p)))
# define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
# define _sym_mfree_dma(np, p, l, n) \
__sym_mfree_dma ( np - > bus_dmat , _uvptv_ ( p ) , l , n )
# define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
# define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
# define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
/*
* We have to provide the driver memory allocator with methods for
* it to maintain virtual to bus physical address translations .
*/
# define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
static __inline void * sym_m_get_dma_mem_cluster ( m_pool_p mp , m_vtob_p vbp )
{
void * vaddr = NULL ;
dma_addr_t baddr = 0 ;
vaddr = dma_alloc_coherent ( mp - > dev_dmat , SYM_MEM_CLUSTER_SIZE , & baddr ,
GFP_ATOMIC ) ;
if ( vaddr ) {
vbp - > vaddr = vaddr ;
vbp - > baddr = baddr ;
}
return vaddr ;
}
static __inline void sym_m_free_dma_mem_cluster ( m_pool_p mp , m_vtob_p vbp )
{
dma_free_coherent ( mp - > dev_dmat , SYM_MEM_CLUSTER_SIZE , vbp - > vaddr ,
vbp - > baddr ) ;
}
# endif /* SYM_HIPD_H */