linux/net/ipv4/tcp_memcontrol.c

272 lines
6.3 KiB
C
Raw Normal View History

#include <net/tcp.h>
#include <net/tcp_memcontrol.h>
#include <net/sock.h>
#include <net/ip.h>
#include <linux/nsproxy.h>
#include <linux/memcontrol.h>
#include <linux/module.h>
static inline struct tcp_memcontrol *tcp_from_cgproto(struct cg_proto *cg_proto)
{
return container_of(cg_proto, struct tcp_memcontrol, cg_proto);
}
static void memcg_tcp_enter_memory_pressure(struct sock *sk)
{
if (sk->sk_cgrp->memory_pressure)
*sk->sk_cgrp->memory_pressure = 1;
}
EXPORT_SYMBOL(memcg_tcp_enter_memory_pressure);
int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
{
/*
* The root cgroup does not use res_counters, but rather,
* rely on the data already collected by the network
* subsystem
*/
struct res_counter *res_parent = NULL;
struct cg_proto *cg_proto, *parent_cg;
struct tcp_memcontrol *tcp;
struct mem_cgroup *parent = parent_mem_cgroup(memcg);
struct net *net = current->nsproxy->net_ns;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return 0;
tcp = tcp_from_cgproto(cg_proto);
tcp->tcp_prot_mem[0] = net->ipv4.sysctl_tcp_mem[0];
tcp->tcp_prot_mem[1] = net->ipv4.sysctl_tcp_mem[1];
tcp->tcp_prot_mem[2] = net->ipv4.sysctl_tcp_mem[2];
tcp->tcp_memory_pressure = 0;
parent_cg = tcp_prot.proto_cgroup(parent);
if (parent_cg)
res_parent = parent_cg->memory_allocated;
res_counter_init(&tcp->tcp_memory_allocated, res_parent);
percpu_counter_init(&tcp->tcp_sockets_allocated, 0);
cg_proto->enter_memory_pressure = memcg_tcp_enter_memory_pressure;
cg_proto->memory_pressure = &tcp->tcp_memory_pressure;
cg_proto->sysctl_mem = tcp->tcp_prot_mem;
cg_proto->memory_allocated = &tcp->tcp_memory_allocated;
cg_proto->sockets_allocated = &tcp->tcp_sockets_allocated;
cg_proto->memcg = memcg;
return 0;
}
EXPORT_SYMBOL(tcp_init_cgroup);
void tcp_destroy_cgroup(struct mem_cgroup *memcg)
{
struct cg_proto *cg_proto;
struct tcp_memcontrol *tcp;
u64 val;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return;
tcp = tcp_from_cgproto(cg_proto);
percpu_counter_destroy(&tcp->tcp_sockets_allocated);
val = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
if (val != RESOURCE_MAX)
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 08:31:31 +01:00
static_key_slow_dec(&memcg_socket_limit_enabled);
}
EXPORT_SYMBOL(tcp_destroy_cgroup);
static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
{
struct net *net = current->nsproxy->net_ns;
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
u64 old_lim;
int i;
int ret;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return -EINVAL;
if (val > RESOURCE_MAX)
val = RESOURCE_MAX;
tcp = tcp_from_cgproto(cg_proto);
old_lim = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
ret = res_counter_set_limit(&tcp->tcp_memory_allocated, val);
if (ret)
return ret;
for (i = 0; i < 3; i++)
tcp->tcp_prot_mem[i] = min_t(long, val >> PAGE_SHIFT,
net->ipv4.sysctl_tcp_mem[i]);
if (val == RESOURCE_MAX && old_lim != RESOURCE_MAX)
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 08:31:31 +01:00
static_key_slow_dec(&memcg_socket_limit_enabled);
else if (old_lim == RESOURCE_MAX && val != RESOURCE_MAX)
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 08:31:31 +01:00
static_key_slow_inc(&memcg_socket_limit_enabled);
return 0;
}
static int tcp_cgroup_write(struct cgroup *cont, struct cftype *cft,
const char *buffer)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
unsigned long long val;
int ret = 0;
switch (cft->private) {
case RES_LIMIT:
/* see memcontrol.c */
ret = res_counter_memparse_write_strategy(buffer, &val);
if (ret)
break;
ret = tcp_update_limit(memcg, val);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return default_val;
tcp = tcp_from_cgproto(cg_proto);
return res_counter_read_u64(&tcp->tcp_memory_allocated, type);
}
static u64 tcp_read_usage(struct mem_cgroup *memcg)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
tcp = tcp_from_cgproto(cg_proto);
return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_USAGE);
}
static u64 tcp_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
u64 val;
switch (cft->private) {
case RES_LIMIT:
val = tcp_read_stat(memcg, RES_LIMIT, RESOURCE_MAX);
break;
case RES_USAGE:
val = tcp_read_usage(memcg);
break;
case RES_FAILCNT:
case RES_MAX_USAGE:
val = tcp_read_stat(memcg, cft->private, 0);
break;
default:
BUG();
}
return val;
}
static int tcp_cgroup_reset(struct cgroup *cont, unsigned int event)
{
struct mem_cgroup *memcg;
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
memcg = mem_cgroup_from_cont(cont);
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return 0;
tcp = tcp_from_cgproto(cg_proto);
switch (event) {
case RES_MAX_USAGE:
res_counter_reset_max(&tcp->tcp_memory_allocated);
break;
case RES_FAILCNT:
res_counter_reset_failcnt(&tcp->tcp_memory_allocated);
break;
}
return 0;
}
unsigned long long tcp_max_memory(const struct mem_cgroup *memcg)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup((struct mem_cgroup *)memcg);
if (!cg_proto)
return 0;
tcp = tcp_from_cgproto(cg_proto);
return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
}
void tcp_prot_mem(struct mem_cgroup *memcg, long val, int idx)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return;
tcp = tcp_from_cgproto(cg_proto);
tcp->tcp_prot_mem[idx] = val;
}
static struct cftype tcp_files[] = {
{
.name = "kmem.tcp.limit_in_bytes",
.write_string = tcp_cgroup_write,
.read_u64 = tcp_cgroup_read,
.private = RES_LIMIT,
},
{
.name = "kmem.tcp.usage_in_bytes",
.read_u64 = tcp_cgroup_read,
.private = RES_USAGE,
},
{
.name = "kmem.tcp.failcnt",
.private = RES_FAILCNT,
.trigger = tcp_cgroup_reset,
.read_u64 = tcp_cgroup_read,
},
{
.name = "kmem.tcp.max_usage_in_bytes",
.private = RES_MAX_USAGE,
.trigger = tcp_cgroup_reset,
.read_u64 = tcp_cgroup_read,
},
{ } /* terminate */
};
static int __init tcp_memcontrol_init(void)
{
WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
return 0;
}
__initcall(tcp_memcontrol_init);