linux/drivers/net/wireless/ath9k/main.c

1534 lines
37 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* mac80211 and PCI callbacks */
#include <linux/nl80211.h>
#include "core.h"
#define ATH_PCI_VERSION "0.1"
#define IEEE80211_HTCAP_MAXRXAMPDU_FACTOR 13
#define IEEE80211_ACTION_CAT_HT 7
#define IEEE80211_ACTION_HT_TXCHWIDTH 0
static char *dev_info = "ath9k";
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static struct pci_device_id ath_pci_id_table[] __devinitdata = {
{ PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
{ PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
{ PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
{ PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
{ PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
{ 0 }
};
static int ath_get_channel(struct ath_softc *sc,
struct ieee80211_channel *chan)
{
int i;
for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
return i;
}
return -1;
}
static u32 ath_get_extchanmode(struct ath_softc *sc,
struct ieee80211_channel *chan)
{
u32 chanmode = 0;
u8 ext_chan_offset = sc->sc_ht_info.ext_chan_offset;
enum ath9k_ht_macmode tx_chan_width = sc->sc_ht_info.tx_chan_width;
switch (chan->band) {
case IEEE80211_BAND_2GHZ:
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_NONE) &&
(tx_chan_width == ATH9K_HT_MACMODE_20))
chanmode = CHANNEL_G_HT20;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_G_HT40PLUS;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_G_HT40MINUS;
break;
case IEEE80211_BAND_5GHZ:
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_NONE) &&
(tx_chan_width == ATH9K_HT_MACMODE_20))
chanmode = CHANNEL_A_HT20;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_A_HT40PLUS;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_A_HT40MINUS;
break;
default:
break;
}
return chanmode;
}
static int ath_setkey_tkip(struct ath_softc *sc,
struct ieee80211_key_conf *key,
struct ath9k_keyval *hk,
const u8 *addr)
{
u8 *key_rxmic = NULL;
u8 *key_txmic = NULL;
key_txmic = key->key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
key_rxmic = key->key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
if (addr == NULL) {
/* Group key installation */
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
return ath_keyset(sc, key->keyidx, hk, addr);
}
if (!sc->sc_splitmic) {
/*
* data key goes at first index,
* the hal handles the MIC keys at index+64.
*/
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
return ath_keyset(sc, key->keyidx, hk, addr);
}
/*
* TX key goes at first index, RX key at +32.
* The hal handles the MIC keys at index+64.
*/
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
if (!ath_keyset(sc, key->keyidx, hk, NULL)) {
/* Txmic entry failed. No need to proceed further */
DPRINTF(sc, ATH_DBG_KEYCACHE,
"%s Setting TX MIC Key Failed\n", __func__);
return 0;
}
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
/* XXX delete tx key on failure? */
return ath_keyset(sc, key->keyidx+32, hk, addr);
}
static int ath_key_config(struct ath_softc *sc,
const u8 *addr,
struct ieee80211_key_conf *key)
{
struct ieee80211_vif *vif;
struct ath9k_keyval hk;
const u8 *mac = NULL;
int ret = 0;
enum ieee80211_if_types opmode;
memset(&hk, 0, sizeof(hk));
switch (key->alg) {
case ALG_WEP:
hk.kv_type = ATH9K_CIPHER_WEP;
break;
case ALG_TKIP:
hk.kv_type = ATH9K_CIPHER_TKIP;
break;
case ALG_CCMP:
hk.kv_type = ATH9K_CIPHER_AES_CCM;
break;
default:
return -EINVAL;
}
hk.kv_len = key->keylen;
memcpy(hk.kv_val, key->key, key->keylen);
if (!sc->sc_vaps[0])
return -EIO;
vif = sc->sc_vaps[0]->av_if_data;
opmode = vif->type;
/*
* Strategy:
* For _M_STA mc tx, we will not setup a key at all since we never
* tx mc.
* _M_STA mc rx, we will use the keyID.
* for _M_IBSS mc tx, we will use the keyID, and no macaddr.
* for _M_IBSS mc rx, we will alloc a slot and plumb the mac of the
* peer node. BUT we will plumb a cleartext key so that we can do
* perSta default key table lookup in software.
*/
if (is_broadcast_ether_addr(addr)) {
switch (opmode) {
case IEEE80211_IF_TYPE_STA:
/* default key: could be group WPA key
* or could be static WEP key */
mac = NULL;
break;
case IEEE80211_IF_TYPE_IBSS:
break;
case IEEE80211_IF_TYPE_AP:
break;
default:
ASSERT(0);
break;
}
} else {
mac = addr;
}
if (key->alg == ALG_TKIP)
ret = ath_setkey_tkip(sc, key, &hk, mac);
else
ret = ath_keyset(sc, key->keyidx, &hk, mac);
if (!ret)
return -EIO;
sc->sc_keytype = hk.kv_type;
return 0;
}
static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
{
#define ATH_MAX_NUM_KEYS 4
int freeslot;
freeslot = (key->keyidx >= ATH_MAX_NUM_KEYS) ? 1 : 0;
ath_key_reset(sc, key->keyidx, freeslot);
#undef ATH_MAX_NUM_KEYS
}
static void setup_ht_cap(struct ieee80211_ht_info *ht_info)
{
/* Until mac80211 includes these fields */
#define IEEE80211_HT_CAP_DSSSCCK40 0x1000
#define IEEE80211_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
#define IEEE80211_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
ht_info->ht_supported = 1;
ht_info->cap = (u16)IEEE80211_HT_CAP_SUP_WIDTH
|(u16)IEEE80211_HT_CAP_MIMO_PS
|(u16)IEEE80211_HT_CAP_SGI_40
|(u16)IEEE80211_HT_CAP_DSSSCCK40;
ht_info->ampdu_factor = IEEE80211_HT_CAP_MAXRXAMPDU_65536;
ht_info->ampdu_density = IEEE80211_HT_CAP_MPDUDENSITY_8;
/* setup supported mcs set */
memset(ht_info->supp_mcs_set, 0, 16);
ht_info->supp_mcs_set[0] = 0xff;
ht_info->supp_mcs_set[1] = 0xff;
ht_info->supp_mcs_set[12] = IEEE80211_HT_CAP_MCS_TX_DEFINED;
}
static int ath_rate2idx(struct ath_softc *sc, int rate)
{
int i = 0, cur_band, n_rates;
struct ieee80211_hw *hw = sc->hw;
cur_band = hw->conf.channel->band;
n_rates = sc->sbands[cur_band].n_bitrates;
for (i = 0; i < n_rates; i++) {
if (sc->sbands[cur_band].bitrates[i].bitrate == rate)
break;
}
/*
* NB:mac80211 validates rx rate index against the supported legacy rate
* index only (should be done against ht rates also), return the highest
* legacy rate index for rx rate which does not match any one of the
* supported basic and extended rates to make mac80211 happy.
* The following hack will be cleaned up once the issue with
* the rx rate index validation in mac80211 is fixed.
*/
if (i == n_rates)
return n_rates - 1;
return i;
}
static void ath9k_rx_prepare(struct ath_softc *sc,
struct sk_buff *skb,
struct ath_recv_status *status,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_channel *curchan = hw->conf.channel;
memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
rx_status->mactime = status->tsf;
rx_status->band = curchan->band;
rx_status->freq = curchan->center_freq;
rx_status->noise = ATH_DEFAULT_NOISE_FLOOR;
rx_status->signal = rx_status->noise + status->rssi;
rx_status->rate_idx = ath_rate2idx(sc, (status->rateKbps / 100));
rx_status->antenna = status->antenna;
rx_status->qual = status->rssi * 100 / 64;
if (status->flags & ATH_RX_MIC_ERROR)
rx_status->flag |= RX_FLAG_MMIC_ERROR;
if (status->flags & ATH_RX_FCS_ERROR)
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
rx_status->flag |= RX_FLAG_TSFT;
}
static u8 parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static int ath9k_start(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
struct ieee80211_channel *curchan = hw->conf.channel;
int error = 0, pos;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with "
"initial channel: %d MHz\n", __func__, curchan->center_freq);
/* setup initial channel */
pos = ath_get_channel(sc, curchan);
if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
return -EINVAL;
}
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
/* open ath_dev */
error = ath_open(sc, &sc->sc_ah->ah_channels[pos]);
if (error) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to complete ath_open\n", __func__);
return error;
}
ieee80211_wake_queues(hw);
return 0;
}
static int ath9k_tx(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct ath_softc *sc = hw->priv;
int hdrlen, padsize;
/* Add the padding after the header if this is not already done */
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
if (hdrlen & 3) {
padsize = hdrlen % 4;
if (skb_headroom(skb) < padsize)
return -1;
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, hdrlen);
}
DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting packet, skb: %p\n",
__func__,
skb);
if (ath_tx_start(sc, skb) != 0) {
DPRINTF(sc, ATH_DBG_XMIT, "%s: TX failed\n", __func__);
dev_kfree_skb_any(skb);
/* FIXME: Check for proper return value from ATH_DEV */
return 0;
}
return 0;
}
static void ath9k_stop(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
int error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Driver halt\n", __func__);
error = ath_suspend(sc);
if (error)
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Device is no longer present\n", __func__);
ieee80211_stop_queues(hw);
}
static int ath9k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_softc *sc = hw->priv;
int error, ic_opmode = 0;
/* Support only vap for now */
if (sc->sc_nvaps)
return -ENOBUFS;
switch (conf->type) {
case IEEE80211_IF_TYPE_STA:
ic_opmode = ATH9K_M_STA;
break;
case IEEE80211_IF_TYPE_IBSS:
ic_opmode = ATH9K_M_IBSS;
break;
default:
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Only STA and IBSS are supported currently\n",
__func__);
return -EOPNOTSUPP;
}
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach a VAP of type: %d\n",
__func__,
ic_opmode);
error = ath_vap_attach(sc, 0, conf->vif, ic_opmode);
if (error) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to attach vap, error: %d\n",
__func__, error);
return error;
}
return 0;
}
static void ath9k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ath_vap *avp;
int error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach VAP\n", __func__);
avp = sc->sc_vaps[0];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface\n",
__func__);
return;
}
#ifdef CONFIG_SLOW_ANT_DIV
ath_slow_ant_div_stop(&sc->sc_antdiv);
#endif
/* Update ratectrl */
ath_rate_newstate(sc, avp);
/* Reclaim beacon resources */
if (sc->sc_opmode == ATH9K_M_HOSTAP || sc->sc_opmode == ATH9K_M_IBSS) {
ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
ath_beacon_return(sc, avp);
}
/* Set interrupt mask */
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask & ~ATH9K_INT_GLOBAL);
sc->sc_beacons = 0;
error = ath_vap_detach(sc, 0);
if (error)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to detach vap, error: %d\n",
__func__, error);
}
static int ath9k_config(struct ieee80211_hw *hw,
struct ieee80211_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ieee80211_channel *curchan = hw->conf.channel;
int pos;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n",
__func__,
curchan->center_freq);
pos = ath_get_channel(sc, curchan);
if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
return -EINVAL;
}
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
sc->sc_config.txpowlimit = 2 * conf->power_level;
/* set h/w channel */
if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to set channel\n",
__func__);
return 0;
}
static int ath9k_config_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ath_vap *avp;
u32 rfilt = 0;
int error, i;
DECLARE_MAC_BUF(mac);
avp = sc->sc_vaps[0];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface\n",
__func__);
return -EINVAL;
}
if ((conf->changed & IEEE80211_IFCC_BSSID) &&
!is_zero_ether_addr(conf->bssid)) {
switch (vif->type) {
case IEEE80211_IF_TYPE_STA:
case IEEE80211_IF_TYPE_IBSS:
/* Update ratectrl about the new state */
ath_rate_newstate(sc, avp);
/* Set rx filter */
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
/* Set BSSID */
memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
sc->sc_curaid = 0;
ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
sc->sc_curaid);
/* Set aggregation protection mode parameters */
sc->sc_config.ath_aggr_prot = 0;
/*
* Reset our TSF so that its value is lower than the
* beacon that we are trying to catch.
* Only then hw will update its TSF register with the
* new beacon. Reset the TSF before setting the BSSID
* to avoid allowing in any frames that would update
* our TSF only to have us clear it
* immediately thereafter.
*/
ath9k_hw_reset_tsf(sc->sc_ah);
/* Disable BMISS interrupt when we're not associated */
ath9k_hw_set_interrupts(sc->sc_ah,
sc->sc_imask &
~(ATH9K_INT_SWBA | ATH9K_INT_BMISS));
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt,
print_mac(mac, sc->sc_curbssid), sc->sc_curaid);
/* need to reconfigure the beacon */
sc->sc_beacons = 0;
break;
default:
break;
}
}
if ((conf->changed & IEEE80211_IFCC_BEACON) &&
(vif->type == IEEE80211_IF_TYPE_IBSS)) {
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; we may be called
* with beacon transmission active.
*/
ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
error = ath_beacon_alloc(sc, 0);
if (error != 0)
return error;
ath_beacon_sync(sc, 0);
}
/* Check for WLAN_CAPABILITY_PRIVACY ? */
if ((avp->av_opmode != IEEE80211_IF_TYPE_STA)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
ath9k_hw_keysetmac(sc->sc_ah,
(u16)i,
sc->sc_curbssid);
}
/* Only legacy IBSS for now */
if (vif->type == IEEE80211_IF_TYPE_IBSS)
ath_update_chainmask(sc, 0);
return 0;
}
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_FCSFAIL)
/* Accept unicast, bcast and mcast frames */
static void ath9k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count,
struct dev_mc_list *mclist)
{
struct ath_softc *sc = hw->priv;
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
ath_scan_start(sc);
else
ath_scan_end(sc);
}
}
static void ath9k_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
const u8 *addr)
{
struct ath_softc *sc = hw->priv;
struct ath_node *an;
unsigned long flags;
DECLARE_MAC_BUF(mac);
spin_lock_irqsave(&sc->node_lock, flags);
an = ath_node_find(sc, (u8 *) addr);
spin_unlock_irqrestore(&sc->node_lock, flags);
switch (cmd) {
case STA_NOTIFY_ADD:
spin_lock_irqsave(&sc->node_lock, flags);
if (!an) {
ath_node_attach(sc, (u8 *)addr, 0);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach a node: %s\n",
__func__,
print_mac(mac, addr));
} else {
ath_node_get(sc, (u8 *)addr);
}
spin_unlock_irqrestore(&sc->node_lock, flags);
break;
case STA_NOTIFY_REMOVE:
if (!an)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Removal of a non-existent node\n",
__func__);
else {
ath_node_put(sc, an, ATH9K_BH_STATUS_INTACT);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Put a node: %s\n",
__func__,
print_mac(mac, addr));
}
break;
default:
break;
}
}
static int ath9k_conf_tx(struct ieee80211_hw *hw,
u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct ath_softc *sc = hw->priv;
struct ath9k_tx_queue_info qi;
int ret = 0, qnum;
if (queue >= WME_NUM_AC)
return 0;
qi.tqi_aifs = params->aifs;
qi.tqi_cwmin = params->cw_min;
qi.tqi_cwmax = params->cw_max;
qi.tqi_burstTime = params->txop;
qnum = ath_get_hal_qnum(queue, sc);
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Configure tx [queue/halq] [%d/%d], "
"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
__func__,
queue,
qnum,
params->aifs,
params->cw_min,
params->cw_max,
params->txop);
ret = ath_txq_update(sc, qnum, &qi);
if (ret)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: TXQ Update failed\n", __func__);
return ret;
}
static int ath9k_set_key(struct ieee80211_hw *hw,
enum set_key_cmd cmd,
const u8 *local_addr,
const u8 *addr,
struct ieee80211_key_conf *key)
{
struct ath_softc *sc = hw->priv;
int ret = 0;
DPRINTF(sc, ATH_DBG_KEYCACHE, " %s: Set HW Key\n", __func__);
switch (cmd) {
case SET_KEY:
ret = ath_key_config(sc, addr, key);
if (!ret) {
set_bit(key->keyidx, sc->sc_keymap);
key->hw_key_idx = key->keyidx;
/* push IV and Michael MIC generation to stack */
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
}
break;
case DISABLE_KEY:
ath_key_delete(sc, key);
clear_bit(key->keyidx, sc->sc_keymap);
sc->sc_keytype = ATH9K_CIPHER_CLR;
break;
default:
ret = -EINVAL;
}
return ret;
}
static void ath9k_ht_conf(struct ath_softc *sc,
struct ieee80211_bss_conf *bss_conf)
{
#define IEEE80211_HT_CAP_40MHZ_INTOLERANT BIT(14)
struct ath_ht_info *ht_info = &sc->sc_ht_info;
if (bss_conf->assoc_ht) {
ht_info->ext_chan_offset =
bss_conf->ht_bss_conf->bss_cap &
IEEE80211_HT_IE_CHA_SEC_OFFSET;
if (!(bss_conf->ht_conf->cap &
IEEE80211_HT_CAP_40MHZ_INTOLERANT) &&
(bss_conf->ht_bss_conf->bss_cap &
IEEE80211_HT_IE_CHA_WIDTH))
ht_info->tx_chan_width = ATH9K_HT_MACMODE_2040;
else
ht_info->tx_chan_width = ATH9K_HT_MACMODE_20;
ath9k_hw_set11nmac2040(sc->sc_ah, ht_info->tx_chan_width);
ht_info->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
bss_conf->ht_conf->ampdu_factor);
ht_info->mpdudensity =
parse_mpdudensity(bss_conf->ht_conf->ampdu_density);
}
#undef IEEE80211_HT_CAP_40MHZ_INTOLERANT
}
static void ath9k_bss_assoc_info(struct ath_softc *sc,
struct ieee80211_bss_conf *bss_conf)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_channel *curchan = hw->conf.channel;
struct ath_vap *avp;
int pos;
DECLARE_MAC_BUF(mac);
if (bss_conf->assoc) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Bss Info ASSOC %d\n",
__func__,
bss_conf->aid);
avp = sc->sc_vaps[0];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface\n",
__func__);
return;
}
/* New association, store aid */
if (avp->av_opmode == ATH9K_M_STA) {
sc->sc_curaid = bss_conf->aid;
ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
sc->sc_curaid);
}
/* Configure the beacon */
ath_beacon_config(sc, 0);
sc->sc_beacons = 1;
/* Reset rssi stats */
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
/* Update chainmask */
ath_update_chainmask(sc, bss_conf->assoc_ht);
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: bssid %s aid 0x%x\n",
__func__,
print_mac(mac, sc->sc_curbssid), sc->sc_curaid);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n",
__func__,
curchan->center_freq);
pos = ath_get_channel(sc, curchan);
if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Invalid channel\n", __func__);
return;
}
if (hw->conf.ht_conf.ht_supported)
sc->sc_ah->ah_channels[pos].chanmode =
ath_get_extchanmode(sc, curchan);
else
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ?
CHANNEL_G : CHANNEL_A;
/* set h/w channel */
if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to set channel\n",
__func__);
ath_rate_newstate(sc, avp);
/* Update ratectrl about the new state */
ath_rc_node_update(hw, avp->rc_node);
} else {
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Bss Info DISSOC\n", __func__);
sc->sc_curaid = 0;
}
}
static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changed)
{
struct ath_softc *sc = hw->priv;
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed PREAMBLE %d\n",
__func__,
bss_conf->use_short_preamble);
if (bss_conf->use_short_preamble)
sc->sc_flags |= ATH_PREAMBLE_SHORT;
else
sc->sc_flags &= ~ATH_PREAMBLE_SHORT;
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed CTS PROT %d\n",
__func__,
bss_conf->use_cts_prot);
if (bss_conf->use_cts_prot &&
hw->conf.channel->band != IEEE80211_BAND_5GHZ)
sc->sc_flags |= ATH_PROTECT_ENABLE;
else
sc->sc_flags &= ~ATH_PROTECT_ENABLE;
}
if (changed & BSS_CHANGED_HT) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed HT %d\n",
__func__,
bss_conf->assoc_ht);
ath9k_ht_conf(sc, bss_conf);
}
if (changed & BSS_CHANGED_ASSOC) {
DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed ASSOC %d\n",
__func__,
bss_conf->assoc);
ath9k_bss_assoc_info(sc, bss_conf);
}
}
static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
{
u64 tsf;
struct ath_softc *sc = hw->priv;
struct ath_hal *ah = sc->sc_ah;
tsf = ath9k_hw_gettsf64(ah);
return tsf;
}
static void ath9k_reset_tsf(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
struct ath_hal *ah = sc->sc_ah;
ath9k_hw_reset_tsf(ah);
}
static int ath9k_ampdu_action(struct ieee80211_hw *hw,
enum ieee80211_ampdu_mlme_action action,
const u8 *addr,
u16 tid,
u16 *ssn)
{
struct ath_softc *sc = hw->priv;
int ret = 0;
switch (action) {
case IEEE80211_AMPDU_RX_START:
ret = ath_rx_aggr_start(sc, addr, tid, ssn);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to start RX aggregation\n",
__func__);
break;
case IEEE80211_AMPDU_RX_STOP:
ret = ath_rx_aggr_stop(sc, addr, tid);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to stop RX aggregation\n",
__func__);
break;
case IEEE80211_AMPDU_TX_START:
ret = ath_tx_aggr_start(sc, addr, tid, ssn);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to start TX aggregation\n",
__func__);
else
ieee80211_start_tx_ba_cb_irqsafe(hw, (u8 *)addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
ret = ath_tx_aggr_stop(sc, addr, tid);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to stop TX aggregation\n",
__func__);
ieee80211_stop_tx_ba_cb_irqsafe(hw, (u8 *)addr, tid);
break;
default:
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unknown AMPDU action\n", __func__);
}
return ret;
}
static struct ieee80211_ops ath9k_ops = {
.tx = ath9k_tx,
.start = ath9k_start,
.stop = ath9k_stop,
.add_interface = ath9k_add_interface,
.remove_interface = ath9k_remove_interface,
.config = ath9k_config,
.config_interface = ath9k_config_interface,
.configure_filter = ath9k_configure_filter,
.get_stats = NULL,
.sta_notify = ath9k_sta_notify,
.conf_tx = ath9k_conf_tx,
.get_tx_stats = NULL,
.bss_info_changed = ath9k_bss_info_changed,
.set_tim = NULL,
.set_key = ath9k_set_key,
.hw_scan = NULL,
.get_tkip_seq = NULL,
.set_rts_threshold = NULL,
.set_frag_threshold = NULL,
.set_retry_limit = NULL,
.get_tsf = ath9k_get_tsf,
.reset_tsf = ath9k_reset_tsf,
.tx_last_beacon = NULL,
.ampdu_action = ath9k_ampdu_action
};
void ath_get_beaconconfig(struct ath_softc *sc,
int if_id,
struct ath_beacon_config *conf)
{
struct ieee80211_hw *hw = sc->hw;
/* fill in beacon config data */
conf->beacon_interval = hw->conf.beacon_int;
conf->listen_interval = 100;
conf->dtim_count = 1;
conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
}
int ath_update_beacon(struct ath_softc *sc,
int if_id,
struct ath_beacon_offset *bo,
struct sk_buff *skb,
int mcast)
{
return 0;
}
void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
struct ath_xmit_status *tx_status, struct ath_node *an)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
DPRINTF(sc, ATH_DBG_XMIT,
"%s: TX complete: skb: %p\n", __func__, skb);
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
/* free driver's private data area of tx_info */
if (tx_info->driver_data[0] != NULL)
kfree(tx_info->driver_data[0]);
tx_info->driver_data[0] = NULL;
}
if (tx_status->flags & ATH_TX_BAR) {
tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
tx_status->flags &= ~ATH_TX_BAR;
}
if (tx_status->flags)
tx_info->status.excessive_retries = 1;
tx_info->status.retry_count = tx_status->retries;
ieee80211_tx_status(hw, skb);
if (an)
ath_node_put(sc, an, ATH9K_BH_STATUS_CHANGE);
}
int ath__rx_indicate(struct ath_softc *sc,
struct sk_buff *skb,
struct ath_recv_status *status,
u16 keyix)
{
struct ieee80211_hw *hw = sc->hw;
struct ath_node *an = NULL;
struct ieee80211_rx_status rx_status;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
int hdrlen = ieee80211_get_hdrlen_from_skb(skb);
int padsize;
enum ATH_RX_TYPE st;
/* see if any padding is done by the hw and remove it */
if (hdrlen & 3) {
padsize = hdrlen % 4;
memmove(skb->data + padsize, skb->data, hdrlen);
skb_pull(skb, padsize);
}
/* remove FCS before passing up to protocol stack */
skb_trim(skb, (skb->len - FCS_LEN));
/* Prepare rx status */
ath9k_rx_prepare(sc, skb, status, &rx_status);
if (!(keyix == ATH9K_RXKEYIX_INVALID) &&
!(status->flags & ATH_RX_DECRYPT_ERROR)) {
rx_status.flag |= RX_FLAG_DECRYPTED;
} else if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED)
&& !(status->flags & ATH_RX_DECRYPT_ERROR)
&& skb->len >= hdrlen + 4) {
keyix = skb->data[hdrlen + 3] >> 6;
if (test_bit(keyix, sc->sc_keymap))
rx_status.flag |= RX_FLAG_DECRYPTED;
}
spin_lock_bh(&sc->node_lock);
an = ath_node_find(sc, hdr->addr2);
spin_unlock_bh(&sc->node_lock);
if (an) {
ath_rx_input(sc, an,
hw->conf.ht_conf.ht_supported,
skb, status, &st);
}
if (!an || (st != ATH_RX_CONSUMED))
__ieee80211_rx(hw, skb, &rx_status);
return 0;
}
int ath_rx_subframe(struct ath_node *an,
struct sk_buff *skb,
struct ath_recv_status *status)
{
struct ath_softc *sc = an->an_sc;
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_rx_status rx_status;
/* Prepare rx status */
ath9k_rx_prepare(sc, skb, status, &rx_status);
if (!(status->flags & ATH_RX_DECRYPT_ERROR))
rx_status.flag |= RX_FLAG_DECRYPTED;
__ieee80211_rx(hw, skb, &rx_status);
return 0;
}
enum ath9k_ht_macmode ath_cwm_macmode(struct ath_softc *sc)
{
return sc->sc_ht_info.tx_chan_width;
}
void ath_setup_rate(struct ath_softc *sc,
enum wireless_mode wMode,
enum RATE_TYPE type,
const struct ath9k_rate_table *rt)
{
int i, maxrates, a = 0, b = 0;
struct ieee80211_supported_band *band_2ghz;
struct ieee80211_supported_band *band_5ghz;
struct ieee80211_rate *rates_2ghz;
struct ieee80211_rate *rates_5ghz;
if ((wMode >= WIRELESS_MODE_MAX) || (type != NORMAL_RATE))
return;
band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
rates_2ghz = sc->rates[IEEE80211_BAND_2GHZ];
rates_5ghz = sc->rates[IEEE80211_BAND_5GHZ];
if (rt->rateCount > ATH_RATE_MAX)
maxrates = ATH_RATE_MAX;
else
maxrates = rt->rateCount;
if ((band_2ghz->n_bitrates != 0) && (band_5ghz->n_bitrates != 0)) {
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Rates already setup\n", __func__);
return;
}
for (i = 0; i < maxrates; i++) {
switch (wMode) {
case WIRELESS_MODE_11b:
case WIRELESS_MODE_11g:
rates_2ghz[a].bitrate = rt->info[i].rateKbps / 100;
rates_2ghz[a].hw_value = rt->info[i].rateCode;
a++;
band_2ghz->n_bitrates = a;
break;
case WIRELESS_MODE_11a:
rates_5ghz[b].bitrate = rt->info[i].rateKbps / 100;
rates_5ghz[b].hw_value = rt->info[i].rateCode;
b++;
band_5ghz->n_bitrates = b;
break;
default:
break;
}
}
if (band_2ghz->n_bitrates) {
for (i = 0; i < band_2ghz->n_bitrates; i++) {
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 2GHz Rate: %2dMbps, ratecode: %2d\n",
__func__,
rates_2ghz[i].bitrate / 10,
rates_2ghz[i].hw_value);
}
} else if (band_5ghz->n_bitrates) {
for (i = 0; i < band_5ghz->n_bitrates; i++) {
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 5Ghz Rate: %2dMbps, ratecode: %2d\n",
__func__,
rates_5ghz[i].bitrate / 10,
rates_5ghz[i].hw_value);
}
}
}
static int ath_detach(struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach ATH hw\n", __func__);
/* Unregister hw */
ieee80211_unregister_hw(hw);
/* unregister Rate control */
ath_rate_control_unregister();
/* tx/rx cleanup */
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
/* Deinit */
ath_deinit(sc);
return 0;
}
static int ath_attach(u16 devid,
struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int error = 0;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach ATH hw\n", __func__);
error = ath_init(devid, sc);
if (error != 0)
return error;
/* Init nodes */
INIT_LIST_HEAD(&sc->node_list);
spin_lock_init(&sc->node_lock);
/* get mac address from hardware and set in mac80211 */
SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
/* setup channels and rates */
sc->sbands[IEEE80211_BAND_2GHZ].channels =
sc->channels[IEEE80211_BAND_2GHZ];
sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
sc->rates[IEEE80211_BAND_2GHZ];
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
/* Setup HT capabilities for 2.4Ghz*/
setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_info);
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&sc->sbands[IEEE80211_BAND_2GHZ];
if (sc->sc_ah->ah_caps.wireless_modes & ATH9K_MODE_SEL_11A) {
sc->sbands[IEEE80211_BAND_5GHZ].channels =
sc->channels[IEEE80211_BAND_5GHZ];
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
sc->rates[IEEE80211_BAND_5GHZ];
sc->sbands[IEEE80211_BAND_5GHZ].band =
IEEE80211_BAND_5GHZ;
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
/* Setup HT capabilities for 5Ghz*/
setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_info);
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&sc->sbands[IEEE80211_BAND_5GHZ];
}
/* FIXME: Have to figure out proper hw init values later */
hw->queues = 4;
hw->ampdu_queues = 1;
/* Register rate control */
hw->rate_control_algorithm = "ath9k_rate_control";
error = ath_rate_control_register();
if (error != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to register rate control "
"algorithm:%d\n", __func__, error);
ath_rate_control_unregister();
goto bad;
}
error = ieee80211_register_hw(hw);
if (error != 0) {
ath_rate_control_unregister();
goto bad;
}
/* initialize tx/rx engine */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto bad1;
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto bad1;
return 0;
bad1:
ath_detach(sc);
bad:
return error;
}
static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
void __iomem *mem;
struct ath_softc *sc;
struct ieee80211_hw *hw;
const char *athname;
u8 csz;
u32 val;
int ret = 0;
if (pci_enable_device(pdev))
return -EIO;
/* XXX 32-bit addressing only */
if (pci_set_dma_mask(pdev, 0xffffffff)) {
printk(KERN_ERR "ath_pci: 32-bit DMA not available\n");
ret = -ENODEV;
goto bad;
}
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
if (csz == 0) {
/*
* Linux 2.4.18 (at least) writes the cache line size
* register as a 16-bit wide register which is wrong.
* We must have this setup properly for rx buffer
* DMA to work so force a reasonable value here if it
* comes up zero.
*/
csz = L1_CACHE_BYTES / sizeof(u32);
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
}
/*
* The default setting of latency timer yields poor results,
* set it to the value used by other systems. It may be worth
* tweaking this setting more.
*/
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
pci_set_master(pdev);
/*
* Disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state.
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
ret = pci_request_region(pdev, 0, "ath9k");
if (ret) {
dev_err(&pdev->dev, "PCI memory region reserve error\n");
ret = -ENODEV;
goto bad;
}
mem = pci_iomap(pdev, 0, 0);
if (!mem) {
printk(KERN_ERR "PCI memory map error\n") ;
ret = -EIO;
goto bad1;
}
hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
if (hw == NULL) {
printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
goto bad2;
}
hw->flags = IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_NOISE_DBM;
SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw);
sc = hw->priv;
sc->hw = hw;
sc->pdev = pdev;
sc->mem = mem;
if (ath_attach(id->device, sc) != 0) {
ret = -ENODEV;
goto bad3;
}
/* setup interrupt service routine */
if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
printk(KERN_ERR "%s: request_irq failed\n",
wiphy_name(hw->wiphy));
ret = -EIO;
goto bad4;
}
athname = ath9k_hw_probe(id->vendor, id->device);
printk(KERN_INFO "%s: %s: mem=0x%lx, irq=%d\n",
wiphy_name(hw->wiphy),
athname ? athname : "Atheros ???",
(unsigned long)mem, pdev->irq);
return 0;
bad4:
ath_detach(sc);
bad3:
ieee80211_free_hw(hw);
bad2:
pci_iounmap(pdev, mem);
bad1:
pci_release_region(pdev, 0);
bad:
pci_disable_device(pdev);
return ret;
}
static void ath_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct ath_softc *sc = hw->priv;
if (pdev->irq)
free_irq(pdev->irq, sc);
ath_detach(sc);
pci_iounmap(pdev, sc->mem);
pci_release_region(pdev, 0);
pci_disable_device(pdev);
ieee80211_free_hw(hw);
}
#ifdef CONFIG_PM
static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, 3);
return 0;
}
static int ath_pci_resume(struct pci_dev *pdev)
{
u32 val;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
pci_restore_state(pdev);
/*
* Suspend/Resume resets the PCI configuration space, so we have to
* re-disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
return 0;
}
#endif /* CONFIG_PM */
MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
static struct pci_driver ath_pci_driver = {
.name = "ath9k",
.id_table = ath_pci_id_table,
.probe = ath_pci_probe,
.remove = ath_pci_remove,
#ifdef CONFIG_PM
.suspend = ath_pci_suspend,
.resume = ath_pci_resume,
#endif /* CONFIG_PM */
};
static int __init init_ath_pci(void)
{
printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
if (pci_register_driver(&ath_pci_driver) < 0) {
printk(KERN_ERR
"ath_pci: No devices found, driver not installed.\n");
pci_unregister_driver(&ath_pci_driver);
return -ENODEV;
}
return 0;
}
module_init(init_ath_pci);
static void __exit exit_ath_pci(void)
{
pci_unregister_driver(&ath_pci_driver);
printk(KERN_INFO "%s: driver unloaded\n", dev_info);
}
module_exit(exit_ath_pci);