linux/drivers/net/wireless/b43legacy/dma.c

1457 lines
36 KiB
C
Raw Normal View History

/*
Broadcom B43legacy wireless driver
DMA ringbuffer and descriptor allocation/management
Copyright (c) 2005, 2006 Michael Buesch <m@bues.ch>
Some code in this file is derived from the b44.c driver
Copyright (C) 2002 David S. Miller
Copyright (C) Pekka Pietikainen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43legacy.h"
#include "dma.h"
#include "main.h"
#include "debugfs.h"
#include "xmit.h"
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <net/dst.h>
/* 32bit DMA ops. */
static
struct b43legacy_dmadesc32 *op32_idx2desc(struct b43legacy_dmaring *ring,
int slot,
struct b43legacy_dmadesc_meta **meta)
{
struct b43legacy_dmadesc32 *desc;
*meta = &(ring->meta[slot]);
desc = ring->descbase;
desc = &(desc[slot]);
return (struct b43legacy_dmadesc32 *)desc;
}
static void op32_fill_descriptor(struct b43legacy_dmaring *ring,
struct b43legacy_dmadesc32 *desc,
dma_addr_t dmaaddr, u16 bufsize,
int start, int end, int irq)
{
struct b43legacy_dmadesc32 *descbase = ring->descbase;
int slot;
u32 ctl;
u32 addr;
u32 addrext;
slot = (int)(desc - descbase);
B43legacy_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
addr = (u32)(dmaaddr & ~SSB_DMA_TRANSLATION_MASK);
addrext = (u32)(dmaaddr & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
addr |= ring->dev->dma.translation;
ctl = (bufsize - ring->frameoffset)
& B43legacy_DMA32_DCTL_BYTECNT;
if (slot == ring->nr_slots - 1)
ctl |= B43legacy_DMA32_DCTL_DTABLEEND;
if (start)
ctl |= B43legacy_DMA32_DCTL_FRAMESTART;
if (end)
ctl |= B43legacy_DMA32_DCTL_FRAMEEND;
if (irq)
ctl |= B43legacy_DMA32_DCTL_IRQ;
ctl |= (addrext << B43legacy_DMA32_DCTL_ADDREXT_SHIFT)
& B43legacy_DMA32_DCTL_ADDREXT_MASK;
desc->control = cpu_to_le32(ctl);
desc->address = cpu_to_le32(addr);
}
static void op32_poke_tx(struct b43legacy_dmaring *ring, int slot)
{
b43legacy_dma_write(ring, B43legacy_DMA32_TXINDEX,
(u32)(slot * sizeof(struct b43legacy_dmadesc32)));
}
static void op32_tx_suspend(struct b43legacy_dmaring *ring)
{
b43legacy_dma_write(ring, B43legacy_DMA32_TXCTL,
b43legacy_dma_read(ring, B43legacy_DMA32_TXCTL)
| B43legacy_DMA32_TXSUSPEND);
}
static void op32_tx_resume(struct b43legacy_dmaring *ring)
{
b43legacy_dma_write(ring, B43legacy_DMA32_TXCTL,
b43legacy_dma_read(ring, B43legacy_DMA32_TXCTL)
& ~B43legacy_DMA32_TXSUSPEND);
}
static int op32_get_current_rxslot(struct b43legacy_dmaring *ring)
{
u32 val;
val = b43legacy_dma_read(ring, B43legacy_DMA32_RXSTATUS);
val &= B43legacy_DMA32_RXDPTR;
return (val / sizeof(struct b43legacy_dmadesc32));
}
static void op32_set_current_rxslot(struct b43legacy_dmaring *ring,
int slot)
{
b43legacy_dma_write(ring, B43legacy_DMA32_RXINDEX,
(u32)(slot * sizeof(struct b43legacy_dmadesc32)));
}
static inline int free_slots(struct b43legacy_dmaring *ring)
{
return (ring->nr_slots - ring->used_slots);
}
static inline int next_slot(struct b43legacy_dmaring *ring, int slot)
{
B43legacy_WARN_ON(!(slot >= -1 && slot <= ring->nr_slots - 1));
if (slot == ring->nr_slots - 1)
return 0;
return slot + 1;
}
static inline int prev_slot(struct b43legacy_dmaring *ring, int slot)
{
B43legacy_WARN_ON(!(slot >= 0 && slot <= ring->nr_slots - 1));
if (slot == 0)
return ring->nr_slots - 1;
return slot - 1;
}
#ifdef CONFIG_B43LEGACY_DEBUG
static void update_max_used_slots(struct b43legacy_dmaring *ring,
int current_used_slots)
{
if (current_used_slots <= ring->max_used_slots)
return;
ring->max_used_slots = current_used_slots;
if (b43legacy_debug(ring->dev, B43legacy_DBG_DMAVERBOSE))
b43legacydbg(ring->dev->wl,
"max_used_slots increased to %d on %s ring %d\n",
ring->max_used_slots,
ring->tx ? "TX" : "RX",
ring->index);
}
#else
static inline
void update_max_used_slots(struct b43legacy_dmaring *ring,
int current_used_slots)
{ }
#endif /* DEBUG */
/* Request a slot for usage. */
static inline
int request_slot(struct b43legacy_dmaring *ring)
{
int slot;
B43legacy_WARN_ON(!ring->tx);
B43legacy_WARN_ON(ring->stopped);
B43legacy_WARN_ON(free_slots(ring) == 0);
slot = next_slot(ring, ring->current_slot);
ring->current_slot = slot;
ring->used_slots++;
update_max_used_slots(ring, ring->used_slots);
return slot;
}
/* Mac80211-queue to b43legacy-ring mapping */
static struct b43legacy_dmaring *priority_to_txring(
struct b43legacy_wldev *dev,
int queue_priority)
{
struct b43legacy_dmaring *ring;
/*FIXME: For now we always run on TX-ring-1 */
return dev->dma.tx_ring1;
/* 0 = highest priority */
switch (queue_priority) {
default:
B43legacy_WARN_ON(1);
/* fallthrough */
case 0:
ring = dev->dma.tx_ring3;
break;
case 1:
ring = dev->dma.tx_ring2;
break;
case 2:
ring = dev->dma.tx_ring1;
break;
case 3:
ring = dev->dma.tx_ring0;
break;
case 4:
ring = dev->dma.tx_ring4;
break;
case 5:
ring = dev->dma.tx_ring5;
break;
}
return ring;
}
/* Bcm4301-ring to mac80211-queue mapping */
static inline int txring_to_priority(struct b43legacy_dmaring *ring)
{
static const u8 idx_to_prio[] =
{ 3, 2, 1, 0, 4, 5, };
/*FIXME: have only one queue, for now */
return 0;
return idx_to_prio[ring->index];
}
static u16 b43legacy_dmacontroller_base(enum b43legacy_dmatype type,
int controller_idx)
{
static const u16 map32[] = {
B43legacy_MMIO_DMA32_BASE0,
B43legacy_MMIO_DMA32_BASE1,
B43legacy_MMIO_DMA32_BASE2,
B43legacy_MMIO_DMA32_BASE3,
B43legacy_MMIO_DMA32_BASE4,
B43legacy_MMIO_DMA32_BASE5,
};
B43legacy_WARN_ON(!(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map32)));
return map32[controller_idx];
}
static inline
dma_addr_t map_descbuffer(struct b43legacy_dmaring *ring,
unsigned char *buf,
size_t len,
int tx)
{
dma_addr_t dmaaddr;
if (tx)
dmaaddr = dma_map_single(ring->dev->dev->dma_dev,
buf, len,
DMA_TO_DEVICE);
else
dmaaddr = dma_map_single(ring->dev->dev->dma_dev,
buf, len,
DMA_FROM_DEVICE);
return dmaaddr;
}
static inline
void unmap_descbuffer(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t len,
int tx)
{
if (tx)
dma_unmap_single(ring->dev->dev->dma_dev,
addr, len,
DMA_TO_DEVICE);
else
dma_unmap_single(ring->dev->dev->dma_dev,
addr, len,
DMA_FROM_DEVICE);
}
static inline
void sync_descbuffer_for_cpu(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t len)
{
B43legacy_WARN_ON(ring->tx);
dma_sync_single_for_cpu(ring->dev->dev->dma_dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void sync_descbuffer_for_device(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t len)
{
B43legacy_WARN_ON(ring->tx);
dma_sync_single_for_device(ring->dev->dev->dma_dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void free_descriptor_buffer(struct b43legacy_dmaring *ring,
struct b43legacy_dmadesc_meta *meta,
int irq_context)
{
if (meta->skb) {
if (irq_context)
dev_kfree_skb_irq(meta->skb);
else
dev_kfree_skb(meta->skb);
meta->skb = NULL;
}
}
static int alloc_ringmemory(struct b43legacy_dmaring *ring)
{
/* GFP flags must match the flags in free_ringmemory()! */
ring->descbase = dma_alloc_coherent(ring->dev->dev->dma_dev,
B43legacy_DMA_RINGMEMSIZE,
&(ring->dmabase),
GFP_KERNEL);
if (!ring->descbase) {
b43legacyerr(ring->dev->wl, "DMA ringmemory allocation"
" failed\n");
return -ENOMEM;
}
memset(ring->descbase, 0, B43legacy_DMA_RINGMEMSIZE);
return 0;
}
static void free_ringmemory(struct b43legacy_dmaring *ring)
{
dma_free_coherent(ring->dev->dev->dma_dev, B43legacy_DMA_RINGMEMSIZE,
ring->descbase, ring->dmabase);
}
/* Reset the RX DMA channel */
static int b43legacy_dmacontroller_rx_reset(struct b43legacy_wldev *dev,
u16 mmio_base,
enum b43legacy_dmatype type)
{
int i;
u32 value;
u16 offset;
might_sleep();
offset = B43legacy_DMA32_RXCTL;
b43legacy_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = B43legacy_DMA32_RXSTATUS;
value = b43legacy_read32(dev, mmio_base + offset);
value &= B43legacy_DMA32_RXSTATE;
if (value == B43legacy_DMA32_RXSTAT_DISABLED) {
i = -1;
break;
}
msleep(1);
}
if (i != -1) {
b43legacyerr(dev->wl, "DMA RX reset timed out\n");
return -ENODEV;
}
return 0;
}
/* Reset the RX DMA channel */
static int b43legacy_dmacontroller_tx_reset(struct b43legacy_wldev *dev,
u16 mmio_base,
enum b43legacy_dmatype type)
{
int i;
u32 value;
u16 offset;
might_sleep();
for (i = 0; i < 10; i++) {
offset = B43legacy_DMA32_TXSTATUS;
value = b43legacy_read32(dev, mmio_base + offset);
value &= B43legacy_DMA32_TXSTATE;
if (value == B43legacy_DMA32_TXSTAT_DISABLED ||
value == B43legacy_DMA32_TXSTAT_IDLEWAIT ||
value == B43legacy_DMA32_TXSTAT_STOPPED)
break;
msleep(1);
}
offset = B43legacy_DMA32_TXCTL;
b43legacy_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = B43legacy_DMA32_TXSTATUS;
value = b43legacy_read32(dev, mmio_base + offset);
value &= B43legacy_DMA32_TXSTATE;
if (value == B43legacy_DMA32_TXSTAT_DISABLED) {
i = -1;
break;
}
msleep(1);
}
if (i != -1) {
b43legacyerr(dev->wl, "DMA TX reset timed out\n");
return -ENODEV;
}
/* ensure the reset is completed. */
msleep(1);
return 0;
}
/* Check if a DMA mapping address is invalid. */
static bool b43legacy_dma_mapping_error(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t buffersize,
bool dma_to_device)
{
if (unlikely(dma_mapping_error(ring->dev->dev->dma_dev, addr)))
return 1;
switch (ring->type) {
case B43legacy_DMA_30BIT:
if ((u64)addr + buffersize > (1ULL << 30))
goto address_error;
break;
case B43legacy_DMA_32BIT:
if ((u64)addr + buffersize > (1ULL << 32))
goto address_error;
break;
}
/* The address is OK. */
return 0;
address_error:
/* We can't support this address. Unmap it again. */
unmap_descbuffer(ring, addr, buffersize, dma_to_device);
return 1;
}
static int setup_rx_descbuffer(struct b43legacy_dmaring *ring,
struct b43legacy_dmadesc32 *desc,
struct b43legacy_dmadesc_meta *meta,
gfp_t gfp_flags)
{
struct b43legacy_rxhdr_fw3 *rxhdr;
struct b43legacy_hwtxstatus *txstat;
dma_addr_t dmaaddr;
struct sk_buff *skb;
B43legacy_WARN_ON(ring->tx);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
dmaaddr = map_descbuffer(ring, skb->data,
ring->rx_buffersize, 0);
if (b43legacy_dma_mapping_error(ring, dmaaddr, ring->rx_buffersize, 0)) {
/* ugh. try to realloc in zone_dma */
gfp_flags |= GFP_DMA;
dev_kfree_skb_any(skb);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
dmaaddr = map_descbuffer(ring, skb->data,
ring->rx_buffersize, 0);
}
if (b43legacy_dma_mapping_error(ring, dmaaddr, ring->rx_buffersize, 0)) {
dev_kfree_skb_any(skb);
return -EIO;
}
meta->skb = skb;
meta->dmaaddr = dmaaddr;
op32_fill_descriptor(ring, desc, dmaaddr, ring->rx_buffersize, 0, 0, 0);
rxhdr = (struct b43legacy_rxhdr_fw3 *)(skb->data);
rxhdr->frame_len = 0;
txstat = (struct b43legacy_hwtxstatus *)(skb->data);
txstat->cookie = 0;
return 0;
}
/* Allocate the initial descbuffers.
* This is used for an RX ring only.
*/
static int alloc_initial_descbuffers(struct b43legacy_dmaring *ring)
{
int i;
int err = -ENOMEM;
struct b43legacy_dmadesc32 *desc;
struct b43legacy_dmadesc_meta *meta;
for (i = 0; i < ring->nr_slots; i++) {
desc = op32_idx2desc(ring, i, &meta);
err = setup_rx_descbuffer(ring, desc, meta, GFP_KERNEL);
if (err) {
b43legacyerr(ring->dev->wl,
"Failed to allocate initial descbuffers\n");
goto err_unwind;
}
}
mb(); /* all descbuffer setup before next line */
ring->used_slots = ring->nr_slots;
err = 0;
out:
return err;
err_unwind:
for (i--; i >= 0; i--) {
desc = op32_idx2desc(ring, i, &meta);
unmap_descbuffer(ring, meta->dmaaddr, ring->rx_buffersize, 0);
dev_kfree_skb(meta->skb);
}
goto out;
}
/* Do initial setup of the DMA controller.
* Reset the controller, write the ring busaddress
* and switch the "enable" bit on.
*/
static int dmacontroller_setup(struct b43legacy_dmaring *ring)
{
int err = 0;
u32 value;
u32 addrext;
u32 trans = ring->dev->dma.translation;
u32 ringbase = (u32)(ring->dmabase);
if (ring->tx) {
addrext = (ringbase & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = B43legacy_DMA32_TXENABLE;
value |= (addrext << B43legacy_DMA32_TXADDREXT_SHIFT)
& B43legacy_DMA32_TXADDREXT_MASK;
b43legacy_dma_write(ring, B43legacy_DMA32_TXCTL, value);
b43legacy_dma_write(ring, B43legacy_DMA32_TXRING,
(ringbase & ~SSB_DMA_TRANSLATION_MASK)
| trans);
} else {
err = alloc_initial_descbuffers(ring);
if (err)
goto out;
addrext = (ringbase & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = (ring->frameoffset <<
B43legacy_DMA32_RXFROFF_SHIFT);
value |= B43legacy_DMA32_RXENABLE;
value |= (addrext << B43legacy_DMA32_RXADDREXT_SHIFT)
& B43legacy_DMA32_RXADDREXT_MASK;
b43legacy_dma_write(ring, B43legacy_DMA32_RXCTL, value);
b43legacy_dma_write(ring, B43legacy_DMA32_RXRING,
(ringbase & ~SSB_DMA_TRANSLATION_MASK)
| trans);
b43legacy_dma_write(ring, B43legacy_DMA32_RXINDEX, 200);
}
out:
return err;
}
/* Shutdown the DMA controller. */
static void dmacontroller_cleanup(struct b43legacy_dmaring *ring)
{
if (ring->tx) {
b43legacy_dmacontroller_tx_reset(ring->dev, ring->mmio_base,
ring->type);
b43legacy_dma_write(ring, B43legacy_DMA32_TXRING, 0);
} else {
b43legacy_dmacontroller_rx_reset(ring->dev, ring->mmio_base,
ring->type);
b43legacy_dma_write(ring, B43legacy_DMA32_RXRING, 0);
}
}
static void free_all_descbuffers(struct b43legacy_dmaring *ring)
{
struct b43legacy_dmadesc_meta *meta;
int i;
if (!ring->used_slots)
return;
for (i = 0; i < ring->nr_slots; i++) {
op32_idx2desc(ring, i, &meta);
if (!meta->skb) {
B43legacy_WARN_ON(!ring->tx);
continue;
}
if (ring->tx)
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
else
unmap_descbuffer(ring, meta->dmaaddr,
ring->rx_buffersize, 0);
free_descriptor_buffer(ring, meta, 0);
}
}
static u64 supported_dma_mask(struct b43legacy_wldev *dev)
{
u32 tmp;
u16 mmio_base;
mmio_base = b43legacy_dmacontroller_base(0, 0);
b43legacy_write32(dev,
mmio_base + B43legacy_DMA32_TXCTL,
B43legacy_DMA32_TXADDREXT_MASK);
tmp = b43legacy_read32(dev, mmio_base +
B43legacy_DMA32_TXCTL);
if (tmp & B43legacy_DMA32_TXADDREXT_MASK)
return DMA_BIT_MASK(32);
return DMA_BIT_MASK(30);
}
static enum b43legacy_dmatype dma_mask_to_engine_type(u64 dmamask)
{
if (dmamask == DMA_BIT_MASK(30))
return B43legacy_DMA_30BIT;
if (dmamask == DMA_BIT_MASK(32))
return B43legacy_DMA_32BIT;
B43legacy_WARN_ON(1);
return B43legacy_DMA_30BIT;
}
/* Main initialization function. */
static
struct b43legacy_dmaring *b43legacy_setup_dmaring(struct b43legacy_wldev *dev,
int controller_index,
int for_tx,
enum b43legacy_dmatype type)
{
struct b43legacy_dmaring *ring;
int err;
int nr_slots;
dma_addr_t dma_test;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto out;
ring->type = type;
ring->dev = dev;
nr_slots = B43legacy_RXRING_SLOTS;
if (for_tx)
nr_slots = B43legacy_TXRING_SLOTS;
ring->meta = kcalloc(nr_slots, sizeof(struct b43legacy_dmadesc_meta),
GFP_KERNEL);
if (!ring->meta)
goto err_kfree_ring;
if (for_tx) {
ring->txhdr_cache = kcalloc(nr_slots,
sizeof(struct b43legacy_txhdr_fw3),
GFP_KERNEL);
if (!ring->txhdr_cache)
goto err_kfree_meta;
/* test for ability to dma to txhdr_cache */
dma_test = dma_map_single(dev->dev->dma_dev, ring->txhdr_cache,
sizeof(struct b43legacy_txhdr_fw3),
DMA_TO_DEVICE);
if (b43legacy_dma_mapping_error(ring, dma_test,
sizeof(struct b43legacy_txhdr_fw3), 1)) {
/* ugh realloc */
kfree(ring->txhdr_cache);
ring->txhdr_cache = kcalloc(nr_slots,
sizeof(struct b43legacy_txhdr_fw3),
GFP_KERNEL | GFP_DMA);
if (!ring->txhdr_cache)
goto err_kfree_meta;
dma_test = dma_map_single(dev->dev->dma_dev,
ring->txhdr_cache,
sizeof(struct b43legacy_txhdr_fw3),
DMA_TO_DEVICE);
if (b43legacy_dma_mapping_error(ring, dma_test,
sizeof(struct b43legacy_txhdr_fw3), 1))
goto err_kfree_txhdr_cache;
}
dma_unmap_single(dev->dev->dma_dev, dma_test,
sizeof(struct b43legacy_txhdr_fw3),
DMA_TO_DEVICE);
}
ring->nr_slots = nr_slots;
ring->mmio_base = b43legacy_dmacontroller_base(type, controller_index);
ring->index = controller_index;
if (for_tx) {
ring->tx = 1;
ring->current_slot = -1;
} else {
if (ring->index == 0) {
ring->rx_buffersize = B43legacy_DMA0_RX_BUFFERSIZE;
ring->frameoffset = B43legacy_DMA0_RX_FRAMEOFFSET;
} else if (ring->index == 3) {
ring->rx_buffersize = B43legacy_DMA3_RX_BUFFERSIZE;
ring->frameoffset = B43legacy_DMA3_RX_FRAMEOFFSET;
} else
B43legacy_WARN_ON(1);
}
spin_lock_init(&ring->lock);
#ifdef CONFIG_B43LEGACY_DEBUG
ring->last_injected_overflow = jiffies;
#endif
err = alloc_ringmemory(ring);
if (err)
goto err_kfree_txhdr_cache;
err = dmacontroller_setup(ring);
if (err)
goto err_free_ringmemory;
out:
return ring;
err_free_ringmemory:
free_ringmemory(ring);
err_kfree_txhdr_cache:
kfree(ring->txhdr_cache);
err_kfree_meta:
kfree(ring->meta);
err_kfree_ring:
kfree(ring);
ring = NULL;
goto out;
}
/* Main cleanup function. */
static void b43legacy_destroy_dmaring(struct b43legacy_dmaring *ring)
{
if (!ring)
return;
b43legacydbg(ring->dev->wl, "DMA-%u 0x%04X (%s) max used slots:"
" %d/%d\n", (unsigned int)(ring->type), ring->mmio_base,
(ring->tx) ? "TX" : "RX", ring->max_used_slots,
ring->nr_slots);
/* Device IRQs are disabled prior entering this function,
* so no need to take care of concurrency with rx handler stuff.
*/
dmacontroller_cleanup(ring);
free_all_descbuffers(ring);
free_ringmemory(ring);
kfree(ring->txhdr_cache);
kfree(ring->meta);
kfree(ring);
}
void b43legacy_dma_free(struct b43legacy_wldev *dev)
{
struct b43legacy_dma *dma;
if (b43legacy_using_pio(dev))
return;
dma = &dev->dma;
b43legacy_destroy_dmaring(dma->rx_ring3);
dma->rx_ring3 = NULL;
b43legacy_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
}
static int b43legacy_dma_set_mask(struct b43legacy_wldev *dev, u64 mask)
{
u64 orig_mask = mask;
bool fallback = 0;
int err;
/* Try to set the DMA mask. If it fails, try falling back to a
* lower mask, as we can always also support a lower one. */
while (1) {
err = dma_set_mask(dev->dev->dma_dev, mask);
if (!err) {
err = dma_set_coherent_mask(dev->dev->dma_dev, mask);
if (!err)
break;
}
if (mask == DMA_BIT_MASK(64)) {
mask = DMA_BIT_MASK(32);
fallback = 1;
continue;
}
if (mask == DMA_BIT_MASK(32)) {
mask = DMA_BIT_MASK(30);
fallback = 1;
continue;
}
b43legacyerr(dev->wl, "The machine/kernel does not support "
"the required %u-bit DMA mask\n",
(unsigned int)dma_mask_to_engine_type(orig_mask));
return -EOPNOTSUPP;
}
if (fallback) {
b43legacyinfo(dev->wl, "DMA mask fallback from %u-bit to %u-"
"bit\n",
(unsigned int)dma_mask_to_engine_type(orig_mask),
(unsigned int)dma_mask_to_engine_type(mask));
}
return 0;
}
int b43legacy_dma_init(struct b43legacy_wldev *dev)
{
struct b43legacy_dma *dma = &dev->dma;
struct b43legacy_dmaring *ring;
int err;
u64 dmamask;
enum b43legacy_dmatype type;
dmamask = supported_dma_mask(dev);
type = dma_mask_to_engine_type(dmamask);
err = b43legacy_dma_set_mask(dev, dmamask);
if (err) {
#ifdef CONFIG_B43LEGACY_PIO
b43legacywarn(dev->wl, "DMA for this device not supported. "
"Falling back to PIO\n");
dev->__using_pio = 1;
return -EAGAIN;
#else
b43legacyerr(dev->wl, "DMA for this device not supported and "
"no PIO support compiled in\n");
return -EOPNOTSUPP;
#endif
}
dma->translation = ssb_dma_translation(dev->dev);
err = -ENOMEM;
/* setup TX DMA channels. */
ring = b43legacy_setup_dmaring(dev, 0, 1, type);
if (!ring)
goto out;
dma->tx_ring0 = ring;
ring = b43legacy_setup_dmaring(dev, 1, 1, type);
if (!ring)
goto err_destroy_tx0;
dma->tx_ring1 = ring;
ring = b43legacy_setup_dmaring(dev, 2, 1, type);
if (!ring)
goto err_destroy_tx1;
dma->tx_ring2 = ring;
ring = b43legacy_setup_dmaring(dev, 3, 1, type);
if (!ring)
goto err_destroy_tx2;
dma->tx_ring3 = ring;
ring = b43legacy_setup_dmaring(dev, 4, 1, type);
if (!ring)
goto err_destroy_tx3;
dma->tx_ring4 = ring;
ring = b43legacy_setup_dmaring(dev, 5, 1, type);
if (!ring)
goto err_destroy_tx4;
dma->tx_ring5 = ring;
/* setup RX DMA channels. */
ring = b43legacy_setup_dmaring(dev, 0, 0, type);
if (!ring)
goto err_destroy_tx5;
dma->rx_ring0 = ring;
if (dev->dev->id.revision < 5) {
ring = b43legacy_setup_dmaring(dev, 3, 0, type);
if (!ring)
goto err_destroy_rx0;
dma->rx_ring3 = ring;
}
b43legacydbg(dev->wl, "%u-bit DMA initialized\n", (unsigned int)type);
err = 0;
out:
return err;
err_destroy_rx0:
b43legacy_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
err_destroy_tx5:
b43legacy_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
err_destroy_tx4:
b43legacy_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
err_destroy_tx3:
b43legacy_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
err_destroy_tx2:
b43legacy_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
err_destroy_tx1:
b43legacy_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
err_destroy_tx0:
b43legacy_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
goto out;
}
/* Generate a cookie for the TX header. */
static u16 generate_cookie(struct b43legacy_dmaring *ring,
int slot)
{
u16 cookie = 0x1000;
/* Use the upper 4 bits of the cookie as
* DMA controller ID and store the slot number
* in the lower 12 bits.
* Note that the cookie must never be 0, as this
* is a special value used in RX path.
*/
switch (ring->index) {
case 0:
cookie = 0xA000;
break;
case 1:
cookie = 0xB000;
break;
case 2:
cookie = 0xC000;
break;
case 3:
cookie = 0xD000;
break;
case 4:
cookie = 0xE000;
break;
case 5:
cookie = 0xF000;
break;
}
B43legacy_WARN_ON(!(((u16)slot & 0xF000) == 0x0000));
cookie |= (u16)slot;
return cookie;
}
/* Inspect a cookie and find out to which controller/slot it belongs. */
static
struct b43legacy_dmaring *parse_cookie(struct b43legacy_wldev *dev,
u16 cookie, int *slot)
{
struct b43legacy_dma *dma = &dev->dma;
struct b43legacy_dmaring *ring = NULL;
switch (cookie & 0xF000) {
case 0xA000:
ring = dma->tx_ring0;
break;
case 0xB000:
ring = dma->tx_ring1;
break;
case 0xC000:
ring = dma->tx_ring2;
break;
case 0xD000:
ring = dma->tx_ring3;
break;
case 0xE000:
ring = dma->tx_ring4;
break;
case 0xF000:
ring = dma->tx_ring5;
break;
default:
B43legacy_WARN_ON(1);
}
*slot = (cookie & 0x0FFF);
B43legacy_WARN_ON(!(ring && *slot >= 0 && *slot < ring->nr_slots));
return ring;
}
static int dma_tx_fragment(struct b43legacy_dmaring *ring,
struct sk_buff **in_skb)
{
struct sk_buff *skb = *in_skb;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
u8 *header;
int slot, old_top_slot, old_used_slots;
int err;
struct b43legacy_dmadesc32 *desc;
struct b43legacy_dmadesc_meta *meta;
struct b43legacy_dmadesc_meta *meta_hdr;
struct sk_buff *bounce_skb;
#define SLOTS_PER_PACKET 2
B43legacy_WARN_ON(skb_shinfo(skb)->nr_frags != 0);
old_top_slot = ring->current_slot;
old_used_slots = ring->used_slots;
/* Get a slot for the header. */
slot = request_slot(ring);
desc = op32_idx2desc(ring, slot, &meta_hdr);
memset(meta_hdr, 0, sizeof(*meta_hdr));
header = &(ring->txhdr_cache[slot * sizeof(
struct b43legacy_txhdr_fw3)]);
err = b43legacy_generate_txhdr(ring->dev, header,
skb->data, skb->len, info,
generate_cookie(ring, slot));
if (unlikely(err)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
return err;
}
meta_hdr->dmaaddr = map_descbuffer(ring, (unsigned char *)header,
sizeof(struct b43legacy_txhdr_fw3), 1);
if (b43legacy_dma_mapping_error(ring, meta_hdr->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3), 1)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
return -EIO;
}
op32_fill_descriptor(ring, desc, meta_hdr->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3), 1, 0, 0);
/* Get a slot for the payload. */
slot = request_slot(ring);
desc = op32_idx2desc(ring, slot, &meta);
memset(meta, 0, sizeof(*meta));
meta->skb = skb;
meta->is_last_fragment = 1;
meta->dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
/* create a bounce buffer in zone_dma on mapping failure. */
if (b43legacy_dma_mapping_error(ring, meta->dmaaddr, skb->len, 1)) {
bounce_skb = __dev_alloc_skb(skb->len, GFP_ATOMIC | GFP_DMA);
if (!bounce_skb) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
err = -ENOMEM;
goto out_unmap_hdr;
}
memcpy(skb_put(bounce_skb, skb->len), skb->data, skb->len);
memcpy(bounce_skb->cb, skb->cb, sizeof(skb->cb));
bounce_skb->dev = skb->dev;
skb_set_queue_mapping(bounce_skb, skb_get_queue_mapping(skb));
info = IEEE80211_SKB_CB(bounce_skb);
dev_kfree_skb_any(skb);
skb = bounce_skb;
*in_skb = bounce_skb;
meta->skb = skb;
meta->dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
if (b43legacy_dma_mapping_error(ring, meta->dmaaddr, skb->len, 1)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
err = -EIO;
goto out_free_bounce;
}
}
op32_fill_descriptor(ring, desc, meta->dmaaddr,
skb->len, 0, 1, 1);
wmb(); /* previous stuff MUST be done */
/* Now transfer the whole frame. */
op32_poke_tx(ring, next_slot(ring, slot));
return 0;
out_free_bounce:
dev_kfree_skb_any(skb);
out_unmap_hdr:
unmap_descbuffer(ring, meta_hdr->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3), 1);
return err;
}
static inline
int should_inject_overflow(struct b43legacy_dmaring *ring)
{
#ifdef CONFIG_B43LEGACY_DEBUG
if (unlikely(b43legacy_debug(ring->dev,
B43legacy_DBG_DMAOVERFLOW))) {
/* Check if we should inject another ringbuffer overflow
* to test handling of this situation in the stack. */
unsigned long next_overflow;
next_overflow = ring->last_injected_overflow + HZ;
if (time_after(jiffies, next_overflow)) {
ring->last_injected_overflow = jiffies;
b43legacydbg(ring->dev->wl,
"Injecting TX ring overflow on "
"DMA controller %d\n", ring->index);
return 1;
}
}
#endif /* CONFIG_B43LEGACY_DEBUG */
return 0;
}
int b43legacy_dma_tx(struct b43legacy_wldev *dev,
struct sk_buff *skb)
{
struct b43legacy_dmaring *ring;
int err = 0;
unsigned long flags;
ring = priority_to_txring(dev, skb_get_queue_mapping(skb));
spin_lock_irqsave(&ring->lock, flags);
B43legacy_WARN_ON(!ring->tx);
if (unlikely(ring->stopped)) {
/* We get here only because of a bug in mac80211.
* Because of a race, one packet may be queued after
* the queue is stopped, thus we got called when we shouldn't.
* For now, just refuse the transmit. */
if (b43legacy_debug(dev, B43legacy_DBG_DMAVERBOSE))
b43legacyerr(dev->wl, "Packet after queue stopped\n");
err = -ENOSPC;
goto out_unlock;
}
if (unlikely(WARN_ON(free_slots(ring) < SLOTS_PER_PACKET))) {
/* If we get here, we have a real error with the queue
* full, but queues not stopped. */
b43legacyerr(dev->wl, "DMA queue overflow\n");
err = -ENOSPC;
goto out_unlock;
}
/* dma_tx_fragment might reallocate the skb, so invalidate pointers pointing
* into the skb data or cb now. */
err = dma_tx_fragment(ring, &skb);
if (unlikely(err == -ENOKEY)) {
/* Drop this packet, as we don't have the encryption key
* anymore and must not transmit it unencrypted. */
dev_kfree_skb_any(skb);
err = 0;
goto out_unlock;
}
if (unlikely(err)) {
b43legacyerr(dev->wl, "DMA tx mapping failure\n");
goto out_unlock;
}
if ((free_slots(ring) < SLOTS_PER_PACKET) ||
should_inject_overflow(ring)) {
/* This TX ring is full. */
ieee80211_stop_queue(dev->wl->hw, txring_to_priority(ring));
ring->stopped = 1;
if (b43legacy_debug(dev, B43legacy_DBG_DMAVERBOSE))
b43legacydbg(dev->wl, "Stopped TX ring %d\n",
ring->index);
}
out_unlock:
spin_unlock_irqrestore(&ring->lock, flags);
return err;
}
void b43legacy_dma_handle_txstatus(struct b43legacy_wldev *dev,
const struct b43legacy_txstatus *status)
{
struct b43legacy_dmaring *ring;
struct b43legacy_dmadesc_meta *meta;
int retry_limit;
int slot;
ring = parse_cookie(dev, status->cookie, &slot);
if (unlikely(!ring))
return;
B43legacy_WARN_ON(!irqs_disabled());
spin_lock(&ring->lock);
B43legacy_WARN_ON(!ring->tx);
while (1) {
B43legacy_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
op32_idx2desc(ring, slot, &meta);
if (meta->skb)
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
else
unmap_descbuffer(ring, meta->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3),
1);
if (meta->is_last_fragment) {
struct ieee80211_tx_info *info;
BUG_ON(!meta->skb);
info = IEEE80211_SKB_CB(meta->skb);
/* preserve the confiured retry limit before clearing the status
* The xmit function has overwritten the rc's value with the actual
* retry limit done by the hardware */
retry_limit = info->status.rates[0].count;
ieee80211_tx_info_clear_status(info);
if (status->acked)
info->flags |= IEEE80211_TX_STAT_ACK;
if (status->rts_count > dev->wl->hw->conf.short_frame_max_tx_count) {
/*
* If the short retries (RTS, not data frame) have exceeded
* the limit, the hw will not have tried the selected rate,
* but will have used the fallback rate instead.
* Don't let the rate control count attempts for the selected
* rate in this case, otherwise the statistics will be off.
*/
info->status.rates[0].count = 0;
info->status.rates[1].count = status->frame_count;
} else {
if (status->frame_count > retry_limit) {
info->status.rates[0].count = retry_limit;
info->status.rates[1].count = status->frame_count -
retry_limit;
} else {
info->status.rates[0].count = status->frame_count;
info->status.rates[1].idx = -1;
}
}
/* Call back to inform the ieee80211 subsystem about the
* status of the transmission.
* Some fields of txstat are already filled in dma_tx().
*/
ieee80211_tx_status_irqsafe(dev->wl->hw, meta->skb);
/* skb is freed by ieee80211_tx_status_irqsafe() */
meta->skb = NULL;
} else {
/* No need to call free_descriptor_buffer here, as
* this is only the txhdr, which is not allocated.
*/
B43legacy_WARN_ON(meta->skb != NULL);
}
/* Everything unmapped and free'd. So it's not used anymore. */
ring->used_slots--;
if (meta->is_last_fragment)
break;
slot = next_slot(ring, slot);
}
dev->stats.last_tx = jiffies;
if (ring->stopped) {
B43legacy_WARN_ON(free_slots(ring) < SLOTS_PER_PACKET);
ieee80211_wake_queue(dev->wl->hw, txring_to_priority(ring));
ring->stopped = 0;
if (b43legacy_debug(dev, B43legacy_DBG_DMAVERBOSE))
b43legacydbg(dev->wl, "Woke up TX ring %d\n",
ring->index);
}
spin_unlock(&ring->lock);
}
static void dma_rx(struct b43legacy_dmaring *ring,
int *slot)
{
struct b43legacy_dmadesc32 *desc;
struct b43legacy_dmadesc_meta *meta;
struct b43legacy_rxhdr_fw3 *rxhdr;
struct sk_buff *skb;
u16 len;
int err;
dma_addr_t dmaaddr;
desc = op32_idx2desc(ring, *slot, &meta);
sync_descbuffer_for_cpu(ring, meta->dmaaddr, ring->rx_buffersize);
skb = meta->skb;
if (ring->index == 3) {
/* We received an xmit status. */
struct b43legacy_hwtxstatus *hw =
(struct b43legacy_hwtxstatus *)skb->data;
int i = 0;
while (hw->cookie == 0) {
if (i > 100)
break;
i++;
udelay(2);
barrier();
}
b43legacy_handle_hwtxstatus(ring->dev, hw);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
return;
}
rxhdr = (struct b43legacy_rxhdr_fw3 *)skb->data;
len = le16_to_cpu(rxhdr->frame_len);
if (len == 0) {
int i = 0;
do {
udelay(2);
barrier();
len = le16_to_cpu(rxhdr->frame_len);
} while (len == 0 && i++ < 5);
if (unlikely(len == 0)) {
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
goto drop;
}
}
if (unlikely(len > ring->rx_buffersize)) {
/* The data did not fit into one descriptor buffer
* and is split over multiple buffers.
* This should never happen, as we try to allocate buffers
* big enough. So simply ignore this packet.
*/
int cnt = 0;
s32 tmp = len;
while (1) {
desc = op32_idx2desc(ring, *slot, &meta);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
*slot = next_slot(ring, *slot);
cnt++;
tmp -= ring->rx_buffersize;
if (tmp <= 0)
break;
}
b43legacyerr(ring->dev->wl, "DMA RX buffer too small "
"(len: %u, buffer: %u, nr-dropped: %d)\n",
len, ring->rx_buffersize, cnt);
goto drop;
}
dmaaddr = meta->dmaaddr;
err = setup_rx_descbuffer(ring, desc, meta, GFP_ATOMIC);
if (unlikely(err)) {
b43legacydbg(ring->dev->wl, "DMA RX: setup_rx_descbuffer()"
" failed\n");
sync_descbuffer_for_device(ring, dmaaddr,
ring->rx_buffersize);
goto drop;
}
unmap_descbuffer(ring, dmaaddr, ring->rx_buffersize, 0);
skb_put(skb, len + ring->frameoffset);
skb_pull(skb, ring->frameoffset);
b43legacy_rx(ring->dev, skb, rxhdr);
drop:
return;
}
void b43legacy_dma_rx(struct b43legacy_dmaring *ring)
{
int slot;
int current_slot;
int used_slots = 0;
B43legacy_WARN_ON(ring->tx);
current_slot = op32_get_current_rxslot(ring);
B43legacy_WARN_ON(!(current_slot >= 0 && current_slot <
ring->nr_slots));
slot = ring->current_slot;
for (; slot != current_slot; slot = next_slot(ring, slot)) {
dma_rx(ring, &slot);
update_max_used_slots(ring, ++used_slots);
}
op32_set_current_rxslot(ring, slot);
ring->current_slot = slot;
}
static void b43legacy_dma_tx_suspend_ring(struct b43legacy_dmaring *ring)
{
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
B43legacy_WARN_ON(!ring->tx);
op32_tx_suspend(ring);
spin_unlock_irqrestore(&ring->lock, flags);
}
static void b43legacy_dma_tx_resume_ring(struct b43legacy_dmaring *ring)
{
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
B43legacy_WARN_ON(!ring->tx);
op32_tx_resume(ring);
spin_unlock_irqrestore(&ring->lock, flags);
}
void b43legacy_dma_tx_suspend(struct b43legacy_wldev *dev)
{
b43legacy_power_saving_ctl_bits(dev, -1, 1);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring0);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring1);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring2);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring3);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring4);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring5);
}
void b43legacy_dma_tx_resume(struct b43legacy_wldev *dev)
{
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring5);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring4);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring3);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring2);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring1);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring0);
b43legacy_power_saving_ctl_bits(dev, -1, -1);
}