linux/net/sched/sch_taprio.c

2575 lines
66 KiB
C
Raw Normal View History

tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
// SPDX-License-Identifier: GPL-2.0
/* net/sched/sch_taprio.c Time Aware Priority Scheduler
*
* Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
*
*/
#include <linux/ethtool.h>
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
#include <linux/ethtool_netlink.h>
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/math64.h>
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
#include <linux/module.h>
#include <linux/spinlock.h>
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
#include <linux/rcupdate.h>
#include <linux/time.h>
#include <net/gso.h>
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/sch_generic.h>
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
#include <net/sock.h>
#include <net/tcp.h>
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
#define TAPRIO_STAT_NOT_SET (~0ULL)
#include "sch_mqprio_lib.h"
static LIST_HEAD(taprio_list);
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
static struct static_key_false taprio_have_broken_mqprio;
static struct static_key_false taprio_have_working_mqprio;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
#define TAPRIO_ALL_GATES_OPEN -1
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
#define TAPRIO_FLAGS_INVALID U32_MAX
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct sched_entry {
net/sched: taprio: calculate tc gate durations Current taprio code operates on a very simplistic (and incorrect) assumption: that egress scheduling for a traffic class can only take place for the duration of the current interval, or i.o.w., it assumes that at the end of each schedule entry, there is a "gate close" event for all traffic classes. As an example, traffic sent with the schedule below will be jumpy, even though all 8 TC gates are open, so there is absolutely no "gate close" event (effectively a transition from BIT(tc)==1 to BIT(tc)==0 in consecutive schedule entries): tc qdisc replace dev veth0 parent root taprio \ num_tc 2 \ map 0 1 \ queues 1@0 1@1 \ base-time 0 \ sched-entry S 0xff 4000000000 \ clockid CLOCK_TAI \ flags 0x0 This qdisc simply does not have what it takes in terms of logic to *actually* compute the durations of traffic classes. Also, it does not recognize the need to use this information on a per-traffic-class basis: it always looks at entry->interval and entry->close_time. This change proposes that each schedule entry has an array called tc_gate_duration[tc]. This holds the information: "for how long will this traffic class gate remain open, starting from *this* schedule entry". If the traffic class gate is always open, that value is equal to the cycle time of the schedule. We'll also need to keep track, for the purpose of queueMaxSDU[tc] calculation, what is the maximum time duration for a traffic class having an open gate. This gives us directly what is the maximum sized packet that this traffic class will have to accept. For everything else it has to qdisc_drop() it in qdisc_enqueue(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:31 +02:00
/* Durations between this GCL entry and the GCL entry where the
* respective traffic class gate closes
*/
u64 gate_duration[TC_MAX_QUEUE];
atomic_t budget[TC_MAX_QUEUE];
/* The qdisc makes some effort so that no packet leaves
* after this time
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
*/
ktime_t gate_close_time[TC_MAX_QUEUE];
struct list_head list;
/* Used to calculate when to advance the schedule */
ktime_t end_time;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
ktime_t next_txtime;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
int index;
u32 gate_mask;
u32 interval;
u8 command;
};
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct sched_gate_list {
net/sched: taprio: calculate tc gate durations Current taprio code operates on a very simplistic (and incorrect) assumption: that egress scheduling for a traffic class can only take place for the duration of the current interval, or i.o.w., it assumes that at the end of each schedule entry, there is a "gate close" event for all traffic classes. As an example, traffic sent with the schedule below will be jumpy, even though all 8 TC gates are open, so there is absolutely no "gate close" event (effectively a transition from BIT(tc)==1 to BIT(tc)==0 in consecutive schedule entries): tc qdisc replace dev veth0 parent root taprio \ num_tc 2 \ map 0 1 \ queues 1@0 1@1 \ base-time 0 \ sched-entry S 0xff 4000000000 \ clockid CLOCK_TAI \ flags 0x0 This qdisc simply does not have what it takes in terms of logic to *actually* compute the durations of traffic classes. Also, it does not recognize the need to use this information on a per-traffic-class basis: it always looks at entry->interval and entry->close_time. This change proposes that each schedule entry has an array called tc_gate_duration[tc]. This holds the information: "for how long will this traffic class gate remain open, starting from *this* schedule entry". If the traffic class gate is always open, that value is equal to the cycle time of the schedule. We'll also need to keep track, for the purpose of queueMaxSDU[tc] calculation, what is the maximum time duration for a traffic class having an open gate. This gives us directly what is the maximum sized packet that this traffic class will have to accept. For everything else it has to qdisc_drop() it in qdisc_enqueue(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:31 +02:00
/* Longest non-zero contiguous gate durations per traffic class,
* or 0 if a traffic class gate never opens during the schedule.
*/
u64 max_open_gate_duration[TC_MAX_QUEUE];
2023-02-07 15:54:37 +02:00
u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct rcu_head rcu;
struct list_head entries;
size_t num_entries;
ktime_t cycle_end_time;
s64 cycle_time;
s64 cycle_time_extension;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
s64 base_time;
};
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct taprio_sched {
struct Qdisc **qdiscs;
struct Qdisc *root;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
u32 flags;
enum tk_offsets tk_offset;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
int clockid;
net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on an invalid set of flags. As a result, it is possible to crash the kernel if user space forces an error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling of taprio_enable_offload(). This is because drivers do not expect the offload to be disabled when it was never enabled. The error that we force here is to attach taprio as a non-root qdisc, but instead as child of an mqprio root qdisc: $ tc qdisc add dev swp0 root handle 1: \ mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 $ tc qdisc replace dev swp0 parent 1:1 \ taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \ flags 0x0 clockid CLOCK_TAI Unable to handle kernel paging request at virtual address fffffffffffffff8 [fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Call trace: taprio_dump+0x27c/0x310 vsc9959_port_setup_tc+0x1f4/0x460 felix_port_setup_tc+0x24/0x3c dsa_slave_setup_tc+0x54/0x27c taprio_disable_offload.isra.0+0x58/0xe0 taprio_destroy+0x80/0x104 qdisc_create+0x240/0x470 tc_modify_qdisc+0x1fc/0x6b0 rtnetlink_rcv_msg+0x12c/0x390 netlink_rcv_skb+0x5c/0x130 rtnetlink_rcv+0x1c/0x2c Fix this by keeping track of the operations we made, and undo the offload only if we actually did it. I've added "bool offloaded" inside a 4 byte hole between "int clockid" and "atomic64_t picos_per_byte". Now the first cache line looks like below: $ pahole -C taprio_sched net/sched/sch_taprio.o struct taprio_sched { struct Qdisc * * qdiscs; /* 0 8 */ struct Qdisc * root; /* 8 8 */ u32 flags; /* 16 4 */ enum tk_offsets tk_offset; /* 20 4 */ int clockid; /* 24 4 */ bool offloaded; /* 28 1 */ /* XXX 3 bytes hole, try to pack */ atomic64_t picos_per_byte; /* 32 0 */ /* XXX 8 bytes hole, try to pack */ spinlock_t current_entry_lock; /* 40 0 */ /* XXX 8 bytes hole, try to pack */ struct sched_entry * current_entry; /* 48 8 */ struct sched_gate_list * oper_sched; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */ Fixes: 9c66d1564676 ("taprio: Add support for hardware offloading") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-15 13:08:01 +03:00
bool offloaded;
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
bool detected_mqprio;
bool broken_mqprio;
atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
* speeds it's sub-nanoseconds per byte
*/
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
/* Protects the update side of the RCU protected current_entry */
spinlock_t current_entry_lock;
struct sched_entry __rcu *current_entry;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct sched_gate_list __rcu *oper_sched;
struct sched_gate_list __rcu *admin_sched;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct hrtimer advance_timer;
struct list_head taprio_list;
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
int cur_txq[TC_MAX_QUEUE];
u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
u32 txtime_delay;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
};
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
struct __tc_taprio_qopt_offload {
refcount_t users;
struct tc_taprio_qopt_offload offload;
};
net/sched: taprio: calculate tc gate durations Current taprio code operates on a very simplistic (and incorrect) assumption: that egress scheduling for a traffic class can only take place for the duration of the current interval, or i.o.w., it assumes that at the end of each schedule entry, there is a "gate close" event for all traffic classes. As an example, traffic sent with the schedule below will be jumpy, even though all 8 TC gates are open, so there is absolutely no "gate close" event (effectively a transition from BIT(tc)==1 to BIT(tc)==0 in consecutive schedule entries): tc qdisc replace dev veth0 parent root taprio \ num_tc 2 \ map 0 1 \ queues 1@0 1@1 \ base-time 0 \ sched-entry S 0xff 4000000000 \ clockid CLOCK_TAI \ flags 0x0 This qdisc simply does not have what it takes in terms of logic to *actually* compute the durations of traffic classes. Also, it does not recognize the need to use this information on a per-traffic-class basis: it always looks at entry->interval and entry->close_time. This change proposes that each schedule entry has an array called tc_gate_duration[tc]. This holds the information: "for how long will this traffic class gate remain open, starting from *this* schedule entry". If the traffic class gate is always open, that value is equal to the cycle time of the schedule. We'll also need to keep track, for the purpose of queueMaxSDU[tc] calculation, what is the maximum time duration for a traffic class having an open gate. This gives us directly what is the maximum sized packet that this traffic class will have to accept. For everything else it has to qdisc_drop() it in qdisc_enqueue(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:31 +02:00
static void taprio_calculate_gate_durations(struct taprio_sched *q,
struct sched_gate_list *sched)
{
struct net_device *dev = qdisc_dev(q->root);
int num_tc = netdev_get_num_tc(dev);
struct sched_entry *entry, *cur;
int tc;
list_for_each_entry(entry, &sched->entries, list) {
u32 gates_still_open = entry->gate_mask;
/* For each traffic class, calculate each open gate duration,
* starting at this schedule entry and ending at the schedule
* entry containing a gate close event for that TC.
*/
cur = entry;
do {
if (!gates_still_open)
break;
for (tc = 0; tc < num_tc; tc++) {
if (!(gates_still_open & BIT(tc)))
continue;
if (cur->gate_mask & BIT(tc))
entry->gate_duration[tc] += cur->interval;
else
gates_still_open &= ~BIT(tc);
}
cur = list_next_entry_circular(cur, &sched->entries, list);
} while (cur != entry);
/* Keep track of the maximum gate duration for each traffic
* class, taking care to not confuse a traffic class which is
* temporarily closed with one that is always closed.
*/
for (tc = 0; tc < num_tc; tc++)
if (entry->gate_duration[tc] &&
sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
}
}
static bool taprio_entry_allows_tx(ktime_t skb_end_time,
struct sched_entry *entry, int tc)
{
return ktime_before(skb_end_time, entry->gate_close_time[tc]);
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
static ktime_t sched_base_time(const struct sched_gate_list *sched)
{
if (!sched)
return KTIME_MAX;
return ns_to_ktime(sched->base_time);
}
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
{
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
switch (tk_offset) {
case TK_OFFS_MAX:
return mono;
default:
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
return ktime_mono_to_any(mono, tk_offset);
}
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
}
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
static ktime_t taprio_get_time(const struct taprio_sched *q)
{
return taprio_mono_to_any(q, ktime_get());
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
static void taprio_free_sched_cb(struct rcu_head *head)
{
struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
struct sched_entry *entry, *n;
list_for_each_entry_safe(entry, n, &sched->entries, list) {
list_del(&entry->list);
kfree(entry);
}
kfree(sched);
}
static void switch_schedules(struct taprio_sched *q,
struct sched_gate_list **admin,
struct sched_gate_list **oper)
{
rcu_assign_pointer(q->oper_sched, *admin);
rcu_assign_pointer(q->admin_sched, NULL);
if (*oper)
call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
*oper = *admin;
*admin = NULL;
}
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
/* Get how much time has been already elapsed in the current cycle. */
static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
{
ktime_t time_since_sched_start;
s32 time_elapsed;
time_since_sched_start = ktime_sub(time, sched->base_time);
div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
return time_elapsed;
}
static ktime_t get_interval_end_time(struct sched_gate_list *sched,
struct sched_gate_list *admin,
struct sched_entry *entry,
ktime_t intv_start)
{
s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
ktime_t intv_end, cycle_ext_end, cycle_end;
cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
intv_end = ktime_add_ns(intv_start, entry->interval);
cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
if (ktime_before(intv_end, cycle_end))
return intv_end;
else if (admin && admin != sched &&
ktime_after(admin->base_time, cycle_end) &&
ktime_before(admin->base_time, cycle_ext_end))
return admin->base_time;
else
return cycle_end;
}
static int length_to_duration(struct taprio_sched *q, int len)
{
return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
}
static int duration_to_length(struct taprio_sched *q, u64 duration)
{
return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
}
/* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
* q->max_sdu[] requested by the user and the max_sdu dynamically determined by
* the maximum open gate durations at the given link speed.
*/
2023-02-07 15:54:37 +02:00
static void taprio_update_queue_max_sdu(struct taprio_sched *q,
struct sched_gate_list *sched,
struct qdisc_size_table *stab)
2023-02-07 15:54:37 +02:00
{
struct net_device *dev = qdisc_dev(q->root);
int num_tc = netdev_get_num_tc(dev);
u32 max_sdu_from_user;
u32 max_sdu_dynamic;
u32 max_sdu;
2023-02-07 15:54:37 +02:00
int tc;
for (tc = 0; tc < num_tc; tc++) {
max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
/* TC gate never closes => keep the queueMaxSDU
* selected by the user
*/
if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
max_sdu_dynamic = U32_MAX;
} else {
u32 max_frm_len;
max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
/* Compensate for L1 overhead from size table,
* but don't let the frame size go negative
*/
if (stab) {
max_frm_len -= stab->szopts.overhead;
max_frm_len = max_t(int, max_frm_len,
dev->hard_header_len + 1);
}
max_sdu_dynamic = max_frm_len - dev->hard_header_len;
if (max_sdu_dynamic > dev->max_mtu)
max_sdu_dynamic = U32_MAX;
}
max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
if (max_sdu != U32_MAX) {
sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
sched->max_sdu[tc] = max_sdu;
} else {
2023-02-07 15:54:37 +02:00
sched->max_frm_len[tc] = U32_MAX; /* never oversized */
sched->max_sdu[tc] = 0;
}
2023-02-07 15:54:37 +02:00
}
}
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
/* Returns the entry corresponding to next available interval. If
* validate_interval is set, it only validates whether the timestamp occurs
* when the gate corresponding to the skb's traffic class is open.
*/
static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
struct Qdisc *sch,
struct sched_gate_list *sched,
struct sched_gate_list *admin,
ktime_t time,
ktime_t *interval_start,
ktime_t *interval_end,
bool validate_interval)
{
ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
struct sched_entry *entry = NULL, *entry_found = NULL;
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
bool entry_available = false;
s32 cycle_elapsed;
int tc, n;
tc = netdev_get_prio_tc_map(dev, skb->priority);
packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
*interval_start = 0;
*interval_end = 0;
if (!sched)
return NULL;
cycle = sched->cycle_time;
cycle_elapsed = get_cycle_time_elapsed(sched, time);
curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
cycle_end = ktime_add_ns(curr_intv_end, cycle);
list_for_each_entry(entry, &sched->entries, list) {
curr_intv_start = curr_intv_end;
curr_intv_end = get_interval_end_time(sched, admin, entry,
curr_intv_start);
if (ktime_after(curr_intv_start, cycle_end))
break;
if (!(entry->gate_mask & BIT(tc)) ||
packet_transmit_time > entry->interval)
continue;
txtime = entry->next_txtime;
if (ktime_before(txtime, time) || validate_interval) {
transmit_end_time = ktime_add_ns(time, packet_transmit_time);
if ((ktime_before(curr_intv_start, time) &&
ktime_before(transmit_end_time, curr_intv_end)) ||
(ktime_after(curr_intv_start, time) && !validate_interval)) {
entry_found = entry;
*interval_start = curr_intv_start;
*interval_end = curr_intv_end;
break;
} else if (!entry_available && !validate_interval) {
/* Here, we are just trying to find out the
* first available interval in the next cycle.
*/
entry_available = true;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
entry_found = entry;
*interval_start = ktime_add_ns(curr_intv_start, cycle);
*interval_end = ktime_add_ns(curr_intv_end, cycle);
}
} else if (ktime_before(txtime, earliest_txtime) &&
!entry_available) {
earliest_txtime = txtime;
entry_found = entry;
n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
*interval_start = ktime_add(curr_intv_start, n * cycle);
*interval_end = ktime_add(curr_intv_end, n * cycle);
}
}
return entry_found;
}
static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct sched_gate_list *sched, *admin;
ktime_t interval_start, interval_end;
struct sched_entry *entry;
rcu_read_lock();
sched = rcu_dereference(q->oper_sched);
admin = rcu_dereference(q->admin_sched);
entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
&interval_start, &interval_end, true);
rcu_read_unlock();
return entry;
}
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
static bool taprio_flags_valid(u32 flags)
{
/* Make sure no other flag bits are set. */
if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
return false;
/* txtime-assist and full offload are mutually exclusive */
if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
(flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
return false;
return true;
}
/* This returns the tstamp value set by TCP in terms of the set clock. */
static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
{
unsigned int offset = skb_network_offset(skb);
const struct ipv6hdr *ipv6h;
const struct iphdr *iph;
struct ipv6hdr _ipv6h;
ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
if (!ipv6h)
return 0;
if (ipv6h->version == 4) {
iph = (struct iphdr *)ipv6h;
offset += iph->ihl * 4;
/* special-case 6in4 tunnelling, as that is a common way to get
* v6 connectivity in the home
*/
if (iph->protocol == IPPROTO_IPV6) {
ipv6h = skb_header_pointer(skb, offset,
sizeof(_ipv6h), &_ipv6h);
if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
return 0;
} else if (iph->protocol != IPPROTO_TCP) {
return 0;
}
} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
return 0;
}
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
return taprio_mono_to_any(q, skb->skb_mstamp_ns);
}
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
/* There are a few scenarios where we will have to modify the txtime from
* what is read from next_txtime in sched_entry. They are:
* 1. If txtime is in the past,
* a. The gate for the traffic class is currently open and packet can be
* transmitted before it closes, schedule the packet right away.
* b. If the gate corresponding to the traffic class is going to open later
* in the cycle, set the txtime of packet to the interval start.
* 2. If txtime is in the future, there are packets corresponding to the
* current traffic class waiting to be transmitted. So, the following
* possibilities exist:
* a. We can transmit the packet before the window containing the txtime
* closes.
* b. The window might close before the transmission can be completed
* successfully. So, schedule the packet in the next open window.
*/
static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
{
ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
struct taprio_sched *q = qdisc_priv(sch);
struct sched_gate_list *sched, *admin;
ktime_t minimum_time, now, txtime;
int len, packet_transmit_time;
struct sched_entry *entry;
bool sched_changed;
now = taprio_get_time(q);
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
minimum_time = ktime_add_ns(now, q->txtime_delay);
tcp_tstamp = get_tcp_tstamp(q, skb);
minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
rcu_read_lock();
admin = rcu_dereference(q->admin_sched);
sched = rcu_dereference(q->oper_sched);
if (admin && ktime_after(minimum_time, admin->base_time))
switch_schedules(q, &admin, &sched);
/* Until the schedule starts, all the queues are open */
if (!sched || ktime_before(minimum_time, sched->base_time)) {
txtime = minimum_time;
goto done;
}
len = qdisc_pkt_len(skb);
packet_transmit_time = length_to_duration(q, len);
do {
sched_changed = false;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
entry = find_entry_to_transmit(skb, sch, sched, admin,
minimum_time,
&interval_start, &interval_end,
false);
if (!entry) {
txtime = 0;
goto done;
}
txtime = entry->next_txtime;
txtime = max_t(ktime_t, txtime, minimum_time);
txtime = max_t(ktime_t, txtime, interval_start);
if (admin && admin != sched &&
ktime_after(txtime, admin->base_time)) {
sched = admin;
sched_changed = true;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
continue;
}
transmit_end_time = ktime_add(txtime, packet_transmit_time);
minimum_time = transmit_end_time;
/* Update the txtime of current entry to the next time it's
* interval starts.
*/
if (ktime_after(transmit_end_time, interval_end))
entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
} while (sched_changed || ktime_after(transmit_end_time, interval_end));
entry->next_txtime = transmit_end_time;
done:
rcu_read_unlock();
return txtime;
}
2023-02-07 15:54:37 +02:00
/* Devices with full offload are expected to honor this in hardware */
static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
struct sk_buff *skb)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
2023-02-07 15:54:37 +02:00
struct sched_gate_list *sched;
int prio = skb->priority;
2023-02-07 15:54:37 +02:00
bool exceeds = false;
u8 tc;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
2023-02-07 15:54:37 +02:00
tc = netdev_get_prio_tc_map(dev, prio);
rcu_read_lock();
sched = rcu_dereference(q->oper_sched);
if (sched && skb->len > sched->max_frm_len[tc])
exceeds = true;
rcu_read_unlock();
return exceeds;
}
static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
struct Qdisc *child, struct sk_buff **to_free)
{
struct taprio_sched *q = qdisc_priv(sch);
/* sk_flags are only safe to use on full sockets. */
if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
if (!is_valid_interval(skb, sch))
return qdisc_drop(skb, sch, to_free);
} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
skb->tstamp = get_packet_txtime(skb, sch);
if (!skb->tstamp)
return qdisc_drop(skb, sch, to_free);
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
qdisc_qstats_backlog_inc(sch, skb);
sch->q.qlen++;
return qdisc_enqueue(skb, child, to_free);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
struct Qdisc *child,
struct sk_buff **to_free)
{
unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
netdev_features_t features = netif_skb_features(skb);
struct sk_buff *segs, *nskb;
int ret;
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
if (IS_ERR_OR_NULL(segs))
return qdisc_drop(skb, sch, to_free);
skb_list_walk_safe(segs, segs, nskb) {
skb_mark_not_on_list(segs);
qdisc_skb_cb(segs)->pkt_len = segs->len;
slen += segs->len;
/* FIXME: we should be segmenting to a smaller size
* rather than dropping these
*/
if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
ret = qdisc_drop(segs, sch, to_free);
else
ret = taprio_enqueue_one(segs, sch, child, to_free);
if (ret != NET_XMIT_SUCCESS) {
if (net_xmit_drop_count(ret))
qdisc_qstats_drop(sch);
} else {
numsegs++;
}
}
if (numsegs > 1)
qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
consume_skb(skb);
return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
}
/* Will not be called in the full offload case, since the TX queues are
* attached to the Qdisc created using qdisc_create_dflt()
*/
taprio: Handle short intervals and large packets When using short intervals e.g. below one millisecond, large packets won't be transmitted at all. The software implementations checks whether the packet can be fit into the remaining interval. Therefore, it takes the packet length and the transmission speed into account. That is correct. However, for large packets it may be that the transmission time exceeds the interval resulting in no packet transmission. The same situation works fine with hardware offloading applied. The problem has been observed with the following schedule and iperf3: |tc qdisc replace dev lan1 parent root handle 100 taprio \ | num_tc 8 \ | map 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 \ | queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ | base-time $base \ | sched-entry S 0x40 500000 \ | sched-entry S 0xbf 500000 \ | clockid CLOCK_TAI \ | flags 0x00 [...] |root@tsn:~# iperf3 -c 192.168.2.105 |Connecting to host 192.168.2.105, port 5201 |[ 5] local 192.168.2.121 port 52610 connected to 192.168.2.105 port 5201 |[ ID] Interval Transfer Bitrate Retr Cwnd |[ 5] 0.00-1.00 sec 45.2 KBytes 370 Kbits/sec 0 1.41 KBytes |[ 5] 1.00-2.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes After debugging, it seems that the packet length stored in the SKB is about 7000-8000 bytes. Using a 100 Mbit/s link the transmission time is about 600us which larger than the interval of 500us. Therefore, segment the SKB into smaller chunks if the packet is too big. This yields similar results than the hardware offload: |root@tsn:~# iperf3 -c 192.168.2.105 |Connecting to host 192.168.2.105, port 5201 |- - - - - - - - - - - - - - - - - - - - - - - - - |[ ID] Interval Transfer Bitrate Retr |[ 5] 0.00-10.00 sec 48.9 MBytes 41.0 Mbits/sec 0 sender |[ 5] 0.00-10.02 sec 48.7 MBytes 40.7 Mbits/sec receiver Furthermore, the segmentation can be skipped for the full offload case, as the driver or the hardware is expected to handle this. Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-18 08:34:55 +01:00
static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct taprio_sched *q = qdisc_priv(sch);
struct Qdisc *child;
int queue;
queue = skb_get_queue_mapping(skb);
child = q->qdiscs[queue];
if (unlikely(!child))
return qdisc_drop(skb, sch, to_free);
if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
/* Large packets might not be transmitted when the transmission
* duration exceeds any configured interval. Therefore, segment
* the skb into smaller chunks. Drivers with full offload are
* expected to handle this in hardware.
*/
if (skb_is_gso(skb))
return taprio_enqueue_segmented(skb, sch, child,
to_free);
return qdisc_drop(skb, sch, to_free);
}
taprio: Handle short intervals and large packets When using short intervals e.g. below one millisecond, large packets won't be transmitted at all. The software implementations checks whether the packet can be fit into the remaining interval. Therefore, it takes the packet length and the transmission speed into account. That is correct. However, for large packets it may be that the transmission time exceeds the interval resulting in no packet transmission. The same situation works fine with hardware offloading applied. The problem has been observed with the following schedule and iperf3: |tc qdisc replace dev lan1 parent root handle 100 taprio \ | num_tc 8 \ | map 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 \ | queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ | base-time $base \ | sched-entry S 0x40 500000 \ | sched-entry S 0xbf 500000 \ | clockid CLOCK_TAI \ | flags 0x00 [...] |root@tsn:~# iperf3 -c 192.168.2.105 |Connecting to host 192.168.2.105, port 5201 |[ 5] local 192.168.2.121 port 52610 connected to 192.168.2.105 port 5201 |[ ID] Interval Transfer Bitrate Retr Cwnd |[ 5] 0.00-1.00 sec 45.2 KBytes 370 Kbits/sec 0 1.41 KBytes |[ 5] 1.00-2.00 sec 0.00 Bytes 0.00 bits/sec 0 1.41 KBytes After debugging, it seems that the packet length stored in the SKB is about 7000-8000 bytes. Using a 100 Mbit/s link the transmission time is about 600us which larger than the interval of 500us. Therefore, segment the SKB into smaller chunks if the packet is too big. This yields similar results than the hardware offload: |root@tsn:~# iperf3 -c 192.168.2.105 |Connecting to host 192.168.2.105, port 5201 |- - - - - - - - - - - - - - - - - - - - - - - - - |[ ID] Interval Transfer Bitrate Retr |[ 5] 0.00-10.00 sec 48.9 MBytes 41.0 Mbits/sec 0 sender |[ 5] 0.00-10.02 sec 48.7 MBytes 40.7 Mbits/sec receiver Furthermore, the segmentation can be skipped for the full offload case, as the driver or the hardware is expected to handle this. Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-18 08:34:55 +01:00
return taprio_enqueue_one(skb, sch, child, to_free);
}
static struct sk_buff *taprio_peek(struct Qdisc *sch)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return NULL;
}
static void taprio_set_budgets(struct taprio_sched *q,
struct sched_gate_list *sched,
struct sched_entry *entry)
{
struct net_device *dev = qdisc_dev(q->root);
int num_tc = netdev_get_num_tc(dev);
int tc, budget;
for (tc = 0; tc < num_tc; tc++) {
/* Traffic classes which never close have infinite budget */
if (entry->gate_duration[tc] == sched->cycle_time)
budget = INT_MAX;
else
budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
atomic64_read(&q->picos_per_byte));
atomic_set(&entry->budget[tc], budget);
}
}
/* When an skb is sent, it consumes from the budget of all traffic classes */
static int taprio_update_budgets(struct sched_entry *entry, size_t len,
int tc_consumed, int num_tc)
{
int tc, budget, new_budget = 0;
for (tc = 0; tc < num_tc; tc++) {
budget = atomic_read(&entry->budget[tc]);
/* Don't consume from infinite budget */
if (budget == INT_MAX) {
if (tc == tc_consumed)
new_budget = budget;
continue;
}
if (tc == tc_consumed)
new_budget = atomic_sub_return(len, &entry->budget[tc]);
else
atomic_sub(len, &entry->budget[tc]);
}
return new_budget;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
struct sched_entry *entry,
u32 gate_mask)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct Qdisc *child = q->qdiscs[txq];
int num_tc = netdev_get_num_tc(dev);
struct sk_buff *skb;
ktime_t guard;
int prio;
int len;
u8 tc;
if (unlikely(!child))
return NULL;
if (TXTIME_ASSIST_IS_ENABLED(q->flags))
goto skip_peek_checks;
skb = child->ops->peek(child);
if (!skb)
return NULL;
prio = skb->priority;
tc = netdev_get_prio_tc_map(dev, prio);
if (!(gate_mask & BIT(tc)))
return NULL;
len = qdisc_pkt_len(skb);
guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
/* In the case that there's no gate entry, there's no
* guard band ...
*/
if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
!taprio_entry_allows_tx(guard, entry, tc))
return NULL;
/* ... and no budget. */
if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
taprio_update_budgets(entry, len, tc, num_tc) < 0)
return NULL;
skip_peek_checks:
skb = child->ops->dequeue(child);
if (unlikely(!skb))
return NULL;
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
return skb;
}
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
{
int offset = dev->tc_to_txq[tc].offset;
int count = dev->tc_to_txq[tc].count;
(*txq)++;
if (*txq == offset + count)
*txq = offset;
}
/* Prioritize higher traffic classes, and select among TXQs belonging to the
* same TC using round robin
*/
static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
struct sched_entry *entry,
u32 gate_mask)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
int num_tc = netdev_get_num_tc(dev);
struct sk_buff *skb;
int tc;
for (tc = num_tc - 1; tc >= 0; tc--) {
int first_txq = q->cur_txq[tc];
if (!(gate_mask & BIT(tc)))
continue;
do {
skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
entry, gate_mask);
taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
if (q->cur_txq[tc] >= dev->num_tx_queues)
q->cur_txq[tc] = first_txq;
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
if (skb)
return skb;
} while (q->cur_txq[tc] != first_txq);
}
return NULL;
}
/* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
* class other than to determine whether the gate is open or not
*/
static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
struct sched_entry *entry,
u32 gate_mask)
{
struct net_device *dev = qdisc_dev(sch);
struct sk_buff *skb;
int i;
for (i = 0; i < dev->num_tx_queues; i++) {
skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
if (skb)
return skb;
}
return NULL;
}
/* Will not be called in the full offload case, since the TX queues are
* attached to the Qdisc created using qdisc_create_dflt()
*/
static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
struct taprio_sched *q = qdisc_priv(sch);
struct sk_buff *skb = NULL;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct sched_entry *entry;
u32 gate_mask;
rcu_read_lock();
entry = rcu_dereference(q->current_entry);
/* if there's no entry, it means that the schedule didn't
* start yet, so force all gates to be open, this is in
* accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
* "AdminGateStates"
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
*/
gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
if (!gate_mask)
goto done;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
!static_branch_likely(&taprio_have_working_mqprio)) {
/* Single NIC kind which is broken */
skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
} else if (static_branch_likely(&taprio_have_working_mqprio) &&
!static_branch_unlikely(&taprio_have_broken_mqprio)) {
/* Single NIC kind which prioritizes properly */
skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
} else {
/* Mixed NIC kinds present in system, need dynamic testing */
if (q->broken_mqprio)
skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
else
skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
done:
rcu_read_unlock();
return skb;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static bool should_restart_cycle(const struct sched_gate_list *oper,
const struct sched_entry *entry)
{
if (list_is_last(&entry->list, &oper->entries))
return true;
if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
return true;
return false;
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
static bool should_change_schedules(const struct sched_gate_list *admin,
const struct sched_gate_list *oper,
ktime_t end_time)
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
{
ktime_t next_base_time, extension_time;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (!admin)
return false;
next_base_time = sched_base_time(admin);
/* This is the simple case, the end_time would fall after
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
* the next schedule base_time.
*/
if (ktime_compare(next_base_time, end_time) <= 0)
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
return true;
/* This is the cycle_time_extension case, if the end_time
* plus the amount that can be extended would fall after the
* next schedule base_time, we can extend the current schedule
* for that amount.
*/
extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
* how precisely the extension should be made. So after
* conformance testing, this logic may change.
*/
if (ktime_compare(next_base_time, extension_time) <= 0)
return true;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
return false;
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
static enum hrtimer_restart advance_sched(struct hrtimer *timer)
{
struct taprio_sched *q = container_of(timer, struct taprio_sched,
advance_timer);
struct net_device *dev = qdisc_dev(q->root);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct sched_gate_list *oper, *admin;
int num_tc = netdev_get_num_tc(dev);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct sched_entry *entry, *next;
struct Qdisc *sch = q->root;
ktime_t end_time;
int tc;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
spin_lock(&q->current_entry_lock);
entry = rcu_dereference_protected(q->current_entry,
lockdep_is_held(&q->current_entry_lock));
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
oper = rcu_dereference_protected(q->oper_sched,
lockdep_is_held(&q->current_entry_lock));
admin = rcu_dereference_protected(q->admin_sched,
lockdep_is_held(&q->current_entry_lock));
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (!oper)
switch_schedules(q, &admin, &oper);
/* This can happen in two cases: 1. this is the very first run
* of this function (i.e. we weren't running any schedule
* previously); 2. The previous schedule just ended. The first
* entry of all schedules are pre-calculated during the
* schedule initialization.
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
*/
if (unlikely(!entry || entry->end_time == oper->base_time)) {
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
next = list_first_entry(&oper->entries, struct sched_entry,
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
list);
end_time = next->end_time;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
goto first_run;
}
if (should_restart_cycle(oper, entry)) {
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
next = list_first_entry(&oper->entries, struct sched_entry,
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
list);
oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
oper->cycle_time);
} else {
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
next = list_next_entry(entry, list);
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
end_time = ktime_add_ns(entry->end_time, next->interval);
end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
for (tc = 0; tc < num_tc; tc++) {
if (next->gate_duration[tc] == oper->cycle_time)
next->gate_close_time[tc] = KTIME_MAX;
else
next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
next->gate_duration[tc]);
}
if (should_change_schedules(admin, oper, end_time)) {
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
/* Set things so the next time this runs, the new
* schedule runs.
*/
end_time = sched_base_time(admin);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
switch_schedules(q, &admin, &oper);
}
next->end_time = end_time;
taprio_set_budgets(q, oper, next);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
first_run:
rcu_assign_pointer(q->current_entry, next);
spin_unlock(&q->current_entry_lock);
hrtimer_set_expires(&q->advance_timer, end_time);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
rcu_read_lock();
__netif_schedule(sch);
rcu_read_unlock();
return HRTIMER_RESTART;
}
static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
[TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
[TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
[TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
};
static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
[TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 },
[TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 },
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
[TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32,
TC_FP_EXPRESS,
TC_FP_PREEMPTIBLE),
};
net/sched: taprio: Limit TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME to INT_MAX. syzkaller found zero division error [0] in div_s64_rem() called from get_cycle_time_elapsed(), where sched->cycle_time is the divisor. We have tests in parse_taprio_schedule() so that cycle_time will never be 0, and actually cycle_time is not 0 in get_cycle_time_elapsed(). The problem is that the types of divisor are different; cycle_time is s64, but the argument of div_s64_rem() is s32. syzkaller fed this input and 0x100000000 is cast to s32 to be 0. @TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME={0xc, 0x8, 0x100000000} We use s64 for cycle_time to cast it to ktime_t, so let's keep it and set max for cycle_time. While at it, we prevent overflow in setup_txtime() and add another test in parse_taprio_schedule() to check if cycle_time overflows. Also, we add a new tdc test case for this issue. [0]: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 1 PID: 103 Comm: kworker/1:3 Not tainted 6.5.0-rc1-00330-g60cc1f7d0605 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: ipv6_addrconf addrconf_dad_work RIP: 0010:div_s64_rem include/linux/math64.h:42 [inline] RIP: 0010:get_cycle_time_elapsed net/sched/sch_taprio.c:223 [inline] RIP: 0010:find_entry_to_transmit+0x252/0x7e0 net/sched/sch_taprio.c:344 Code: 3c 02 00 0f 85 5e 05 00 00 48 8b 4c 24 08 4d 8b bd 40 01 00 00 48 8b 7c 24 48 48 89 c8 4c 29 f8 48 63 f7 48 99 48 89 74 24 70 <48> f7 fe 48 29 d1 48 8d 04 0f 49 89 cc 48 89 44 24 20 49 8d 85 10 RSP: 0018:ffffc90000acf260 EFLAGS: 00010206 RAX: 177450e0347560cf RBX: 0000000000000000 RCX: 177450e0347560cf RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000100000000 RBP: 0000000000000056 R08: 0000000000000000 R09: ffffed10020a0934 R10: ffff8880105049a7 R11: ffff88806cf3a520 R12: ffff888010504800 R13: ffff88800c00d800 R14: ffff8880105049a0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88806cf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0edf84f0e8 CR3: 000000000d73c002 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> get_packet_txtime net/sched/sch_taprio.c:508 [inline] taprio_enqueue_one+0x900/0xff0 net/sched/sch_taprio.c:577 taprio_enqueue+0x378/0xae0 net/sched/sch_taprio.c:658 dev_qdisc_enqueue+0x46/0x170 net/core/dev.c:3732 __dev_xmit_skb net/core/dev.c:3821 [inline] __dev_queue_xmit+0x1b2f/0x3000 net/core/dev.c:4169 dev_queue_xmit include/linux/netdevice.h:3088 [inline] neigh_resolve_output net/core/neighbour.c:1552 [inline] neigh_resolve_output+0x4a7/0x780 net/core/neighbour.c:1532 neigh_output include/net/neighbour.h:544 [inline] ip6_finish_output2+0x924/0x17d0 net/ipv6/ip6_output.c:135 __ip6_finish_output+0x620/0xaa0 net/ipv6/ip6_output.c:196 ip6_finish_output net/ipv6/ip6_output.c:207 [inline] NF_HOOK_COND include/linux/netfilter.h:292 [inline] ip6_output+0x206/0x410 net/ipv6/ip6_output.c:228 dst_output include/net/dst.h:458 [inline] NF_HOOK.constprop.0+0xea/0x260 include/linux/netfilter.h:303 ndisc_send_skb+0x872/0xe80 net/ipv6/ndisc.c:508 ndisc_send_ns+0xb5/0x130 net/ipv6/ndisc.c:666 addrconf_dad_work+0xc14/0x13f0 net/ipv6/addrconf.c:4175 process_one_work+0x92c/0x13a0 kernel/workqueue.c:2597 worker_thread+0x60f/0x1240 kernel/workqueue.c:2748 kthread+0x2fe/0x3f0 kernel/kthread.c:389 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Reported-by: syzkaller <syzkaller@googlegroups.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Co-developed-by: Eric Dumazet <edumazet@google.com> Co-developed-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-07-28 17:07:05 -07:00
static struct netlink_range_validation_signed taprio_cycle_time_range = {
.min = 0,
.max = INT_MAX,
};
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
[TCA_TAPRIO_ATTR_PRIOMAP] = {
.len = sizeof(struct tc_mqprio_qopt)
},
[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
[TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
[TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
net/sched: taprio: Limit TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME to INT_MAX. syzkaller found zero division error [0] in div_s64_rem() called from get_cycle_time_elapsed(), where sched->cycle_time is the divisor. We have tests in parse_taprio_schedule() so that cycle_time will never be 0, and actually cycle_time is not 0 in get_cycle_time_elapsed(). The problem is that the types of divisor are different; cycle_time is s64, but the argument of div_s64_rem() is s32. syzkaller fed this input and 0x100000000 is cast to s32 to be 0. @TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME={0xc, 0x8, 0x100000000} We use s64 for cycle_time to cast it to ktime_t, so let's keep it and set max for cycle_time. While at it, we prevent overflow in setup_txtime() and add another test in parse_taprio_schedule() to check if cycle_time overflows. Also, we add a new tdc test case for this issue. [0]: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 1 PID: 103 Comm: kworker/1:3 Not tainted 6.5.0-rc1-00330-g60cc1f7d0605 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: ipv6_addrconf addrconf_dad_work RIP: 0010:div_s64_rem include/linux/math64.h:42 [inline] RIP: 0010:get_cycle_time_elapsed net/sched/sch_taprio.c:223 [inline] RIP: 0010:find_entry_to_transmit+0x252/0x7e0 net/sched/sch_taprio.c:344 Code: 3c 02 00 0f 85 5e 05 00 00 48 8b 4c 24 08 4d 8b bd 40 01 00 00 48 8b 7c 24 48 48 89 c8 4c 29 f8 48 63 f7 48 99 48 89 74 24 70 <48> f7 fe 48 29 d1 48 8d 04 0f 49 89 cc 48 89 44 24 20 49 8d 85 10 RSP: 0018:ffffc90000acf260 EFLAGS: 00010206 RAX: 177450e0347560cf RBX: 0000000000000000 RCX: 177450e0347560cf RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000100000000 RBP: 0000000000000056 R08: 0000000000000000 R09: ffffed10020a0934 R10: ffff8880105049a7 R11: ffff88806cf3a520 R12: ffff888010504800 R13: ffff88800c00d800 R14: ffff8880105049a0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88806cf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0edf84f0e8 CR3: 000000000d73c002 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> get_packet_txtime net/sched/sch_taprio.c:508 [inline] taprio_enqueue_one+0x900/0xff0 net/sched/sch_taprio.c:577 taprio_enqueue+0x378/0xae0 net/sched/sch_taprio.c:658 dev_qdisc_enqueue+0x46/0x170 net/core/dev.c:3732 __dev_xmit_skb net/core/dev.c:3821 [inline] __dev_queue_xmit+0x1b2f/0x3000 net/core/dev.c:4169 dev_queue_xmit include/linux/netdevice.h:3088 [inline] neigh_resolve_output net/core/neighbour.c:1552 [inline] neigh_resolve_output+0x4a7/0x780 net/core/neighbour.c:1532 neigh_output include/net/neighbour.h:544 [inline] ip6_finish_output2+0x924/0x17d0 net/ipv6/ip6_output.c:135 __ip6_finish_output+0x620/0xaa0 net/ipv6/ip6_output.c:196 ip6_finish_output net/ipv6/ip6_output.c:207 [inline] NF_HOOK_COND include/linux/netfilter.h:292 [inline] ip6_output+0x206/0x410 net/ipv6/ip6_output.c:228 dst_output include/net/dst.h:458 [inline] NF_HOOK.constprop.0+0xea/0x260 include/linux/netfilter.h:303 ndisc_send_skb+0x872/0xe80 net/ipv6/ndisc.c:508 ndisc_send_ns+0xb5/0x130 net/ipv6/ndisc.c:666 addrconf_dad_work+0xc14/0x13f0 net/ipv6/addrconf.c:4175 process_one_work+0x92c/0x13a0 kernel/workqueue.c:2597 worker_thread+0x60f/0x1240 kernel/workqueue.c:2748 kthread+0x2fe/0x3f0 kernel/kthread.c:389 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Reported-by: syzkaller <syzkaller@googlegroups.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Co-developed-by: Eric Dumazet <edumazet@google.com> Co-developed-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-07-28 17:07:05 -07:00
[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] =
NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
[TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 },
[TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
[TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED },
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
};
static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
struct sched_entry *entry,
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct netlink_ext_ack *extack)
{
int min_duration = length_to_duration(q, ETH_ZLEN);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
u32 interval = 0;
if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
entry->command = nla_get_u8(
tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
entry->gate_mask = nla_get_u32(
tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
interval = nla_get_u32(
tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
/* The interval should allow at least the minimum ethernet
* frame to go out.
*/
if (interval < min_duration) {
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
return -EINVAL;
}
entry->interval = interval;
return 0;
}
static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
struct sched_entry *entry, int index,
struct netlink_ext_ack *extack)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
int err;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 14:07:28 +02:00
err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
entry_policy, NULL);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (err < 0) {
NL_SET_ERR_MSG(extack, "Could not parse nested entry");
return -EINVAL;
}
entry->index = index;
return fill_sched_entry(q, tb, entry, extack);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct sched_gate_list *sched,
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct netlink_ext_ack *extack)
{
struct nlattr *n;
int err, rem;
int i = 0;
if (!list)
return -EINVAL;
nla_for_each_nested(n, list, rem) {
struct sched_entry *entry;
if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
continue;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
NL_SET_ERR_MSG(extack, "Not enough memory for entry");
return -ENOMEM;
}
err = parse_sched_entry(q, n, entry, i, extack);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (err < 0) {
kfree(entry);
return err;
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
list_add_tail(&entry->list, &sched->entries);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
i++;
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
sched->num_entries = i;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return i;
}
static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct sched_gate_list *new,
struct netlink_ext_ack *extack)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
int err = 0;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
return -ENOTSUPP;
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
new, extack);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (err < 0)
return err;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (!new->cycle_time) {
struct sched_entry *entry;
ktime_t cycle = 0;
list_for_each_entry(entry, &new->entries, list)
cycle = ktime_add_ns(cycle, entry->interval);
if (!cycle) {
NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
return -EINVAL;
}
net/sched: taprio: Limit TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME to INT_MAX. syzkaller found zero division error [0] in div_s64_rem() called from get_cycle_time_elapsed(), where sched->cycle_time is the divisor. We have tests in parse_taprio_schedule() so that cycle_time will never be 0, and actually cycle_time is not 0 in get_cycle_time_elapsed(). The problem is that the types of divisor are different; cycle_time is s64, but the argument of div_s64_rem() is s32. syzkaller fed this input and 0x100000000 is cast to s32 to be 0. @TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME={0xc, 0x8, 0x100000000} We use s64 for cycle_time to cast it to ktime_t, so let's keep it and set max for cycle_time. While at it, we prevent overflow in setup_txtime() and add another test in parse_taprio_schedule() to check if cycle_time overflows. Also, we add a new tdc test case for this issue. [0]: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 1 PID: 103 Comm: kworker/1:3 Not tainted 6.5.0-rc1-00330-g60cc1f7d0605 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: ipv6_addrconf addrconf_dad_work RIP: 0010:div_s64_rem include/linux/math64.h:42 [inline] RIP: 0010:get_cycle_time_elapsed net/sched/sch_taprio.c:223 [inline] RIP: 0010:find_entry_to_transmit+0x252/0x7e0 net/sched/sch_taprio.c:344 Code: 3c 02 00 0f 85 5e 05 00 00 48 8b 4c 24 08 4d 8b bd 40 01 00 00 48 8b 7c 24 48 48 89 c8 4c 29 f8 48 63 f7 48 99 48 89 74 24 70 <48> f7 fe 48 29 d1 48 8d 04 0f 49 89 cc 48 89 44 24 20 49 8d 85 10 RSP: 0018:ffffc90000acf260 EFLAGS: 00010206 RAX: 177450e0347560cf RBX: 0000000000000000 RCX: 177450e0347560cf RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000100000000 RBP: 0000000000000056 R08: 0000000000000000 R09: ffffed10020a0934 R10: ffff8880105049a7 R11: ffff88806cf3a520 R12: ffff888010504800 R13: ffff88800c00d800 R14: ffff8880105049a0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88806cf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0edf84f0e8 CR3: 000000000d73c002 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> get_packet_txtime net/sched/sch_taprio.c:508 [inline] taprio_enqueue_one+0x900/0xff0 net/sched/sch_taprio.c:577 taprio_enqueue+0x378/0xae0 net/sched/sch_taprio.c:658 dev_qdisc_enqueue+0x46/0x170 net/core/dev.c:3732 __dev_xmit_skb net/core/dev.c:3821 [inline] __dev_queue_xmit+0x1b2f/0x3000 net/core/dev.c:4169 dev_queue_xmit include/linux/netdevice.h:3088 [inline] neigh_resolve_output net/core/neighbour.c:1552 [inline] neigh_resolve_output+0x4a7/0x780 net/core/neighbour.c:1532 neigh_output include/net/neighbour.h:544 [inline] ip6_finish_output2+0x924/0x17d0 net/ipv6/ip6_output.c:135 __ip6_finish_output+0x620/0xaa0 net/ipv6/ip6_output.c:196 ip6_finish_output net/ipv6/ip6_output.c:207 [inline] NF_HOOK_COND include/linux/netfilter.h:292 [inline] ip6_output+0x206/0x410 net/ipv6/ip6_output.c:228 dst_output include/net/dst.h:458 [inline] NF_HOOK.constprop.0+0xea/0x260 include/linux/netfilter.h:303 ndisc_send_skb+0x872/0xe80 net/ipv6/ndisc.c:508 ndisc_send_ns+0xb5/0x130 net/ipv6/ndisc.c:666 addrconf_dad_work+0xc14/0x13f0 net/ipv6/addrconf.c:4175 process_one_work+0x92c/0x13a0 kernel/workqueue.c:2597 worker_thread+0x60f/0x1240 kernel/workqueue.c:2748 kthread+0x2fe/0x3f0 kernel/kthread.c:389 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Reported-by: syzkaller <syzkaller@googlegroups.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Co-developed-by: Eric Dumazet <edumazet@google.com> Co-developed-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-07-28 17:07:05 -07:00
if (cycle < 0 || cycle > INT_MAX) {
NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
return -EINVAL;
}
new->cycle_time = cycle;
}
net/sched: taprio: calculate tc gate durations Current taprio code operates on a very simplistic (and incorrect) assumption: that egress scheduling for a traffic class can only take place for the duration of the current interval, or i.o.w., it assumes that at the end of each schedule entry, there is a "gate close" event for all traffic classes. As an example, traffic sent with the schedule below will be jumpy, even though all 8 TC gates are open, so there is absolutely no "gate close" event (effectively a transition from BIT(tc)==1 to BIT(tc)==0 in consecutive schedule entries): tc qdisc replace dev veth0 parent root taprio \ num_tc 2 \ map 0 1 \ queues 1@0 1@1 \ base-time 0 \ sched-entry S 0xff 4000000000 \ clockid CLOCK_TAI \ flags 0x0 This qdisc simply does not have what it takes in terms of logic to *actually* compute the durations of traffic classes. Also, it does not recognize the need to use this information on a per-traffic-class basis: it always looks at entry->interval and entry->close_time. This change proposes that each schedule entry has an array called tc_gate_duration[tc]. This holds the information: "for how long will this traffic class gate remain open, starting from *this* schedule entry". If the traffic class gate is always open, that value is equal to the cycle time of the schedule. We'll also need to keep track, for the purpose of queueMaxSDU[tc] calculation, what is the maximum time duration for a traffic class having an open gate. This gives us directly what is the maximum sized packet that this traffic class will have to accept. For everything else it has to qdisc_drop() it in qdisc_enqueue(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:31 +02:00
taprio_calculate_gate_durations(q, new);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
return 0;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static int taprio_parse_mqprio_opt(struct net_device *dev,
struct tc_mqprio_qopt *qopt,
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
struct netlink_ext_ack *extack,
u32 taprio_flags)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (!qopt && !dev->num_tc) {
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
return -EINVAL;
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
/* If num_tc is already set, it means that the user already
* configured the mqprio part
*/
if (dev->num_tc)
return 0;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
/* taprio imposes that traffic classes map 1:n to tx queues */
if (qopt->num_tc > dev->num_tx_queues) {
NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
return -EINVAL;
}
/* For some reason, in txtime-assist mode, we allow TXQ ranges for
* different TCs to overlap, and just validate the TXQ ranges.
*/
return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
extack);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
static int taprio_get_start_time(struct Qdisc *sch,
struct sched_gate_list *sched,
ktime_t *start)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
struct taprio_sched *q = qdisc_priv(sch);
ktime_t now, base, cycle;
s64 n;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
base = sched_base_time(sched);
now = taprio_get_time(q);
if (ktime_after(base, now)) {
*start = base;
return 0;
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
cycle = sched->cycle_time;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
/* The qdisc is expected to have at least one sched_entry. Moreover,
* any entry must have 'interval' > 0. Thus if the cycle time is zero,
* something went really wrong. In that case, we should warn about this
* inconsistent state and return error.
*/
if (WARN_ON(!cycle))
return -EFAULT;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
/* Schedule the start time for the beginning of the next
* cycle.
*/
n = div64_s64(ktime_sub_ns(now, base), cycle);
*start = ktime_add_ns(base, (n + 1) * cycle);
return 0;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static void setup_first_end_time(struct taprio_sched *q,
struct sched_gate_list *sched, ktime_t base)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
{
struct net_device *dev = qdisc_dev(q->root);
int num_tc = netdev_get_num_tc(dev);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct sched_entry *first;
ktime_t cycle;
int tc;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
first = list_first_entry(&sched->entries,
struct sched_entry, list);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
cycle = sched->cycle_time;
/* FIXME: find a better place to do this */
sched->cycle_end_time = ktime_add_ns(base, cycle);
first->end_time = ktime_add_ns(base, first->interval);
taprio_set_budgets(q, sched, first);
for (tc = 0; tc < num_tc; tc++) {
if (first->gate_duration[tc] == sched->cycle_time)
first->gate_close_time[tc] = KTIME_MAX;
else
first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
rcu_assign_pointer(q->current_entry, NULL);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
static void taprio_start_sched(struct Qdisc *sch,
ktime_t start, struct sched_gate_list *new)
{
struct taprio_sched *q = qdisc_priv(sch);
ktime_t expires;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
return;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
expires = hrtimer_get_expires(&q->advance_timer);
if (expires == 0)
expires = KTIME_MAX;
/* If the new schedule starts before the next expiration, we
* reprogram it to the earliest one, so we change the admin
* schedule to the operational one at the right time.
*/
start = min_t(ktime_t, start, expires);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
}
static void taprio_set_picos_per_byte(struct net_device *dev,
struct taprio_sched *q)
{
struct ethtool_link_ksettings ecmd;
taprio: Set default link speed to 10 Mbps in taprio_set_picos_per_byte The taprio budget needs to be adapted at runtime according to interface link speed. But that handling is problematic. For one thing, installing a qdisc on an interface that doesn't have carrier is not illegal. But taprio prints the following stack trace: [ 31.851373] ------------[ cut here ]------------ [ 31.856024] WARNING: CPU: 1 PID: 207 at net/sched/sch_taprio.c:481 taprio_dequeue+0x1a8/0x2d4 [ 31.864566] taprio: dequeue() called with unknown picos per byte. [ 31.864570] Modules linked in: [ 31.873701] CPU: 1 PID: 207 Comm: tc Not tainted 5.3.0-rc5-01199-g8838fe023cd6 #1689 [ 31.881398] Hardware name: Freescale LS1021A [ 31.885661] [<c03133a4>] (unwind_backtrace) from [<c030d8cc>] (show_stack+0x10/0x14) [ 31.893368] [<c030d8cc>] (show_stack) from [<c10ac958>] (dump_stack+0xb4/0xc8) [ 31.900555] [<c10ac958>] (dump_stack) from [<c0349d04>] (__warn+0xe0/0xf8) [ 31.907395] [<c0349d04>] (__warn) from [<c0349d64>] (warn_slowpath_fmt+0x48/0x6c) [ 31.914841] [<c0349d64>] (warn_slowpath_fmt) from [<c0f38db4>] (taprio_dequeue+0x1a8/0x2d4) [ 31.923150] [<c0f38db4>] (taprio_dequeue) from [<c0f227b0>] (__qdisc_run+0x90/0x61c) [ 31.930856] [<c0f227b0>] (__qdisc_run) from [<c0ec82ac>] (net_tx_action+0x12c/0x2bc) [ 31.938560] [<c0ec82ac>] (net_tx_action) from [<c0302298>] (__do_softirq+0x130/0x3c8) [ 31.946350] [<c0302298>] (__do_softirq) from [<c03502a0>] (irq_exit+0xbc/0xd8) [ 31.953536] [<c03502a0>] (irq_exit) from [<c03a4808>] (__handle_domain_irq+0x60/0xb4) [ 31.961328] [<c03a4808>] (__handle_domain_irq) from [<c0754478>] (gic_handle_irq+0x58/0x9c) [ 31.969638] [<c0754478>] (gic_handle_irq) from [<c0301a8c>] (__irq_svc+0x6c/0x90) [ 31.977076] Exception stack(0xe8167b20 to 0xe8167b68) [ 31.982100] 7b20: e9d4bd80 00000cc0 000000cf 00000000 e9d4bd80 c1f38958 00000cc0 c1f38960 [ 31.990234] 7b40: 00000001 000000cf 00000004 e9dc0800 00000000 e8167b70 c0f478ec c0f46d94 [ 31.998363] 7b60: 60070013 ffffffff [ 32.001833] [<c0301a8c>] (__irq_svc) from [<c0f46d94>] (netlink_trim+0x18/0xd8) [ 32.009104] [<c0f46d94>] (netlink_trim) from [<c0f478ec>] (netlink_broadcast_filtered+0x34/0x414) [ 32.017930] [<c0f478ec>] (netlink_broadcast_filtered) from [<c0f47cec>] (netlink_broadcast+0x20/0x28) [ 32.027102] [<c0f47cec>] (netlink_broadcast) from [<c0eea378>] (rtnetlink_send+0x34/0x88) [ 32.035238] [<c0eea378>] (rtnetlink_send) from [<c0f25890>] (notify_and_destroy+0x2c/0x44) [ 32.043461] [<c0f25890>] (notify_and_destroy) from [<c0f25e08>] (qdisc_graft+0x398/0x470) [ 32.051595] [<c0f25e08>] (qdisc_graft) from [<c0f27a00>] (tc_modify_qdisc+0x3a4/0x724) [ 32.059470] [<c0f27a00>] (tc_modify_qdisc) from [<c0ee4c84>] (rtnetlink_rcv_msg+0x260/0x2ec) [ 32.067864] [<c0ee4c84>] (rtnetlink_rcv_msg) from [<c0f4a988>] (netlink_rcv_skb+0xb8/0x110) [ 32.076172] [<c0f4a988>] (netlink_rcv_skb) from [<c0f4a170>] (netlink_unicast+0x1b4/0x22c) [ 32.084392] [<c0f4a170>] (netlink_unicast) from [<c0f4a5e4>] (netlink_sendmsg+0x33c/0x380) [ 32.092614] [<c0f4a5e4>] (netlink_sendmsg) from [<c0ea9f40>] (sock_sendmsg+0x14/0x24) [ 32.100403] [<c0ea9f40>] (sock_sendmsg) from [<c0eaa780>] (___sys_sendmsg+0x214/0x228) [ 32.108279] [<c0eaa780>] (___sys_sendmsg) from [<c0eabad0>] (__sys_sendmsg+0x50/0x8c) [ 32.116068] [<c0eabad0>] (__sys_sendmsg) from [<c0301000>] (ret_fast_syscall+0x0/0x54) [ 32.123938] Exception stack(0xe8167fa8 to 0xe8167ff0) [ 32.128960] 7fa0: b6fa68c8 000000f8 00000003 bea142d0 00000000 00000000 [ 32.137093] 7fc0: b6fa68c8 000000f8 0052154c 00000128 5d6468a2 00000000 00000028 00558c9c [ 32.145224] 7fe0: 00000070 bea14278 00530d64 b6e17e64 [ 32.150659] ---[ end trace 2139c9827c3e5177 ]--- This happens because the qdisc ->dequeue callback gets called. Which again is not illegal, the qdisc will dequeue even when the interface is up but doesn't have carrier (and hence SPEED_UNKNOWN), and the frames will be dropped further down the stack in dev_direct_xmit(). And, at the end of the day, for what? For calculating the initial budget of an interface which is non-operational at the moment and where frames will get dropped anyway. So if we can't figure out the link speed, default to SPEED_10 and move along. We can also remove the runtime check now. Cc: Leandro Dorileo <leandro.maciel.dorileo@intel.com> Fixes: 7b9eba7ba0c1 ("net/sched: taprio: fix picos_per_byte miscalculation") Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-30 04:07:22 +03:00
int speed = SPEED_10;
int picos_per_byte;
int err;
taprio: Set default link speed to 10 Mbps in taprio_set_picos_per_byte The taprio budget needs to be adapted at runtime according to interface link speed. But that handling is problematic. For one thing, installing a qdisc on an interface that doesn't have carrier is not illegal. But taprio prints the following stack trace: [ 31.851373] ------------[ cut here ]------------ [ 31.856024] WARNING: CPU: 1 PID: 207 at net/sched/sch_taprio.c:481 taprio_dequeue+0x1a8/0x2d4 [ 31.864566] taprio: dequeue() called with unknown picos per byte. [ 31.864570] Modules linked in: [ 31.873701] CPU: 1 PID: 207 Comm: tc Not tainted 5.3.0-rc5-01199-g8838fe023cd6 #1689 [ 31.881398] Hardware name: Freescale LS1021A [ 31.885661] [<c03133a4>] (unwind_backtrace) from [<c030d8cc>] (show_stack+0x10/0x14) [ 31.893368] [<c030d8cc>] (show_stack) from [<c10ac958>] (dump_stack+0xb4/0xc8) [ 31.900555] [<c10ac958>] (dump_stack) from [<c0349d04>] (__warn+0xe0/0xf8) [ 31.907395] [<c0349d04>] (__warn) from [<c0349d64>] (warn_slowpath_fmt+0x48/0x6c) [ 31.914841] [<c0349d64>] (warn_slowpath_fmt) from [<c0f38db4>] (taprio_dequeue+0x1a8/0x2d4) [ 31.923150] [<c0f38db4>] (taprio_dequeue) from [<c0f227b0>] (__qdisc_run+0x90/0x61c) [ 31.930856] [<c0f227b0>] (__qdisc_run) from [<c0ec82ac>] (net_tx_action+0x12c/0x2bc) [ 31.938560] [<c0ec82ac>] (net_tx_action) from [<c0302298>] (__do_softirq+0x130/0x3c8) [ 31.946350] [<c0302298>] (__do_softirq) from [<c03502a0>] (irq_exit+0xbc/0xd8) [ 31.953536] [<c03502a0>] (irq_exit) from [<c03a4808>] (__handle_domain_irq+0x60/0xb4) [ 31.961328] [<c03a4808>] (__handle_domain_irq) from [<c0754478>] (gic_handle_irq+0x58/0x9c) [ 31.969638] [<c0754478>] (gic_handle_irq) from [<c0301a8c>] (__irq_svc+0x6c/0x90) [ 31.977076] Exception stack(0xe8167b20 to 0xe8167b68) [ 31.982100] 7b20: e9d4bd80 00000cc0 000000cf 00000000 e9d4bd80 c1f38958 00000cc0 c1f38960 [ 31.990234] 7b40: 00000001 000000cf 00000004 e9dc0800 00000000 e8167b70 c0f478ec c0f46d94 [ 31.998363] 7b60: 60070013 ffffffff [ 32.001833] [<c0301a8c>] (__irq_svc) from [<c0f46d94>] (netlink_trim+0x18/0xd8) [ 32.009104] [<c0f46d94>] (netlink_trim) from [<c0f478ec>] (netlink_broadcast_filtered+0x34/0x414) [ 32.017930] [<c0f478ec>] (netlink_broadcast_filtered) from [<c0f47cec>] (netlink_broadcast+0x20/0x28) [ 32.027102] [<c0f47cec>] (netlink_broadcast) from [<c0eea378>] (rtnetlink_send+0x34/0x88) [ 32.035238] [<c0eea378>] (rtnetlink_send) from [<c0f25890>] (notify_and_destroy+0x2c/0x44) [ 32.043461] [<c0f25890>] (notify_and_destroy) from [<c0f25e08>] (qdisc_graft+0x398/0x470) [ 32.051595] [<c0f25e08>] (qdisc_graft) from [<c0f27a00>] (tc_modify_qdisc+0x3a4/0x724) [ 32.059470] [<c0f27a00>] (tc_modify_qdisc) from [<c0ee4c84>] (rtnetlink_rcv_msg+0x260/0x2ec) [ 32.067864] [<c0ee4c84>] (rtnetlink_rcv_msg) from [<c0f4a988>] (netlink_rcv_skb+0xb8/0x110) [ 32.076172] [<c0f4a988>] (netlink_rcv_skb) from [<c0f4a170>] (netlink_unicast+0x1b4/0x22c) [ 32.084392] [<c0f4a170>] (netlink_unicast) from [<c0f4a5e4>] (netlink_sendmsg+0x33c/0x380) [ 32.092614] [<c0f4a5e4>] (netlink_sendmsg) from [<c0ea9f40>] (sock_sendmsg+0x14/0x24) [ 32.100403] [<c0ea9f40>] (sock_sendmsg) from [<c0eaa780>] (___sys_sendmsg+0x214/0x228) [ 32.108279] [<c0eaa780>] (___sys_sendmsg) from [<c0eabad0>] (__sys_sendmsg+0x50/0x8c) [ 32.116068] [<c0eabad0>] (__sys_sendmsg) from [<c0301000>] (ret_fast_syscall+0x0/0x54) [ 32.123938] Exception stack(0xe8167fa8 to 0xe8167ff0) [ 32.128960] 7fa0: b6fa68c8 000000f8 00000003 bea142d0 00000000 00000000 [ 32.137093] 7fc0: b6fa68c8 000000f8 0052154c 00000128 5d6468a2 00000000 00000028 00558c9c [ 32.145224] 7fe0: 00000070 bea14278 00530d64 b6e17e64 [ 32.150659] ---[ end trace 2139c9827c3e5177 ]--- This happens because the qdisc ->dequeue callback gets called. Which again is not illegal, the qdisc will dequeue even when the interface is up but doesn't have carrier (and hence SPEED_UNKNOWN), and the frames will be dropped further down the stack in dev_direct_xmit(). And, at the end of the day, for what? For calculating the initial budget of an interface which is non-operational at the moment and where frames will get dropped anyway. So if we can't figure out the link speed, default to SPEED_10 and move along. We can also remove the runtime check now. Cc: Leandro Dorileo <leandro.maciel.dorileo@intel.com> Fixes: 7b9eba7ba0c1 ("net/sched: taprio: fix picos_per_byte miscalculation") Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-30 04:07:22 +03:00
err = __ethtool_get_link_ksettings(dev, &ecmd);
if (err < 0)
goto skip;
net: sched: taprio: Avoid division by zero on invalid link speed The check in taprio_set_picos_per_byte is currently not robust enough and will trigger this division by zero, due to e.g. PHYLINK not setting kset->base.speed when there is no PHY connected: [ 27.109992] Division by zero in kernel. [ 27.113842] CPU: 1 PID: 198 Comm: tc Not tainted 5.3.0-rc5-01246-gc4006b8c2637-dirty #212 [ 27.121974] Hardware name: Freescale LS1021A [ 27.126234] [<c03132e0>] (unwind_backtrace) from [<c030d8b8>] (show_stack+0x10/0x14) [ 27.133938] [<c030d8b8>] (show_stack) from [<c10b21b0>] (dump_stack+0xb0/0xc4) [ 27.141124] [<c10b21b0>] (dump_stack) from [<c10af97c>] (Ldiv0_64+0x8/0x18) [ 27.148052] [<c10af97c>] (Ldiv0_64) from [<c0700260>] (div64_u64+0xcc/0xf0) [ 27.154978] [<c0700260>] (div64_u64) from [<c07002d0>] (div64_s64+0x4c/0x68) [ 27.161993] [<c07002d0>] (div64_s64) from [<c0f3d890>] (taprio_set_picos_per_byte+0xe8/0xf4) [ 27.170388] [<c0f3d890>] (taprio_set_picos_per_byte) from [<c0f3f614>] (taprio_change+0x668/0xcec) [ 27.179302] [<c0f3f614>] (taprio_change) from [<c0f2bc24>] (qdisc_create+0x1fc/0x4f4) [ 27.187091] [<c0f2bc24>] (qdisc_create) from [<c0f2c0c8>] (tc_modify_qdisc+0x1ac/0x6f8) [ 27.195055] [<c0f2c0c8>] (tc_modify_qdisc) from [<c0ee9604>] (rtnetlink_rcv_msg+0x268/0x2dc) [ 27.203449] [<c0ee9604>] (rtnetlink_rcv_msg) from [<c0f4fef0>] (netlink_rcv_skb+0xe0/0x114) [ 27.211756] [<c0f4fef0>] (netlink_rcv_skb) from [<c0f4f6cc>] (netlink_unicast+0x1b4/0x22c) [ 27.219977] [<c0f4f6cc>] (netlink_unicast) from [<c0f4fa84>] (netlink_sendmsg+0x284/0x340) [ 27.228198] [<c0f4fa84>] (netlink_sendmsg) from [<c0eae5fc>] (sock_sendmsg+0x14/0x24) [ 27.235988] [<c0eae5fc>] (sock_sendmsg) from [<c0eaedf8>] (___sys_sendmsg+0x214/0x228) [ 27.243863] [<c0eaedf8>] (___sys_sendmsg) from [<c0eb015c>] (__sys_sendmsg+0x50/0x8c) [ 27.251652] [<c0eb015c>] (__sys_sendmsg) from [<c0301000>] (ret_fast_syscall+0x0/0x54) [ 27.259524] Exception stack(0xe8045fa8 to 0xe8045ff0) [ 27.264546] 5fa0: b6f608c8 000000f8 00000003 bed7e2f0 00000000 00000000 [ 27.272681] 5fc0: b6f608c8 000000f8 004ce54c 00000128 5d3ce8c7 00000000 00000026 00505c9c [ 27.280812] 5fe0: 00000070 bed7e298 004ddd64 b6dd1e64 Russell King points out that the ethtool API says zero is a valid return value of __ethtool_get_link_ksettings: * If it is enabled then they are read-only; if the link * is up they represent the negotiated link mode; if the link is down, * the speed is 0, %SPEED_UNKNOWN or the highest enabled speed and * @duplex is %DUPLEX_UNKNOWN or the best enabled duplex mode. So, it seems that taprio is not following the API... I'd suggest either fixing taprio, or getting agreement to change the ethtool API. The chosen path was to fix taprio. Fixes: 7b9eba7ba0c1 ("net/sched: taprio: fix picos_per_byte miscalculation") Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-29 02:37:22 +03:00
if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
taprio: Set default link speed to 10 Mbps in taprio_set_picos_per_byte The taprio budget needs to be adapted at runtime according to interface link speed. But that handling is problematic. For one thing, installing a qdisc on an interface that doesn't have carrier is not illegal. But taprio prints the following stack trace: [ 31.851373] ------------[ cut here ]------------ [ 31.856024] WARNING: CPU: 1 PID: 207 at net/sched/sch_taprio.c:481 taprio_dequeue+0x1a8/0x2d4 [ 31.864566] taprio: dequeue() called with unknown picos per byte. [ 31.864570] Modules linked in: [ 31.873701] CPU: 1 PID: 207 Comm: tc Not tainted 5.3.0-rc5-01199-g8838fe023cd6 #1689 [ 31.881398] Hardware name: Freescale LS1021A [ 31.885661] [<c03133a4>] (unwind_backtrace) from [<c030d8cc>] (show_stack+0x10/0x14) [ 31.893368] [<c030d8cc>] (show_stack) from [<c10ac958>] (dump_stack+0xb4/0xc8) [ 31.900555] [<c10ac958>] (dump_stack) from [<c0349d04>] (__warn+0xe0/0xf8) [ 31.907395] [<c0349d04>] (__warn) from [<c0349d64>] (warn_slowpath_fmt+0x48/0x6c) [ 31.914841] [<c0349d64>] (warn_slowpath_fmt) from [<c0f38db4>] (taprio_dequeue+0x1a8/0x2d4) [ 31.923150] [<c0f38db4>] (taprio_dequeue) from [<c0f227b0>] (__qdisc_run+0x90/0x61c) [ 31.930856] [<c0f227b0>] (__qdisc_run) from [<c0ec82ac>] (net_tx_action+0x12c/0x2bc) [ 31.938560] [<c0ec82ac>] (net_tx_action) from [<c0302298>] (__do_softirq+0x130/0x3c8) [ 31.946350] [<c0302298>] (__do_softirq) from [<c03502a0>] (irq_exit+0xbc/0xd8) [ 31.953536] [<c03502a0>] (irq_exit) from [<c03a4808>] (__handle_domain_irq+0x60/0xb4) [ 31.961328] [<c03a4808>] (__handle_domain_irq) from [<c0754478>] (gic_handle_irq+0x58/0x9c) [ 31.969638] [<c0754478>] (gic_handle_irq) from [<c0301a8c>] (__irq_svc+0x6c/0x90) [ 31.977076] Exception stack(0xe8167b20 to 0xe8167b68) [ 31.982100] 7b20: e9d4bd80 00000cc0 000000cf 00000000 e9d4bd80 c1f38958 00000cc0 c1f38960 [ 31.990234] 7b40: 00000001 000000cf 00000004 e9dc0800 00000000 e8167b70 c0f478ec c0f46d94 [ 31.998363] 7b60: 60070013 ffffffff [ 32.001833] [<c0301a8c>] (__irq_svc) from [<c0f46d94>] (netlink_trim+0x18/0xd8) [ 32.009104] [<c0f46d94>] (netlink_trim) from [<c0f478ec>] (netlink_broadcast_filtered+0x34/0x414) [ 32.017930] [<c0f478ec>] (netlink_broadcast_filtered) from [<c0f47cec>] (netlink_broadcast+0x20/0x28) [ 32.027102] [<c0f47cec>] (netlink_broadcast) from [<c0eea378>] (rtnetlink_send+0x34/0x88) [ 32.035238] [<c0eea378>] (rtnetlink_send) from [<c0f25890>] (notify_and_destroy+0x2c/0x44) [ 32.043461] [<c0f25890>] (notify_and_destroy) from [<c0f25e08>] (qdisc_graft+0x398/0x470) [ 32.051595] [<c0f25e08>] (qdisc_graft) from [<c0f27a00>] (tc_modify_qdisc+0x3a4/0x724) [ 32.059470] [<c0f27a00>] (tc_modify_qdisc) from [<c0ee4c84>] (rtnetlink_rcv_msg+0x260/0x2ec) [ 32.067864] [<c0ee4c84>] (rtnetlink_rcv_msg) from [<c0f4a988>] (netlink_rcv_skb+0xb8/0x110) [ 32.076172] [<c0f4a988>] (netlink_rcv_skb) from [<c0f4a170>] (netlink_unicast+0x1b4/0x22c) [ 32.084392] [<c0f4a170>] (netlink_unicast) from [<c0f4a5e4>] (netlink_sendmsg+0x33c/0x380) [ 32.092614] [<c0f4a5e4>] (netlink_sendmsg) from [<c0ea9f40>] (sock_sendmsg+0x14/0x24) [ 32.100403] [<c0ea9f40>] (sock_sendmsg) from [<c0eaa780>] (___sys_sendmsg+0x214/0x228) [ 32.108279] [<c0eaa780>] (___sys_sendmsg) from [<c0eabad0>] (__sys_sendmsg+0x50/0x8c) [ 32.116068] [<c0eabad0>] (__sys_sendmsg) from [<c0301000>] (ret_fast_syscall+0x0/0x54) [ 32.123938] Exception stack(0xe8167fa8 to 0xe8167ff0) [ 32.128960] 7fa0: b6fa68c8 000000f8 00000003 bea142d0 00000000 00000000 [ 32.137093] 7fc0: b6fa68c8 000000f8 0052154c 00000128 5d6468a2 00000000 00000028 00558c9c [ 32.145224] 7fe0: 00000070 bea14278 00530d64 b6e17e64 [ 32.150659] ---[ end trace 2139c9827c3e5177 ]--- This happens because the qdisc ->dequeue callback gets called. Which again is not illegal, the qdisc will dequeue even when the interface is up but doesn't have carrier (and hence SPEED_UNKNOWN), and the frames will be dropped further down the stack in dev_direct_xmit(). And, at the end of the day, for what? For calculating the initial budget of an interface which is non-operational at the moment and where frames will get dropped anyway. So if we can't figure out the link speed, default to SPEED_10 and move along. We can also remove the runtime check now. Cc: Leandro Dorileo <leandro.maciel.dorileo@intel.com> Fixes: 7b9eba7ba0c1 ("net/sched: taprio: fix picos_per_byte miscalculation") Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-30 04:07:22 +03:00
speed = ecmd.base.speed;
taprio: Set default link speed to 10 Mbps in taprio_set_picos_per_byte The taprio budget needs to be adapted at runtime according to interface link speed. But that handling is problematic. For one thing, installing a qdisc on an interface that doesn't have carrier is not illegal. But taprio prints the following stack trace: [ 31.851373] ------------[ cut here ]------------ [ 31.856024] WARNING: CPU: 1 PID: 207 at net/sched/sch_taprio.c:481 taprio_dequeue+0x1a8/0x2d4 [ 31.864566] taprio: dequeue() called with unknown picos per byte. [ 31.864570] Modules linked in: [ 31.873701] CPU: 1 PID: 207 Comm: tc Not tainted 5.3.0-rc5-01199-g8838fe023cd6 #1689 [ 31.881398] Hardware name: Freescale LS1021A [ 31.885661] [<c03133a4>] (unwind_backtrace) from [<c030d8cc>] (show_stack+0x10/0x14) [ 31.893368] [<c030d8cc>] (show_stack) from [<c10ac958>] (dump_stack+0xb4/0xc8) [ 31.900555] [<c10ac958>] (dump_stack) from [<c0349d04>] (__warn+0xe0/0xf8) [ 31.907395] [<c0349d04>] (__warn) from [<c0349d64>] (warn_slowpath_fmt+0x48/0x6c) [ 31.914841] [<c0349d64>] (warn_slowpath_fmt) from [<c0f38db4>] (taprio_dequeue+0x1a8/0x2d4) [ 31.923150] [<c0f38db4>] (taprio_dequeue) from [<c0f227b0>] (__qdisc_run+0x90/0x61c) [ 31.930856] [<c0f227b0>] (__qdisc_run) from [<c0ec82ac>] (net_tx_action+0x12c/0x2bc) [ 31.938560] [<c0ec82ac>] (net_tx_action) from [<c0302298>] (__do_softirq+0x130/0x3c8) [ 31.946350] [<c0302298>] (__do_softirq) from [<c03502a0>] (irq_exit+0xbc/0xd8) [ 31.953536] [<c03502a0>] (irq_exit) from [<c03a4808>] (__handle_domain_irq+0x60/0xb4) [ 31.961328] [<c03a4808>] (__handle_domain_irq) from [<c0754478>] (gic_handle_irq+0x58/0x9c) [ 31.969638] [<c0754478>] (gic_handle_irq) from [<c0301a8c>] (__irq_svc+0x6c/0x90) [ 31.977076] Exception stack(0xe8167b20 to 0xe8167b68) [ 31.982100] 7b20: e9d4bd80 00000cc0 000000cf 00000000 e9d4bd80 c1f38958 00000cc0 c1f38960 [ 31.990234] 7b40: 00000001 000000cf 00000004 e9dc0800 00000000 e8167b70 c0f478ec c0f46d94 [ 31.998363] 7b60: 60070013 ffffffff [ 32.001833] [<c0301a8c>] (__irq_svc) from [<c0f46d94>] (netlink_trim+0x18/0xd8) [ 32.009104] [<c0f46d94>] (netlink_trim) from [<c0f478ec>] (netlink_broadcast_filtered+0x34/0x414) [ 32.017930] [<c0f478ec>] (netlink_broadcast_filtered) from [<c0f47cec>] (netlink_broadcast+0x20/0x28) [ 32.027102] [<c0f47cec>] (netlink_broadcast) from [<c0eea378>] (rtnetlink_send+0x34/0x88) [ 32.035238] [<c0eea378>] (rtnetlink_send) from [<c0f25890>] (notify_and_destroy+0x2c/0x44) [ 32.043461] [<c0f25890>] (notify_and_destroy) from [<c0f25e08>] (qdisc_graft+0x398/0x470) [ 32.051595] [<c0f25e08>] (qdisc_graft) from [<c0f27a00>] (tc_modify_qdisc+0x3a4/0x724) [ 32.059470] [<c0f27a00>] (tc_modify_qdisc) from [<c0ee4c84>] (rtnetlink_rcv_msg+0x260/0x2ec) [ 32.067864] [<c0ee4c84>] (rtnetlink_rcv_msg) from [<c0f4a988>] (netlink_rcv_skb+0xb8/0x110) [ 32.076172] [<c0f4a988>] (netlink_rcv_skb) from [<c0f4a170>] (netlink_unicast+0x1b4/0x22c) [ 32.084392] [<c0f4a170>] (netlink_unicast) from [<c0f4a5e4>] (netlink_sendmsg+0x33c/0x380) [ 32.092614] [<c0f4a5e4>] (netlink_sendmsg) from [<c0ea9f40>] (sock_sendmsg+0x14/0x24) [ 32.100403] [<c0ea9f40>] (sock_sendmsg) from [<c0eaa780>] (___sys_sendmsg+0x214/0x228) [ 32.108279] [<c0eaa780>] (___sys_sendmsg) from [<c0eabad0>] (__sys_sendmsg+0x50/0x8c) [ 32.116068] [<c0eabad0>] (__sys_sendmsg) from [<c0301000>] (ret_fast_syscall+0x0/0x54) [ 32.123938] Exception stack(0xe8167fa8 to 0xe8167ff0) [ 32.128960] 7fa0: b6fa68c8 000000f8 00000003 bea142d0 00000000 00000000 [ 32.137093] 7fc0: b6fa68c8 000000f8 0052154c 00000128 5d6468a2 00000000 00000028 00558c9c [ 32.145224] 7fe0: 00000070 bea14278 00530d64 b6e17e64 [ 32.150659] ---[ end trace 2139c9827c3e5177 ]--- This happens because the qdisc ->dequeue callback gets called. Which again is not illegal, the qdisc will dequeue even when the interface is up but doesn't have carrier (and hence SPEED_UNKNOWN), and the frames will be dropped further down the stack in dev_direct_xmit(). And, at the end of the day, for what? For calculating the initial budget of an interface which is non-operational at the moment and where frames will get dropped anyway. So if we can't figure out the link speed, default to SPEED_10 and move along. We can also remove the runtime check now. Cc: Leandro Dorileo <leandro.maciel.dorileo@intel.com> Fixes: 7b9eba7ba0c1 ("net/sched: taprio: fix picos_per_byte miscalculation") Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-30 04:07:22 +03:00
skip:
picos_per_byte = (USEC_PER_SEC * 8) / speed;
atomic64_set(&q->picos_per_byte, picos_per_byte);
netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
dev->name, (long long)atomic64_read(&q->picos_per_byte),
ecmd.base.speed);
}
static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct sched_gate_list *oper, *admin;
struct qdisc_size_table *stab;
struct taprio_sched *q;
ASSERT_RTNL();
if (event != NETDEV_UP && event != NETDEV_CHANGE)
return NOTIFY_DONE;
list_for_each_entry(q, &taprio_list, taprio_list) {
if (dev != qdisc_dev(q->root))
continue;
taprio_set_picos_per_byte(dev, q);
stab = rtnl_dereference(q->root->stab);
oper = rtnl_dereference(q->oper_sched);
if (oper)
taprio_update_queue_max_sdu(q, oper, stab);
admin = rtnl_dereference(q->admin_sched);
if (admin)
taprio_update_queue_max_sdu(q, admin, stab);
break;
}
return NOTIFY_DONE;
}
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
static void setup_txtime(struct taprio_sched *q,
struct sched_gate_list *sched, ktime_t base)
{
struct sched_entry *entry;
net/sched: taprio: Limit TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME to INT_MAX. syzkaller found zero division error [0] in div_s64_rem() called from get_cycle_time_elapsed(), where sched->cycle_time is the divisor. We have tests in parse_taprio_schedule() so that cycle_time will never be 0, and actually cycle_time is not 0 in get_cycle_time_elapsed(). The problem is that the types of divisor are different; cycle_time is s64, but the argument of div_s64_rem() is s32. syzkaller fed this input and 0x100000000 is cast to s32 to be 0. @TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME={0xc, 0x8, 0x100000000} We use s64 for cycle_time to cast it to ktime_t, so let's keep it and set max for cycle_time. While at it, we prevent overflow in setup_txtime() and add another test in parse_taprio_schedule() to check if cycle_time overflows. Also, we add a new tdc test case for this issue. [0]: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 1 PID: 103 Comm: kworker/1:3 Not tainted 6.5.0-rc1-00330-g60cc1f7d0605 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: ipv6_addrconf addrconf_dad_work RIP: 0010:div_s64_rem include/linux/math64.h:42 [inline] RIP: 0010:get_cycle_time_elapsed net/sched/sch_taprio.c:223 [inline] RIP: 0010:find_entry_to_transmit+0x252/0x7e0 net/sched/sch_taprio.c:344 Code: 3c 02 00 0f 85 5e 05 00 00 48 8b 4c 24 08 4d 8b bd 40 01 00 00 48 8b 7c 24 48 48 89 c8 4c 29 f8 48 63 f7 48 99 48 89 74 24 70 <48> f7 fe 48 29 d1 48 8d 04 0f 49 89 cc 48 89 44 24 20 49 8d 85 10 RSP: 0018:ffffc90000acf260 EFLAGS: 00010206 RAX: 177450e0347560cf RBX: 0000000000000000 RCX: 177450e0347560cf RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000100000000 RBP: 0000000000000056 R08: 0000000000000000 R09: ffffed10020a0934 R10: ffff8880105049a7 R11: ffff88806cf3a520 R12: ffff888010504800 R13: ffff88800c00d800 R14: ffff8880105049a0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88806cf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0edf84f0e8 CR3: 000000000d73c002 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> get_packet_txtime net/sched/sch_taprio.c:508 [inline] taprio_enqueue_one+0x900/0xff0 net/sched/sch_taprio.c:577 taprio_enqueue+0x378/0xae0 net/sched/sch_taprio.c:658 dev_qdisc_enqueue+0x46/0x170 net/core/dev.c:3732 __dev_xmit_skb net/core/dev.c:3821 [inline] __dev_queue_xmit+0x1b2f/0x3000 net/core/dev.c:4169 dev_queue_xmit include/linux/netdevice.h:3088 [inline] neigh_resolve_output net/core/neighbour.c:1552 [inline] neigh_resolve_output+0x4a7/0x780 net/core/neighbour.c:1532 neigh_output include/net/neighbour.h:544 [inline] ip6_finish_output2+0x924/0x17d0 net/ipv6/ip6_output.c:135 __ip6_finish_output+0x620/0xaa0 net/ipv6/ip6_output.c:196 ip6_finish_output net/ipv6/ip6_output.c:207 [inline] NF_HOOK_COND include/linux/netfilter.h:292 [inline] ip6_output+0x206/0x410 net/ipv6/ip6_output.c:228 dst_output include/net/dst.h:458 [inline] NF_HOOK.constprop.0+0xea/0x260 include/linux/netfilter.h:303 ndisc_send_skb+0x872/0xe80 net/ipv6/ndisc.c:508 ndisc_send_ns+0xb5/0x130 net/ipv6/ndisc.c:666 addrconf_dad_work+0xc14/0x13f0 net/ipv6/addrconf.c:4175 process_one_work+0x92c/0x13a0 kernel/workqueue.c:2597 worker_thread+0x60f/0x1240 kernel/workqueue.c:2748 kthread+0x2fe/0x3f0 kernel/kthread.c:389 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Reported-by: syzkaller <syzkaller@googlegroups.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Co-developed-by: Eric Dumazet <edumazet@google.com> Co-developed-by: Pedro Tammela <pctammela@mojatatu.com> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-07-28 17:07:05 -07:00
u64 interval = 0;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
list_for_each_entry(entry, &sched->entries, list) {
entry->next_txtime = ktime_add_ns(base, interval);
interval += entry->interval;
}
}
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
{
struct __tc_taprio_qopt_offload *__offload;
__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
GFP_KERNEL);
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
if (!__offload)
return NULL;
refcount_set(&__offload->users, 1);
return &__offload->offload;
}
struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
*offload)
{
struct __tc_taprio_qopt_offload *__offload;
__offload = container_of(offload, struct __tc_taprio_qopt_offload,
offload);
refcount_inc(&__offload->users);
return offload;
}
EXPORT_SYMBOL_GPL(taprio_offload_get);
void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
{
struct __tc_taprio_qopt_offload *__offload;
__offload = container_of(offload, struct __tc_taprio_qopt_offload,
offload);
if (!refcount_dec_and_test(&__offload->users))
return;
kfree(__offload);
}
EXPORT_SYMBOL_GPL(taprio_offload_free);
/* The function will only serve to keep the pointers to the "oper" and "admin"
* schedules valid in relation to their base times, so when calling dump() the
* users looks at the right schedules.
* When using full offload, the admin configuration is promoted to oper at the
* base_time in the PHC time domain. But because the system time is not
* necessarily in sync with that, we can't just trigger a hrtimer to call
* switch_schedules at the right hardware time.
* At the moment we call this by hand right away from taprio, but in the future
* it will be useful to create a mechanism for drivers to notify taprio of the
* offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
* This is left as TODO.
*/
static void taprio_offload_config_changed(struct taprio_sched *q)
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
{
struct sched_gate_list *oper, *admin;
oper = rtnl_dereference(q->oper_sched);
admin = rtnl_dereference(q->admin_sched);
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
switch_schedules(q, &admin, &oper);
}
static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
{
u32 i, queue_mask = 0;
for (i = 0; i < dev->num_tc; i++) {
u32 offset, count;
if (!(tc_mask & BIT(i)))
continue;
offset = dev->tc_to_txq[i].offset;
count = dev->tc_to_txq[i].count;
queue_mask |= GENMASK(offset + count - 1, offset);
}
return queue_mask;
}
static void taprio_sched_to_offload(struct net_device *dev,
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
struct sched_gate_list *sched,
net/sched: taprio: only pass gate mask per TXQ for igc, stmmac, tsnep, am65_cpsw There are 2 classes of in-tree drivers currently: - those who act upon struct tc_taprio_sched_entry :: gate_mask as if it holds a bit mask of TXQs - those who act upon the gate_mask as if it holds a bit mask of TCs When it comes to the standard, IEEE 802.1Q-2018 does say this in the second paragraph of section 8.6.8.4 Enhancements for scheduled traffic: | A gate control list associated with each Port contains an ordered list | of gate operations. Each gate operation changes the transmission gate | state for the gate associated with each of the Port's traffic class | queues and allows associated control operations to be scheduled. In typically obtuse language, it refers to a "traffic class queue" rather than a "traffic class" or a "queue". But careful reading of 802.1Q clarifies that "traffic class" and "queue" are in fact synonymous (see 8.6.6 Queuing frames): | A queue in this context is not necessarily a single FIFO data structure. | A queue is a record of all frames of a given traffic class awaiting | transmission on a given Bridge Port. The structure of this record is not | specified. i.o.w. their definition of "queue" isn't the Linux TX queue. The gate_mask really is input into taprio via its UAPI as a mask of traffic classes, but taprio_sched_to_offload() converts it into a TXQ mask. The breakdown of drivers which handle TC_SETUP_QDISC_TAPRIO is: - hellcreek, felix, sja1105: these are DSA switches, it's not even very clear what TXQs correspond to, other than purely software constructs. Only the mqprio configuration with 8 TCs and 1 TXQ per TC makes sense. So it's fine to convert these to a gate mask per TC. - enetc: I have the hardware and can confirm that the gate mask is per TC, and affects all TXQs (BD rings) configured for that priority. - igc: in igc_save_qbv_schedule(), the gate_mask is clearly interpreted to be per-TXQ. - tsnep: Gerhard Engleder clarifies that even though this hardware supports at most 1 TXQ per TC, the TXQ indices may be different from the TC values themselves, and it is the TXQ indices that matter to this hardware. So keep it per-TXQ as well. - stmmac: I have a GMAC datasheet, and in the EST section it does specify that the gate events are per TXQ rather than per TC. - lan966x: again, this is a switch, and while not a DSA one, the way in which it implements lan966x_mqprio_add() - by only allowing num_tc == NUM_PRIO_QUEUES (8) - makes it clear to me that TXQs are a purely software construct here as well. They seem to map 1:1 with TCs. - am65_cpsw: from looking at am65_cpsw_est_set_sched_cmds(), I get the impression that the fetch_allow variable is treated like a prio_mask. This definitely sounds closer to a per-TC gate mask rather than a per-TXQ one, and TI documentation does seem to recomment an identity mapping between TCs and TXQs. However, Roger Quadros would like to do some testing before making changes, so I'm leaving this driver to operate as it did before, for now. Link with more details at the end. Based on this breakdown, we have 5 drivers with a gate mask per TC and 4 with a gate mask per TXQ. So let's make the gate mask per TXQ the opt-in and the gate mask per TC the default. Benefit from the TC_QUERY_CAPS feature that Jakub suggested we add, and query the device driver before calling the proper ndo_setup_tc(), and figure out if it expects one or the other format. Link: https://patchwork.kernel.org/project/netdevbpf/patch/20230202003621.2679603-15-vladimir.oltean@nxp.com/#25193204 Cc: Horatiu Vultur <horatiu.vultur@microchip.com> Cc: Siddharth Vadapalli <s-vadapalli@ti.com> Cc: Roger Quadros <rogerq@kernel.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek Reviewed-by: Gerhard Engleder <gerhard@engleder-embedded.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-04 15:53:04 +02:00
struct tc_taprio_qopt_offload *offload,
const struct tc_taprio_caps *caps)
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
{
struct sched_entry *entry;
int i = 0;
offload->base_time = sched->base_time;
offload->cycle_time = sched->cycle_time;
offload->cycle_time_extension = sched->cycle_time_extension;
list_for_each_entry(entry, &sched->entries, list) {
struct tc_taprio_sched_entry *e = &offload->entries[i];
e->command = entry->command;
e->interval = entry->interval;
net/sched: taprio: only pass gate mask per TXQ for igc, stmmac, tsnep, am65_cpsw There are 2 classes of in-tree drivers currently: - those who act upon struct tc_taprio_sched_entry :: gate_mask as if it holds a bit mask of TXQs - those who act upon the gate_mask as if it holds a bit mask of TCs When it comes to the standard, IEEE 802.1Q-2018 does say this in the second paragraph of section 8.6.8.4 Enhancements for scheduled traffic: | A gate control list associated with each Port contains an ordered list | of gate operations. Each gate operation changes the transmission gate | state for the gate associated with each of the Port's traffic class | queues and allows associated control operations to be scheduled. In typically obtuse language, it refers to a "traffic class queue" rather than a "traffic class" or a "queue". But careful reading of 802.1Q clarifies that "traffic class" and "queue" are in fact synonymous (see 8.6.6 Queuing frames): | A queue in this context is not necessarily a single FIFO data structure. | A queue is a record of all frames of a given traffic class awaiting | transmission on a given Bridge Port. The structure of this record is not | specified. i.o.w. their definition of "queue" isn't the Linux TX queue. The gate_mask really is input into taprio via its UAPI as a mask of traffic classes, but taprio_sched_to_offload() converts it into a TXQ mask. The breakdown of drivers which handle TC_SETUP_QDISC_TAPRIO is: - hellcreek, felix, sja1105: these are DSA switches, it's not even very clear what TXQs correspond to, other than purely software constructs. Only the mqprio configuration with 8 TCs and 1 TXQ per TC makes sense. So it's fine to convert these to a gate mask per TC. - enetc: I have the hardware and can confirm that the gate mask is per TC, and affects all TXQs (BD rings) configured for that priority. - igc: in igc_save_qbv_schedule(), the gate_mask is clearly interpreted to be per-TXQ. - tsnep: Gerhard Engleder clarifies that even though this hardware supports at most 1 TXQ per TC, the TXQ indices may be different from the TC values themselves, and it is the TXQ indices that matter to this hardware. So keep it per-TXQ as well. - stmmac: I have a GMAC datasheet, and in the EST section it does specify that the gate events are per TXQ rather than per TC. - lan966x: again, this is a switch, and while not a DSA one, the way in which it implements lan966x_mqprio_add() - by only allowing num_tc == NUM_PRIO_QUEUES (8) - makes it clear to me that TXQs are a purely software construct here as well. They seem to map 1:1 with TCs. - am65_cpsw: from looking at am65_cpsw_est_set_sched_cmds(), I get the impression that the fetch_allow variable is treated like a prio_mask. This definitely sounds closer to a per-TC gate mask rather than a per-TXQ one, and TI documentation does seem to recomment an identity mapping between TCs and TXQs. However, Roger Quadros would like to do some testing before making changes, so I'm leaving this driver to operate as it did before, for now. Link with more details at the end. Based on this breakdown, we have 5 drivers with a gate mask per TC and 4 with a gate mask per TXQ. So let's make the gate mask per TXQ the opt-in and the gate mask per TC the default. Benefit from the TC_QUERY_CAPS feature that Jakub suggested we add, and query the device driver before calling the proper ndo_setup_tc(), and figure out if it expects one or the other format. Link: https://patchwork.kernel.org/project/netdevbpf/patch/20230202003621.2679603-15-vladimir.oltean@nxp.com/#25193204 Cc: Horatiu Vultur <horatiu.vultur@microchip.com> Cc: Siddharth Vadapalli <s-vadapalli@ti.com> Cc: Roger Quadros <rogerq@kernel.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek Reviewed-by: Gerhard Engleder <gerhard@engleder-embedded.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-04 15:53:04 +02:00
if (caps->gate_mask_per_txq)
e->gate_mask = tc_map_to_queue_mask(dev,
entry->gate_mask);
else
e->gate_mask = entry->gate_mask;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
i++;
}
offload->num_entries = i;
}
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
static void taprio_detect_broken_mqprio(struct taprio_sched *q)
{
struct net_device *dev = qdisc_dev(q->root);
struct tc_taprio_caps caps;
qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
&caps, sizeof(caps));
q->broken_mqprio = caps.broken_mqprio;
if (q->broken_mqprio)
static_branch_inc(&taprio_have_broken_mqprio);
else
static_branch_inc(&taprio_have_working_mqprio);
q->detected_mqprio = true;
}
static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
{
if (!q->detected_mqprio)
return;
if (q->broken_mqprio)
static_branch_dec(&taprio_have_broken_mqprio);
else
static_branch_dec(&taprio_have_working_mqprio);
}
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
static int taprio_enable_offload(struct net_device *dev,
struct taprio_sched *q,
struct sched_gate_list *sched,
struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
struct tc_taprio_qopt_offload *offload;
struct tc_taprio_caps caps;
int tc, err = 0;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
if (!ops->ndo_setup_tc) {
NL_SET_ERR_MSG(extack,
"Device does not support taprio offload");
return -EOPNOTSUPP;
}
qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
&caps, sizeof(caps));
if (!caps.supports_queue_max_sdu) {
for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
if (q->max_sdu[tc]) {
NL_SET_ERR_MSG_MOD(extack,
"Device does not handle queueMaxSDU");
return -EOPNOTSUPP;
}
}
}
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
offload = taprio_offload_alloc(sched->num_entries);
if (!offload) {
NL_SET_ERR_MSG(extack,
"Not enough memory for enabling offload mode");
return -ENOMEM;
}
offload->cmd = TAPRIO_CMD_REPLACE;
offload->extack = extack;
net/sched: taprio: pass mqprio queue configuration to ndo_setup_tc() The taprio qdisc does not currently pass the mqprio queue configuration down to the offloading device driver. So the driver cannot act upon the TXQ counts/offsets per TC, or upon the prio->tc map. It was probably assumed that the driver only wants to offload num_tc (see TC_MQPRIO_HW_OFFLOAD_TCS), which it can get from netdev_get_num_tc(), but there's clearly more to the mqprio configuration than that. I've considered 2 mechanisms to remedy that. First is to pass a struct tc_mqprio_qopt_offload as part of the tc_taprio_qopt_offload. The second is to make taprio actually call TC_SETUP_QDISC_MQPRIO, *in addition to* TC_SETUP_QDISC_TAPRIO. The difference is that in the first case, existing drivers (offloading or not) all ignore taprio's mqprio portion currently, whereas in the second case, we could control whether to call TC_SETUP_QDISC_MQPRIO, based on a new capability. The question is which approach would be better. I'm afraid that calling TC_SETUP_QDISC_MQPRIO unconditionally (not based on a taprio capability bit) would risk introducing regressions. For example, taprio doesn't populate (or validate) qopt->hw, as well as mqprio.flags, mqprio.shaper, mqprio.min_rate, mqprio.max_rate. In comparison, adding a capability is functionally equivalent to just passing the mqprio in a way that drivers can ignore it, except it's slightly more complicated to use it (need to set the capability). Ultimately, what made me go for the "mqprio in taprio" variant was that it's easier for offloading drivers to interpret the mqprio qopt slightly differently when it comes from taprio vs when it comes from mqprio, should that ever become necessary. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-04 15:53:03 +02:00
mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
offload->mqprio.extack = extack;
net/sched: taprio: only pass gate mask per TXQ for igc, stmmac, tsnep, am65_cpsw There are 2 classes of in-tree drivers currently: - those who act upon struct tc_taprio_sched_entry :: gate_mask as if it holds a bit mask of TXQs - those who act upon the gate_mask as if it holds a bit mask of TCs When it comes to the standard, IEEE 802.1Q-2018 does say this in the second paragraph of section 8.6.8.4 Enhancements for scheduled traffic: | A gate control list associated with each Port contains an ordered list | of gate operations. Each gate operation changes the transmission gate | state for the gate associated with each of the Port's traffic class | queues and allows associated control operations to be scheduled. In typically obtuse language, it refers to a "traffic class queue" rather than a "traffic class" or a "queue". But careful reading of 802.1Q clarifies that "traffic class" and "queue" are in fact synonymous (see 8.6.6 Queuing frames): | A queue in this context is not necessarily a single FIFO data structure. | A queue is a record of all frames of a given traffic class awaiting | transmission on a given Bridge Port. The structure of this record is not | specified. i.o.w. their definition of "queue" isn't the Linux TX queue. The gate_mask really is input into taprio via its UAPI as a mask of traffic classes, but taprio_sched_to_offload() converts it into a TXQ mask. The breakdown of drivers which handle TC_SETUP_QDISC_TAPRIO is: - hellcreek, felix, sja1105: these are DSA switches, it's not even very clear what TXQs correspond to, other than purely software constructs. Only the mqprio configuration with 8 TCs and 1 TXQ per TC makes sense. So it's fine to convert these to a gate mask per TC. - enetc: I have the hardware and can confirm that the gate mask is per TC, and affects all TXQs (BD rings) configured for that priority. - igc: in igc_save_qbv_schedule(), the gate_mask is clearly interpreted to be per-TXQ. - tsnep: Gerhard Engleder clarifies that even though this hardware supports at most 1 TXQ per TC, the TXQ indices may be different from the TC values themselves, and it is the TXQ indices that matter to this hardware. So keep it per-TXQ as well. - stmmac: I have a GMAC datasheet, and in the EST section it does specify that the gate events are per TXQ rather than per TC. - lan966x: again, this is a switch, and while not a DSA one, the way in which it implements lan966x_mqprio_add() - by only allowing num_tc == NUM_PRIO_QUEUES (8) - makes it clear to me that TXQs are a purely software construct here as well. They seem to map 1:1 with TCs. - am65_cpsw: from looking at am65_cpsw_est_set_sched_cmds(), I get the impression that the fetch_allow variable is treated like a prio_mask. This definitely sounds closer to a per-TC gate mask rather than a per-TXQ one, and TI documentation does seem to recomment an identity mapping between TCs and TXQs. However, Roger Quadros would like to do some testing before making changes, so I'm leaving this driver to operate as it did before, for now. Link with more details at the end. Based on this breakdown, we have 5 drivers with a gate mask per TC and 4 with a gate mask per TXQ. So let's make the gate mask per TXQ the opt-in and the gate mask per TC the default. Benefit from the TC_QUERY_CAPS feature that Jakub suggested we add, and query the device driver before calling the proper ndo_setup_tc(), and figure out if it expects one or the other format. Link: https://patchwork.kernel.org/project/netdevbpf/patch/20230202003621.2679603-15-vladimir.oltean@nxp.com/#25193204 Cc: Horatiu Vultur <horatiu.vultur@microchip.com> Cc: Siddharth Vadapalli <s-vadapalli@ti.com> Cc: Roger Quadros <rogerq@kernel.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek Reviewed-by: Gerhard Engleder <gerhard@engleder-embedded.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-04 15:53:04 +02:00
taprio_sched_to_offload(dev, sched, offload, &caps);
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
mqprio_fp_to_offload(q->fp, &offload->mqprio);
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
for (tc = 0; tc < TC_MAX_QUEUE; tc++)
offload->max_sdu[tc] = q->max_sdu[tc];
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
if (err < 0) {
NL_SET_ERR_MSG_WEAK(extack,
"Device failed to setup taprio offload");
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
goto done;
}
net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on an invalid set of flags. As a result, it is possible to crash the kernel if user space forces an error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling of taprio_enable_offload(). This is because drivers do not expect the offload to be disabled when it was never enabled. The error that we force here is to attach taprio as a non-root qdisc, but instead as child of an mqprio root qdisc: $ tc qdisc add dev swp0 root handle 1: \ mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 $ tc qdisc replace dev swp0 parent 1:1 \ taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \ flags 0x0 clockid CLOCK_TAI Unable to handle kernel paging request at virtual address fffffffffffffff8 [fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Call trace: taprio_dump+0x27c/0x310 vsc9959_port_setup_tc+0x1f4/0x460 felix_port_setup_tc+0x24/0x3c dsa_slave_setup_tc+0x54/0x27c taprio_disable_offload.isra.0+0x58/0xe0 taprio_destroy+0x80/0x104 qdisc_create+0x240/0x470 tc_modify_qdisc+0x1fc/0x6b0 rtnetlink_rcv_msg+0x12c/0x390 netlink_rcv_skb+0x5c/0x130 rtnetlink_rcv+0x1c/0x2c Fix this by keeping track of the operations we made, and undo the offload only if we actually did it. I've added "bool offloaded" inside a 4 byte hole between "int clockid" and "atomic64_t picos_per_byte". Now the first cache line looks like below: $ pahole -C taprio_sched net/sched/sch_taprio.o struct taprio_sched { struct Qdisc * * qdiscs; /* 0 8 */ struct Qdisc * root; /* 8 8 */ u32 flags; /* 16 4 */ enum tk_offsets tk_offset; /* 20 4 */ int clockid; /* 24 4 */ bool offloaded; /* 28 1 */ /* XXX 3 bytes hole, try to pack */ atomic64_t picos_per_byte; /* 32 0 */ /* XXX 8 bytes hole, try to pack */ spinlock_t current_entry_lock; /* 40 0 */ /* XXX 8 bytes hole, try to pack */ struct sched_entry * current_entry; /* 48 8 */ struct sched_gate_list * oper_sched; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */ Fixes: 9c66d1564676 ("taprio: Add support for hardware offloading") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-15 13:08:01 +03:00
q->offloaded = true;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
done:
/* The offload structure may linger around via a reference taken by the
* device driver, so clear up the netlink extack pointer so that the
* driver isn't tempted to dereference data which stopped being valid
*/
offload->extack = NULL;
offload->mqprio.extack = NULL;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
taprio_offload_free(offload);
return err;
}
static int taprio_disable_offload(struct net_device *dev,
struct taprio_sched *q,
struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
struct tc_taprio_qopt_offload *offload;
int err;
net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on an invalid set of flags. As a result, it is possible to crash the kernel if user space forces an error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling of taprio_enable_offload(). This is because drivers do not expect the offload to be disabled when it was never enabled. The error that we force here is to attach taprio as a non-root qdisc, but instead as child of an mqprio root qdisc: $ tc qdisc add dev swp0 root handle 1: \ mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 $ tc qdisc replace dev swp0 parent 1:1 \ taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \ flags 0x0 clockid CLOCK_TAI Unable to handle kernel paging request at virtual address fffffffffffffff8 [fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Call trace: taprio_dump+0x27c/0x310 vsc9959_port_setup_tc+0x1f4/0x460 felix_port_setup_tc+0x24/0x3c dsa_slave_setup_tc+0x54/0x27c taprio_disable_offload.isra.0+0x58/0xe0 taprio_destroy+0x80/0x104 qdisc_create+0x240/0x470 tc_modify_qdisc+0x1fc/0x6b0 rtnetlink_rcv_msg+0x12c/0x390 netlink_rcv_skb+0x5c/0x130 rtnetlink_rcv+0x1c/0x2c Fix this by keeping track of the operations we made, and undo the offload only if we actually did it. I've added "bool offloaded" inside a 4 byte hole between "int clockid" and "atomic64_t picos_per_byte". Now the first cache line looks like below: $ pahole -C taprio_sched net/sched/sch_taprio.o struct taprio_sched { struct Qdisc * * qdiscs; /* 0 8 */ struct Qdisc * root; /* 8 8 */ u32 flags; /* 16 4 */ enum tk_offsets tk_offset; /* 20 4 */ int clockid; /* 24 4 */ bool offloaded; /* 28 1 */ /* XXX 3 bytes hole, try to pack */ atomic64_t picos_per_byte; /* 32 0 */ /* XXX 8 bytes hole, try to pack */ spinlock_t current_entry_lock; /* 40 0 */ /* XXX 8 bytes hole, try to pack */ struct sched_entry * current_entry; /* 48 8 */ struct sched_gate_list * oper_sched; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */ Fixes: 9c66d1564676 ("taprio: Add support for hardware offloading") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-15 13:08:01 +03:00
if (!q->offloaded)
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
return 0;
offload = taprio_offload_alloc(0);
if (!offload) {
NL_SET_ERR_MSG(extack,
"Not enough memory to disable offload mode");
return -ENOMEM;
}
offload->cmd = TAPRIO_CMD_DESTROY;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
if (err < 0) {
NL_SET_ERR_MSG(extack,
"Device failed to disable offload");
goto out;
}
net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on an invalid set of flags. As a result, it is possible to crash the kernel if user space forces an error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling of taprio_enable_offload(). This is because drivers do not expect the offload to be disabled when it was never enabled. The error that we force here is to attach taprio as a non-root qdisc, but instead as child of an mqprio root qdisc: $ tc qdisc add dev swp0 root handle 1: \ mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 $ tc qdisc replace dev swp0 parent 1:1 \ taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \ flags 0x0 clockid CLOCK_TAI Unable to handle kernel paging request at virtual address fffffffffffffff8 [fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Call trace: taprio_dump+0x27c/0x310 vsc9959_port_setup_tc+0x1f4/0x460 felix_port_setup_tc+0x24/0x3c dsa_slave_setup_tc+0x54/0x27c taprio_disable_offload.isra.0+0x58/0xe0 taprio_destroy+0x80/0x104 qdisc_create+0x240/0x470 tc_modify_qdisc+0x1fc/0x6b0 rtnetlink_rcv_msg+0x12c/0x390 netlink_rcv_skb+0x5c/0x130 rtnetlink_rcv+0x1c/0x2c Fix this by keeping track of the operations we made, and undo the offload only if we actually did it. I've added "bool offloaded" inside a 4 byte hole between "int clockid" and "atomic64_t picos_per_byte". Now the first cache line looks like below: $ pahole -C taprio_sched net/sched/sch_taprio.o struct taprio_sched { struct Qdisc * * qdiscs; /* 0 8 */ struct Qdisc * root; /* 8 8 */ u32 flags; /* 16 4 */ enum tk_offsets tk_offset; /* 20 4 */ int clockid; /* 24 4 */ bool offloaded; /* 28 1 */ /* XXX 3 bytes hole, try to pack */ atomic64_t picos_per_byte; /* 32 0 */ /* XXX 8 bytes hole, try to pack */ spinlock_t current_entry_lock; /* 40 0 */ /* XXX 8 bytes hole, try to pack */ struct sched_entry * current_entry; /* 48 8 */ struct sched_gate_list * oper_sched; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */ Fixes: 9c66d1564676 ("taprio: Add support for hardware offloading") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-15 13:08:01 +03:00
q->offloaded = false;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
out:
taprio_offload_free(offload);
return err;
}
/* If full offload is enabled, the only possible clockid is the net device's
* PHC. For that reason, specifying a clockid through netlink is incorrect.
* For txtime-assist, it is implicitly assumed that the device's PHC is kept
* in sync with the specified clockid via a user space daemon such as phc2sys.
* For both software taprio and txtime-assist, the clockid is used for the
* hrtimer that advances the schedule and hence mandatory.
*/
static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
struct netlink_ext_ack *extack)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
int err = -EINVAL;
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
const struct ethtool_ops *ops = dev->ethtool_ops;
struct ethtool_ts_info info = {
.cmd = ETHTOOL_GET_TS_INFO,
.phc_index = -1,
};
if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
NL_SET_ERR_MSG(extack,
"The 'clockid' cannot be specified for full offload");
goto out;
}
if (ops && ops->get_ts_info)
err = ops->get_ts_info(dev, &info);
if (err || info.phc_index < 0) {
NL_SET_ERR_MSG(extack,
"Device does not have a PTP clock");
err = -ENOTSUPP;
goto out;
}
} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
enum tk_offsets tk_offset;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
/* We only support static clockids and we don't allow
* for it to be modified after the first init.
*/
if (clockid < 0 ||
(q->clockid != -1 && q->clockid != clockid)) {
NL_SET_ERR_MSG(extack,
"Changing the 'clockid' of a running schedule is not supported");
err = -ENOTSUPP;
goto out;
}
switch (clockid) {
case CLOCK_REALTIME:
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
tk_offset = TK_OFFS_REAL;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
break;
case CLOCK_MONOTONIC:
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
tk_offset = TK_OFFS_MAX;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
break;
case CLOCK_BOOTTIME:
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
tk_offset = TK_OFFS_BOOT;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
break;
case CLOCK_TAI:
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
tk_offset = TK_OFFS_TAI;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
break;
default:
NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
err = -EINVAL;
goto out;
}
net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any 1) if q->tk_offset == TK_OFFS_MAX, then get_tcp_tstamp() calls ktime_mono_to_any() with out-of-bound value. 2) if q->tk_offset is changed in taprio_parse_clockid(), taprio_get_time() might also call ktime_mono_to_any() with out-of-bound value as sysbot found: UBSAN: array-index-out-of-bounds in kernel/time/timekeeping.c:908:27 index 3 is out of range for type 'ktime_t *[3]' CPU: 1 PID: 25668 Comm: kworker/u4:0 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 ktime_mono_to_any+0x1d4/0x1e0 kernel/time/timekeeping.c:908 get_tcp_tstamp net/sched/sch_taprio.c:322 [inline] get_packet_txtime net/sched/sch_taprio.c:353 [inline] taprio_enqueue_one+0x5b0/0x1460 net/sched/sch_taprio.c:420 taprio_enqueue+0x3b1/0x730 net/sched/sch_taprio.c:485 dev_qdisc_enqueue+0x40/0x300 net/core/dev.c:3785 __dev_xmit_skb net/core/dev.c:3869 [inline] __dev_queue_xmit+0x1f6e/0x3630 net/core/dev.c:4194 batadv_send_skb_packet+0x4a9/0x5f0 net/batman-adv/send.c:108 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x6d7/0x8e0 net/batman-adv/bat_iv_ogm.c:1701 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 Fixes: 7ede7b03484b ("taprio: make clock reference conversions easier") Fixes: 54002066100b ("taprio: Adjust timestamps for TCP packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vedang Patel <vedang.patel@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Link: https://lore.kernel.org/r/20211108180815.1822479-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-08 10:08:15 -08:00
/* This pairs with READ_ONCE() in taprio_mono_to_any */
WRITE_ONCE(q->tk_offset, tk_offset);
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
q->clockid = clockid;
} else {
NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
goto out;
}
/* Everything went ok, return success. */
err = 0;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
out:
return err;
}
static int taprio_parse_tc_entry(struct Qdisc *sch,
struct nlattr *opt,
u32 max_sdu[TC_QOPT_MAX_QUEUE],
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
u32 fp[TC_QOPT_MAX_QUEUE],
unsigned long *seen_tcs,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
struct net_device *dev = qdisc_dev(sch);
int err, tc;
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
u32 val;
err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
taprio_tc_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
return -EINVAL;
}
tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
if (tc >= TC_QOPT_MAX_QUEUE) {
NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
return -ERANGE;
}
if (*seen_tcs & BIT(tc)) {
NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
return -EINVAL;
}
*seen_tcs |= BIT(tc);
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
if (val > dev->max_mtu) {
NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
return -ERANGE;
}
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
max_sdu[tc] = val;
}
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
if (tb[TCA_TAPRIO_TC_ENTRY_FP])
fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
return 0;
}
static int taprio_parse_tc_entries(struct Qdisc *sch,
struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct taprio_sched *q = qdisc_priv(sch);
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
struct net_device *dev = qdisc_dev(sch);
u32 max_sdu[TC_QOPT_MAX_QUEUE];
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
bool have_preemption = false;
unsigned long seen_tcs = 0;
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
u32 fp[TC_QOPT_MAX_QUEUE];
struct nlattr *n;
int tc, rem;
int err = 0;
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
max_sdu[tc] = q->max_sdu[tc];
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
fp[tc] = q->fp[tc];
}
nla_for_each_nested(n, opt, rem) {
if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
continue;
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
extack);
if (err)
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
return err;
}
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
q->max_sdu[tc] = max_sdu[tc];
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
q->fp[tc] = fp[tc];
if (fp[tc] != TC_FP_EXPRESS)
have_preemption = true;
}
if (have_preemption) {
if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
NL_SET_ERR_MSG(extack,
"Preemption only supported with full offload");
return -EOPNOTSUPP;
}
if (!ethtool_dev_mm_supported(dev)) {
NL_SET_ERR_MSG(extack,
"Device does not support preemption");
return -EOPNOTSUPP;
}
}
return err;
}
static int taprio_mqprio_cmp(const struct net_device *dev,
const struct tc_mqprio_qopt *mqprio)
{
int i;
if (!mqprio || mqprio->num_tc != dev->num_tc)
return -1;
for (i = 0; i < mqprio->num_tc; i++)
if (dev->tc_to_txq[i].count != mqprio->count[i] ||
dev->tc_to_txq[i].offset != mqprio->offset[i])
return -1;
for (i = 0; i <= TC_BITMASK; i++)
if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
return -1;
return 0;
}
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
/* The semantics of the 'flags' argument in relation to 'change()'
* requests, are interpreted following two rules (which are applied in
* this order): (1) an omitted 'flags' argument is interpreted as
* zero; (2) the 'flags' of a "running" taprio instance cannot be
* changed.
*/
static int taprio_new_flags(const struct nlattr *attr, u32 old,
struct netlink_ext_ack *extack)
{
u32 new = 0;
if (attr)
new = nla_get_u32(attr);
if (old != TAPRIO_FLAGS_INVALID && old != new) {
NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
return -EOPNOTSUPP;
}
if (!taprio_flags_valid(new)) {
NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
return -EINVAL;
}
return new;
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct sched_gate_list *oper, *admin, *new_admin;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_mqprio_qopt *mqprio = NULL;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
unsigned long flags;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
ktime_t start;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
int i, err;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 14:07:28 +02:00
err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
taprio_policy, extack);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (err < 0)
return err;
if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
q->flags, extack);
if (err < 0)
return err;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
q->flags = err;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (err < 0)
return err;
err = taprio_parse_tc_entries(sch, opt, extack);
if (err)
return err;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
if (!new_admin) {
NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
return -ENOMEM;
}
INIT_LIST_HEAD(&new_admin->entries);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
oper = rtnl_dereference(q->oper_sched);
admin = rtnl_dereference(q->admin_sched);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
/* no changes - no new mqprio settings */
if (!taprio_mqprio_cmp(dev, mqprio))
mqprio = NULL;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (mqprio && (oper || admin)) {
NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
err = -ENOTSUPP;
goto free_sched;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
if (mqprio) {
err = netdev_set_num_tc(dev, mqprio->num_tc);
if (err)
goto free_sched;
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
for (i = 0; i < mqprio->num_tc; i++) {
netdev_set_tc_queue(dev, i,
mqprio->count[i],
mqprio->offset[i]);
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
q->cur_txq[i] = mqprio->offset[i];
}
/* Always use supplied priority mappings */
for (i = 0; i <= TC_BITMASK; i++)
netdev_set_prio_tc_map(dev, i,
mqprio->prio_tc_map[i]);
}
err = parse_taprio_schedule(q, tb, new_admin, extack);
if (err < 0)
goto free_sched;
if (new_admin->num_entries == 0) {
NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
err = -EINVAL;
goto free_sched;
}
err = taprio_parse_clockid(sch, tb, extack);
if (err < 0)
goto free_sched;
taprio_set_picos_per_byte(dev, q);
taprio_update_queue_max_sdu(q, new_admin, stab);
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
err = taprio_enable_offload(dev, q, new_admin, extack);
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
else
err = taprio_disable_offload(dev, q, extack);
if (err)
goto free_sched;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
/* Protects against enqueue()/dequeue() */
spin_lock_bh(qdisc_lock(sch));
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
err = -EINVAL;
goto unlock;
}
q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
}
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
!hrtimer_active(&q->advance_timer)) {
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
q->advance_timer.function = advance_sched;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
err = taprio_get_start_time(sch, new_admin, &start);
if (err < 0) {
NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
goto unlock;
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
setup_txtime(q, new_admin, start);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
if (!oper) {
rcu_assign_pointer(q->oper_sched, new_admin);
err = 0;
new_admin = NULL;
goto unlock;
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
rcu_assign_pointer(q->admin_sched, new_admin);
if (admin)
call_rcu(&admin->rcu, taprio_free_sched_cb);
} else {
setup_first_end_time(q, new_admin, start);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
/* Protects against advance_sched() */
spin_lock_irqsave(&q->current_entry_lock, flags);
taprio_start_sched(sch, start, new_admin);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
rcu_assign_pointer(q->admin_sched, new_admin);
if (admin)
call_rcu(&admin->rcu, taprio_free_sched_cb);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
spin_unlock_irqrestore(&q->current_entry_lock, flags);
taprio: fix panic while hw offload sched list swap Don't swap oper and admin schedules too early, it's not correct and causes crash. Steps to reproduce: 1) tc qdisc replace dev eth0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 1@2 \ base-time $SOME_BASE_TIME \ sched-entry S 01 80000 \ sched-entry S 02 15000 \ sched-entry S 04 40000 \ flags 2 2) tc qdisc replace dev eth0 parent root handle 100 taprio \ base-time $SOME_BASE_TIME \ sched-entry S 01 90000 \ sched-entry S 02 20000 \ sched-entry S 04 40000 \ flags 2 3) tc qdisc replace dev eth0 parent root handle 100 taprio \ base-time $SOME_BASE_TIME \ sched-entry S 01 150000 \ sched-entry S 02 200000 \ sched-entry S 04 40000 \ flags 2 Do 2 3 2 .. steps more times if not happens and observe: [ 305.832319] Unable to handle kernel write to read-only memory at virtual address ffff0000087ce7f0 [ 305.910887] CPU: 0 PID: 0 Comm: swapper/0 Not tainted [ 305.919306] Hardware name: Texas Instruments AM654 Base Board (DT) [...] [ 306.017119] x1 : ffff800848031d88 x0 : ffff800848031d80 [ 306.022422] Call trace: [ 306.024866] taprio_free_sched_cb+0x4c/0x98 [ 306.029040] rcu_process_callbacks+0x25c/0x410 [ 306.033476] __do_softirq+0x10c/0x208 [ 306.037132] irq_exit+0xb8/0xc8 [ 306.040267] __handle_domain_irq+0x64/0xb8 [ 306.044352] gic_handle_irq+0x7c/0x178 [ 306.048092] el1_irq+0xb0/0x128 [ 306.051227] arch_cpu_idle+0x10/0x18 [ 306.054795] do_idle+0x120/0x138 [ 306.058015] cpu_startup_entry+0x20/0x28 [ 306.061931] rest_init+0xcc/0xd8 [ 306.065154] start_kernel+0x3bc/0x3e4 [ 306.068810] Code: f2fbd5b7 f2fbd5b6 d503201f f9400422 (f9000662) [ 306.074900] ---[ end trace 96c8e2284a9d9d6e ]--- [ 306.079507] Kernel panic - not syncing: Fatal exception in interrupt [ 306.085847] SMP: stopping secondary CPUs [ 306.089765] Kernel Offset: disabled Try to explain one of the possible crash cases: The "real" admin list is assigned when admin_sched is set to new_admin, it happens after "swap", that assigns to oper_sched NULL. Thus if call qdisc show it can crash. Farther, next second time, when sched list is updated, the admin_sched is not NULL and becomes the oper_sched, previous oper_sched was NULL so just skipped. But then admin_sched is assigned new_admin, but schedules to free previous assigned admin_sched (that already became oper_sched). Farther, next third time, when sched list is updated, while one more swap, oper_sched is not null, but it was happy to be freed already (while prev. admin update), so while try to free oper_sched the kernel panic happens at taprio_free_sched_cb(). So, move the "swap emulation" where it should be according to function comment from code. Fixes: 9c66d15646760e ("taprio: Add support for hardware offloading") Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Tested-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 01:28:28 +02:00
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
taprio: fix panic while hw offload sched list swap Don't swap oper and admin schedules too early, it's not correct and causes crash. Steps to reproduce: 1) tc qdisc replace dev eth0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 1@2 \ base-time $SOME_BASE_TIME \ sched-entry S 01 80000 \ sched-entry S 02 15000 \ sched-entry S 04 40000 \ flags 2 2) tc qdisc replace dev eth0 parent root handle 100 taprio \ base-time $SOME_BASE_TIME \ sched-entry S 01 90000 \ sched-entry S 02 20000 \ sched-entry S 04 40000 \ flags 2 3) tc qdisc replace dev eth0 parent root handle 100 taprio \ base-time $SOME_BASE_TIME \ sched-entry S 01 150000 \ sched-entry S 02 200000 \ sched-entry S 04 40000 \ flags 2 Do 2 3 2 .. steps more times if not happens and observe: [ 305.832319] Unable to handle kernel write to read-only memory at virtual address ffff0000087ce7f0 [ 305.910887] CPU: 0 PID: 0 Comm: swapper/0 Not tainted [ 305.919306] Hardware name: Texas Instruments AM654 Base Board (DT) [...] [ 306.017119] x1 : ffff800848031d88 x0 : ffff800848031d80 [ 306.022422] Call trace: [ 306.024866] taprio_free_sched_cb+0x4c/0x98 [ 306.029040] rcu_process_callbacks+0x25c/0x410 [ 306.033476] __do_softirq+0x10c/0x208 [ 306.037132] irq_exit+0xb8/0xc8 [ 306.040267] __handle_domain_irq+0x64/0xb8 [ 306.044352] gic_handle_irq+0x7c/0x178 [ 306.048092] el1_irq+0xb0/0x128 [ 306.051227] arch_cpu_idle+0x10/0x18 [ 306.054795] do_idle+0x120/0x138 [ 306.058015] cpu_startup_entry+0x20/0x28 [ 306.061931] rest_init+0xcc/0xd8 [ 306.065154] start_kernel+0x3bc/0x3e4 [ 306.068810] Code: f2fbd5b7 f2fbd5b6 d503201f f9400422 (f9000662) [ 306.074900] ---[ end trace 96c8e2284a9d9d6e ]--- [ 306.079507] Kernel panic - not syncing: Fatal exception in interrupt [ 306.085847] SMP: stopping secondary CPUs [ 306.089765] Kernel Offset: disabled Try to explain one of the possible crash cases: The "real" admin list is assigned when admin_sched is set to new_admin, it happens after "swap", that assigns to oper_sched NULL. Thus if call qdisc show it can crash. Farther, next second time, when sched list is updated, the admin_sched is not NULL and becomes the oper_sched, previous oper_sched was NULL so just skipped. But then admin_sched is assigned new_admin, but schedules to free previous assigned admin_sched (that already became oper_sched). Farther, next third time, when sched list is updated, while one more swap, oper_sched is not null, but it was happy to be freed already (while prev. admin update), so while try to free oper_sched the kernel panic happens at taprio_free_sched_cb(). So, move the "swap emulation" where it should be according to function comment from code. Fixes: 9c66d15646760e ("taprio: Add support for hardware offloading") Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Tested-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 01:28:28 +02:00
taprio_offload_config_changed(q);
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
}
new_admin = NULL;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
err = 0;
if (!stab)
NL_SET_ERR_MSG_MOD(extack,
"Size table not specified, frame length estimations may be inaccurate");
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
unlock:
spin_unlock_bh(qdisc_lock(sch));
free_sched:
if (new_admin)
call_rcu(&new_admin->rcu, taprio_free_sched_cb);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
return err;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static void taprio_reset(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
int i;
hrtimer_cancel(&q->advance_timer);
net/sched: sch_taprio: fix possible use-after-free syzbot reported a nasty crash [1] in net_tx_action() which made little sense until we got a repro. This repro installs a taprio qdisc, but providing an invalid TCA_RATE attribute. qdisc_create() has to destroy the just initialized taprio qdisc, and taprio_destroy() is called. However, the hrtimer used by taprio had already fired, therefore advance_sched() called __netif_schedule(). Then net_tx_action was trying to use a destroyed qdisc. We can not undo the __netif_schedule(), so we must wait until one cpu serviced the qdisc before we can proceed. Many thanks to Alexander Potapenko for his help. [1] BUG: KMSAN: uninit-value in queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline] BUG: KMSAN: uninit-value in do_raw_spin_trylock include/linux/spinlock.h:191 [inline] BUG: KMSAN: uninit-value in __raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline] BUG: KMSAN: uninit-value in _raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138 queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline] do_raw_spin_trylock include/linux/spinlock.h:191 [inline] __raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline] _raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138 spin_trylock include/linux/spinlock.h:359 [inline] qdisc_run_begin include/net/sch_generic.h:187 [inline] qdisc_run+0xee/0x540 include/net/pkt_sched.h:125 net_tx_action+0x77c/0x9a0 net/core/dev.c:5086 __do_softirq+0x1cc/0x7fb kernel/softirq.c:571 run_ksoftirqd+0x2c/0x50 kernel/softirq.c:934 smpboot_thread_fn+0x554/0x9f0 kernel/smpboot.c:164 kthread+0x31b/0x430 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 Uninit was created at: slab_post_alloc_hook mm/slab.h:732 [inline] slab_alloc_node mm/slub.c:3258 [inline] __kmalloc_node_track_caller+0x814/0x1250 mm/slub.c:4970 kmalloc_reserve net/core/skbuff.c:358 [inline] __alloc_skb+0x346/0xcf0 net/core/skbuff.c:430 alloc_skb include/linux/skbuff.h:1257 [inline] nlmsg_new include/net/netlink.h:953 [inline] netlink_ack+0x5f3/0x12b0 net/netlink/af_netlink.c:2436 netlink_rcv_skb+0x55d/0x6c0 net/netlink/af_netlink.c:2507 rtnetlink_rcv+0x30/0x40 net/core/rtnetlink.c:6108 netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] netlink_unicast+0xf3b/0x1270 net/netlink/af_netlink.c:1345 netlink_sendmsg+0x1288/0x1440 net/netlink/af_netlink.c:1921 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg net/socket.c:734 [inline] ____sys_sendmsg+0xabc/0xe90 net/socket.c:2482 ___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2536 __sys_sendmsg net/socket.c:2565 [inline] __do_sys_sendmsg net/socket.c:2574 [inline] __se_sys_sendmsg net/socket.c:2572 [inline] __x64_sys_sendmsg+0x367/0x540 net/socket.c:2572 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd CPU: 0 PID: 13 Comm: ksoftirqd/0 Not tainted 6.0.0-rc2-syzkaller-47461-gac3859c02d7f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022 Fixes: 5a781ccbd19e ("tc: Add support for configuring the taprio scheduler") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-01-13 16:48:49 +00:00
if (q->qdiscs) {
for (i = 0; i < dev->num_tx_queues; i++)
if (q->qdiscs[i])
qdisc_reset(q->qdiscs[i]);
}
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
static void taprio_destroy(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct sched_gate_list *oper, *admin;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
unsigned int i;
list_del(&q->taprio_list);
net/sched: sch_taprio: properly cancel timer from taprio_destroy() There is a comment in qdisc_create() about us not calling ops->reset() in some cases. err_out4: /* * Any broken qdiscs that would require a ops->reset() here? * The qdisc was never in action so it shouldn't be necessary. */ As taprio sets a timer before actually receiving a packet, we need to cancel it from ops->destroy, just in case ops->reset has not been called. syzbot reported: ODEBUG: free active (active state 0) object type: hrtimer hint: advance_sched+0x0/0x9a0 arch/x86/include/asm/atomic64_64.h:22 WARNING: CPU: 0 PID: 8441 at lib/debugobjects.c:505 debug_print_object+0x16e/0x250 lib/debugobjects.c:505 Modules linked in: CPU: 0 PID: 8441 Comm: syz-executor813 Not tainted 5.14.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:debug_print_object+0x16e/0x250 lib/debugobjects.c:505 Code: ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 af 00 00 00 48 8b 14 dd e0 d3 e3 89 4c 89 ee 48 c7 c7 e0 c7 e3 89 e8 5b 86 11 05 <0f> 0b 83 05 85 03 92 09 01 48 83 c4 18 5b 5d 41 5c 41 5d 41 5e c3 RSP: 0018:ffffc9000130f330 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000 RDX: ffff88802baeb880 RSI: ffffffff815d87b5 RDI: fffff52000261e58 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff815d25ee R11: 0000000000000000 R12: ffffffff898dd020 R13: ffffffff89e3ce20 R14: ffffffff81653630 R15: dffffc0000000000 FS: 0000000000f0d300(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffb64b3e000 CR3: 0000000036557000 CR4: 00000000001506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __debug_check_no_obj_freed lib/debugobjects.c:987 [inline] debug_check_no_obj_freed+0x301/0x420 lib/debugobjects.c:1018 slab_free_hook mm/slub.c:1603 [inline] slab_free_freelist_hook+0x171/0x240 mm/slub.c:1653 slab_free mm/slub.c:3213 [inline] kfree+0xe4/0x540 mm/slub.c:4267 qdisc_create+0xbcf/0x1320 net/sched/sch_api.c:1299 tc_modify_qdisc+0x4c8/0x1a60 net/sched/sch_api.c:1663 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5571 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504 netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1340 netlink_sendmsg+0x86d/0xdb0 net/netlink/af_netlink.c:1929 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2403 ___sys_sendmsg+0xf3/0x170 net/socket.c:2457 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2486 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 Fixes: 44d4775ca518 ("net/sched: sch_taprio: reset child qdiscs before freeing them") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Davide Caratti <dcaratti@redhat.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Acked-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-04 12:55:22 -07:00
/* Note that taprio_reset() might not be called if an error
* happens in qdisc_create(), after taprio_init() has been called.
*/
hrtimer_cancel(&q->advance_timer);
net/sched: sch_taprio: fix possible use-after-free syzbot reported a nasty crash [1] in net_tx_action() which made little sense until we got a repro. This repro installs a taprio qdisc, but providing an invalid TCA_RATE attribute. qdisc_create() has to destroy the just initialized taprio qdisc, and taprio_destroy() is called. However, the hrtimer used by taprio had already fired, therefore advance_sched() called __netif_schedule(). Then net_tx_action was trying to use a destroyed qdisc. We can not undo the __netif_schedule(), so we must wait until one cpu serviced the qdisc before we can proceed. Many thanks to Alexander Potapenko for his help. [1] BUG: KMSAN: uninit-value in queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline] BUG: KMSAN: uninit-value in do_raw_spin_trylock include/linux/spinlock.h:191 [inline] BUG: KMSAN: uninit-value in __raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline] BUG: KMSAN: uninit-value in _raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138 queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline] do_raw_spin_trylock include/linux/spinlock.h:191 [inline] __raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline] _raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138 spin_trylock include/linux/spinlock.h:359 [inline] qdisc_run_begin include/net/sch_generic.h:187 [inline] qdisc_run+0xee/0x540 include/net/pkt_sched.h:125 net_tx_action+0x77c/0x9a0 net/core/dev.c:5086 __do_softirq+0x1cc/0x7fb kernel/softirq.c:571 run_ksoftirqd+0x2c/0x50 kernel/softirq.c:934 smpboot_thread_fn+0x554/0x9f0 kernel/smpboot.c:164 kthread+0x31b/0x430 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 Uninit was created at: slab_post_alloc_hook mm/slab.h:732 [inline] slab_alloc_node mm/slub.c:3258 [inline] __kmalloc_node_track_caller+0x814/0x1250 mm/slub.c:4970 kmalloc_reserve net/core/skbuff.c:358 [inline] __alloc_skb+0x346/0xcf0 net/core/skbuff.c:430 alloc_skb include/linux/skbuff.h:1257 [inline] nlmsg_new include/net/netlink.h:953 [inline] netlink_ack+0x5f3/0x12b0 net/netlink/af_netlink.c:2436 netlink_rcv_skb+0x55d/0x6c0 net/netlink/af_netlink.c:2507 rtnetlink_rcv+0x30/0x40 net/core/rtnetlink.c:6108 netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] netlink_unicast+0xf3b/0x1270 net/netlink/af_netlink.c:1345 netlink_sendmsg+0x1288/0x1440 net/netlink/af_netlink.c:1921 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg net/socket.c:734 [inline] ____sys_sendmsg+0xabc/0xe90 net/socket.c:2482 ___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2536 __sys_sendmsg net/socket.c:2565 [inline] __do_sys_sendmsg net/socket.c:2574 [inline] __se_sys_sendmsg net/socket.c:2572 [inline] __x64_sys_sendmsg+0x367/0x540 net/socket.c:2572 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd CPU: 0 PID: 13 Comm: ksoftirqd/0 Not tainted 6.0.0-rc2-syzkaller-47461-gac3859c02d7f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022 Fixes: 5a781ccbd19e ("tc: Add support for configuring the taprio scheduler") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-01-13 16:48:49 +00:00
qdisc_synchronize(sch);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
taprio_disable_offload(dev, q, NULL);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (q->qdiscs) {
for (i = 0; i < dev->num_tx_queues; i++)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
qdisc_put(q->qdiscs[i]);
kfree(q->qdiscs);
}
q->qdiscs = NULL;
netdev_reset_tc(dev);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
oper = rtnl_dereference(q->oper_sched);
admin = rtnl_dereference(q->admin_sched);
if (oper)
call_rcu(&oper->rcu, taprio_free_sched_cb);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (admin)
call_rcu(&admin->rcu, taprio_free_sched_cb);
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
taprio_cleanup_broken_mqprio(q);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
int i, tc;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
spin_lock_init(&q->current_entry_lock);
hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
q->advance_timer.function = advance_sched;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
q->root = sch;
/* We only support static clockids. Use an invalid value as default
* and get the valid one on taprio_change().
*/
q->clockid = -1;
taprio: Fix still allowing changing the flags during runtime Because 'q->flags' starts as zero, and zero is a valid value, we aren't able to detect the transition from zero to something else during "runtime". The solution is to initialize 'q->flags' with an invalid value, so we can detect if 'q->flags' was set by the user or not. To better solidify the behavior, 'flags' handling is moved to a separate function. The behavior is: - 'flags' if unspecified by the user, is assumed to be zero; - 'flags' cannot change during "runtime" (i.e. a change() request cannot modify it); With this new function we can remove taprio_flags, which should reduce the risk of future accidents. Allowing flags to be changed was causing the following RCU stall: [ 1730.558249] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 1730.558258] rcu: 6-...0: (190 ticks this GP) idle=922/0/0x1 softirq=25580/25582 fqs=16250 [ 1730.558264] (detected by 2, t=65002 jiffies, g=33017, q=81) [ 1730.558269] Sending NMI from CPU 2 to CPUs 6: [ 1730.559277] NMI backtrace for cpu 6 [ 1730.559277] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G E 5.5.0-rc6+ #35 [ 1730.559278] Hardware name: Gigabyte Technology Co., Ltd. Z390 AORUS ULTRA/Z390 AORUS ULTRA-CF, BIOS F7 03/14/2019 [ 1730.559278] RIP: 0010:__hrtimer_run_queues+0xe2/0x440 [ 1730.559278] Code: 48 8b 43 28 4c 89 ff 48 8b 75 c0 48 89 45 c8 e8 f4 bb 7c 00 0f 1f 44 00 00 65 8b 05 40 31 f0 68 89 c0 48 0f a3 05 3e 5c 25 01 <0f> 82 fc 01 00 00 48 8b 45 c8 48 89 df ff d0 89 45 c8 0f 1f 44 00 [ 1730.559279] RSP: 0018:ffff9970802d8f10 EFLAGS: 00000083 [ 1730.559279] RAX: 0000000000000006 RBX: ffff8b31645bff38 RCX: 0000000000000000 [ 1730.559280] RDX: 0000000000000000 RSI: ffffffff9710f2ec RDI: ffffffff978daf0e [ 1730.559280] RBP: ffff9970802d8f68 R08: 0000000000000000 R09: 0000000000000000 [ 1730.559280] R10: 0000018336d7944e R11: 0000000000000001 R12: ffff8b316e39f9c0 [ 1730.559281] R13: ffff8b316e39f940 R14: ffff8b316e39f998 R15: ffff8b316e39f7c0 [ 1730.559281] FS: 0000000000000000(0000) GS:ffff8b316e380000(0000) knlGS:0000000000000000 [ 1730.559281] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1730.559281] CR2: 00007f1105303760 CR3: 0000000227210005 CR4: 00000000003606e0 [ 1730.559282] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1730.559282] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1730.559282] Call Trace: [ 1730.559282] <IRQ> [ 1730.559283] ? taprio_dequeue_soft+0x2d0/0x2d0 [sch_taprio] [ 1730.559283] hrtimer_interrupt+0x104/0x220 [ 1730.559283] ? irqtime_account_irq+0x34/0xa0 [ 1730.559283] smp_apic_timer_interrupt+0x6d/0x230 [ 1730.559284] apic_timer_interrupt+0xf/0x20 [ 1730.559284] </IRQ> [ 1730.559284] RIP: 0010:cpu_idle_poll+0x35/0x1a0 [ 1730.559285] Code: 88 82 ff 65 44 8b 25 12 7d 73 68 0f 1f 44 00 00 e8 90 c3 89 ff fb 65 48 8b 1c 25 c0 7e 01 00 48 8b 03 a8 08 74 0b eb 1c f3 90 <48> 8b 03 a8 08 75 13 8b 05 be a8 a8 00 85 c0 75 ed e8 75 48 84 ff [ 1730.559285] RSP: 0018:ffff997080137ea8 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 [ 1730.559285] RAX: 0000000000000001 RBX: ffff8b316bc3c580 RCX: 0000000000000000 [ 1730.559286] RDX: 0000000000000001 RSI: 000000002819aad9 RDI: ffffffff978da730 [ 1730.559286] RBP: ffff997080137ec0 R08: 0000018324a6d387 R09: 0000000000000000 [ 1730.559286] R10: 0000000000000400 R11: 0000000000000001 R12: 0000000000000006 [ 1730.559286] R13: ffff8b316bc3c580 R14: 0000000000000000 R15: 0000000000000000 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] ? cpu_idle_poll+0x20/0x1a0 [ 1730.559287] do_idle+0x4d/0x1f0 [ 1730.559287] ? complete+0x44/0x50 [ 1730.559288] cpu_startup_entry+0x1b/0x20 [ 1730.559288] start_secondary+0x142/0x180 [ 1730.559288] secondary_startup_64+0xb6/0xc0 [ 1776.686313] nvme nvme0: I/O 96 QID 1 timeout, completion polled Fixes: 4cfd5779bd6e ("taprio: Add support for txtime-assist mode") Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-06 13:46:07 -08:00
q->flags = TAPRIO_FLAGS_INVALID;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
list_add(&q->taprio_list, &taprio_list);
if (sch->parent != TC_H_ROOT) {
NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return -EOPNOTSUPP;
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (!netif_is_multiqueue(dev)) {
NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return -EOPNOTSUPP;
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
GFP_KERNEL);
if (!q->qdiscs)
return -ENOMEM;
if (!opt)
return -EINVAL;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *dev_queue;
struct Qdisc *qdisc;
dev_queue = netdev_get_tx_queue(dev, i);
qdisc = qdisc_create_dflt(dev_queue,
&pfifo_qdisc_ops,
TC_H_MAKE(TC_H_MAJ(sch->handle),
TC_H_MIN(i + 1)),
extack);
if (!qdisc)
return -ENOMEM;
if (i < dev->real_num_tx_queues)
qdisc_hash_add(qdisc, false);
q->qdiscs[i] = qdisc;
}
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
q->fp[tc] = TC_FP_EXPRESS;
net/sched: taprio: give higher priority to higher TCs in software dequeue mode Current taprio software implementation is haunted by the shadow of the igb/igc hardware model. It iterates over child qdiscs in increasing order of TXQ index, therefore giving higher xmit priority to TXQ 0 and lower to TXQ N. According to discussions with Vinicius, that is the default (perhaps even unchangeable) prioritization scheme used for the NICs that taprio was first written for (igb, igc), and we have a case of two bugs canceling out, resulting in a functional setup on igb/igc, but a less sane one on other NICs. To the best of my understanding, taprio should prioritize based on the traffic class, so it should really dequeue starting with the highest traffic class and going down from there. We get to the TXQ using the tc_to_txq[] netdev property. TXQs within the same TC have the same (strict) priority, so we should pick from them as fairly as we can. We can achieve that by implementing something very similar to q->curband from multiq_dequeue(). Since igb/igc really do have TXQ 0 of higher hardware priority than TXQ 1 etc, we need to preserve the behavior for them as well. We really have no choice, because in txtime-assist mode, taprio is essentially a software scheduler towards offloaded child tc-etf qdiscs, so the TXQ selection really does matter (not all igb TXQs support ETF/SO_TXTIME, says Kurt Kanzenbach). To preserve the behavior, we need a capability bit so that taprio can determine if it's running on igb/igc, or on something else. Because igb doesn't offload taprio at all, we can't piggyback on the qdisc_offload_query_caps() call from taprio_enable_offload(), but instead we need a separate call which is also made for software scheduling. Introduce two static keys to minimize the performance penalty on systems which only have igb/igc NICs, and on systems which only have other NICs. For mixed systems, taprio will have to dynamically check whether to dequeue using one prioritization algorithm or using the other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-07 15:54:30 +02:00
taprio_detect_broken_mqprio(q);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return taprio_change(sch, opt, extack);
}
static void taprio_attach(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
unsigned int ntx;
/* Attach underlying qdisc */
for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
struct Qdisc *old, *dev_queue_qdisc;
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
struct Qdisc *qdisc = q->qdiscs[ntx];
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
/* In offload mode, the root taprio qdisc is bypassed
* and the netdev TX queues see the children directly
*/
qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
dev_queue_qdisc = qdisc;
} else {
/* In software mode, attach the root taprio qdisc
* to all netdev TX queues, so that dev_qdisc_enqueue()
* goes through taprio_enqueue().
*/
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
dev_queue_qdisc = sch;
}
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
/* The qdisc's refcount requires to be elevated once
* for each netdev TX queue it is grafted onto
*/
qdisc_refcount_inc(dev_queue_qdisc);
if (old)
qdisc_put(old);
}
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
unsigned long cl)
{
struct net_device *dev = qdisc_dev(sch);
unsigned long ntx = cl - 1;
if (ntx >= dev->num_tx_queues)
return NULL;
return netdev_get_tx_queue(dev, ntx);
}
static int taprio_graft(struct Qdisc *sch, unsigned long cl,
struct Qdisc *new, struct Qdisc **old,
struct netlink_ext_ack *extack)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
if (!dev_queue)
return -EINVAL;
if (dev->flags & IFF_UP)
dev_deactivate(dev);
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
/* In offload mode, the child Qdisc is directly attached to the netdev
* TX queue, and thus, we need to keep its refcount elevated in order
* to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
* However, save the reference to the new qdisc in the private array in
* both software and offload cases, to have an up-to-date reference to
* our children.
*/
*old = q->qdiscs[cl - 1];
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
if (new)
qdisc_refcount_inc(new);
if (*old)
qdisc_put(*old);
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
net/sched: taprio: keep child Qdisc refcount elevated at 2 in offload mode Normally, Qdiscs have one reference on them held by their owner and one held for each TXQ to which they are attached, however this is not the case with the children of an offloaded taprio. Instead, the taprio qdisc currently lives in the following fragile equilibrium. In the software scheduling case, taprio attaches itself (the root Qdisc) to all TXQs, thus having a refcount of 1 + the number of TX queues. In this mode, the q->qdiscs[] children are not visible directly to the Qdisc API. The lifetime of the Qdiscs from this private array lasts until qdisc_destroy() -> taprio_destroy(). In the fully offloaded case, the root taprio has a refcount of 1, and all child q->qdiscs[] also have a refcount of 1. The child q->qdiscs[] are attached to the netdev TXQs directly and thus are visible to the Qdisc API, however taprio loses a reference to them very early - during qdisc_graft(parent==NULL) -> taprio_attach(). At that time, taprio frees the q->qdiscs[] array to not leak memory, but interestingly, it does not release a reference on these qdiscs because it doesn't effectively own them - they are created by taprio but owned by the Qdisc core, and will be freed by qdisc_graft(parent==NULL, new==NULL) -> qdisc_put(old) when the Qdisc is deleted or when the child Qdisc is replaced with something else. My interest is to change this equilibrium such that taprio also owns a reference on the q->qdiscs[] child Qdiscs for the lifetime of the root Qdisc, including in full offload mode. I want this because I would like taprio_leaf(), taprio_dump_class(), taprio_dump_class_stats() to have insight into q->qdiscs[] for the software scheduling mode - currently they look at dev_queue->qdisc_sleeping, which is, as mentioned, the same as the root taprio. The following set of changes is necessary: - don't free q->qdiscs[] early in taprio_attach(), free it late in taprio_destroy() for consistency with software mode. But: - currently that's not possible, because taprio doesn't own a reference on q->qdiscs[]. So hold that reference - once during the initial attach() and once during subsequent graft() calls when the child is changed. - always keep track of the current child in q->qdiscs[], even for full offload mode, so that we free in taprio_destroy() what we should, and not something stale. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-3-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:15 +03:00
q->qdiscs[cl - 1] = new;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (new)
new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
if (dev->flags & IFF_UP)
dev_activate(dev);
return 0;
}
static int dump_entry(struct sk_buff *msg,
const struct sched_entry *entry)
{
struct nlattr *item;
item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (!item)
return -ENOSPC;
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
goto nla_put_failure;
if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
goto nla_put_failure;
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
entry->gate_mask))
goto nla_put_failure;
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
entry->interval))
goto nla_put_failure;
return nla_nest_end(msg, item);
nla_put_failure:
nla_nest_cancel(msg, item);
return -1;
}
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
static int dump_schedule(struct sk_buff *msg,
const struct sched_gate_list *root)
{
struct nlattr *entry_list;
struct sched_entry *entry;
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
root->base_time, TCA_TAPRIO_PAD))
return -1;
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
root->cycle_time, TCA_TAPRIO_PAD))
return -1;
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
root->cycle_time_extension, TCA_TAPRIO_PAD))
return -1;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
entry_list = nla_nest_start_noflag(msg,
TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
if (!entry_list)
goto error_nest;
list_for_each_entry(entry, &root->entries, list) {
if (dump_entry(msg, entry) < 0)
goto error_nest;
}
nla_nest_end(msg, entry_list);
return 0;
error_nest:
nla_nest_cancel(msg, entry_list);
return -1;
}
static int taprio_dump_tc_entries(struct sk_buff *skb,
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
struct taprio_sched *q,
struct sched_gate_list *sched)
{
struct nlattr *n;
int tc;
for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
if (!n)
return -EMSGSIZE;
if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
sched->max_sdu[tc]))
goto nla_put_failure;
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
goto nla_put_failure;
nla_nest_end(skb, n);
}
return 0;
nla_put_failure:
nla_nest_cancel(skb, n);
return -EMSGSIZE;
}
static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
{
if (val == TAPRIO_STAT_NOT_SET)
return 0;
if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
return -EMSGSIZE;
return 0;
}
static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
struct tc_taprio_qopt_offload *offload,
struct tc_taprio_qopt_stats *stats)
{
struct net_device *dev = qdisc_dev(sch);
const struct net_device_ops *ops;
struct sk_buff *skb = d->skb;
struct nlattr *xstats;
int err;
ops = qdisc_dev(sch)->netdev_ops;
/* FIXME I could use qdisc_offload_dump_helper(), but that messes
* with sch->flags depending on whether the device reports taprio
* stats, and I'm not sure whether that's a good idea, considering
* that stats are optional to the offload itself
*/
if (!ops->ndo_setup_tc)
return 0;
memset(stats, 0xff, sizeof(*stats));
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
if (err == -EOPNOTSUPP)
return 0;
if (err)
return err;
xstats = nla_nest_start(skb, TCA_STATS_APP);
if (!xstats)
goto err;
if (taprio_put_stat(skb, stats->window_drops,
TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
taprio_put_stat(skb, stats->tx_overruns,
TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
goto err_cancel;
nla_nest_end(skb, xstats);
return 0;
err_cancel:
nla_nest_cancel(skb, xstats);
err:
return -EMSGSIZE;
}
static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct tc_taprio_qopt_offload offload = {
.cmd = TAPRIO_CMD_STATS,
};
return taprio_dump_xstats(sch, d, &offload, &offload.stats);
}
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct sched_gate_list *oper, *admin;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
struct tc_mqprio_qopt opt = { 0 };
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
struct nlattr *nest, *sched_nest;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
oper = rtnl_dereference(q->oper_sched);
admin = rtnl_dereference(q->admin_sched);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
mqprio_qopt_reconstruct(dev, &opt);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (!nest)
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
goto start_error;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
goto options_error;
taprio: Add support for hardware offloading This allows taprio to offload the schedule enforcement to capable network cards, resulting in more precise windows and less CPU usage. The gate mask acts on traffic classes (groups of queues of same priority), as specified in IEEE 802.1Q-2018, and following the existing taprio and mqprio semantics. It is up to the driver to perform conversion between tc and individual netdev queues if for some reason it needs to make that distinction. Full offload is requested from the network interface by specifying "flags 2" in the tc qdisc creation command, which in turn corresponds to the TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD bit. The important detail here is the clockid which is implicitly /dev/ptpN for full offload, and hence not configurable. A reference counting API is added to support the use case where Ethernet drivers need to keep the taprio offload structure locally (i.e. they are a multi-port switch driver, and configuring a port depends on the settings of other ports as well). The refcount_t variable is kept in a private structure (__tc_taprio_qopt_offload) and not exposed to drivers. In the future, the private structure might also be expanded with a backpointer to taprio_sched *q, to implement the notification system described in the patch (of when admin became oper, or an error occurred, etc, so the offload can be monitored with 'tc qdisc show'). Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: Voon Weifeng <weifeng.voon@intel.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-15 04:59:58 +03:00
if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
goto options_error;
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
goto options_error;
if (q->txtime_delay &&
nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
taprio: Add support for txtime-assist mode Currently, we are seeing non-critical packets being transmitted outside of their timeslice. We can confirm that the packets are being dequeued at the right time. So, the delay is induced in the hardware side. The most likely reason is the hardware queues are starving the lower priority queues. In order to improve the performance of taprio, we will be making use of the txtime feature provided by the ETF qdisc. For all the packets which do not have the SO_TXTIME option set, taprio will set the transmit timestamp (set in skb->tstamp) in this mode. TAPrio Qdisc will ensure that the transmit time for the packet is set to when the gate is open. If SO_TXTIME is set, the TAPrio qdisc will validate whether the timestamp (in skb->tstamp) occurs when the gate corresponding to skb's traffic class is open. Following two parameters added to support this mode: - flags: used to enable txtime-assist mode. Will also be used to enable other modes (like hardware offloading) later. - txtime-delay: This indicates the minimum time it will take for the packet to hit the wire. This is useful in determining whether we can transmit the packet in the remaining time if the gate corresponding to the packet is currently open. An example configuration for enabling txtime-assist: tc qdisc replace dev eth0 parent root handle 100 taprio \\ num_tc 3 \\ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \\ queues 1@0 1@0 1@0 \\ base-time 1558653424279842568 \\ sched-entry S 01 300000 \\ sched-entry S 02 300000 \\ sched-entry S 04 400000 \\ flags 0x1 \\ txtime-delay 40000 \\ clockid CLOCK_TAI tc qdisc replace dev $IFACE parent 100:1 etf skip_sock_check \\ offload delta 200000 clockid CLOCK_TAI Note that all the traffic classes are mapped to the same queue. This is only possible in taprio when txtime-assist is enabled. Also, note that the ETF Qdisc is enabled with offload mode set. In this mode, if the packet's traffic class is open and the complete packet can be transmitted, taprio will try to transmit the packet immediately. This will be done by setting skb->tstamp to current_time + the time delta indicated in the txtime-delay parameter. This parameter indicates the time taken (in software) for packet to reach the network adapter. If the packet cannot be transmitted in the current interval or if the packet's traffic is not currently transmitting, the skb->tstamp is set to the next available timestamp value. This is tracked in the next_launchtime parameter in the struct sched_entry. The behaviour w.r.t admin and oper schedules is not changed from what is present in software mode. The transmit time is already known in advance. So, we do not need the HR timers to advance the schedule and wakeup the dequeue side of taprio. So, HR timer won't be run when this mode is enabled. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-25 15:07:17 -07:00
goto options_error;
net/sched: taprio: allow per-TC user input of FP adminStatus This is a duplication of the FP adminStatus logic introduced for tc-mqprio. Offloading is done through the tc_mqprio_qopt_offload structure embedded within tc_taprio_qopt_offload. So practically, if a device driver is written to treat the mqprio portion of taprio just like standalone mqprio, it gets unified handling of frame preemption. I would have reused more code with taprio, but this is mostly netlink attribute parsing, which is hard to transform into generic code without having something that stinks as a result. We have the same variables with the same semantics, just different nlattr type values (TCA_MQPRIO_TC_ENTRY=5 vs TCA_TAPRIO_ATTR_TC_ENTRY=12; TCA_MQPRIO_TC_ENTRY_FP=2 vs TCA_TAPRIO_TC_ENTRY_FP=3, etc) and consequently, different policies for the nest. Every time nla_parse_nested() is called, an on-stack table "tb" of nlattr pointers is allocated statically, up to the maximum understood nlattr type. That array size is hardcoded as a constant, but when transforming this into a common parsing function, it would become either a VLA (which the Linux kernel rightfully doesn't like) or a call to the allocator. Having FP adminStatus in tc-taprio can be seen as addressing the 802.1Q Annex S.3 "Scheduling and preemption used in combination, no HOLD/RELEASE" and S.4 "Scheduling and preemption used in combination with HOLD/RELEASE" use cases. HOLD and RELEASE events are emitted towards the underlying MAC Merge layer when the schedule hits a Set-And-Hold-MAC or a Set-And-Release-MAC gate operation. So within the tc-taprio UAPI space, one can distinguish between the 2 use cases by choosing whether to use the TC_TAPRIO_CMD_SET_AND_HOLD and TC_TAPRIO_CMD_SET_AND_RELEASE gate operations within the schedule, or just TC_TAPRIO_CMD_SET_GATES. A small part of the change is dedicated to refactoring the max_sdu nlattr parsing to put all logic under the "if" that tests for presence of that nlattr. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:55 +03:00
if (oper && taprio_dump_tc_entries(skb, q, oper))
goto options_error;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (oper && dump_schedule(skb, oper))
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
goto options_error;
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (!admin)
goto done;
sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
if (!sched_nest)
goto options_error;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
if (dump_schedule(skb, admin))
goto admin_error;
nla_nest_end(skb, sched_nest);
done:
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return nla_nest_end(skb, nest);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
admin_error:
nla_nest_cancel(skb, sched_nest);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
options_error:
nla_nest_cancel(skb, nest);
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
start_error:
return -ENOSPC;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
unsigned int ntx = cl - 1;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (ntx >= dev->num_tx_queues)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return NULL;
return q->qdiscs[ntx];
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
{
unsigned int ntx = TC_H_MIN(classid);
if (!taprio_queue_get(sch, ntx))
return 0;
return ntx;
}
static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
net/sched: taprio: dump class stats for the actual q->qdiscs[] This makes a difference for the software scheduling mode, where dev_queue->qdisc_sleeping is the same as the taprio root Qdisc itself, but when we're talking about what Qdisc and stats get reported for a traffic class, the root taprio isn't what comes to mind, but q->qdiscs[] is. To understand the difference, I've attempted to send 100 packets in software mode through class 8001:5, and recorded the stats before and after the change. Here is before: $ tc -s class show dev eth0 class taprio 8001:1 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:2 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:3 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:4 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:5 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:6 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:7 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:8 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 and here is after: class taprio 8001:1 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:2 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:3 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:4 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:5 root Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:6 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:7 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:8 root leaf 800d: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 The most glaring (and expected) difference is that before, all class stats reported the global stats, whereas now, they really report just the counters for that traffic class. Finally, Pedro Tammela points out that there is a tc selftest which checks specifically which handle do the child Qdiscs corresponding to each class have. That's changing here - taprio no longer reports tcm->tcm_info as the same handle "1:" as itself (the root Qdisc), but 0 (the handle of the default pfifo child Qdiscs). Since iproute2 does not print a child Qdisc handle of 0, adjust the test's expected output. Link: https://lore.kernel.org/netdev/3b83fcf6-a5e8-26fb-8c8a-ec34ec4c3342@mojatatu.com/ Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-6-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:18 +03:00
struct Qdisc *child = taprio_leaf(sch, cl);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
tcm->tcm_parent = TC_H_ROOT;
tcm->tcm_handle |= TC_H_MIN(cl);
net/sched: taprio: dump class stats for the actual q->qdiscs[] This makes a difference for the software scheduling mode, where dev_queue->qdisc_sleeping is the same as the taprio root Qdisc itself, but when we're talking about what Qdisc and stats get reported for a traffic class, the root taprio isn't what comes to mind, but q->qdiscs[] is. To understand the difference, I've attempted to send 100 packets in software mode through class 8001:5, and recorded the stats before and after the change. Here is before: $ tc -s class show dev eth0 class taprio 8001:1 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:2 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:3 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:4 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:5 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:6 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:7 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:8 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 and here is after: class taprio 8001:1 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:2 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:3 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:4 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:5 root Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:6 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:7 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:8 root leaf 800d: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 The most glaring (and expected) difference is that before, all class stats reported the global stats, whereas now, they really report just the counters for that traffic class. Finally, Pedro Tammela points out that there is a tc selftest which checks specifically which handle do the child Qdiscs corresponding to each class have. That's changing here - taprio no longer reports tcm->tcm_info as the same handle "1:" as itself (the root Qdisc), but 0 (the handle of the default pfifo child Qdiscs). Since iproute2 does not print a child Qdisc handle of 0, adjust the test's expected output. Link: https://lore.kernel.org/netdev/3b83fcf6-a5e8-26fb-8c8a-ec34ec4c3342@mojatatu.com/ Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-6-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:18 +03:00
tcm->tcm_info = child->handle;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return 0;
}
static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
__releases(d->lock)
__acquires(d->lock)
{
net/sched: taprio: dump class stats for the actual q->qdiscs[] This makes a difference for the software scheduling mode, where dev_queue->qdisc_sleeping is the same as the taprio root Qdisc itself, but when we're talking about what Qdisc and stats get reported for a traffic class, the root taprio isn't what comes to mind, but q->qdiscs[] is. To understand the difference, I've attempted to send 100 packets in software mode through class 8001:5, and recorded the stats before and after the change. Here is before: $ tc -s class show dev eth0 class taprio 8001:1 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:2 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:3 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:4 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:5 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:6 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:7 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:8 root leaf 8001: Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 and here is after: class taprio 8001:1 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:2 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:3 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:4 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:5 root Sent 9400 bytes 100 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:6 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:7 root Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 class taprio 8001:8 root leaf 800d: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 window_drops 0 The most glaring (and expected) difference is that before, all class stats reported the global stats, whereas now, they really report just the counters for that traffic class. Finally, Pedro Tammela points out that there is a tc selftest which checks specifically which handle do the child Qdiscs corresponding to each class have. That's changing here - taprio no longer reports tcm->tcm_info as the same handle "1:" as itself (the root Qdisc), but 0 (the handle of the default pfifo child Qdiscs). Since iproute2 does not print a child Qdisc handle of 0, adjust the test's expected output. Link: https://lore.kernel.org/netdev/3b83fcf6-a5e8-26fb-8c8a-ec34ec4c3342@mojatatu.com/ Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230807193324.4128292-6-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-07 22:33:18 +03:00
struct Qdisc *child = taprio_leaf(sch, cl);
struct tc_taprio_qopt_offload offload = {
.cmd = TAPRIO_CMD_QUEUE_STATS,
.queue_stats = {
.queue = cl - 1,
},
};
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
qdisc_qstats_copy(d, child) < 0)
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return -1;
return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct net_device *dev = qdisc_dev(sch);
unsigned long ntx;
if (arg->stop)
return;
arg->count = arg->skip;
for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
break;
}
}
static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
struct tcmsg *tcm)
{
return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
}
static const struct Qdisc_class_ops taprio_class_ops = {
.graft = taprio_graft,
.leaf = taprio_leaf,
.find = taprio_find,
.walk = taprio_walk,
.dump = taprio_dump_class,
.dump_stats = taprio_dump_class_stats,
.select_queue = taprio_select_queue,
};
static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
.cl_ops = &taprio_class_ops,
.id = "taprio",
.priv_size = sizeof(struct taprio_sched),
.init = taprio_init,
taprio: Add support adding an admin schedule The IEEE 802.1Q-2018 defines two "types" of schedules, the "Oper" (from operational?) and "Admin" ones. Up until now, 'taprio' only had support for the "Oper" one, added when the qdisc is created. This adds support for the "Admin" one, which allows the .change() operation to be supported. Just for clarification, some quick (and dirty) definitions, the "Oper" schedule is the currently (as in this instant) running one, and it's read-only. The "Admin" one is the one that the system configurator has installed, it can be changed, and it will be "promoted" to "Oper" when it's 'base-time' is reached. The idea behing this patch is that calling something like the below, (after taprio is already configured with an initial schedule): $ tc qdisc change taprio dev IFACE parent root \ base-time X \ sched-entry <CMD> <GATES> <INTERVAL> \ ... Will cause a new admin schedule to be created and programmed to be "promoted" to "Oper" at instant X. If an "Admin" schedule already exists, it will be overwritten with the new parameters. Up until now, there was some code that was added to ease the support of changing a single entry of a schedule, but was ultimately unused. Now, that we have support for "change" with more well thought semantics, updating a single entry seems to be less useful. So we remove what is in practice dead code, and return a "not supported" error if the user tries to use it. If changing a single entry would make the user's life easier we may ressurrect this idea, but at this point, removing it simplifies the code. For now, only the schedule specific bits are allowed to be added for a new schedule, that means that 'clockid', 'num_tc', 'map' and 'queues' cannot be modified. Example: $ tc qdisc change dev IFACE parent root handle 100 taprio \ base-time $BASE_TIME \ sched-entry S 00 500000 \ sched-entry S 0f 500000 \ clockid CLOCK_TAI The only change in the netlink API introduced by this change is the introduction of an "admin" type in the response to a dump request, that type allows userspace to separate the "oper" schedule from the "admin" schedule. If userspace doesn't support the "admin" type, it will only display the "oper" schedule. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-29 15:48:31 -07:00
.change = taprio_change,
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
.destroy = taprio_destroy,
.reset = taprio_reset,
.attach = taprio_attach,
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
.peek = taprio_peek,
.dequeue = taprio_dequeue,
.enqueue = taprio_enqueue,
.dump = taprio_dump,
.dump_stats = taprio_dump_stats,
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
.owner = THIS_MODULE,
};
static struct notifier_block taprio_device_notifier = {
.notifier_call = taprio_dev_notifier,
};
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
static int __init taprio_module_init(void)
{
int err = register_netdevice_notifier(&taprio_device_notifier);
if (err)
return err;
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
return register_qdisc(&taprio_qdisc_ops);
}
static void __exit taprio_module_exit(void)
{
unregister_qdisc(&taprio_qdisc_ops);
unregister_netdevice_notifier(&taprio_device_notifier);
tc: Add support for configuring the taprio scheduler This traffic scheduler allows traffic classes states (transmission allowed/not allowed, in the simplest case) to be scheduled, according to a pre-generated time sequence. This is the basis of the IEEE 802.1Qbv specification. Example configuration: tc qdisc replace dev enp3s0 parent root handle 100 taprio \ num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \ queues 1@0 1@1 2@2 \ base-time 1528743495910289987 \ sched-entry S 01 300000 \ sched-entry S 02 300000 \ sched-entry S 04 300000 \ clockid CLOCK_TAI The configuration format is similar to mqprio. The main difference is the presence of a schedule, built by multiple "sched-entry" definitions, each entry has the following format: sched-entry <CMD> <GATE MASK> <INTERVAL> The only supported <CMD> is "S", which means "SetGateStates", following the IEEE 802.1Qbv-2015 definition (Table 8-6). <GATE MASK> is a bitmask where each bit is a associated with a traffic class, so bit 0 (the least significant bit) being "on" means that traffic class 0 is "active" for that schedule entry. <INTERVAL> is a time duration in nanoseconds that specifies for how long that state defined by <CMD> and <GATE MASK> should be held before moving to the next entry. This schedule is circular, that is, after the last entry is executed it starts from the first one, indefinitely. The other parameters can be defined as follows: - base-time: specifies the instant when the schedule starts, if 'base-time' is a time in the past, the schedule will start at base-time + (N * cycle-time) where N is the smallest integer so the resulting time is greater than "now", and "cycle-time" is the sum of all the intervals of the entries in the schedule; - clockid: specifies the reference clock to be used; The parameters should be similar to what the IEEE 802.1Q family of specification defines. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-28 17:59:43 -07:00
}
module_init(taprio_module_init);
module_exit(taprio_module_exit);
MODULE_LICENSE("GPL");