2016-09-22 18:04:11 +03:00
/* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions are met :
* * Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* * Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in the
* documentation and / or other materials provided with the distribution .
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission .
*
* ALTERNATIVELY , this software may be distributed under the terms of the
* GNU General Public License ( " GPL " ) as published by the Free Software
* Foundation , either version 2 of that License or ( at your option ) any
* later version .
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ` ` AS IS ' ' AND ANY
* EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED . IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES
* ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
* LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
* ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
*/
# include "qman_test.h"
# include <linux/dma-mapping.h>
# include <linux/delay.h>
/*
* Algorithm :
*
* Each cpu will have HP_PER_CPU " handlers " set up , each of which incorporates
* an rx / tx pair of FQ objects ( both of which are stashed on dequeue ) . The
* organisation of FQIDs is such that the HP_PER_CPU * NUM_CPUS handlers will
* shuttle a " hot potato " frame around them such that every forwarding action
* moves it from one cpu to another . ( The use of more than one handler per cpu
* is to allow enough handlers / FQs to truly test the significance of caching -
* ie . when cache - expiries are occurring . )
*
* The " hot potato " frame content will be HP_NUM_WORDS * 4 bytes in size , and the
* first and last words of the frame data will undergo a transformation step on
* each forwarding action . To achieve this , each handler will be assigned a
* 32 - bit " mixer " , that is produced using a 32 - bit LFSR . When a frame is
* received by a handler , the mixer of the expected sender is XOR ' d into all
* words of the entire frame , which is then validated against the original
* values . Then , before forwarding , the entire frame is XOR ' d with the mixer of
* the current handler . Apart from validating that the frame is taking the
* expected path , this also provides some quasi - realistic overheads to each
* forwarding action - dereferencing * all * the frame data , computation , and
* conditional branching . There is a " special " handler designated to act as the
* instigator of the test by creating an enqueuing the " hot potato " frame , and
* to determine when the test has completed by counting HP_LOOPS iterations .
*
* Init phases :
*
* 1. prepare each cpu ' s ' hp_cpu ' struct using on_each_cpu ( , , 1 ) and link them
* into ' hp_cpu_list ' . Specifically , set processor_id , allocate HP_PER_CPU
* handlers and link - list them ( but do no other handler setup ) .
*
* 2. scan over ' hp_cpu_list ' HP_PER_CPU times , the first time sets each
* hp_cpu ' s ' iterator ' to point to its first handler . With each loop ,
* allocate rx / tx FQIDs and mixer values to the hp_cpu ' s iterator handler
* and advance the iterator for the next loop . This includes a final fixup ,
* which connects the last handler to the first ( and which is why phase 2
* and 3 are separate ) .
*
* 3. scan over ' hp_cpu_list ' HP_PER_CPU times , the first time sets each
* hp_cpu ' s ' iterator ' to point to its first handler . With each loop ,
* initialise FQ objects and advance the iterator for the next loop .
* Moreover , do this initialisation on the cpu it applies to so that Rx FQ
* initialisation targets the correct cpu .
*/
/*
* helper to run something on all cpus ( can ' t use on_each_cpu ( ) , as that invokes
* the fn from irq context , which is too restrictive ) .
*/
struct bstrap {
int ( * fn ) ( void ) ;
atomic_t started ;
} ;
static int bstrap_fn ( void * bs )
{
struct bstrap * bstrap = bs ;
int err ;
atomic_inc ( & bstrap - > started ) ;
err = bstrap - > fn ( ) ;
if ( err )
return err ;
while ( ! kthread_should_stop ( ) )
msleep ( 20 ) ;
return 0 ;
}
static int on_all_cpus ( int ( * fn ) ( void ) )
{
int cpu ;
for_each_cpu ( cpu , cpu_online_mask ) {
struct bstrap bstrap = {
. fn = fn ,
. started = ATOMIC_INIT ( 0 )
} ;
struct task_struct * k = kthread_create ( bstrap_fn , & bstrap ,
" hotpotato%d " , cpu ) ;
int ret ;
if ( IS_ERR ( k ) )
return - ENOMEM ;
kthread_bind ( k , cpu ) ;
wake_up_process ( k ) ;
/*
* If we call kthread_stop ( ) before the " wake up " has had an
* effect , then the thread may exit with - EINTR without ever
* running the function . So poll until it ' s started before
* requesting it to stop .
*/
while ( ! atomic_read ( & bstrap . started ) )
msleep ( 20 ) ;
ret = kthread_stop ( k ) ;
if ( ret )
return ret ;
}
return 0 ;
}
struct hp_handler {
/* The following data is stashed when 'rx' is dequeued; */
/* -------------- */
/* The Rx FQ, dequeues of which will stash the entire hp_handler */
struct qman_fq rx ;
/* The Tx FQ we should forward to */
struct qman_fq tx ;
/* The value we XOR post-dequeue, prior to validating */
u32 rx_mixer ;
/* The value we XOR pre-enqueue, after validating */
u32 tx_mixer ;
/* what the hotpotato address should be on dequeue */
dma_addr_t addr ;
u32 * frame_ptr ;
/* The following data isn't (necessarily) stashed on dequeue; */
/* -------------- */
u32 fqid_rx , fqid_tx ;
/* list node for linking us into 'hp_cpu' */
struct list_head node ;
/* Just to check ... */
unsigned int processor_id ;
} ____cacheline_aligned ;
struct hp_cpu {
/* identify the cpu we run on; */
unsigned int processor_id ;
/* root node for the per-cpu list of handlers */
struct list_head handlers ;
/* list node for linking us into 'hp_cpu_list' */
struct list_head node ;
/*
* when repeatedly scanning ' hp_list ' , each time linking the n ' th
* handlers together , this is used as per - cpu iterator state
*/
struct hp_handler * iterator ;
} ;
/* Each cpu has one of these */
static DEFINE_PER_CPU ( struct hp_cpu , hp_cpus ) ;
/* links together the hp_cpu structs, in first-come first-serve order. */
static LIST_HEAD ( hp_cpu_list ) ;
2016-12-04 13:44:59 +01:00
static DEFINE_SPINLOCK ( hp_lock ) ;
2016-09-22 18:04:11 +03:00
static unsigned int hp_cpu_list_length ;
/* the "special" handler, that starts and terminates the test. */
static struct hp_handler * special_handler ;
static int loop_counter ;
/* handlers are allocated out of this, so they're properly aligned. */
static struct kmem_cache * hp_handler_slab ;
/* this is the frame data */
static void * __frame_ptr ;
static u32 * frame_ptr ;
static dma_addr_t frame_dma ;
2016-11-16 16:40:22 +02:00
/* needed for dma_map*() */
static const struct qm_portal_config * pcfg ;
2016-09-22 18:04:11 +03:00
/* the main function waits on this */
static DECLARE_WAIT_QUEUE_HEAD ( queue ) ;
# define HP_PER_CPU 2
# define HP_LOOPS 8
/* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
# define HP_NUM_WORDS 80
/* First word of the LFSR-based frame data */
# define HP_FIRST_WORD 0xabbaf00d
static inline u32 do_lfsr ( u32 prev )
{
return ( prev > > 1 ) ^ ( - ( prev & 1u ) & 0xd0000001u ) ;
}
static int allocate_frame_data ( void )
{
u32 lfsr = HP_FIRST_WORD ;
int loop ;
2016-11-16 16:40:22 +02:00
if ( ! qman_dma_portal ) {
pr_crit ( " portal not available \n " ) ;
2016-09-22 18:04:11 +03:00
return - EIO ;
}
2016-11-16 16:40:22 +02:00
pcfg = qman_get_qm_portal_config ( qman_dma_portal ) ;
2016-09-22 18:04:11 +03:00
__frame_ptr = kmalloc ( 4 * HP_NUM_WORDS , GFP_KERNEL ) ;
if ( ! __frame_ptr )
return - ENOMEM ;
frame_ptr = PTR_ALIGN ( __frame_ptr , 64 ) ;
for ( loop = 0 ; loop < HP_NUM_WORDS ; loop + + ) {
frame_ptr [ loop ] = lfsr ;
lfsr = do_lfsr ( lfsr ) ;
}
2016-11-16 16:40:22 +02:00
frame_dma = dma_map_single ( pcfg - > dev , frame_ptr , 4 * HP_NUM_WORDS ,
2016-09-22 18:04:11 +03:00
DMA_BIDIRECTIONAL ) ;
2016-11-16 16:40:22 +02:00
if ( dma_mapping_error ( pcfg - > dev , frame_dma ) ) {
pr_crit ( " dma mapping failure \n " ) ;
kfree ( __frame_ptr ) ;
return - EIO ;
}
2016-09-22 18:04:11 +03:00
return 0 ;
}
static void deallocate_frame_data ( void )
{
2016-11-16 16:40:22 +02:00
dma_unmap_single ( pcfg - > dev , frame_dma , 4 * HP_NUM_WORDS ,
DMA_BIDIRECTIONAL ) ;
2016-09-22 18:04:11 +03:00
kfree ( __frame_ptr ) ;
}
static inline int process_frame_data ( struct hp_handler * handler ,
const struct qm_fd * fd )
{
u32 * p = handler - > frame_ptr ;
u32 lfsr = HP_FIRST_WORD ;
int loop ;
if ( qm_fd_addr_get64 ( fd ) ! = handler - > addr ) {
2016-11-16 16:40:22 +02:00
pr_crit ( " bad frame address, [%llX != %llX] \n " ,
qm_fd_addr_get64 ( fd ) , handler - > addr ) ;
2016-09-22 18:04:11 +03:00
return - EIO ;
}
for ( loop = 0 ; loop < HP_NUM_WORDS ; loop + + , p + + ) {
* p ^ = handler - > rx_mixer ;
if ( * p ! = lfsr ) {
pr_crit ( " corrupt frame data " ) ;
return - EIO ;
}
* p ^ = handler - > tx_mixer ;
lfsr = do_lfsr ( lfsr ) ;
}
return 0 ;
}
static enum qman_cb_dqrr_result normal_dqrr ( struct qman_portal * portal ,
struct qman_fq * fq ,
const struct qm_dqrr_entry * dqrr )
{
struct hp_handler * handler = ( struct hp_handler * ) fq ;
if ( process_frame_data ( handler , & dqrr - > fd ) ) {
WARN_ON ( 1 ) ;
goto skip ;
}
if ( qman_enqueue ( & handler - > tx , & dqrr - > fd ) ) {
pr_crit ( " qman_enqueue() failed " ) ;
WARN_ON ( 1 ) ;
}
skip :
return qman_cb_dqrr_consume ;
}
static enum qman_cb_dqrr_result special_dqrr ( struct qman_portal * portal ,
struct qman_fq * fq ,
const struct qm_dqrr_entry * dqrr )
{
struct hp_handler * handler = ( struct hp_handler * ) fq ;
process_frame_data ( handler , & dqrr - > fd ) ;
if ( + + loop_counter < HP_LOOPS ) {
if ( qman_enqueue ( & handler - > tx , & dqrr - > fd ) ) {
pr_crit ( " qman_enqueue() failed " ) ;
WARN_ON ( 1 ) ;
goto skip ;
}
} else {
pr_info ( " Received final (%dth) frame \n " , loop_counter ) ;
wake_up ( & queue ) ;
}
skip :
return qman_cb_dqrr_consume ;
}
static int create_per_cpu_handlers ( void )
{
struct hp_handler * handler ;
int loop ;
struct hp_cpu * hp_cpu = this_cpu_ptr ( & hp_cpus ) ;
hp_cpu - > processor_id = smp_processor_id ( ) ;
spin_lock ( & hp_lock ) ;
list_add_tail ( & hp_cpu - > node , & hp_cpu_list ) ;
hp_cpu_list_length + + ;
spin_unlock ( & hp_lock ) ;
INIT_LIST_HEAD ( & hp_cpu - > handlers ) ;
for ( loop = 0 ; loop < HP_PER_CPU ; loop + + ) {
handler = kmem_cache_alloc ( hp_handler_slab , GFP_KERNEL ) ;
if ( ! handler ) {
pr_crit ( " kmem_cache_alloc() failed " ) ;
WARN_ON ( 1 ) ;
return - EIO ;
}
handler - > processor_id = hp_cpu - > processor_id ;
handler - > addr = frame_dma ;
handler - > frame_ptr = frame_ptr ;
list_add_tail ( & handler - > node , & hp_cpu - > handlers ) ;
}
return 0 ;
}
static int destroy_per_cpu_handlers ( void )
{
struct list_head * loop , * tmp ;
struct hp_cpu * hp_cpu = this_cpu_ptr ( & hp_cpus ) ;
spin_lock ( & hp_lock ) ;
list_del ( & hp_cpu - > node ) ;
spin_unlock ( & hp_lock ) ;
list_for_each_safe ( loop , tmp , & hp_cpu - > handlers ) {
u32 flags = 0 ;
struct hp_handler * handler = list_entry ( loop , struct hp_handler ,
node ) ;
if ( qman_retire_fq ( & handler - > rx , & flags ) | |
( flags & QMAN_FQ_STATE_BLOCKOOS ) ) {
pr_crit ( " qman_retire_fq(rx) failed, flags: %x " , flags ) ;
WARN_ON ( 1 ) ;
return - EIO ;
}
if ( qman_oos_fq ( & handler - > rx ) ) {
pr_crit ( " qman_oos_fq(rx) failed " ) ;
WARN_ON ( 1 ) ;
return - EIO ;
}
qman_destroy_fq ( & handler - > rx ) ;
qman_destroy_fq ( & handler - > tx ) ;
qman_release_fqid ( handler - > fqid_rx ) ;
list_del ( & handler - > node ) ;
kmem_cache_free ( hp_handler_slab , handler ) ;
}
return 0 ;
}
static inline u8 num_cachelines ( u32 offset )
{
u8 res = ( offset + ( L1_CACHE_BYTES - 1 ) )
/ ( L1_CACHE_BYTES ) ;
if ( res > 3 )
return 3 ;
return res ;
}
# define STASH_DATA_CL \
num_cachelines ( HP_NUM_WORDS * 4 )
# define STASH_CTX_CL \
num_cachelines ( offsetof ( struct hp_handler , fqid_rx ) )
static int init_handler ( void * h )
{
struct qm_mcc_initfq opts ;
struct hp_handler * handler = h ;
int err ;
if ( handler - > processor_id ! = smp_processor_id ( ) ) {
err = - EIO ;
goto failed ;
}
/* Set up rx */
memset ( & handler - > rx , 0 , sizeof ( handler - > rx ) ) ;
if ( handler = = special_handler )
handler - > rx . cb . dqrr = special_dqrr ;
else
handler - > rx . cb . dqrr = normal_dqrr ;
err = qman_create_fq ( handler - > fqid_rx , 0 , & handler - > rx ) ;
if ( err ) {
pr_crit ( " qman_create_fq(rx) failed " ) ;
goto failed ;
}
memset ( & opts , 0 , sizeof ( opts ) ) ;
2016-11-16 16:40:30 +02:00
opts . we_mask = cpu_to_be16 ( QM_INITFQ_WE_FQCTRL |
QM_INITFQ_WE_CONTEXTA ) ;
opts . fqd . fq_ctrl = cpu_to_be16 ( QM_FQCTRL_CTXASTASHING ) ;
2016-09-22 18:04:11 +03:00
qm_fqd_set_stashing ( & opts . fqd , 0 , STASH_DATA_CL , STASH_CTX_CL ) ;
err = qman_init_fq ( & handler - > rx , QMAN_INITFQ_FLAG_SCHED |
QMAN_INITFQ_FLAG_LOCAL , & opts ) ;
if ( err ) {
pr_crit ( " qman_init_fq(rx) failed " ) ;
goto failed ;
}
/* Set up tx */
memset ( & handler - > tx , 0 , sizeof ( handler - > tx ) ) ;
err = qman_create_fq ( handler - > fqid_tx , QMAN_FQ_FLAG_NO_MODIFY ,
& handler - > tx ) ;
if ( err ) {
pr_crit ( " qman_create_fq(tx) failed " ) ;
goto failed ;
}
return 0 ;
failed :
return err ;
}
static void init_handler_cb ( void * h )
{
if ( init_handler ( h ) )
WARN_ON ( 1 ) ;
}
static int init_phase2 ( void )
{
int loop ;
u32 fqid = 0 ;
u32 lfsr = 0xdeadbeef ;
struct hp_cpu * hp_cpu ;
struct hp_handler * handler ;
for ( loop = 0 ; loop < HP_PER_CPU ; loop + + ) {
list_for_each_entry ( hp_cpu , & hp_cpu_list , node ) {
int err ;
if ( ! loop )
hp_cpu - > iterator = list_first_entry (
& hp_cpu - > handlers ,
struct hp_handler , node ) ;
else
hp_cpu - > iterator = list_entry (
hp_cpu - > iterator - > node . next ,
struct hp_handler , node ) ;
/* Rx FQID is the previous handler's Tx FQID */
hp_cpu - > iterator - > fqid_rx = fqid ;
/* Allocate new FQID for Tx */
err = qman_alloc_fqid ( & fqid ) ;
if ( err ) {
pr_crit ( " qman_alloc_fqid() failed " ) ;
return err ;
}
hp_cpu - > iterator - > fqid_tx = fqid ;
/* Rx mixer is the previous handler's Tx mixer */
hp_cpu - > iterator - > rx_mixer = lfsr ;
/* Get new mixer for Tx */
lfsr = do_lfsr ( lfsr ) ;
hp_cpu - > iterator - > tx_mixer = lfsr ;
}
}
/* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
hp_cpu = list_first_entry ( & hp_cpu_list , struct hp_cpu , node ) ;
handler = list_first_entry ( & hp_cpu - > handlers , struct hp_handler , node ) ;
if ( handler - > fqid_rx ! = 0 | | handler - > rx_mixer ! = 0xdeadbeef )
return 1 ;
handler - > fqid_rx = fqid ;
handler - > rx_mixer = lfsr ;
/* and tag it as our "special" handler */
special_handler = handler ;
return 0 ;
}
static int init_phase3 ( void )
{
int loop , err ;
struct hp_cpu * hp_cpu ;
for ( loop = 0 ; loop < HP_PER_CPU ; loop + + ) {
list_for_each_entry ( hp_cpu , & hp_cpu_list , node ) {
if ( ! loop )
hp_cpu - > iterator = list_first_entry (
& hp_cpu - > handlers ,
struct hp_handler , node ) ;
else
hp_cpu - > iterator = list_entry (
hp_cpu - > iterator - > node . next ,
struct hp_handler , node ) ;
preempt_disable ( ) ;
if ( hp_cpu - > processor_id = = smp_processor_id ( ) ) {
err = init_handler ( hp_cpu - > iterator ) ;
if ( err )
return err ;
} else {
smp_call_function_single ( hp_cpu - > processor_id ,
init_handler_cb , hp_cpu - > iterator , 1 ) ;
}
preempt_enable ( ) ;
}
}
return 0 ;
}
static int send_first_frame ( void * ignore )
{
u32 * p = special_handler - > frame_ptr ;
u32 lfsr = HP_FIRST_WORD ;
int loop , err ;
struct qm_fd fd ;
if ( special_handler - > processor_id ! = smp_processor_id ( ) ) {
err = - EIO ;
goto failed ;
}
memset ( & fd , 0 , sizeof ( fd ) ) ;
qm_fd_addr_set64 ( & fd , special_handler - > addr ) ;
qm_fd_set_contig_big ( & fd , HP_NUM_WORDS * 4 ) ;
for ( loop = 0 ; loop < HP_NUM_WORDS ; loop + + , p + + ) {
if ( * p ! = lfsr ) {
err = - EIO ;
pr_crit ( " corrupt frame data " ) ;
goto failed ;
}
* p ^ = special_handler - > tx_mixer ;
lfsr = do_lfsr ( lfsr ) ;
}
pr_info ( " Sending first frame \n " ) ;
err = qman_enqueue ( & special_handler - > tx , & fd ) ;
if ( err ) {
pr_crit ( " qman_enqueue() failed " ) ;
goto failed ;
}
return 0 ;
failed :
return err ;
}
static void send_first_frame_cb ( void * ignore )
{
if ( send_first_frame ( NULL ) )
WARN_ON ( 1 ) ;
}
int qman_test_stash ( void )
{
int err ;
if ( cpumask_weight ( cpu_online_mask ) < 2 ) {
pr_info ( " %s(): skip - only 1 CPU \n " , __func__ ) ;
return 0 ;
}
pr_info ( " %s(): Starting \n " , __func__ ) ;
hp_cpu_list_length = 0 ;
loop_counter = 0 ;
hp_handler_slab = kmem_cache_create ( " hp_handler_slab " ,
sizeof ( struct hp_handler ) , L1_CACHE_BYTES ,
SLAB_HWCACHE_ALIGN , NULL ) ;
if ( ! hp_handler_slab ) {
err = - EIO ;
pr_crit ( " kmem_cache_create() failed " ) ;
goto failed ;
}
err = allocate_frame_data ( ) ;
if ( err )
goto failed ;
/* Init phase 1 */
pr_info ( " Creating %d handlers per cpu... \n " , HP_PER_CPU ) ;
if ( on_all_cpus ( create_per_cpu_handlers ) ) {
err = - EIO ;
pr_crit ( " on_each_cpu() failed " ) ;
goto failed ;
}
pr_info ( " Number of cpus: %d, total of %d handlers \n " ,
hp_cpu_list_length , hp_cpu_list_length * HP_PER_CPU ) ;
err = init_phase2 ( ) ;
if ( err )
goto failed ;
err = init_phase3 ( ) ;
if ( err )
goto failed ;
preempt_disable ( ) ;
if ( special_handler - > processor_id = = smp_processor_id ( ) ) {
err = send_first_frame ( NULL ) ;
if ( err )
goto failed ;
} else {
smp_call_function_single ( special_handler - > processor_id ,
send_first_frame_cb , NULL , 1 ) ;
}
preempt_enable ( ) ;
wait_event ( queue , loop_counter = = HP_LOOPS ) ;
deallocate_frame_data ( ) ;
if ( on_all_cpus ( destroy_per_cpu_handlers ) ) {
err = - EIO ;
pr_crit ( " on_each_cpu() failed " ) ;
goto failed ;
}
kmem_cache_destroy ( hp_handler_slab ) ;
pr_info ( " %s(): Finished \n " , __func__ ) ;
return 0 ;
failed :
WARN_ON ( 1 ) ;
return err ;
}