linux/mm/migrate.c

2560 lines
67 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Memory Migration functionality - linux/mm/migrate.c
*
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
*
* Page migration was first developed in the context of the memory hotplug
* project. The main authors of the migration code are:
*
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
* Hirokazu Takahashi <taka@valinux.co.jp>
* Dave Hansen <haveblue@us.ibm.com>
* Christoph Lameter
*/
#include <linux/migrate.h>
#include <linux/export.h>
#include <linux/swap.h>
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/mm_inline.h>
#include <linux/nsproxy.h>
#include <linux/pagevec.h>
ksm: rmap_walk to remove_migation_ptes A side-effect of making ksm pages swappable is that they have to be placed on the LRUs: which then exposes them to isolate_lru_page() and hence to page migration. Add rmap_walk() for remove_migration_ptes() to use: rmap_walk_anon() and rmap_walk_file() in rmap.c, but rmap_walk_ksm() in ksm.c. Perhaps some consolidation with existing code is possible, but don't attempt that yet (try_to_unmap needs to handle nonlinears, but migration pte removal does not). rmap_walk() is sadly less general than it appears: rmap_walk_anon(), like remove_anon_migration_ptes() which it replaces, avoids calling page_lock_anon_vma(), because that includes a page_mapped() test which fails when all migration ptes are in place. That was valid when NUMA page migration was introduced (holding mmap_sem provided the missing guarantee that anon_vma's slab had not already been destroyed), but I believe not valid in the memory hotremove case added since. For now do the same as before, and consider the best way to fix that unlikely race later on. When fixed, we can probably use rmap_walk() on hwpoisoned ksm pages too: for now, they remain among hwpoison's various exceptions (its PageKsm test comes before the page is locked, but its page_lock_anon_vma fails safely if an anon gets upgraded). Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 04:59:31 +03:00
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/writeback.h>
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
#include <linux/security.h>
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
#include <linux/backing-dev.h>
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
#include <linux/compaction.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <linux/hugetlb.h>
#include <linux/hugetlb_cgroup.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/gfp.h>
#include <linux/pfn_t.h>
#include <linux/memremap.h>
#include <linux/userfaultfd_k.h>
#include <linux/balloon_compaction.h>
mm: introduce idle page tracking Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 01:35:45 +03:00
#include <linux/page_idle.h>
#include <linux/page_owner.h>
#include <linux/sched/mm.h>
#include <linux/ptrace.h>
#include <linux/oom.h>
mm/migrate: update node demotion order on hotplug events Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:09 +03:00
#include <linux/memory.h>
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
#include <linux/random.h>
NUMA balancing: optimize page placement for memory tiering system With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:23 +03:00
#include <linux/sched/sysctl.h>
#include <asm/tlbflush.h>
#include <trace/events/migrate.h>
#include "internal.h"
mm/migration: make isolate_movable_page() return int type Patch series "HWPOISON: soft offlining for non-lru movable page", v6. After Minchan's commit bda807d44454 ("mm: migrate: support non-lru movable page migration"), some type of non-lru page like zsmalloc and virtio-balloon page also support migration. Therefore, we can: 1) soft offlining no-lru movable pages, which means when memory corrected errors occur on a non-lru movable page, we can stop to use it by migrating data onto another page and disable the original (maybe half-broken) one. 2) enable memory hotplug for non-lru movable pages, i.e. we may offline blocks, which include such pages, by using non-lru page migration. This patchset is heavily dependent on non-lru movable page migration. This patch (of 4): Change the return type of isolate_movable_page() from bool to int. It will return 0 when isolate movable page successfully, and return -EBUSY when it isolates failed. There is no functional change within this patch but prepare for later patch. [xieyisheng1@huawei.com: v6] Link: http://lkml.kernel.org/r/1486108770-630-2-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1485867981-16037-2-git-send-email-ysxie@foxmail.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 01:57:29 +03:00
int isolate_movable_page(struct page *page, isolate_mode_t mode)
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
{
struct address_space *mapping;
/*
* Avoid burning cycles with pages that are yet under __free_pages(),
* or just got freed under us.
*
* In case we 'win' a race for a movable page being freed under us and
* raise its refcount preventing __free_pages() from doing its job
* the put_page() at the end of this block will take care of
* release this page, thus avoiding a nasty leakage.
*/
if (unlikely(!get_page_unless_zero(page)))
goto out;
/*
* Check PageMovable before holding a PG_lock because page's owner
* assumes anybody doesn't touch PG_lock of newly allocated page
* so unconditionally grabbing the lock ruins page's owner side.
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
*/
if (unlikely(!__PageMovable(page)))
goto out_putpage;
/*
* As movable pages are not isolated from LRU lists, concurrent
* compaction threads can race against page migration functions
* as well as race against the releasing a page.
*
* In order to avoid having an already isolated movable page
* being (wrongly) re-isolated while it is under migration,
* or to avoid attempting to isolate pages being released,
* lets be sure we have the page lock
* before proceeding with the movable page isolation steps.
*/
if (unlikely(!trylock_page(page)))
goto out_putpage;
if (!PageMovable(page) || PageIsolated(page))
goto out_no_isolated;
mapping = page_mapping(page);
VM_BUG_ON_PAGE(!mapping, page);
if (!mapping->a_ops->isolate_page(page, mode))
goto out_no_isolated;
/* Driver shouldn't use PG_isolated bit of page->flags */
WARN_ON_ONCE(PageIsolated(page));
SetPageIsolated(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
unlock_page(page);
mm/migration: make isolate_movable_page() return int type Patch series "HWPOISON: soft offlining for non-lru movable page", v6. After Minchan's commit bda807d44454 ("mm: migrate: support non-lru movable page migration"), some type of non-lru page like zsmalloc and virtio-balloon page also support migration. Therefore, we can: 1) soft offlining no-lru movable pages, which means when memory corrected errors occur on a non-lru movable page, we can stop to use it by migrating data onto another page and disable the original (maybe half-broken) one. 2) enable memory hotplug for non-lru movable pages, i.e. we may offline blocks, which include such pages, by using non-lru page migration. This patchset is heavily dependent on non-lru movable page migration. This patch (of 4): Change the return type of isolate_movable_page() from bool to int. It will return 0 when isolate movable page successfully, and return -EBUSY when it isolates failed. There is no functional change within this patch but prepare for later patch. [xieyisheng1@huawei.com: v6] Link: http://lkml.kernel.org/r/1486108770-630-2-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1485867981-16037-2-git-send-email-ysxie@foxmail.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 01:57:29 +03:00
return 0;
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
out_no_isolated:
unlock_page(page);
out_putpage:
put_page(page);
out:
mm/migration: make isolate_movable_page() return int type Patch series "HWPOISON: soft offlining for non-lru movable page", v6. After Minchan's commit bda807d44454 ("mm: migrate: support non-lru movable page migration"), some type of non-lru page like zsmalloc and virtio-balloon page also support migration. Therefore, we can: 1) soft offlining no-lru movable pages, which means when memory corrected errors occur on a non-lru movable page, we can stop to use it by migrating data onto another page and disable the original (maybe half-broken) one. 2) enable memory hotplug for non-lru movable pages, i.e. we may offline blocks, which include such pages, by using non-lru page migration. This patchset is heavily dependent on non-lru movable page migration. This patch (of 4): Change the return type of isolate_movable_page() from bool to int. It will return 0 when isolate movable page successfully, and return -EBUSY when it isolates failed. There is no functional change within this patch but prepare for later patch. [xieyisheng1@huawei.com: v6] Link: http://lkml.kernel.org/r/1486108770-630-2-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1485867981-16037-2-git-send-email-ysxie@foxmail.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 01:57:29 +03:00
return -EBUSY;
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
}
static void putback_movable_page(struct page *page)
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
{
struct address_space *mapping;
mapping = page_mapping(page);
mapping->a_ops->putback_page(page);
ClearPageIsolated(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
}
/*
* Put previously isolated pages back onto the appropriate lists
* from where they were once taken off for compaction/migration.
*
* This function shall be used whenever the isolated pageset has been
* built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
* and isolate_huge_page().
*/
void putback_movable_pages(struct list_head *l)
{
struct page *page;
struct page *page2;
list_for_each_entry_safe(page, page2, l, lru) {
mm: migrate: make core migration code aware of hugepage Currently hugepage migration is available only for soft offlining, but it's also useful for some other users of page migration (clearly because users of hugepage can enjoy the benefit of mempolicy and memory hotplug.) So this patchset tries to extend such users to support hugepage migration. The target of this patchset is to enable hugepage migration for NUMA related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and memory hotplug. This patchset does not add hugepage migration for memory compaction, because users of memory compaction mainly expect to construct thp by arranging raw pages, and there's little or no need to compact hugepages. CMA, another user of page migration, can have benefit from hugepage migration, but is not enabled to support it for now (just because of lack of testing and expertise in CMA.) Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in x86_64, or hugepages in architectures like ia64) is not enabled for now (again, because of lack of testing.) As for how these are achived, I extended the API (migrate_pages()) to handle hugepage (with patch 1 and 2) and adjusted code of each caller to check and collect movable hugepages (with patch 3-7). Remaining 2 patches are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is about making sure that we only migrate pmd-based hugepages. And patch 9 is about choosing appropriate zone for hugepage allocation. My test is mainly functional one, simply kicking hugepage migration via each entry point and confirm that migration is done correctly. Test code is available here: git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git And I always run libhugetlbfs test when changing hugetlbfs's code. With this patchset, no regression was found in the test. This patch (of 9): Before enabling each user of page migration to support hugepage, this patch enables the list of pages for migration to link not only LRU pages, but also hugepages. As a result, putback_movable_pages() and migrate_pages() can handle both of LRU pages and hugepages. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:21:59 +04:00
if (unlikely(PageHuge(page))) {
putback_active_hugepage(page);
continue;
}
list_del(&page->lru);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
/*
* We isolated non-lru movable page so here we can use
* __PageMovable because LRU page's mapping cannot have
* PAGE_MAPPING_MOVABLE.
*/
if (unlikely(__PageMovable(page))) {
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
VM_BUG_ON_PAGE(!PageIsolated(page), page);
lock_page(page);
if (PageMovable(page))
putback_movable_page(page);
else
ClearPageIsolated(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
unlock_page(page);
put_page(page);
} else {
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
page_is_file_lru(page), -thp_nr_pages(page));
putback_lru_page(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
}
}
}
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
/*
* Restore a potential migration pte to a working pte entry
*/
static bool remove_migration_pte(struct folio *folio,
struct vm_area_struct *vma, unsigned long addr, void *old)
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
{
DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
while (page_vma_mapped_walk(&pvmw)) {
pte_t pte;
swp_entry_t entry;
struct page *new;
unsigned long idx = 0;
/* pgoff is invalid for ksm pages, but they are never large */
if (folio_test_large(folio) && !folio_test_hugetlb(folio))
idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
new = folio_page(folio, idx);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:10:57 +03:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
/* PMD-mapped THP migration entry */
if (!pvmw.pte) {
VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
!folio_test_pmd_mappable(folio), folio);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:10:57 +03:00
remove_migration_pmd(&pvmw, new);
continue;
}
#endif
folio_get(folio);
pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
if (pte_swp_soft_dirty(*pvmw.pte))
pte = pte_mksoft_dirty(pte);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
/*
* Recheck VMA as permissions can change since migration started
*/
entry = pte_to_swp_entry(*pvmw.pte);
if (is_writable_migration_entry(entry))
pte = maybe_mkwrite(pte, vma);
userfaultfd: wp: support swap and page migration For either swap and page migration, we all use the bit 2 of the entry to identify whether this entry is uffd write-protected. It plays a similar role as the existing soft dirty bit in swap entries but only for keeping the uffd-wp tracking for a specific PTE/PMD. Something special here is that when we want to recover the uffd-wp bit from a swap/migration entry to the PTE bit we'll also need to take care of the _PAGE_RW bit and make sure it's cleared, otherwise even with the _PAGE_UFFD_WP bit we can't trap it at all. In change_pte_range() we do nothing for uffd if the PTE is a swap entry. That can lead to data mismatch if the page that we are going to write protect is swapped out when sending the UFFDIO_WRITEPROTECT. This patch also applies/removes the uffd-wp bit even for the swap entries. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 06:06:01 +03:00
else if (pte_swp_uffd_wp(*pvmw.pte))
pte = pte_mkuffd_wp(pte);
if (unlikely(is_device_private_page(new))) {
if (pte_write(pte))
entry = make_writable_device_private_entry(
page_to_pfn(new));
else
entry = make_readable_device_private_entry(
page_to_pfn(new));
pte = swp_entry_to_pte(entry);
if (pte_swp_soft_dirty(*pvmw.pte))
pte = pte_swp_mksoft_dirty(pte);
if (pte_swp_uffd_wp(*pvmw.pte))
pte = pte_swp_mkuffd_wp(pte);
mm/migrate.c: add missing flush_dcache_page for non-mapped page migrate Our MIPS 1004Kc SoCs were seeing random userspace crashes with SIGILL and SIGSEGV that could not be traced back to a userspace code bug. They had all the magic signs of an I/D cache coherency issue. Now recently we noticed that the /proc/sys/vm/compact_memory interface was quite efficient at provoking this class of userspace crashes. Studying the code in mm/migrate.c there is a distinction made between migrating a page that is mapped at the instant of migration and one that is not mapped. Our problem turned out to be the non-mapped pages. For the non-mapped page the code performs a copy of the page content and all relevant meta-data of the page without doing the required D-cache maintenance. This leaves dirty data in the D-cache of the CPU and on the 1004K cores this data is not visible to the I-cache. A subsequent page-fault that triggers a mapping of the page will happily serve the process with potentially stale code. What about ARM then, this bug should have seen greater exposure? Well ARM became immune to this flaw back in 2010, see commit c01778001a4f ("ARM: 6379/1: Assume new page cache pages have dirty D-cache"). My proposed fix moves the D-cache maintenance inside move_to_new_page to make it common for both cases. Link: http://lkml.kernel.org/r/20190315083502.11849-1-larper@axis.com Fixes: 97ee0524614 ("flush cache before installing new page at migraton") Signed-off-by: Lars Persson <larper@axis.com> Reviewed-by: Paul Burton <paul.burton@mips.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 06:44:28 +03:00
}
#ifdef CONFIG_HUGETLB_PAGE
if (folio_test_hugetlb(folio)) {
mm/hugetlb: change parameters of arch_make_huge_pte() Patch series "Subject: [PATCH v2 0/5] Implement huge VMAP and VMALLOC on powerpc 8xx", v2. This series implements huge VMAP and VMALLOC on powerpc 8xx. Powerpc 8xx has 4 page sizes: - 4k - 16k - 512k - 8M At the time being, vmalloc and vmap only support huge pages which are leaf at PMD level. Here the PMD level is 4M, it doesn't correspond to any supported page size. For now, implement use of 16k and 512k pages which is done at PTE level. Support of 8M pages will be implemented later, it requires use of hugepd tables. To allow this, the architecture provides two functions: - arch_vmap_pte_range_map_size() which tells vmap_pte_range() what page size to use. A stub returning PAGE_SIZE is provided when the architecture doesn't provide this function. - arch_vmap_pte_supported_shift() which tells __vmalloc_node_range() what page shift to use for a given area size. A stub returning PAGE_SHIFT is provided when the architecture doesn't provide this function. This patch (of 5): At the time being, arch_make_huge_pte() has the following prototype: pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma, struct page *page, int writable); vma is used to get the pages shift or size. vma is also used on Sparc to get vm_flags. page is not used. writable is not used. In order to use this function without a vma, replace vma by shift and flags. Also remove the used parameters. Link: https://lkml.kernel.org/r/cover.1620795204.git.christophe.leroy@csgroup.eu Link: https://lkml.kernel.org/r/f4633ac6a7da2f22f31a04a89e0a7026bb78b15b.1620795204.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:48:00 +03:00
unsigned int shift = huge_page_shift(hstate_vma(vma));
pte = pte_mkhuge(pte);
mm/hugetlb: change parameters of arch_make_huge_pte() Patch series "Subject: [PATCH v2 0/5] Implement huge VMAP and VMALLOC on powerpc 8xx", v2. This series implements huge VMAP and VMALLOC on powerpc 8xx. Powerpc 8xx has 4 page sizes: - 4k - 16k - 512k - 8M At the time being, vmalloc and vmap only support huge pages which are leaf at PMD level. Here the PMD level is 4M, it doesn't correspond to any supported page size. For now, implement use of 16k and 512k pages which is done at PTE level. Support of 8M pages will be implemented later, it requires use of hugepd tables. To allow this, the architecture provides two functions: - arch_vmap_pte_range_map_size() which tells vmap_pte_range() what page size to use. A stub returning PAGE_SIZE is provided when the architecture doesn't provide this function. - arch_vmap_pte_supported_shift() which tells __vmalloc_node_range() what page shift to use for a given area size. A stub returning PAGE_SHIFT is provided when the architecture doesn't provide this function. This patch (of 5): At the time being, arch_make_huge_pte() has the following prototype: pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma, struct page *page, int writable); vma is used to get the pages shift or size. vma is also used on Sparc to get vm_flags. page is not used. writable is not used. In order to use this function without a vma, replace vma by shift and flags. Also remove the used parameters. Link: https://lkml.kernel.org/r/cover.1620795204.git.christophe.leroy@csgroup.eu Link: https://lkml.kernel.org/r/f4633ac6a7da2f22f31a04a89e0a7026bb78b15b.1620795204.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:48:00 +03:00
pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
if (folio_test_anon(folio))
hugepage_add_anon_rmap(new, vma, pvmw.address);
else
page_dup_rmap(new, true);
mm: change page type prior to adding page table entry Patch series "page table check", v3. Ensure that some memory corruptions are prevented by checking at the time of insertion of entries into user page tables that there is no illegal sharing. We have recently found a problem [1] that existed in kernel since 4.14. The problem was caused by broken page ref count and led to memory leaking from one process into another. The problem was accidentally detected by studying a dump of one process and noticing that one page contains memory that should not belong to this process. There are some other page->_refcount related problems that were recently fixed: [2], [3] which potentially could also lead to illegal sharing. In addition to hardening refcount [4] itself, this work is an attempt to prevent this class of memory corruption issues. It uses a simple state machine that is independent from regular MM logic to check for illegal sharing at time pages are inserted and removed from page tables. [1] https://lore.kernel.org/all/xr9335nxwc5y.fsf@gthelen2.svl.corp.google.com [2] https://lore.kernel.org/all/1582661774-30925-2-git-send-email-akaher@vmware.com [3] https://lore.kernel.org/all/20210622021423.154662-3-mike.kravetz@oracle.com [4] https://lore.kernel.org/all/20211221150140.988298-1-pasha.tatashin@soleen.com This patch (of 4): There are a few places where we first update the entry in the user page table, and later change the struct page to indicate that this is anonymous or file page. In most places, however, we first configure the page metadata and then insert entries into the page table. Page table check, will use the information from struct page to verify the type of entry is inserted. Change the order in all places to first update struct page, and later to update page table. This means that we first do calls that may change the type of page (anon or file): page_move_anon_rmap page_add_anon_rmap do_page_add_anon_rmap page_add_new_anon_rmap page_add_file_rmap hugepage_add_anon_rmap hugepage_add_new_anon_rmap And after that do calls that add entries to the page table: set_huge_pte_at set_pte_at Link: https://lkml.kernel.org/r/20211221154650.1047963-1-pasha.tatashin@soleen.com Link: https://lkml.kernel.org/r/20211221154650.1047963-2-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Turner <pjt@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:06:29 +03:00
set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
} else
#endif
{
if (folio_test_anon(folio))
page_add_anon_rmap(new, vma, pvmw.address, false);
else
mm/munlock: rmap call mlock_vma_page() munlock_vma_page() Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-15 05:26:39 +03:00
page_add_file_rmap(new, vma, false);
mm: change page type prior to adding page table entry Patch series "page table check", v3. Ensure that some memory corruptions are prevented by checking at the time of insertion of entries into user page tables that there is no illegal sharing. We have recently found a problem [1] that existed in kernel since 4.14. The problem was caused by broken page ref count and led to memory leaking from one process into another. The problem was accidentally detected by studying a dump of one process and noticing that one page contains memory that should not belong to this process. There are some other page->_refcount related problems that were recently fixed: [2], [3] which potentially could also lead to illegal sharing. In addition to hardening refcount [4] itself, this work is an attempt to prevent this class of memory corruption issues. It uses a simple state machine that is independent from regular MM logic to check for illegal sharing at time pages are inserted and removed from page tables. [1] https://lore.kernel.org/all/xr9335nxwc5y.fsf@gthelen2.svl.corp.google.com [2] https://lore.kernel.org/all/1582661774-30925-2-git-send-email-akaher@vmware.com [3] https://lore.kernel.org/all/20210622021423.154662-3-mike.kravetz@oracle.com [4] https://lore.kernel.org/all/20211221150140.988298-1-pasha.tatashin@soleen.com This patch (of 4): There are a few places where we first update the entry in the user page table, and later change the struct page to indicate that this is anonymous or file page. In most places, however, we first configure the page metadata and then insert entries into the page table. Page table check, will use the information from struct page to verify the type of entry is inserted. Change the order in all places to first update struct page, and later to update page table. This means that we first do calls that may change the type of page (anon or file): page_move_anon_rmap page_add_anon_rmap do_page_add_anon_rmap page_add_new_anon_rmap page_add_file_rmap hugepage_add_anon_rmap hugepage_add_new_anon_rmap And after that do calls that add entries to the page table: set_huge_pte_at set_pte_at Link: https://lkml.kernel.org/r/20211221154650.1047963-1-pasha.tatashin@soleen.com Link: https://lkml.kernel.org/r/20211221154650.1047963-2-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Turner <pjt@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:06:29 +03:00
set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
}
if (vma->vm_flags & VM_LOCKED)
mlock_page_drain_local();
mm, thp: fix mlocking THP page with migration enabled A transparent huge page is represented by a single entry on an LRU list. Therefore, we can only make unevictable an entire compound page, not individual subpages. If a user tries to mlock() part of a huge page, we want the rest of the page to be reclaimable. We handle this by keeping PTE-mapped huge pages on normal LRU lists: the PMD on border of VM_LOCKED VMA will be split into PTE table. Introduction of THP migration breaks[1] the rules around mlocking THP pages. If we had a single PMD mapping of the page in mlocked VMA, the page will get mlocked, regardless of PTE mappings of the page. For tmpfs/shmem it's easy to fix by checking PageDoubleMap() in remove_migration_pmd(). Anon THP pages can only be shared between processes via fork(). Mlocked page can only be shared if parent mlocked it before forking, otherwise CoW will be triggered on mlock(). For Anon-THP, we can fix the issue by munlocking the page on removing PTE migration entry for the page. PTEs for the page will always come after mlocked PMD: rmap walks VMAs from oldest to newest. Test-case: #include <unistd.h> #include <sys/mman.h> #include <sys/wait.h> #include <linux/mempolicy.h> #include <numaif.h> int main(void) { unsigned long nodemask = 4; void *addr; addr = mmap((void *)0x20000000UL, 2UL << 20, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, -1, 0); if (fork()) { wait(NULL); return 0; } mlock(addr, 4UL << 10); mbind(addr, 2UL << 20, MPOL_PREFERRED | MPOL_F_RELATIVE_NODES, &nodemask, 4, MPOL_MF_MOVE); return 0; } [1] https://lkml.kernel.org/r/CAOMGZ=G52R-30rZvhGxEbkTw7rLLwBGadVYeo--iizcD3upL3A@mail.gmail.com Link: http://lkml.kernel.org/r/20180917133816.43995-1-kirill.shutemov@linux.intel.com Fixes: 616b8371539a ("mm: thp: enable thp migration in generic path") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Vegard Nossum <vegard.nossum@oracle.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-06 01:51:41 +03:00
trace_remove_migration_pte(pvmw.address, pte_val(pte),
compound_order(new));
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, pvmw.address, pvmw.pte);
}
mm: page migration fix PageMlocked on migrated pages Commit e6c509f85455 ("mm: use clear_page_mlock() in page_remove_rmap()") in v3.7 inadvertently made mlock_migrate_page() impotent: page migration unmaps the page from userspace before migrating, and that commit clears PageMlocked on the final unmap, leaving mlock_migrate_page() with nothing to do. Not a serious bug, the next attempt at reclaiming the page would fix it up; but a betrayal of page migration's intent - the new page ought to emerge as PageMlocked. I don't see how to fix it for mlock_migrate_page() itself; but easily fixed in remove_migration_pte(), by calling mlock_vma_page() when the vma is VM_LOCKED - under pte lock as in try_to_unmap_one(). Delete mlock_migrate_page()? Not quite, it does still serve a purpose for migrate_misplaced_transhuge_page(): where we could replace it by a test, clear_page_mlock(), mlock_vma_page() sequence; but would that be an improvement? mlock_migrate_page() is fairly lean, and let's make it leaner by skipping the irq save/restore now clearly not needed. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:49:37 +03:00
return true;
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
}
/*
* Get rid of all migration entries and replace them by
* references to the indicated page.
*/
void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
{
struct rmap_walk_control rwc = {
.rmap_one = remove_migration_pte,
.arg = src,
};
if (locked)
rmap_walk_locked(dst, &rwc);
else
rmap_walk(dst, &rwc);
}
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
/*
* Something used the pte of a page under migration. We need to
* get to the page and wait until migration is finished.
* When we return from this function the fault will be retried.
*/
mm/hugetlb: take page table lock in follow_huge_pmd() We have a race condition between move_pages() and freeing hugepages, where move_pages() calls follow_page(FOLL_GET) for hugepages internally and tries to get its refcount without preventing concurrent freeing. This race crashes the kernel, so this patch fixes it by moving FOLL_GET code for hugepages into follow_huge_pmd() with taking the page table lock. This patch intentionally removes page==NULL check after pte_page. This is justified because pte_page() never returns NULL for any architectures or configurations. This patch changes the behavior of follow_huge_pmd() for tail pages and then tail pages can be pinned/returned. So the caller must be changed to properly handle the returned tail pages. We could have a choice to add the similar locking to follow_huge_(addr|pud) for consistency, but it's not necessary because currently these functions don't support FOLL_GET flag, so let's leave it for future development. Here is the reproducer: $ cat movepages.c #include <stdio.h> #include <stdlib.h> #include <numaif.h> #define ADDR_INPUT 0x700000000000UL #define HPS 0x200000 #define PS 0x1000 int main(int argc, char *argv[]) { int i; int nr_hp = strtol(argv[1], NULL, 0); int nr_p = nr_hp * HPS / PS; int ret; void **addrs; int *status; int *nodes; pid_t pid; pid = strtol(argv[2], NULL, 0); addrs = malloc(sizeof(char *) * nr_p + 1); status = malloc(sizeof(char *) * nr_p + 1); nodes = malloc(sizeof(char *) * nr_p + 1); while (1) { for (i = 0; i < nr_p; i++) { addrs[i] = (void *)ADDR_INPUT + i * PS; nodes[i] = 1; status[i] = 0; } ret = numa_move_pages(pid, nr_p, addrs, nodes, status, MPOL_MF_MOVE_ALL); if (ret == -1) err("move_pages"); for (i = 0; i < nr_p; i++) { addrs[i] = (void *)ADDR_INPUT + i * PS; nodes[i] = 0; status[i] = 0; } ret = numa_move_pages(pid, nr_p, addrs, nodes, status, MPOL_MF_MOVE_ALL); if (ret == -1) err("move_pages"); } return 0; } $ cat hugepage.c #include <stdio.h> #include <sys/mman.h> #include <string.h> #define ADDR_INPUT 0x700000000000UL #define HPS 0x200000 int main(int argc, char *argv[]) { int nr_hp = strtol(argv[1], NULL, 0); char *p; while (1) { p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0); if (p != (void *)ADDR_INPUT) { perror("mmap"); break; } memset(p, 0, nr_hp * HPS); munmap(p, nr_hp * HPS); } } $ sysctl vm.nr_hugepages=40 $ ./hugepage 10 & $ ./movepages 10 $(pgrep -f hugepage) Fixes: e632a938d914 ("mm: migrate: add hugepage migration code to move_pages()") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 02:25:22 +03:00
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
spinlock_t *ptl)
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
{
pte_t pte;
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
swp_entry_t entry;
spin_lock(ptl);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
pte = *ptep;
if (!is_swap_pte(pte))
goto out;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto out;
mm/migrate.c: rework migration_entry_wait() to not take a pageref This fixes the FIXME in migrate_vma_check_page(). Before migrating a page migration code will take a reference and check there are no unexpected page references, failing the migration if there are. When a thread faults on a migration entry it will take a temporary reference to the page to wait for the page to become unlocked signifying the migration entry has been removed. This reference is dropped just prior to waiting on the page lock, however the extra reference can cause migration failures so it is desirable to avoid taking it. As migration code already has a reference to the migrating page an extra reference to wait on PG_locked is unnecessary so long as the reference can't be dropped whilst setting up the wait. When faulting on a migration entry the ptl is taken to check the migration entry. Removing a migration entry also requires the ptl, and migration code won't drop its page reference until after the migration entry has been removed. Therefore retaining the ptl of a migration entry is sufficient to ensure the page has a reference. Reworking migration_entry_wait() to hold the ptl until the wait setup is complete means the extra page reference is no longer needed. [apopple@nvidia.com: v5] Link: https://lkml.kernel.org/r/20211213033848.1973946-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20211118020754.954425-1-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-22 09:10:46 +03:00
migration_entry_wait_on_locked(entry, ptep, ptl);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:35 +04:00
return;
out:
pte_unmap_unlock(ptep, ptl);
}
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
unsigned long address)
{
spinlock_t *ptl = pte_lockptr(mm, pmd);
pte_t *ptep = pte_offset_map(pmd, address);
__migration_entry_wait(mm, ptep, ptl);
}
void migration_entry_wait_huge(struct vm_area_struct *vma,
struct mm_struct *mm, pte_t *pte)
{
spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
__migration_entry_wait(mm, pte, ptl);
}
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:10:57 +03:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
spinlock_t *ptl;
ptl = pmd_lock(mm, pmd);
if (!is_pmd_migration_entry(*pmd))
goto unlock;
mm/migrate.c: rework migration_entry_wait() to not take a pageref This fixes the FIXME in migrate_vma_check_page(). Before migrating a page migration code will take a reference and check there are no unexpected page references, failing the migration if there are. When a thread faults on a migration entry it will take a temporary reference to the page to wait for the page to become unlocked signifying the migration entry has been removed. This reference is dropped just prior to waiting on the page lock, however the extra reference can cause migration failures so it is desirable to avoid taking it. As migration code already has a reference to the migrating page an extra reference to wait on PG_locked is unnecessary so long as the reference can't be dropped whilst setting up the wait. When faulting on a migration entry the ptl is taken to check the migration entry. Removing a migration entry also requires the ptl, and migration code won't drop its page reference until after the migration entry has been removed. Therefore retaining the ptl of a migration entry is sufficient to ensure the page has a reference. Reworking migration_entry_wait() to hold the ptl until the wait setup is complete means the extra page reference is no longer needed. [apopple@nvidia.com: v5] Link: https://lkml.kernel.org/r/20211213033848.1973946-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20211118020754.954425-1-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-22 09:10:46 +03:00
migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:10:57 +03:00
return;
unlock:
spin_unlock(ptl);
}
#endif
static int expected_page_refs(struct address_space *mapping, struct page *page)
{
int expected_count = 1;
if (mapping)
expected_count += compound_nr(page) + page_has_private(page);
return expected_count;
}
/*
* Replace the page in the mapping.
*
* The number of remaining references must be:
* 1 for anonymous pages without a mapping
* 2 for pages with a mapping
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
*/
int folio_migrate_mapping(struct address_space *mapping,
struct folio *newfolio, struct folio *folio, int extra_count)
{
XA_STATE(xas, &mapping->i_pages, folio_index(folio));
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
struct zone *oldzone, *newzone;
int dirty;
int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
long nr = folio_nr_pages(folio);
mm/migrate: new memory migration helper for use with device memory This patch add a new memory migration helpers, which migrate memory backing a range of virtual address of a process to different memory (which can be allocated through special allocator). It differs from numa migration by working on a range of virtual address and thus by doing migration in chunk that can be large enough to use DMA engine or special copy offloading engine. Expected users are any one with heterogeneous memory where different memory have different characteristics (latency, bandwidth, ...). As an example IBM platform with CAPI bus can make use of this feature to migrate between regular memory and CAPI device memory. New CPU architecture with a pool of high performance memory not manage as cache but presented as regular memory (while being faster and with lower latency than DDR) will also be prime user of this patch. Migration to private device memory will be useful for device that have large pool of such like GPU, NVidia plans to use HMM for that. Link: http://lkml.kernel.org/r/20170817000548.32038-15-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:09 +03:00
if (!mapping) {
/* Anonymous page without mapping */
if (folio_ref_count(folio) != expected_count)
return -EAGAIN;
/* No turning back from here */
newfolio->index = folio->index;
newfolio->mapping = folio->mapping;
if (folio_test_swapbacked(folio))
__folio_set_swapbacked(newfolio);
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
return MIGRATEPAGE_SUCCESS;
}
oldzone = folio_zone(folio);
newzone = folio_zone(newfolio);
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
xas_lock_irq(&xas);
if (!folio_ref_freeze(folio, expected_count)) {
xas_unlock_irq(&xas);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 06:45:30 +04:00
return -EAGAIN;
}
/*
* Now we know that no one else is looking at the folio:
* no turning back from here.
*/
newfolio->index = folio->index;
newfolio->mapping = folio->mapping;
folio_ref_add(newfolio, nr); /* add cache reference */
if (folio_test_swapbacked(folio)) {
__folio_set_swapbacked(newfolio);
if (folio_test_swapcache(folio)) {
folio_set_swapcache(newfolio);
newfolio->private = folio_get_private(folio);
}
} else {
VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
}
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
/* Move dirty while page refs frozen and newpage not yet exposed */
dirty = folio_test_dirty(folio);
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
if (dirty) {
folio_clear_dirty(folio);
folio_set_dirty(newfolio);
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
}
xas_store(&xas, newfolio);
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 07:33:44 +03:00
/*
* Drop cache reference from old page by unfreezing
* to one less reference.
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 07:33:44 +03:00
* We know this isn't the last reference.
*/
folio_ref_unfreeze(folio, expected_count - nr);
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 07:33:44 +03:00
xas_unlock(&xas);
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
/* Leave irq disabled to prevent preemption while updating stats */
/*
* If moved to a different zone then also account
* the page for that zone. Other VM counters will be
* taken care of when we establish references to the
* new page and drop references to the old page.
*
* Note that anonymous pages are accounted for
* via NR_FILE_PAGES and NR_ANON_MAPPED if they
* are mapped to swap space.
*/
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
if (newzone != oldzone) {
struct lruvec *old_lruvec, *new_lruvec;
struct mem_cgroup *memcg;
memcg = folio_memcg(folio);
old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
}
mm: memcg: add swapcache stat for memcg v2 This patch adds swapcache stat for the cgroup v2. The swapcache represents the memory that is accounted against both the memory and the swap limit of the cgroup. The main motivation behind exposing the swapcache stat is for enabling users to gracefully migrate from cgroup v1's memsw counter to cgroup v2's memory and swap counters. Cgroup v1's memsw limit allows users to limit the memory+swap usage of a workload but without control on the exact proportion of memory and swap. Cgroup v2 provides separate limits for memory and swap which enables more control on the exact usage of memory and swap individually for the workload. With some little subtleties, the v1's memsw limit can be switched with the sum of the v2's memory and swap limits. However the alternative for memsw usage is not yet available in cgroup v2. Exposing per-cgroup swapcache stat enables that alternative. Adding the memory usage and swap usage and subtracting the swapcache will approximate the memsw usage. This will help in the transparent migration of the workloads depending on memsw usage and limit to v2' memory and swap counters. The reasons these applications are still interested in this approximate memsw usage are: (1) these applications are not really interested in two separate memory and swap usage metrics. A single usage metric is more simple to use and reason about for them. (2) The memsw usage metric hides the underlying system's swap setup from the applications. Applications with multiple instances running in a datacenter with heterogeneous systems (some have swap and some don't) will keep seeing a consistent view of their usage. [akpm@linux-foundation.org: fix CONFIG_SWAP=n build] Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 23:03:55 +03:00
#ifdef CONFIG_SWAP
if (folio_test_swapcache(folio)) {
mm: memcg: add swapcache stat for memcg v2 This patch adds swapcache stat for the cgroup v2. The swapcache represents the memory that is accounted against both the memory and the swap limit of the cgroup. The main motivation behind exposing the swapcache stat is for enabling users to gracefully migrate from cgroup v1's memsw counter to cgroup v2's memory and swap counters. Cgroup v1's memsw limit allows users to limit the memory+swap usage of a workload but without control on the exact proportion of memory and swap. Cgroup v2 provides separate limits for memory and swap which enables more control on the exact usage of memory and swap individually for the workload. With some little subtleties, the v1's memsw limit can be switched with the sum of the v2's memory and swap limits. However the alternative for memsw usage is not yet available in cgroup v2. Exposing per-cgroup swapcache stat enables that alternative. Adding the memory usage and swap usage and subtracting the swapcache will approximate the memsw usage. This will help in the transparent migration of the workloads depending on memsw usage and limit to v2' memory and swap counters. The reasons these applications are still interested in this approximate memsw usage are: (1) these applications are not really interested in two separate memory and swap usage metrics. A single usage metric is more simple to use and reason about for them. (2) The memsw usage metric hides the underlying system's swap setup from the applications. Applications with multiple instances running in a datacenter with heterogeneous systems (some have swap and some don't) will keep seeing a consistent view of their usage. [akpm@linux-foundation.org: fix CONFIG_SWAP=n build] Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 23:03:55 +03:00
__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
}
#endif
if (dirty && mapping_can_writeback(mapping)) {
__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
}
}
mm: migrate dirty page without clear_page_dirty_for_io etc clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:50:05 +03:00
local_irq_enable();
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
return MIGRATEPAGE_SUCCESS;
}
EXPORT_SYMBOL(folio_migrate_mapping);
/*
* The expected number of remaining references is the same as that
* of folio_migrate_mapping().
*/
int migrate_huge_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page)
{
XA_STATE(xas, &mapping->i_pages, page_index(page));
int expected_count;
xas_lock_irq(&xas);
expected_count = 2 + page_has_private(page);
if (page_count(page) != expected_count || xas_load(&xas) != page) {
xas_unlock_irq(&xas);
return -EAGAIN;
}
2016-03-18 00:19:26 +03:00
if (!page_ref_freeze(page, expected_count)) {
xas_unlock_irq(&xas);
return -EAGAIN;
}
newpage->index = page->index;
newpage->mapping = page->mapping;
get_page(newpage);
xas_store(&xas, newpage);
2016-03-18 00:19:26 +03:00
page_ref_unfreeze(page, expected_count - 1);
xas_unlock_irq(&xas);
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
return MIGRATEPAGE_SUCCESS;
}
/*
* Copy the flags and some other ancillary information
*/
void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
{
int cpupid;
if (folio_test_error(folio))
folio_set_error(newfolio);
if (folio_test_referenced(folio))
folio_set_referenced(newfolio);
if (folio_test_uptodate(folio))
folio_mark_uptodate(newfolio);
if (folio_test_clear_active(folio)) {
VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
folio_set_active(newfolio);
} else if (folio_test_clear_unevictable(folio))
folio_set_unevictable(newfolio);
if (folio_test_workingset(folio))
folio_set_workingset(newfolio);
if (folio_test_checked(folio))
folio_set_checked(newfolio);
if (folio_test_mappedtodisk(folio))
folio_set_mappedtodisk(newfolio);
/* Move dirty on pages not done by folio_migrate_mapping() */
if (folio_test_dirty(folio))
folio_set_dirty(newfolio);
if (folio_test_young(folio))
folio_set_young(newfolio);
if (folio_test_idle(folio))
folio_set_idle(newfolio);
mm: introduce idle page tracking Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 01:35:45 +03:00
/*
* Copy NUMA information to the new page, to prevent over-eager
* future migrations of this same page.
*/
cpupid = page_cpupid_xchg_last(&folio->page, -1);
page_cpupid_xchg_last(&newfolio->page, cpupid);
folio_migrate_ksm(newfolio, folio);
ksm: make KSM page migration possible KSM page migration is already supported in the case of memory hotremove, which takes the ksm_thread_mutex across all its migrations to keep life simple. But the new KSM NUMA merge_across_nodes knob introduces a problem, when it's set to non-default 0: if a KSM page is migrated to a different NUMA node, how do we migrate its stable node to the right tree? And what if that collides with an existing stable node? So far there's no provision for that, and this patch does not attempt to deal with it either. But how will I test a solution, when I don't know how to hotremove memory? The best answer is to enable KSM page migration in all cases now, and test more common cases. With THP and compaction added since KSM came in, page migration is now mainstream, and it's a shame that a KSM page can frustrate freeing a page block. Without worrying about merge_across_nodes 0 for now, this patch gets KSM page migration working reliably for default merge_across_nodes 1 (but leave the patch enabling it until near the end of the series). It's much simpler than I'd originally imagined, and does not require an additional tier of locking: page migration relies on the page lock, KSM page reclaim relies on the page lock, the page lock is enough for KSM page migration too. Almost all the care has to be in get_ksm_page(): that's the function which worries about when a stable node is stale and should be freed, now it also has to worry about the KSM page being migrated. The only new overhead is an additional put/get/lock/unlock_page when stable_tree_search() arrives at a matching node: to make sure migration respects the raised page count, and so does not migrate the page while we're busy with it here. That's probably avoidable, either by changing internal interfaces from using kpage to stable_node, or by moving the ksm_migrate_page() callsite into a page_freeze_refs() section (even if not swapcache); but this works well, I've no urge to pull it apart now. (Descents of the stable tree may pass through nodes whose KSM pages are under migration: being unlocked, the raised page count does not prevent that, nor need it: it's safe to memcmp against either old or new page.) You might worry about mremap, and whether page migration's rmap_walk to remove migration entries will find all the KSM locations where it inserted earlier: that should already be handled, by the satisfyingly heavy hammer of move_vma()'s call to ksm_madvise(,,,MADV_UNMERGEABLE,). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:35:10 +04:00
/*
* Please do not reorder this without considering how mm/ksm.c's
* get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
*/
if (folio_test_swapcache(folio))
folio_clear_swapcache(folio);
folio_clear_private(folio);
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
/* page->private contains hugetlb specific flags */
if (!folio_test_hugetlb(folio))
folio->private = NULL;
/*
* If any waiters have accumulated on the new page then
* wake them up.
*/
if (folio_test_writeback(newfolio))
folio_end_writeback(newfolio);
/*
* PG_readahead shares the same bit with PG_reclaim. The above
* end_page_writeback() may clear PG_readahead mistakenly, so set the
* bit after that.
*/
if (folio_test_readahead(folio))
folio_set_readahead(newfolio);
folio_copy_owner(newfolio, folio);
if (!folio_test_hugetlb(folio))
mem_cgroup_migrate(folio, newfolio);
}
EXPORT_SYMBOL(folio_migrate_flags);
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
{
folio_copy(newfolio, folio);
folio_migrate_flags(newfolio, folio);
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
}
EXPORT_SYMBOL(folio_migrate_copy);
/************************************************************
* Migration functions
***********************************************************/
/*
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
* Common logic to directly migrate a single LRU page suitable for
* pages that do not use PagePrivate/PagePrivate2.
*
* Pages are locked upon entry and exit.
*/
int migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page,
enum migrate_mode mode)
{
struct folio *newfolio = page_folio(newpage);
struct folio *folio = page_folio(page);
int rc;
BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */
rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
if (mode != MIGRATE_SYNC_NO_COPY)
folio_migrate_copy(newfolio, folio);
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
else
folio_migrate_flags(newfolio, folio);
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
return MIGRATEPAGE_SUCCESS;
}
EXPORT_SYMBOL(migrate_page);
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 22:45:40 +04:00
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
enum migrate_mode mode)
{
struct buffer_head *bh = head;
/* Simple case, sync compaction */
if (mode != MIGRATE_ASYNC) {
do {
lock_buffer(bh);
bh = bh->b_this_page;
} while (bh != head);
return true;
}
/* async case, we cannot block on lock_buffer so use trylock_buffer */
do {
if (!trylock_buffer(bh)) {
/*
* We failed to lock the buffer and cannot stall in
* async migration. Release the taken locks
*/
struct buffer_head *failed_bh = bh;
bh = head;
while (bh != failed_bh) {
unlock_buffer(bh);
bh = bh->b_this_page;
}
return false;
}
bh = bh->b_this_page;
} while (bh != head);
return true;
}
static int __buffer_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page, enum migrate_mode mode,
bool check_refs)
{
struct buffer_head *bh, *head;
int rc;
int expected_count;
if (!page_has_buffers(page))
return migrate_page(mapping, newpage, page, mode);
/* Check whether page does not have extra refs before we do more work */
expected_count = expected_page_refs(mapping, page);
if (page_count(page) != expected_count)
return -EAGAIN;
head = page_buffers(page);
if (!buffer_migrate_lock_buffers(head, mode))
return -EAGAIN;
if (check_refs) {
bool busy;
bool invalidated = false;
recheck_buffers:
busy = false;
spin_lock(&mapping->private_lock);
bh = head;
do {
if (atomic_read(&bh->b_count)) {
busy = true;
break;
}
bh = bh->b_this_page;
} while (bh != head);
if (busy) {
if (invalidated) {
rc = -EAGAIN;
goto unlock_buffers;
}
mm: migrate: fix reference check race between __find_get_block() and migration buffer_migrate_page_norefs() can race with bh users in the following way: CPU1 CPU2 buffer_migrate_page_norefs() buffer_migrate_lock_buffers() checks bh refs spin_unlock(&mapping->private_lock) __find_get_block() spin_lock(&mapping->private_lock) grab bh ref spin_unlock(&mapping->private_lock) move page do bh work This can result in various issues like lost updates to buffers (i.e. metadata corruption) or use after free issues for the old page. This patch closes the race by holding mapping->private_lock while the mapping is being moved to a new page. Ordinarily, a reference can be taken outside of the private_lock using the per-cpu BH LRU but the references are checked and the LRU invalidated if necessary. The private_lock is held once the references are known so the buffer lookup slow path will spin on the private_lock. Between the page lock and private_lock, it should be impossible for other references to be acquired and updates to happen during the migration. A user had reported data corruption issues on a distribution kernel with a similar page migration implementation as mainline. The data corruption could not be reproduced with this patch applied. A small number of migration-intensive tests were run and no performance problems were noted. [mgorman@techsingularity.net: Changelog, removed tracing] Link: http://lkml.kernel.org/r/20190718090238.GF24383@techsingularity.net Fixes: 89cb0888ca14 "mm: migrate: provide buffer_migrate_page_norefs()" Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [5.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:48:47 +03:00
spin_unlock(&mapping->private_lock);
invalidate_bh_lrus();
invalidated = true;
goto recheck_buffers;
}
}
rc = migrate_page_move_mapping(mapping, newpage, page, 0);
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
if (rc != MIGRATEPAGE_SUCCESS)
goto unlock_buffers;
attach_page_private(newpage, detach_page_private(page));
bh = head;
do {
set_bh_page(bh, newpage, bh_offset(bh));
bh = bh->b_this_page;
} while (bh != head);
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
if (mode != MIGRATE_SYNC_NO_COPY)
migrate_page_copy(newpage, page);
else
migrate_page_states(newpage, page);
rc = MIGRATEPAGE_SUCCESS;
unlock_buffers:
mm: migrate: fix reference check race between __find_get_block() and migration buffer_migrate_page_norefs() can race with bh users in the following way: CPU1 CPU2 buffer_migrate_page_norefs() buffer_migrate_lock_buffers() checks bh refs spin_unlock(&mapping->private_lock) __find_get_block() spin_lock(&mapping->private_lock) grab bh ref spin_unlock(&mapping->private_lock) move page do bh work This can result in various issues like lost updates to buffers (i.e. metadata corruption) or use after free issues for the old page. This patch closes the race by holding mapping->private_lock while the mapping is being moved to a new page. Ordinarily, a reference can be taken outside of the private_lock using the per-cpu BH LRU but the references are checked and the LRU invalidated if necessary. The private_lock is held once the references are known so the buffer lookup slow path will spin on the private_lock. Between the page lock and private_lock, it should be impossible for other references to be acquired and updates to happen during the migration. A user had reported data corruption issues on a distribution kernel with a similar page migration implementation as mainline. The data corruption could not be reproduced with this patch applied. A small number of migration-intensive tests were run and no performance problems were noted. [mgorman@techsingularity.net: Changelog, removed tracing] Link: http://lkml.kernel.org/r/20190718090238.GF24383@techsingularity.net Fixes: 89cb0888ca14 "mm: migrate: provide buffer_migrate_page_norefs()" Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [5.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:48:47 +03:00
if (check_refs)
spin_unlock(&mapping->private_lock);
bh = head;
do {
unlock_buffer(bh);
bh = bh->b_this_page;
} while (bh != head);
return rc;
}
/*
* Migration function for pages with buffers. This function can only be used
* if the underlying filesystem guarantees that no other references to "page"
* exist. For example attached buffer heads are accessed only under page lock.
*/
int buffer_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page, enum migrate_mode mode)
{
return __buffer_migrate_page(mapping, newpage, page, mode, false);
}
EXPORT_SYMBOL(buffer_migrate_page);
/*
* Same as above except that this variant is more careful and checks that there
* are also no buffer head references. This function is the right one for
* mappings where buffer heads are directly looked up and referenced (such as
* block device mappings).
*/
int buffer_migrate_page_norefs(struct address_space *mapping,
struct page *newpage, struct page *page, enum migrate_mode mode)
{
return __buffer_migrate_page(mapping, newpage, page, mode, true);
}
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 22:45:40 +04:00
#endif
/*
* Writeback a page to clean the dirty state
*/
static int writeout(struct address_space *mapping, struct page *page)
{
struct folio *folio = page_folio(page);
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = 1,
.range_start = 0,
.range_end = LLONG_MAX,
.for_reclaim = 1
};
int rc;
if (!mapping->a_ops->writepage)
/* No write method for the address space */
return -EINVAL;
if (!clear_page_dirty_for_io(page))
/* Someone else already triggered a write */
return -EAGAIN;
/*
* A dirty page may imply that the underlying filesystem has
* the page on some queue. So the page must be clean for
* migration. Writeout may mean we loose the lock and the
* page state is no longer what we checked for earlier.
* At this point we know that the migration attempt cannot
* be successful.
*/
remove_migration_ptes(folio, folio, false);
rc = mapping->a_ops->writepage(page, &wbc);
if (rc != AOP_WRITEPAGE_ACTIVATE)
/* unlocked. Relock */
lock_page(page);
return (rc < 0) ? -EIO : -EAGAIN;
}
/*
* Default handling if a filesystem does not provide a migration function.
*/
static int fallback_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page, enum migrate_mode mode)
{
if (PageDirty(page)) {
/* Only writeback pages in full synchronous migration */
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
switch (mode) {
case MIGRATE_SYNC:
case MIGRATE_SYNC_NO_COPY:
break;
default:
return -EBUSY;
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
}
return writeout(mapping, page);
}
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (page_has_private(page) &&
!try_to_release_page(page, GFP_KERNEL))
mm, migrate: immediately fail migration of a page with no migration handler Pages with no migration handler use a fallback handler which sometimes works and sometimes persistently retries. A historical example was blockdev pages but there are others such as odd refcounting when page->private is used. These are retried multiple times which is wasteful during compaction so this patch will fail migration faster unless the caller specifies MIGRATE_SYNC. This is not expected to help THP allocation success rates but it did reduce latencies very slightly in some cases. 1-socket thpfioscale 4.20.0 4.20.0 noreserved-v2r15 failfast-v2r15 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3839.67 ( 0.00%) 3833.72 ( 0.15%) Amean fault-both-5 5177.47 ( 0.00%) 4967.15 ( 4.06%) Amean fault-both-7 7245.03 ( 0.00%) 7139.19 ( 1.46%) Amean fault-both-12 11534.89 ( 0.00%) 11326.30 ( 1.81%) Amean fault-both-18 16241.10 ( 0.00%) 16270.70 ( -0.18%) Amean fault-both-24 19075.91 ( 0.00%) 19839.65 ( -4.00%) Amean fault-both-30 22712.11 ( 0.00%) 21707.05 ( 4.43%) Amean fault-both-32 21692.92 ( 0.00%) 21968.16 ( -1.27%) The 2-socket results are not materially different. Scan rates are similar as expected. Link: http://lkml.kernel.org/r/20190118175136.31341-7-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:44:43 +03:00
return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
return migrate_page(mapping, newpage, page, mode);
}
/*
* Move a page to a newly allocated page
* The page is locked and all ptes have been successfully removed.
*
* The new page will have replaced the old page if this function
* is successful.
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:39 +04:00
*
* Return value:
* < 0 - error code
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
* MIGRATEPAGE_SUCCESS - success
*/
static int move_to_new_page(struct page *newpage, struct page *page,
enum migrate_mode mode)
{
struct address_space *mapping;
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
int rc = -EAGAIN;
bool is_lru = !__PageMovable(page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
mapping = page_mapping(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
if (likely(is_lru)) {
if (!mapping)
rc = migrate_page(mapping, newpage, page, mode);
else if (mapping->a_ops->migratepage)
/*
* Most pages have a mapping and most filesystems
* provide a migratepage callback. Anonymous pages
* are part of swap space which also has its own
* migratepage callback. This is the most common path
* for page migration.
*/
rc = mapping->a_ops->migratepage(mapping, newpage,
page, mode);
else
rc = fallback_migrate_page(mapping, newpage,
page, mode);
} else {
/*
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
* In case of non-lru page, it could be released after
* isolation step. In that case, we shouldn't try migration.
*/
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
VM_BUG_ON_PAGE(!PageIsolated(page), page);
if (!PageMovable(page)) {
rc = MIGRATEPAGE_SUCCESS;
ClearPageIsolated(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
goto out;
}
rc = mapping->a_ops->migratepage(mapping, newpage,
page, mode);
WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
!PageIsolated(page));
}
/*
* When successful, old pagecache page->mapping must be cleared before
* page is freed; but stats require that PageAnon be left as PageAnon.
*/
if (rc == MIGRATEPAGE_SUCCESS) {
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
if (__PageMovable(page)) {
VM_BUG_ON_PAGE(!PageIsolated(page), page);
/*
* We clear PG_movable under page_lock so any compactor
* cannot try to migrate this page.
*/
ClearPageIsolated(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
}
/*
* Anonymous and movable page->mapping will be cleared by
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
* free_pages_prepare so don't reset it here for keeping
* the type to work PageAnon, for example.
*/
if (!PageMappingFlags(page))
page->mapping = NULL;
mm/migrate.c: add missing flush_dcache_page for non-mapped page migrate Our MIPS 1004Kc SoCs were seeing random userspace crashes with SIGILL and SIGSEGV that could not be traced back to a userspace code bug. They had all the magic signs of an I/D cache coherency issue. Now recently we noticed that the /proc/sys/vm/compact_memory interface was quite efficient at provoking this class of userspace crashes. Studying the code in mm/migrate.c there is a distinction made between migrating a page that is mapped at the instant of migration and one that is not mapped. Our problem turned out to be the non-mapped pages. For the non-mapped page the code performs a copy of the page content and all relevant meta-data of the page without doing the required D-cache maintenance. This leaves dirty data in the D-cache of the CPU and on the 1004K cores this data is not visible to the I-cache. A subsequent page-fault that triggers a mapping of the page will happily serve the process with potentially stale code. What about ARM then, this bug should have seen greater exposure? Well ARM became immune to this flaw back in 2010, see commit c01778001a4f ("ARM: 6379/1: Assume new page cache pages have dirty D-cache"). My proposed fix moves the D-cache maintenance inside move_to_new_page to make it common for both cases. Link: http://lkml.kernel.org/r/20190315083502.11849-1-larper@axis.com Fixes: 97ee0524614 ("flush cache before installing new page at migraton") Signed-off-by: Lars Persson <larper@axis.com> Reviewed-by: Paul Burton <paul.burton@mips.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 06:44:28 +03:00
if (likely(!is_zone_device_page(newpage)))
flush_dcache_folio(page_folio(newpage));
}
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
out:
return rc;
}
static int __unmap_and_move(struct page *page, struct page *newpage,
int force, enum migrate_mode mode)
{
struct folio *folio = page_folio(page);
struct folio *dst = page_folio(newpage);
int rc = -EAGAIN;
bool page_was_mapped = false;
mm: migration: take a reference to the anon_vma before migrating This patchset is a memory compaction mechanism that reduces external fragmentation memory by moving GFP_MOVABLE pages to a fewer number of pageblocks. The term "compaction" was chosen as there are is a number of mechanisms that are not mutually exclusive that can be used to defragment memory. For example, lumpy reclaim is a form of defragmentation as was slub "defragmentation" (really a form of targeted reclaim). Hence, this is called "compaction" to distinguish it from other forms of defragmentation. In this implementation, a full compaction run involves two scanners operating within a zone - a migration and a free scanner. The migration scanner starts at the beginning of a zone and finds all movable pages within one pageblock_nr_pages-sized area and isolates them on a migratepages list. The free scanner begins at the end of the zone and searches on a per-area basis for enough free pages to migrate all the pages on the migratepages list. As each area is respectively migrated or exhausted of free pages, the scanners are advanced one area. A compaction run completes within a zone when the two scanners meet. This method is a bit primitive but is easy to understand and greater sophistication would require maintenance of counters on a per-pageblock basis. This would have a big impact on allocator fast-paths to improve compaction which is a poor trade-off. It also does not try relocate virtually contiguous pages to be physically contiguous. However, assuming transparent hugepages were in use, a hypothetical khugepaged might reuse compaction code to isolate free pages, split them and relocate userspace pages for promotion. Memory compaction can be triggered in one of three ways. It may be triggered explicitly by writing any value to /proc/sys/vm/compact_memory and compacting all of memory. It can be triggered on a per-node basis by writing any value to /sys/devices/system/node/nodeN/compact where N is the node ID to be compacted. When a process fails to allocate a high-order page, it may compact memory in an attempt to satisfy the allocation instead of entering direct reclaim. Explicit compaction does not finish until the two scanners meet and direct compaction ends if a suitable page becomes available that would meet watermarks. The series is in 14 patches. The first three are not "core" to the series but are important pre-requisites. Patch 1 reference counts anon_vma for rmap_walk_anon(). Without this patch, it's possible to use anon_vma after free if the caller is not holding a VMA or mmap_sem for the pages in question. While there should be no existing user that causes this problem, it's a requirement for memory compaction to be stable. The patch is at the start of the series for bisection reasons. Patch 2 merges the KSM and migrate counts. It could be merged with patch 1 but would be slightly harder to review. Patch 3 skips over unmapped anon pages during migration as there are no guarantees about the anon_vma existing. There is a window between when a page was isolated and migration started during which anon_vma could disappear. Patch 4 notes that PageSwapCache pages can still be migrated even if they are unmapped. Patch 5 allows CONFIG_MIGRATION to be set without CONFIG_NUMA Patch 6 exports a "unusable free space index" via debugfs. It's a measure of external fragmentation that takes the size of the allocation request into account. It can also be calculated from userspace so can be dropped if requested Patch 7 exports a "fragmentation index" which only has meaning when an allocation request fails. It determines if an allocation failure would be due to a lack of memory or external fragmentation. Patch 8 moves the definition for LRU isolation modes for use by compaction Patch 9 is the compaction mechanism although it's unreachable at this point Patch 10 adds a means of compacting all of memory with a proc trgger Patch 11 adds a means of compacting a specific node with a sysfs trigger Patch 12 adds "direct compaction" before "direct reclaim" if it is determined there is a good chance of success. Patch 13 adds a sysctl that allows tuning of the threshold at which the kernel will compact or direct reclaim Patch 14 temporarily disables compaction if an allocation failure occurs after compaction. Testing of compaction was in three stages. For the test, debugging, preempt, the sleep watchdog and lockdep were all enabled but nothing nasty popped out. min_free_kbytes was tuned as recommended by hugeadm to help fragmentation avoidance and high-order allocations. It was tested on X86, X86-64 and PPC64. Ths first test represents one of the easiest cases that can be faced for lumpy reclaim or memory compaction. 1. Machine freshly booted and configured for hugepage usage with a) hugeadm --create-global-mounts b) hugeadm --pool-pages-max DEFAULT:8G c) hugeadm --set-recommended-min_free_kbytes d) hugeadm --set-recommended-shmmax The min_free_kbytes here is important. Anti-fragmentation works best when pageblocks don't mix. hugeadm knows how to calculate a value that will significantly reduce the worst of external-fragmentation-related events as reported by the mm_page_alloc_extfrag tracepoint. 2. Load up memory a) Start updatedb b) Create in parallel a X files of pagesize*128 in size. Wait until files are created. By parallel, I mean that 4096 instances of dd were launched, one after the other using &. The crude objective being to mix filesystem metadata allocations with the buffer cache. c) Delete every second file so that pageblocks are likely to have holes d) kill updatedb if it's still running At this point, the system is quiet, memory is full but it's full with clean filesystem metadata and clean buffer cache that is unmapped. This is readily migrated or discarded so you'd expect lumpy reclaim to have no significant advantage over compaction but this is at the POC stage. 3. In increments, attempt to allocate 5% of memory as hugepages. Measure how long it took, how successful it was, how many direct reclaims took place and how how many compactions. Note the compaction figures might not fully add up as compactions can take place for orders other than the hugepage size X86 vanilla compaction Final page count 913 916 (attempted 1002) pages reclaimed 68296 9791 X86-64 vanilla compaction Final page count: 901 902 (attempted 1002) Total pages reclaimed: 112599 53234 PPC64 vanilla compaction Final page count: 93 94 (attempted 110) Total pages reclaimed: 103216 61838 There was not a dramatic improvement in success rates but it wouldn't be expected in this case either. What was important is that fewer pages were reclaimed in all cases reducing the amount of IO required to satisfy a huge page allocation. The second tests were all performance related - kernbench, netperf, iozone and sysbench. None showed anything too remarkable. The last test was a high-order allocation stress test. Many kernel compiles are started to fill memory with a pressured mix of unmovable and movable allocations. During this, an attempt is made to allocate 90% of memory as huge pages - one at a time with small delays between attempts to avoid flooding the IO queue. vanilla compaction Percentage of request allocated X86 98 99 Percentage of request allocated X86-64 95 98 Percentage of request allocated PPC64 55 70 This patch: rmap_walk_anon() does not use page_lock_anon_vma() for looking up and locking an anon_vma and it does not appear to have sufficient locking to ensure the anon_vma does not disappear from under it. This patch copies an approach used by KSM to take a reference on the anon_vma while pages are being migrated. This should prevent rmap_walk() running into nasty surprises later because anon_vma has been freed. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 01:32:17 +04:00
struct anon_vma *anon_vma = NULL;
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
bool is_lru = !__PageMovable(page);
if (!trylock_page(page)) {
if (!force || mode == MIGRATE_ASYNC)
goto out;
/*
* It's not safe for direct compaction to call lock_page.
* For example, during page readahead pages are added locked
* to the LRU. Later, when the IO completes the pages are
* marked uptodate and unlocked. However, the queueing
* could be merging multiple pages for one bio (e.g.
* mpage_readahead). If an allocation happens for the
* second or third page, the process can end up locking
* the same page twice and deadlocking. Rather than
* trying to be clever about what pages can be locked,
* avoid the use of lock_page for direct compaction
* altogether.
*/
if (current->flags & PF_MEMALLOC)
goto out;
lock_page(page);
}
if (PageWriteback(page)) {
/*
* Only in the case of a full synchronous migration is it
* necessary to wait for PageWriteback. In the async case,
* the retry loop is too short and in the sync-light case,
* the overhead of stalling is too much
*/
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
switch (mode) {
case MIGRATE_SYNC:
case MIGRATE_SYNC_NO_COPY:
break;
default:
rc = -EBUSY;
mm: memcontrol: rewrite uncharge API The memcg uncharging code that is involved towards the end of a page's lifetime - truncation, reclaim, swapout, migration - is impressively complicated and fragile. Because anonymous and file pages were always charged before they had their page->mapping established, uncharges had to happen when the page type could still be known from the context; as in unmap for anonymous, page cache removal for file and shmem pages, and swap cache truncation for swap pages. However, these operations happen well before the page is actually freed, and so a lot of synchronization is necessary: - Charging, uncharging, page migration, and charge migration all need to take a per-page bit spinlock as they could race with uncharging. - Swap cache truncation happens during both swap-in and swap-out, and possibly repeatedly before the page is actually freed. This means that the memcg swapout code is called from many contexts that make no sense and it has to figure out the direction from page state to make sure memory and memory+swap are always correctly charged. - On page migration, the old page might be unmapped but then reused, so memcg code has to prevent untimely uncharging in that case. Because this code - which should be a simple charge transfer - is so special-cased, it is not reusable for replace_page_cache(). But now that charged pages always have a page->mapping, introduce mem_cgroup_uncharge(), which is called after the final put_page(), when we know for sure that nobody is looking at the page anymore. For page migration, introduce mem_cgroup_migrate(), which is called after the migration is successful and the new page is fully rmapped. Because the old page is no longer uncharged after migration, prevent double charges by decoupling the page's memcg association (PCG_USED and pc->mem_cgroup) from the page holding an actual charge. The new bits PCG_MEM and PCG_MEMSW represent the respective charges and are transferred to the new page during migration. mem_cgroup_migrate() is suitable for replace_page_cache() as well, which gets rid of mem_cgroup_replace_page_cache(). However, care needs to be taken because both the source and the target page can already be charged and on the LRU when fuse is splicing: grab the page lock on the charge moving side to prevent changing pc->mem_cgroup of a page under migration. Also, the lruvecs of both pages change as we uncharge the old and charge the new during migration, and putback may race with us, so grab the lru lock and isolate the pages iff on LRU to prevent races and ensure the pages are on the right lruvec afterward. Swap accounting is massively simplified: because the page is no longer uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry before the final put_page() in page reclaim. Finally, page_cgroup changes are now protected by whatever protection the page itself offers: anonymous pages are charged under the page table lock, whereas page cache insertions, swapin, and migration hold the page lock. Uncharging happens under full exclusion with no outstanding references. Charging and uncharging also ensure that the page is off-LRU, which serializes against charge migration. Remove the very costly page_cgroup lock and set pc->flags non-atomically. [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable] [vdavydov@parallels.com: fix flags definition] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Tested-by: Jet Chen <jet.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 01:19:22 +04:00
goto out_unlock;
}
if (!force)
mm: memcontrol: rewrite uncharge API The memcg uncharging code that is involved towards the end of a page's lifetime - truncation, reclaim, swapout, migration - is impressively complicated and fragile. Because anonymous and file pages were always charged before they had their page->mapping established, uncharges had to happen when the page type could still be known from the context; as in unmap for anonymous, page cache removal for file and shmem pages, and swap cache truncation for swap pages. However, these operations happen well before the page is actually freed, and so a lot of synchronization is necessary: - Charging, uncharging, page migration, and charge migration all need to take a per-page bit spinlock as they could race with uncharging. - Swap cache truncation happens during both swap-in and swap-out, and possibly repeatedly before the page is actually freed. This means that the memcg swapout code is called from many contexts that make no sense and it has to figure out the direction from page state to make sure memory and memory+swap are always correctly charged. - On page migration, the old page might be unmapped but then reused, so memcg code has to prevent untimely uncharging in that case. Because this code - which should be a simple charge transfer - is so special-cased, it is not reusable for replace_page_cache(). But now that charged pages always have a page->mapping, introduce mem_cgroup_uncharge(), which is called after the final put_page(), when we know for sure that nobody is looking at the page anymore. For page migration, introduce mem_cgroup_migrate(), which is called after the migration is successful and the new page is fully rmapped. Because the old page is no longer uncharged after migration, prevent double charges by decoupling the page's memcg association (PCG_USED and pc->mem_cgroup) from the page holding an actual charge. The new bits PCG_MEM and PCG_MEMSW represent the respective charges and are transferred to the new page during migration. mem_cgroup_migrate() is suitable for replace_page_cache() as well, which gets rid of mem_cgroup_replace_page_cache(). However, care needs to be taken because both the source and the target page can already be charged and on the LRU when fuse is splicing: grab the page lock on the charge moving side to prevent changing pc->mem_cgroup of a page under migration. Also, the lruvecs of both pages change as we uncharge the old and charge the new during migration, and putback may race with us, so grab the lru lock and isolate the pages iff on LRU to prevent races and ensure the pages are on the right lruvec afterward. Swap accounting is massively simplified: because the page is no longer uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry before the final put_page() in page reclaim. Finally, page_cgroup changes are now protected by whatever protection the page itself offers: anonymous pages are charged under the page table lock, whereas page cache insertions, swapin, and migration hold the page lock. Uncharging happens under full exclusion with no outstanding references. Charging and uncharging also ensure that the page is off-LRU, which serializes against charge migration. Remove the very costly page_cgroup lock and set pc->flags non-atomically. [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable] [vdavydov@parallels.com: fix flags definition] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Tested-by: Jet Chen <jet.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 01:19:22 +04:00
goto out_unlock;
wait_on_page_writeback(page);
}
/*
* By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
* we cannot notice that anon_vma is freed while we migrates a page.
* This get_anon_vma() delays freeing anon_vma pointer until the end
* of migration. File cache pages are no problem because of page_lock()
* File Caches may use write_page() or lock_page() in migration, then,
* just care Anon page here.
*
* Only page_get_anon_vma() understands the subtleties of
* getting a hold on an anon_vma from outside one of its mms.
* But if we cannot get anon_vma, then we won't need it anyway,
* because that implies that the anon page is no longer mapped
* (and cannot be remapped so long as we hold the page lock).
*/
if (PageAnon(page) && !PageKsm(page))
anon_vma = page_get_anon_vma(page);
/*
* Block others from accessing the new page when we get around to
* establishing additional references. We are usually the only one
* holding a reference to newpage at this point. We used to have a BUG
* here if trylock_page(newpage) fails, but would like to allow for
* cases where there might be a race with the previous use of newpage.
* This is much like races on refcount of oldpage: just don't BUG().
*/
if (unlikely(!trylock_page(newpage)))
goto out_unlock;
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
if (unlikely(!is_lru)) {
rc = move_to_new_page(newpage, page, mode);
goto out_unlock_both;
}
/*
* Corner case handling:
* 1. When a new swap-cache page is read into, it is added to the LRU
* and treated as swapcache but it has no rmap yet.
* Calling try_to_unmap() against a page->mapping==NULL page will
* trigger a BUG. So handle it here.
* 2. An orphaned page (see truncate_cleanup_page) might have
* fs-private metadata. The page can be picked up due to memory
* offlining. Everywhere else except page reclaim, the page is
* invisible to the vm, so the page can not be migrated. So try to
* free the metadata, so the page can be freed.
*/
if (!page->mapping) {
VM_BUG_ON_PAGE(PageAnon(page), page);
if (page_has_private(page)) {
try_to_free_buffers(page);
goto out_unlock_both;
}
} else if (page_mapped(page)) {
/* Establish migration ptes */
VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
page);
try_to_migrate(folio, 0);
page_was_mapped = true;
mm: unmapped page migration avoid unmap+remap overhead Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were created for use on pages almost certainly mapped into userspace. But nowadays compaction often applies them to unmapped page cache pages: which may exacerbate contention on i_mmap_rwsem quite unnecessarily, since try_to_unmap_file() makes no preliminary page_mapped() check. Now check page_mapped() in __unmap_and_move(); and avoid repeating the same overhead in rmap_walk_file() - don't remove_migration_ptes() when we never inserted any. (The PageAnon(page) comment blocks now look even sillier than before, but clean that up on some other occasion. And note in passing that try_to_unmap_one() does not use a migration entry when PageSwapCache, so remove_migration_ptes() will then not update that swap entry to newpage pte: not a big deal, but something else to clean up later.) Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex" conversion to i_mmap_rwsem, that "The biggest winner of these changes is migration": a part of the reason might be all of that unnecessary taking of i_mmap_mutex in page migration; and it's rather a shame that I didn't get around to sending this patch in before his - this one is much less useful after Davidlohr's conversion to rwsem, but still good. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 03:56:19 +03:00
}
if (!page_mapped(page))
rc = move_to_new_page(newpage, page, mode);
/*
* When successful, push newpage to LRU immediately: so that if it
* turns out to be an mlocked page, remove_migration_ptes() will
* automatically build up the correct newpage->mlock_count for it.
*
* We would like to do something similar for the old page, when
* unsuccessful, and other cases when a page has been temporarily
* isolated from the unevictable LRU: but this case is the easiest.
*/
if (rc == MIGRATEPAGE_SUCCESS) {
lru_cache_add(newpage);
if (page_was_mapped)
lru_add_drain();
}
if (page_was_mapped)
remove_migration_ptes(folio,
rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
mm: migration: take a reference to the anon_vma before migrating This patchset is a memory compaction mechanism that reduces external fragmentation memory by moving GFP_MOVABLE pages to a fewer number of pageblocks. The term "compaction" was chosen as there are is a number of mechanisms that are not mutually exclusive that can be used to defragment memory. For example, lumpy reclaim is a form of defragmentation as was slub "defragmentation" (really a form of targeted reclaim). Hence, this is called "compaction" to distinguish it from other forms of defragmentation. In this implementation, a full compaction run involves two scanners operating within a zone - a migration and a free scanner. The migration scanner starts at the beginning of a zone and finds all movable pages within one pageblock_nr_pages-sized area and isolates them on a migratepages list. The free scanner begins at the end of the zone and searches on a per-area basis for enough free pages to migrate all the pages on the migratepages list. As each area is respectively migrated or exhausted of free pages, the scanners are advanced one area. A compaction run completes within a zone when the two scanners meet. This method is a bit primitive but is easy to understand and greater sophistication would require maintenance of counters on a per-pageblock basis. This would have a big impact on allocator fast-paths to improve compaction which is a poor trade-off. It also does not try relocate virtually contiguous pages to be physically contiguous. However, assuming transparent hugepages were in use, a hypothetical khugepaged might reuse compaction code to isolate free pages, split them and relocate userspace pages for promotion. Memory compaction can be triggered in one of three ways. It may be triggered explicitly by writing any value to /proc/sys/vm/compact_memory and compacting all of memory. It can be triggered on a per-node basis by writing any value to /sys/devices/system/node/nodeN/compact where N is the node ID to be compacted. When a process fails to allocate a high-order page, it may compact memory in an attempt to satisfy the allocation instead of entering direct reclaim. Explicit compaction does not finish until the two scanners meet and direct compaction ends if a suitable page becomes available that would meet watermarks. The series is in 14 patches. The first three are not "core" to the series but are important pre-requisites. Patch 1 reference counts anon_vma for rmap_walk_anon(). Without this patch, it's possible to use anon_vma after free if the caller is not holding a VMA or mmap_sem for the pages in question. While there should be no existing user that causes this problem, it's a requirement for memory compaction to be stable. The patch is at the start of the series for bisection reasons. Patch 2 merges the KSM and migrate counts. It could be merged with patch 1 but would be slightly harder to review. Patch 3 skips over unmapped anon pages during migration as there are no guarantees about the anon_vma existing. There is a window between when a page was isolated and migration started during which anon_vma could disappear. Patch 4 notes that PageSwapCache pages can still be migrated even if they are unmapped. Patch 5 allows CONFIG_MIGRATION to be set without CONFIG_NUMA Patch 6 exports a "unusable free space index" via debugfs. It's a measure of external fragmentation that takes the size of the allocation request into account. It can also be calculated from userspace so can be dropped if requested Patch 7 exports a "fragmentation index" which only has meaning when an allocation request fails. It determines if an allocation failure would be due to a lack of memory or external fragmentation. Patch 8 moves the definition for LRU isolation modes for use by compaction Patch 9 is the compaction mechanism although it's unreachable at this point Patch 10 adds a means of compacting all of memory with a proc trgger Patch 11 adds a means of compacting a specific node with a sysfs trigger Patch 12 adds "direct compaction" before "direct reclaim" if it is determined there is a good chance of success. Patch 13 adds a sysctl that allows tuning of the threshold at which the kernel will compact or direct reclaim Patch 14 temporarily disables compaction if an allocation failure occurs after compaction. Testing of compaction was in three stages. For the test, debugging, preempt, the sleep watchdog and lockdep were all enabled but nothing nasty popped out. min_free_kbytes was tuned as recommended by hugeadm to help fragmentation avoidance and high-order allocations. It was tested on X86, X86-64 and PPC64. Ths first test represents one of the easiest cases that can be faced for lumpy reclaim or memory compaction. 1. Machine freshly booted and configured for hugepage usage with a) hugeadm --create-global-mounts b) hugeadm --pool-pages-max DEFAULT:8G c) hugeadm --set-recommended-min_free_kbytes d) hugeadm --set-recommended-shmmax The min_free_kbytes here is important. Anti-fragmentation works best when pageblocks don't mix. hugeadm knows how to calculate a value that will significantly reduce the worst of external-fragmentation-related events as reported by the mm_page_alloc_extfrag tracepoint. 2. Load up memory a) Start updatedb b) Create in parallel a X files of pagesize*128 in size. Wait until files are created. By parallel, I mean that 4096 instances of dd were launched, one after the other using &. The crude objective being to mix filesystem metadata allocations with the buffer cache. c) Delete every second file so that pageblocks are likely to have holes d) kill updatedb if it's still running At this point, the system is quiet, memory is full but it's full with clean filesystem metadata and clean buffer cache that is unmapped. This is readily migrated or discarded so you'd expect lumpy reclaim to have no significant advantage over compaction but this is at the POC stage. 3. In increments, attempt to allocate 5% of memory as hugepages. Measure how long it took, how successful it was, how many direct reclaims took place and how how many compactions. Note the compaction figures might not fully add up as compactions can take place for orders other than the hugepage size X86 vanilla compaction Final page count 913 916 (attempted 1002) pages reclaimed 68296 9791 X86-64 vanilla compaction Final page count: 901 902 (attempted 1002) Total pages reclaimed: 112599 53234 PPC64 vanilla compaction Final page count: 93 94 (attempted 110) Total pages reclaimed: 103216 61838 There was not a dramatic improvement in success rates but it wouldn't be expected in this case either. What was important is that fewer pages were reclaimed in all cases reducing the amount of IO required to satisfy a huge page allocation. The second tests were all performance related - kernbench, netperf, iozone and sysbench. None showed anything too remarkable. The last test was a high-order allocation stress test. Many kernel compiles are started to fill memory with a pressured mix of unmovable and movable allocations. During this, an attempt is made to allocate 90% of memory as huge pages - one at a time with small delays between attempts to avoid flooding the IO queue. vanilla compaction Percentage of request allocated X86 98 99 Percentage of request allocated X86-64 95 98 Percentage of request allocated PPC64 55 70 This patch: rmap_walk_anon() does not use page_lock_anon_vma() for looking up and locking an anon_vma and it does not appear to have sufficient locking to ensure the anon_vma does not disappear from under it. This patch copies an approach used by KSM to take a reference on the anon_vma while pages are being migrated. This should prevent rmap_walk() running into nasty surprises later because anon_vma has been freed. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 01:32:17 +04:00
out_unlock_both:
unlock_page(newpage);
out_unlock:
mm: migration: take a reference to the anon_vma before migrating This patchset is a memory compaction mechanism that reduces external fragmentation memory by moving GFP_MOVABLE pages to a fewer number of pageblocks. The term "compaction" was chosen as there are is a number of mechanisms that are not mutually exclusive that can be used to defragment memory. For example, lumpy reclaim is a form of defragmentation as was slub "defragmentation" (really a form of targeted reclaim). Hence, this is called "compaction" to distinguish it from other forms of defragmentation. In this implementation, a full compaction run involves two scanners operating within a zone - a migration and a free scanner. The migration scanner starts at the beginning of a zone and finds all movable pages within one pageblock_nr_pages-sized area and isolates them on a migratepages list. The free scanner begins at the end of the zone and searches on a per-area basis for enough free pages to migrate all the pages on the migratepages list. As each area is respectively migrated or exhausted of free pages, the scanners are advanced one area. A compaction run completes within a zone when the two scanners meet. This method is a bit primitive but is easy to understand and greater sophistication would require maintenance of counters on a per-pageblock basis. This would have a big impact on allocator fast-paths to improve compaction which is a poor trade-off. It also does not try relocate virtually contiguous pages to be physically contiguous. However, assuming transparent hugepages were in use, a hypothetical khugepaged might reuse compaction code to isolate free pages, split them and relocate userspace pages for promotion. Memory compaction can be triggered in one of three ways. It may be triggered explicitly by writing any value to /proc/sys/vm/compact_memory and compacting all of memory. It can be triggered on a per-node basis by writing any value to /sys/devices/system/node/nodeN/compact where N is the node ID to be compacted. When a process fails to allocate a high-order page, it may compact memory in an attempt to satisfy the allocation instead of entering direct reclaim. Explicit compaction does not finish until the two scanners meet and direct compaction ends if a suitable page becomes available that would meet watermarks. The series is in 14 patches. The first three are not "core" to the series but are important pre-requisites. Patch 1 reference counts anon_vma for rmap_walk_anon(). Without this patch, it's possible to use anon_vma after free if the caller is not holding a VMA or mmap_sem for the pages in question. While there should be no existing user that causes this problem, it's a requirement for memory compaction to be stable. The patch is at the start of the series for bisection reasons. Patch 2 merges the KSM and migrate counts. It could be merged with patch 1 but would be slightly harder to review. Patch 3 skips over unmapped anon pages during migration as there are no guarantees about the anon_vma existing. There is a window between when a page was isolated and migration started during which anon_vma could disappear. Patch 4 notes that PageSwapCache pages can still be migrated even if they are unmapped. Patch 5 allows CONFIG_MIGRATION to be set without CONFIG_NUMA Patch 6 exports a "unusable free space index" via debugfs. It's a measure of external fragmentation that takes the size of the allocation request into account. It can also be calculated from userspace so can be dropped if requested Patch 7 exports a "fragmentation index" which only has meaning when an allocation request fails. It determines if an allocation failure would be due to a lack of memory or external fragmentation. Patch 8 moves the definition for LRU isolation modes for use by compaction Patch 9 is the compaction mechanism although it's unreachable at this point Patch 10 adds a means of compacting all of memory with a proc trgger Patch 11 adds a means of compacting a specific node with a sysfs trigger Patch 12 adds "direct compaction" before "direct reclaim" if it is determined there is a good chance of success. Patch 13 adds a sysctl that allows tuning of the threshold at which the kernel will compact or direct reclaim Patch 14 temporarily disables compaction if an allocation failure occurs after compaction. Testing of compaction was in three stages. For the test, debugging, preempt, the sleep watchdog and lockdep were all enabled but nothing nasty popped out. min_free_kbytes was tuned as recommended by hugeadm to help fragmentation avoidance and high-order allocations. It was tested on X86, X86-64 and PPC64. Ths first test represents one of the easiest cases that can be faced for lumpy reclaim or memory compaction. 1. Machine freshly booted and configured for hugepage usage with a) hugeadm --create-global-mounts b) hugeadm --pool-pages-max DEFAULT:8G c) hugeadm --set-recommended-min_free_kbytes d) hugeadm --set-recommended-shmmax The min_free_kbytes here is important. Anti-fragmentation works best when pageblocks don't mix. hugeadm knows how to calculate a value that will significantly reduce the worst of external-fragmentation-related events as reported by the mm_page_alloc_extfrag tracepoint. 2. Load up memory a) Start updatedb b) Create in parallel a X files of pagesize*128 in size. Wait until files are created. By parallel, I mean that 4096 instances of dd were launched, one after the other using &. The crude objective being to mix filesystem metadata allocations with the buffer cache. c) Delete every second file so that pageblocks are likely to have holes d) kill updatedb if it's still running At this point, the system is quiet, memory is full but it's full with clean filesystem metadata and clean buffer cache that is unmapped. This is readily migrated or discarded so you'd expect lumpy reclaim to have no significant advantage over compaction but this is at the POC stage. 3. In increments, attempt to allocate 5% of memory as hugepages. Measure how long it took, how successful it was, how many direct reclaims took place and how how many compactions. Note the compaction figures might not fully add up as compactions can take place for orders other than the hugepage size X86 vanilla compaction Final page count 913 916 (attempted 1002) pages reclaimed 68296 9791 X86-64 vanilla compaction Final page count: 901 902 (attempted 1002) Total pages reclaimed: 112599 53234 PPC64 vanilla compaction Final page count: 93 94 (attempted 110) Total pages reclaimed: 103216 61838 There was not a dramatic improvement in success rates but it wouldn't be expected in this case either. What was important is that fewer pages were reclaimed in all cases reducing the amount of IO required to satisfy a huge page allocation. The second tests were all performance related - kernbench, netperf, iozone and sysbench. None showed anything too remarkable. The last test was a high-order allocation stress test. Many kernel compiles are started to fill memory with a pressured mix of unmovable and movable allocations. During this, an attempt is made to allocate 90% of memory as huge pages - one at a time with small delays between attempts to avoid flooding the IO queue. vanilla compaction Percentage of request allocated X86 98 99 Percentage of request allocated X86-64 95 98 Percentage of request allocated PPC64 55 70 This patch: rmap_walk_anon() does not use page_lock_anon_vma() for looking up and locking an anon_vma and it does not appear to have sufficient locking to ensure the anon_vma does not disappear from under it. This patch copies an approach used by KSM to take a reference on the anon_vma while pages are being migrated. This should prevent rmap_walk() running into nasty surprises later because anon_vma has been freed. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 01:32:17 +04:00
/* Drop an anon_vma reference if we took one */
if (anon_vma)
put_anon_vma(anon_vma);
unlock_page(page);
out:
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
/*
* If migration is successful, decrease refcount of the newpage,
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
* which will not free the page because new page owner increased
* refcounter.
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
*/
if (rc == MIGRATEPAGE_SUCCESS)
put_page(newpage);
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
return rc;
}
/*
* Obtain the lock on page, remove all ptes and migrate the page
* to the newly allocated page in newpage.
*/
static int unmap_and_move(new_page_t get_new_page,
free_page_t put_new_page,
unsigned long private, struct page *page,
mm: soft-offline: don't free target page in successful page migration Stress testing showed that soft offline events for a process iterating "mmap-pagefault-munmap" loop can trigger VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page(): Soft offlining page 0x70fe1 at 0x70100008d000 Soft offlining page 0x705fb at 0x70300008d000 page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2 flags: 0x1fffff80800000(hwpoison) page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1)) ------------[ cut here ]------------ kernel BUG at /src/linux-dev/mm/page_alloc.c:585! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139 RIP: free_pcppages_bulk+0x52a/0x6f0 Call Trace: drain_pages_zone+0x3d/0x50 drain_local_pages+0x1d/0x30 on_each_cpu_mask+0x46/0x80 drain_all_pages+0x14b/0x1e0 soft_offline_page+0x432/0x6e0 SyS_madvise+0x73c/0x780 system_call_fastpath+0x12/0x17 Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0 RSP <ffff88007a117d28> ---[ end trace 53926436e76d1f35 ]--- When soft offline successfully migrates page, the source page is supposed to be freed. But there is a race condition where a source page looks isolated (i.e. the refcount is 0 and the PageHWPoison is set) but somewhat linked to pcplist. Then another soft offline event calls drain_all_pages() and tries to free such hwpoisoned page, which is forbidden. This odd page state seems to happen due to the race between put_page() in putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play with tweaking drain code as done in commit 9ab3b598d2df "mm: hwpoison: drop lru_add_drain_all() in __soft_offline_page()", or to change page freeing code for this soft offline's purpose. Instead, let's think about the difference between hard offline and soft offline. There is an interesting difference in how to isolate the in-use page between these, that is, hard offline marks PageHWPoison of the target page at first, and doesn't free it by keeping its refcount 1. OTOH, soft offline tries to free the target page then marks PageHWPoison. This difference might be the source of complexity and result in bugs like the above. So making soft offline isolate with keeping refcount can be a solution for this problem. We can pass to page migration code the "reason" which shows the caller, so let's use this more to avoid calling putback_lru_page() when called from soft offline, which effectively does the isolation for soft offline. With this change, target pages of soft offline never be reused without changing migratetype, so this patch also removes the related code. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 02:56:50 +03:00
int force, enum migrate_mode mode,
2020-12-15 06:13:06 +03:00
enum migrate_reason reason,
struct list_head *ret)
{
int rc = MIGRATEPAGE_SUCCESS;
struct page *newpage = NULL;
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:30:07 +03:00
if (!thp_migration_supported() && PageTransHuge(page))
return -ENOSYS;
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:30:07 +03:00
if (page_count(page) == 1) {
/* page was freed from under us. So we are done. */
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
ClearPageActive(page);
ClearPageUnevictable(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
if (unlikely(__PageMovable(page))) {
lock_page(page);
if (!PageMovable(page))
ClearPageIsolated(page);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
unlock_page(page);
}
goto out;
}
newpage = get_new_page(page, private);
if (!newpage)
return -ENOMEM;
rc = __unmap_and_move(page, newpage, force, mode);
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
if (rc == MIGRATEPAGE_SUCCESS)
mm, page_owner: track and print last migrate reason During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:56:18 +03:00
set_page_owner_migrate_reason(newpage, reason);
out:
if (rc != -EAGAIN) {
/*
* A page that has been migrated has all references
* removed and will be freed. A page that has not been
* migrated will have kept its references and be restored.
*/
list_del(&page->lru);
2020-12-15 06:13:06 +03:00
}
mm, compaction: fix NR_ISOLATED_* stats for pfn based migration Since commit bda807d44454 ("mm: migrate: support non-lru movable page migration") isolate_migratepages_block) can isolate !PageLRU pages which would acct_isolated account as NR_ISOLATED_*. Accounting these non-lru pages NR_ISOLATED_{ANON,FILE} doesn't make any sense and it can misguide heuristics based on those counters such as pgdat_reclaimable_pages resp. too_many_isolated which would lead to unexpected stalls during the direct reclaim without any good reason. Note that __alloc_contig_migrate_range can isolate a lot of pages at once. On mobile devices such as 512M ram android Phone, it may use a big zram swap. In some cases zram(zsmalloc) uses too many non-lru but migratedable pages, such as: MemTotal: 468148 kB Normal free:5620kB Free swap:4736kB Total swap:409596kB ZRAM: 164616kB(zsmalloc non-lru pages) active_anon:60700kB inactive_anon:60744kB active_file:34420kB inactive_file:37532kB Fix this by only accounting lru pages to NR_ISOLATED_* in isolate_migratepages_block right after they were isolated and we still know they were on LRU. Drop acct_isolated because it is called after the fact and we've lost that information. Batching per-cpu counter doesn't make much improvement anyway. Also make sure that we uncharge only LRU pages when putting them back on the LRU in putback_movable_pages resp. when unmap_and_move migrates the page. [mhocko@suse.com: replace acct_isolated() with direct counting] Fixes: bda807d44454 ("mm: migrate: support non-lru movable page migration") Link: http://lkml.kernel.org/r/20161019080240.9682-1-mhocko@kernel.org Signed-off-by: Ming Ling <ming.ling@spreadtrum.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:42:26 +03:00
2020-12-15 06:13:06 +03:00
/*
* If migration is successful, releases reference grabbed during
* isolation. Otherwise, restore the page to right list unless
* we want to retry.
*/
if (rc == MIGRATEPAGE_SUCCESS) {
mm, compaction: fix NR_ISOLATED_* stats for pfn based migration Since commit bda807d44454 ("mm: migrate: support non-lru movable page migration") isolate_migratepages_block) can isolate !PageLRU pages which would acct_isolated account as NR_ISOLATED_*. Accounting these non-lru pages NR_ISOLATED_{ANON,FILE} doesn't make any sense and it can misguide heuristics based on those counters such as pgdat_reclaimable_pages resp. too_many_isolated which would lead to unexpected stalls during the direct reclaim without any good reason. Note that __alloc_contig_migrate_range can isolate a lot of pages at once. On mobile devices such as 512M ram android Phone, it may use a big zram swap. In some cases zram(zsmalloc) uses too many non-lru but migratedable pages, such as: MemTotal: 468148 kB Normal free:5620kB Free swap:4736kB Total swap:409596kB ZRAM: 164616kB(zsmalloc non-lru pages) active_anon:60700kB inactive_anon:60744kB active_file:34420kB inactive_file:37532kB Fix this by only accounting lru pages to NR_ISOLATED_* in isolate_migratepages_block right after they were isolated and we still know they were on LRU. Drop acct_isolated because it is called after the fact and we've lost that information. Batching per-cpu counter doesn't make much improvement anyway. Also make sure that we uncharge only LRU pages when putting them back on the LRU in putback_movable_pages resp. when unmap_and_move migrates the page. [mhocko@suse.com: replace acct_isolated() with direct counting] Fixes: bda807d44454 ("mm: migrate: support non-lru movable page migration") Link: http://lkml.kernel.org/r/20161019080240.9682-1-mhocko@kernel.org Signed-off-by: Ming Ling <ming.ling@spreadtrum.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:42:26 +03:00
/*
* Compaction can migrate also non-LRU pages which are
* not accounted to NR_ISOLATED_*. They can be recognized
* as __PageMovable
*/
if (likely(!__PageMovable(page)))
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
page_is_file_lru(page), -thp_nr_pages(page));
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
mm,hwpoison: rework soft offline for in-use pages This patch changes the way we set and handle in-use poisoned pages. Until now, poisoned pages were released to the buddy allocator, trusting that the checks that take place at allocation time would act as a safe net and would skip that page. This has proved to be wrong, as we got some pfn walkers out there, like compaction, that all they care is the page to be in a buddy freelist. Although this might not be the only user, having poisoned pages in the buddy allocator seems a bad idea as we should only have free pages that are ready and meant to be used as such. Before explaining the taken approach, let us break down the kind of pages we can soft offline. - Anonymous THP (after the split, they end up being 4K pages) - Hugetlb - Order-0 pages (that can be either migrated or invalited) * Normal pages (order-0 and anon-THP) - If they are clean and unmapped page cache pages, we invalidate then by means of invalidate_inode_page(). - If they are mapped/dirty, we do the isolate-and-migrate dance. Either way, do not call put_page directly from those paths. Instead, we keep the page and send it to page_handle_poison to perform the right handling. page_handle_poison sets the HWPoison flag and does the last put_page. Down the chain, we placed a check for HWPoison page in free_pages_prepare, that just skips any poisoned page, so those pages do not end up in any pcplist/freelist. After that, we set the refcount on the page to 1 and we increment the poisoned pages counter. If we see that the check in free_pages_prepare creates trouble, we can always do what we do for free pages: - wait until the page hits buddy's freelists - take it off, and flag it The downside of the above approach is that we could race with an allocation, so by the time we want to take the page off the buddy, the page has been already allocated so we cannot soft offline it. But the user could always retry it. * Hugetlb pages - We isolate-and-migrate them After the migration has been successful, we call dissolve_free_huge_page, and we set HWPoison on the page if we succeed. Hugetlb has a slightly different handling though. While for non-hugetlb pages we cared about closing the race with an allocation, doing so for hugetlb pages requires quite some additional and intrusive code (we would need to hook in free_huge_page and some other places). So I decided to not make the code overly complicated and just fail normally if the page we allocated in the meantime. We can always build on top of this. As a bonus, because of the way we handle now in-use pages, we no longer need the put-as-isolation-migratetype dance, that was guarding for poisoned pages to end up in pcplists. Signed-off-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aristeu Rozanski <aris@ruivo.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dmitry Yakunin <zeil@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Qian Cai <cai@lca.pw> Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 06:07:09 +03:00
if (reason != MR_MEMORY_FAILURE)
/*
mm,hwpoison: rework soft offline for in-use pages This patch changes the way we set and handle in-use poisoned pages. Until now, poisoned pages were released to the buddy allocator, trusting that the checks that take place at allocation time would act as a safe net and would skip that page. This has proved to be wrong, as we got some pfn walkers out there, like compaction, that all they care is the page to be in a buddy freelist. Although this might not be the only user, having poisoned pages in the buddy allocator seems a bad idea as we should only have free pages that are ready and meant to be used as such. Before explaining the taken approach, let us break down the kind of pages we can soft offline. - Anonymous THP (after the split, they end up being 4K pages) - Hugetlb - Order-0 pages (that can be either migrated or invalited) * Normal pages (order-0 and anon-THP) - If they are clean and unmapped page cache pages, we invalidate then by means of invalidate_inode_page(). - If they are mapped/dirty, we do the isolate-and-migrate dance. Either way, do not call put_page directly from those paths. Instead, we keep the page and send it to page_handle_poison to perform the right handling. page_handle_poison sets the HWPoison flag and does the last put_page. Down the chain, we placed a check for HWPoison page in free_pages_prepare, that just skips any poisoned page, so those pages do not end up in any pcplist/freelist. After that, we set the refcount on the page to 1 and we increment the poisoned pages counter. If we see that the check in free_pages_prepare creates trouble, we can always do what we do for free pages: - wait until the page hits buddy's freelists - take it off, and flag it The downside of the above approach is that we could race with an allocation, so by the time we want to take the page off the buddy, the page has been already allocated so we cannot soft offline it. But the user could always retry it. * Hugetlb pages - We isolate-and-migrate them After the migration has been successful, we call dissolve_free_huge_page, and we set HWPoison on the page if we succeed. Hugetlb has a slightly different handling though. While for non-hugetlb pages we cared about closing the race with an allocation, doing so for hugetlb pages requires quite some additional and intrusive code (we would need to hook in free_huge_page and some other places). So I decided to not make the code overly complicated and just fail normally if the page we allocated in the meantime. We can always build on top of this. As a bonus, because of the way we handle now in-use pages, we no longer need the put-as-isolation-migratetype dance, that was guarding for poisoned pages to end up in pcplists. Signed-off-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aristeu Rozanski <aris@ruivo.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dmitry Yakunin <zeil@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Qian Cai <cai@lca.pw> Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 06:07:09 +03:00
* We release the page in page_handle_poison.
*/
mm,hwpoison: rework soft offline for in-use pages This patch changes the way we set and handle in-use poisoned pages. Until now, poisoned pages were released to the buddy allocator, trusting that the checks that take place at allocation time would act as a safe net and would skip that page. This has proved to be wrong, as we got some pfn walkers out there, like compaction, that all they care is the page to be in a buddy freelist. Although this might not be the only user, having poisoned pages in the buddy allocator seems a bad idea as we should only have free pages that are ready and meant to be used as such. Before explaining the taken approach, let us break down the kind of pages we can soft offline. - Anonymous THP (after the split, they end up being 4K pages) - Hugetlb - Order-0 pages (that can be either migrated or invalited) * Normal pages (order-0 and anon-THP) - If they are clean and unmapped page cache pages, we invalidate then by means of invalidate_inode_page(). - If they are mapped/dirty, we do the isolate-and-migrate dance. Either way, do not call put_page directly from those paths. Instead, we keep the page and send it to page_handle_poison to perform the right handling. page_handle_poison sets the HWPoison flag and does the last put_page. Down the chain, we placed a check for HWPoison page in free_pages_prepare, that just skips any poisoned page, so those pages do not end up in any pcplist/freelist. After that, we set the refcount on the page to 1 and we increment the poisoned pages counter. If we see that the check in free_pages_prepare creates trouble, we can always do what we do for free pages: - wait until the page hits buddy's freelists - take it off, and flag it The downside of the above approach is that we could race with an allocation, so by the time we want to take the page off the buddy, the page has been already allocated so we cannot soft offline it. But the user could always retry it. * Hugetlb pages - We isolate-and-migrate them After the migration has been successful, we call dissolve_free_huge_page, and we set HWPoison on the page if we succeed. Hugetlb has a slightly different handling though. While for non-hugetlb pages we cared about closing the race with an allocation, doing so for hugetlb pages requires quite some additional and intrusive code (we would need to hook in free_huge_page and some other places). So I decided to not make the code overly complicated and just fail normally if the page we allocated in the meantime. We can always build on top of this. As a bonus, because of the way we handle now in-use pages, we no longer need the put-as-isolation-migratetype dance, that was guarding for poisoned pages to end up in pcplists. Signed-off-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aristeu Rozanski <aris@ruivo.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dmitry Yakunin <zeil@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Qian Cai <cai@lca.pw> Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 06:07:09 +03:00
put_page(page);
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
} else {
2020-12-15 06:13:06 +03:00
if (rc != -EAGAIN)
list_add_tail(&page->lru, ret);
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
mm: use put_page() to free page instead of putback_lru_page() Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:02 +03:00
if (put_new_page)
put_new_page(newpage, private);
else
put_page(newpage);
}
return rc;
}
/*
* Counterpart of unmap_and_move_page() for hugepage migration.
*
* This function doesn't wait the completion of hugepage I/O
* because there is no race between I/O and migration for hugepage.
* Note that currently hugepage I/O occurs only in direct I/O
* where no lock is held and PG_writeback is irrelevant,
* and writeback status of all subpages are counted in the reference
* count of the head page (i.e. if all subpages of a 2MB hugepage are
* under direct I/O, the reference of the head page is 512 and a bit more.)
* This means that when we try to migrate hugepage whose subpages are
* doing direct I/O, some references remain after try_to_unmap() and
* hugepage migration fails without data corruption.
*
* There is also no race when direct I/O is issued on the page under migration,
* because then pte is replaced with migration swap entry and direct I/O code
* will wait in the page fault for migration to complete.
*/
static int unmap_and_move_huge_page(new_page_t get_new_page,
free_page_t put_new_page, unsigned long private,
struct page *hpage, int force,
2020-12-15 06:13:06 +03:00
enum migrate_mode mode, int reason,
struct list_head *ret)
{
struct folio *dst, *src = page_folio(hpage);
int rc = -EAGAIN;
mm: unmapped page migration avoid unmap+remap overhead Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were created for use on pages almost certainly mapped into userspace. But nowadays compaction often applies them to unmapped page cache pages: which may exacerbate contention on i_mmap_rwsem quite unnecessarily, since try_to_unmap_file() makes no preliminary page_mapped() check. Now check page_mapped() in __unmap_and_move(); and avoid repeating the same overhead in rmap_walk_file() - don't remove_migration_ptes() when we never inserted any. (The PageAnon(page) comment blocks now look even sillier than before, but clean that up on some other occasion. And note in passing that try_to_unmap_one() does not use a migration entry when PageSwapCache, so remove_migration_ptes() will then not update that swap entry to newpage pte: not a big deal, but something else to clean up later.) Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex" conversion to i_mmap_rwsem, that "The biggest winner of these changes is migration": a part of the reason might be all of that unnecessary taking of i_mmap_mutex in page migration; and it's rather a shame that I didn't get around to sending this patch in before his - this one is much less useful after Davidlohr's conversion to rwsem, but still good. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 03:56:19 +03:00
int page_was_mapped = 0;
struct page *new_hpage;
struct anon_vma *anon_vma = NULL;
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2. While discussing the issue with huge_pte_offset [1], I remembered that there were more outstanding hugetlb races. These issues are: 1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become invalid via a call to huge_pmd_unshare by another thread. 2) hugetlbfs page faults can race with truncation causing invalid global reserve counts and state. A previous attempt was made to use i_mmap_rwsem in this manner as described at [2]. However, those patches were reverted starting with [3] due to locking issues. To effectively use i_mmap_rwsem to address the above issues it needs to be held (in read mode) during page fault processing. However, during fault processing we need to lock the page we will be adding. Lock ordering requires we take page lock before i_mmap_rwsem. Waiting until after taking the page lock is too late in the fault process for the synchronization we want to do. To address this lock ordering issue, the following patches change the lock ordering for hugetlb pages. This is not too invasive as hugetlbfs processing is done separate from core mm in many places. However, I don't really like this idea. Much ugliness is contained in the new routine hugetlb_page_mapping_lock_write() of patch 1. The only other way I can think of to address these issues is by catching all the races. After catching a race, cleanup, backout, retry ... etc, as needed. This can get really ugly, especially for huge page reservations. At one time, I started writing some of the reservation backout code for page faults and it got so ugly and complicated I went down the path of adding synchronization to avoid the races. Any other suggestions would be welcome. [1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/ [2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/ [3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com [4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/ [5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/ This patch (of 2): While looking at BUGs associated with invalid huge page map counts, it was discovered and observed that a huge pte pointer could become 'invalid' and point to another task's page table. Consider the following: A task takes a page fault on a shared hugetlbfs file and calls huge_pte_alloc to get a ptep. Suppose the returned ptep points to a shared pmd. Now, another task truncates the hugetlbfs file. As part of truncation, it unmaps everyone who has the file mapped. If the range being truncated is covered by a shared pmd, huge_pmd_unshare will be called. For all but the last user of the shared pmd, huge_pmd_unshare will clear the pud pointing to the pmd. If the task in the middle of the page fault is not the last user, the ptep returned by huge_pte_alloc now points to another task's page table or worse. This leads to bad things such as incorrect page map/reference counts or invalid memory references. To fix, expand the use of i_mmap_rwsem as follows: - i_mmap_rwsem is held in read mode whenever huge_pmd_share is called. huge_pmd_share is only called via huge_pte_alloc, so callers of huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers of huge_pte_alloc continue to hold the semaphore until finished with the ptep. - i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called. One problem with this scheme is that it requires taking i_mmap_rwsem before taking the page lock during page faults. This is not the order specified in the rest of mm code. Handling of hugetlbfs pages is mostly isolated today. Therefore, we use this alternative locking order for PageHuge() pages. mapping->i_mmap_rwsem hugetlb_fault_mutex (hugetlbfs specific page fault mutex) page->flags PG_locked (lock_page) To help with lock ordering issues, hugetlb_page_mapping_lock_write() is introduced to write lock the i_mmap_rwsem associated with a page. In most cases it is easy to get address_space via vma->vm_file->f_mapping. However, in the case of migration or memory errors for anon pages we do not have an associated vma. A new routine _get_hugetlb_page_mapping() will use anon_vma to get address_space in these cases. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 07:11:05 +03:00
struct address_space *mapping = NULL;
/*
mm/hugetlb: distinguish between migratability and movability Patch series "arm64/mm: Enable HugeTLB migration", v4. This patch series enables HugeTLB migration support for all supported huge page sizes at all levels including contiguous bit implementation. Following HugeTLB migration support matrix has been enabled with this patch series. All permutations have been tested except for the 16GB. CONT PTE PMD CONT PMD PUD -------- --- -------- --- 4K: 64K 2M 32M 1G 16K: 2M 32M 1G 64K: 2M 512M 16G First the series adds migration support for PUD based huge pages. It then adds a platform specific hook to query an architecture if a given huge page size is supported for migration while also providing a default fallback option preserving the existing semantics which just checks for (PMD|PUD|PGDIR)_SHIFT macros. The last two patches enables HugeTLB migration on arm64 and subscribe to this new platform specific hook by defining an override. The second patch differentiates between movability and migratability aspects of huge pages and implements hugepage_movable_supported() which can then be used during allocation to decide whether to place the huge page in movable zone or not. This patch (of 5): During huge page allocation it's migratability is checked to determine if it should be placed under movable zones with GFP_HIGHUSER_MOVABLE. But the movability aspect of the huge page could depend on other factors than just migratability. Movability in itself is a distinct property which should not be tied with migratability alone. This differentiates these two and implements an enhanced movability check which also considers huge page size to determine if it is feasible to be placed under a movable zone. At present it just checks for gigantic pages but going forward it can incorporate other enhanced checks. Link: http://lkml.kernel.org/r/1545121450-1663-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Steve Capper <steve.capper@arm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:43:44 +03:00
* Migratability of hugepages depends on architectures and their size.
* This check is necessary because some callers of hugepage migration
* like soft offline and memory hotremove don't walk through page
* tables or check whether the hugepage is pmd-based or not before
* kicking migration.
*/
if (!hugepage_migration_supported(page_hstate(hpage))) {
2020-12-15 06:13:06 +03:00
list_move_tail(&hpage->lru, ret);
return -ENOSYS;
}
if (page_count(hpage) == 1) {
/* page was freed from under us. So we are done. */
putback_active_hugepage(hpage);
return MIGRATEPAGE_SUCCESS;
}
new_hpage = get_new_page(hpage, private);
if (!new_hpage)
return -ENOMEM;
dst = page_folio(new_hpage);
if (!trylock_page(hpage)) {
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
if (!force)
goto out;
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:06 +03:00
switch (mode) {
case MIGRATE_SYNC:
case MIGRATE_SYNC_NO_COPY:
break;
default:
goto out;
}
lock_page(hpage);
}
hugetlbfs: fix races and page leaks during migration hugetlb pages should only be migrated if they are 'active'. The routines set/clear_page_huge_active() modify the active state of hugetlb pages. When a new hugetlb page is allocated at fault time, set_page_huge_active is called before the page is locked. Therefore, another thread could race and migrate the page while it is being added to page table by the fault code. This race is somewhat hard to trigger, but can be seen by strategically adding udelay to simulate worst case scheduling behavior. Depending on 'how' the code races, various BUG()s could be triggered. To address this issue, simply delay the set_page_huge_active call until after the page is successfully added to the page table. Hugetlb pages can also be leaked at migration time if the pages are associated with a file in an explicitly mounted hugetlbfs filesystem. For example, consider a two node system with 4GB worth of huge pages available. A program mmaps a 2G file in a hugetlbfs filesystem. It then migrates the pages associated with the file from one node to another. When the program exits, huge page counts are as follows: node0 1024 free_hugepages 1024 nr_hugepages node1 0 free_hugepages 1024 nr_hugepages Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool That is as expected. 2G of huge pages are taken from the free_hugepages counts, and 2G is the size of the file in the explicitly mounted filesystem. If the file is then removed, the counts become: node0 1024 free_hugepages 1024 nr_hugepages node1 1024 free_hugepages 1024 nr_hugepages Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool Note that the filesystem still shows 2G of pages used, while there actually are no huge pages in use. The only way to 'fix' the filesystem accounting is to unmount the filesystem If a hugetlb page is associated with an explicitly mounted filesystem, this information in contained in the page_private field. At migration time, this information is not preserved. To fix, simply transfer page_private from old to new page at migration time if necessary. There is a related race with removing a huge page from a file and migration. When a huge page is removed from the pagecache, the page_mapping() field is cleared, yet page_private remains set until the page is actually freed by free_huge_page(). A page could be migrated while in this state. However, since page_mapping() is not set the hugetlbfs specific routine to transfer page_private is not called and we leak the page count in the filesystem. To fix that, check for this condition before migrating a huge page. If the condition is detected, return EBUSY for the page. Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: <stable@vger.kernel.org> [mike.kravetz@oracle.com: v2] Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com [mike.kravetz@oracle.com: update comment and changelog] Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 03:22:02 +03:00
/*
* Check for pages which are in the process of being freed. Without
* page_mapping() set, hugetlbfs specific move page routine will not
* be called and we could leak usage counts for subpools.
*/
mm: migrate: fix missing update page_private to hugetlb_page_subpool Since commit d6995da31122 ("hugetlb: use page.private for hugetlb specific page flags") converts page.private for hugetlb specific page flags. We should use hugetlb_page_subpool() to get the subpool pointer instead of page_private(). This 'could' prevent the migration of hugetlb pages. page_private(hpage) is now used for hugetlb page specific flags. At migration time, the only flag which could be set is HPageVmemmapOptimized. This flag will only be set if the new vmemmap reduction feature is enabled. In addition, !page_mapping() implies an anonymous mapping. So, this will prevent migration of hugetb pages in anonymous mappings if the vmemmap reduction feature is enabled. In addition, that if statement checked for the rare race condition of a page being migrated while in the process of being freed. Since that check is now wrong, we could leak hugetlb subpool usage counts. The commit forgot to update it in the page migration routine. So fix it. [songmuchun@bytedance.com: fix compiler error when !CONFIG_HUGETLB_PAGE reported by Randy] Link: https://lkml.kernel.org/r/20210521022747.35736-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210520025949.1866-1-songmuchun@bytedance.com Fixes: d6995da31122 ("hugetlb: use page.private for hugetlb specific page flags") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reported-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Anshuman Khandual <anshuman.khandual@arm.com> [arm64] Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:51:29 +03:00
if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
hugetlbfs: fix races and page leaks during migration hugetlb pages should only be migrated if they are 'active'. The routines set/clear_page_huge_active() modify the active state of hugetlb pages. When a new hugetlb page is allocated at fault time, set_page_huge_active is called before the page is locked. Therefore, another thread could race and migrate the page while it is being added to page table by the fault code. This race is somewhat hard to trigger, but can be seen by strategically adding udelay to simulate worst case scheduling behavior. Depending on 'how' the code races, various BUG()s could be triggered. To address this issue, simply delay the set_page_huge_active call until after the page is successfully added to the page table. Hugetlb pages can also be leaked at migration time if the pages are associated with a file in an explicitly mounted hugetlbfs filesystem. For example, consider a two node system with 4GB worth of huge pages available. A program mmaps a 2G file in a hugetlbfs filesystem. It then migrates the pages associated with the file from one node to another. When the program exits, huge page counts are as follows: node0 1024 free_hugepages 1024 nr_hugepages node1 0 free_hugepages 1024 nr_hugepages Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool That is as expected. 2G of huge pages are taken from the free_hugepages counts, and 2G is the size of the file in the explicitly mounted filesystem. If the file is then removed, the counts become: node0 1024 free_hugepages 1024 nr_hugepages node1 1024 free_hugepages 1024 nr_hugepages Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool Note that the filesystem still shows 2G of pages used, while there actually are no huge pages in use. The only way to 'fix' the filesystem accounting is to unmount the filesystem If a hugetlb page is associated with an explicitly mounted filesystem, this information in contained in the page_private field. At migration time, this information is not preserved. To fix, simply transfer page_private from old to new page at migration time if necessary. There is a related race with removing a huge page from a file and migration. When a huge page is removed from the pagecache, the page_mapping() field is cleared, yet page_private remains set until the page is actually freed by free_huge_page(). A page could be migrated while in this state. However, since page_mapping() is not set the hugetlbfs specific routine to transfer page_private is not called and we leak the page count in the filesystem. To fix that, check for this condition before migrating a huge page. If the condition is detected, return EBUSY for the page. Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: <stable@vger.kernel.org> [mike.kravetz@oracle.com: v2] Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com [mike.kravetz@oracle.com: update comment and changelog] Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 03:22:02 +03:00
rc = -EBUSY;
goto out_unlock;
}
if (PageAnon(hpage))
anon_vma = page_get_anon_vma(hpage);
if (unlikely(!trylock_page(new_hpage)))
goto put_anon;
mm: unmapped page migration avoid unmap+remap overhead Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were created for use on pages almost certainly mapped into userspace. But nowadays compaction often applies them to unmapped page cache pages: which may exacerbate contention on i_mmap_rwsem quite unnecessarily, since try_to_unmap_file() makes no preliminary page_mapped() check. Now check page_mapped() in __unmap_and_move(); and avoid repeating the same overhead in rmap_walk_file() - don't remove_migration_ptes() when we never inserted any. (The PageAnon(page) comment blocks now look even sillier than before, but clean that up on some other occasion. And note in passing that try_to_unmap_one() does not use a migration entry when PageSwapCache, so remove_migration_ptes() will then not update that swap entry to newpage pte: not a big deal, but something else to clean up later.) Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex" conversion to i_mmap_rwsem, that "The biggest winner of these changes is migration": a part of the reason might be all of that unnecessary taking of i_mmap_mutex in page migration; and it's rather a shame that I didn't get around to sending this patch in before his - this one is much less useful after Davidlohr's conversion to rwsem, but still good. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 03:56:19 +03:00
if (page_mapped(hpage)) {
mm/rmap: split migration into its own function Migration is currently implemented as a mode of operation for try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE. However it does not have much in common with the rest of the unmap functionality of try_to_unmap_one() and thus splitting it into a separate function reduces the complexity of try_to_unmap_one() making it more readable. Several simplifications can also be made in try_to_migrate_one() based on the following observations: - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK. - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON. - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH. TTU_SPLIT_FREEZE is a special case of migration used when splitting an anonymous page. This is most easily dealt with by calling the correct function from unmap_page() in mm/huge_memory.c - either try_to_migrate() for PageAnon or try_to_unmap(). Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:54:16 +03:00
enum ttu_flags ttu = 0;
hugetlbfs: fix anon huge page migration race Qian Cai reported the following BUG in [1] LTP: starting move_pages12 BUG: unable to handle page fault for address: ffffffffffffffe0 ... RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63 Call Trace: rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864 try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763 migrate_pages+0x1005/0x1fb0 move_pages_and_store_status.isra.47+0xd7/0x1a0 __x64_sys_move_pages+0xa5c/0x1100 do_syscall_64+0x5f/0x310 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Hugh Dickins diagnosed this as a migration bug caused by code introduced to use i_mmap_rwsem for pmd sharing synchronization. Specifically, the routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED flag to try_to_unmap() while holding i_mmap_rwsem. This is wrong for anon pages as the anon_vma_lock should be held in this case. Further analysis suggested that i_mmap_rwsem was not required to he held at all when calling try_to_unmap for anon pages as an anon page could never be part of a shared pmd mapping. Discussion also revealed that the hack in hugetlb_page_mapping_lock_write to drop page lock and acquire i_mmap_rwsem is wrong. There is no way to keep mapping valid while dropping page lock. This patch does the following: - Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when calling try_to_unmap. - Remove the hacky code in hugetlb_page_mapping_lock_write. The routine will now simply do a 'trylock' while still holding the page lock. If the trylock fails, it will return NULL. This could impact the callers: - migration calling code will receive -EAGAIN and retry up to the hard coded limit (10). - memory error code will treat the page as BUSY. This will force killing (SIGKILL) instead of SIGBUS any mapping tasks. Do note that this change in behavior only happens when there is a race. None of the standard kernel testing suites actually hit this race, but it is possible. [1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/ [2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/ Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") Reported-by: Qian Cai <cai@lca.pw> Suggested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 09:52:16 +03:00
if (!PageAnon(hpage)) {
/*
* In shared mappings, try_to_unmap could potentially
* call huge_pmd_unshare. Because of this, take
* semaphore in write mode here and set TTU_RMAP_LOCKED
* to let lower levels know we have taken the lock.
*/
mapping = hugetlb_page_mapping_lock_write(hpage);
if (unlikely(!mapping))
goto unlock_put_anon;
ttu = TTU_RMAP_LOCKED;
hugetlbfs: fix anon huge page migration race Qian Cai reported the following BUG in [1] LTP: starting move_pages12 BUG: unable to handle page fault for address: ffffffffffffffe0 ... RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63 Call Trace: rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864 try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763 migrate_pages+0x1005/0x1fb0 move_pages_and_store_status.isra.47+0xd7/0x1a0 __x64_sys_move_pages+0xa5c/0x1100 do_syscall_64+0x5f/0x310 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Hugh Dickins diagnosed this as a migration bug caused by code introduced to use i_mmap_rwsem for pmd sharing synchronization. Specifically, the routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED flag to try_to_unmap() while holding i_mmap_rwsem. This is wrong for anon pages as the anon_vma_lock should be held in this case. Further analysis suggested that i_mmap_rwsem was not required to he held at all when calling try_to_unmap for anon pages as an anon page could never be part of a shared pmd mapping. Discussion also revealed that the hack in hugetlb_page_mapping_lock_write to drop page lock and acquire i_mmap_rwsem is wrong. There is no way to keep mapping valid while dropping page lock. This patch does the following: - Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when calling try_to_unmap. - Remove the hacky code in hugetlb_page_mapping_lock_write. The routine will now simply do a 'trylock' while still holding the page lock. If the trylock fails, it will return NULL. This could impact the callers: - migration calling code will receive -EAGAIN and retry up to the hard coded limit (10). - memory error code will treat the page as BUSY. This will force killing (SIGKILL) instead of SIGBUS any mapping tasks. Do note that this change in behavior only happens when there is a race. None of the standard kernel testing suites actually hit this race, but it is possible. [1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/ [2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/ Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") Reported-by: Qian Cai <cai@lca.pw> Suggested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 09:52:16 +03:00
}
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2. While discussing the issue with huge_pte_offset [1], I remembered that there were more outstanding hugetlb races. These issues are: 1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become invalid via a call to huge_pmd_unshare by another thread. 2) hugetlbfs page faults can race with truncation causing invalid global reserve counts and state. A previous attempt was made to use i_mmap_rwsem in this manner as described at [2]. However, those patches were reverted starting with [3] due to locking issues. To effectively use i_mmap_rwsem to address the above issues it needs to be held (in read mode) during page fault processing. However, during fault processing we need to lock the page we will be adding. Lock ordering requires we take page lock before i_mmap_rwsem. Waiting until after taking the page lock is too late in the fault process for the synchronization we want to do. To address this lock ordering issue, the following patches change the lock ordering for hugetlb pages. This is not too invasive as hugetlbfs processing is done separate from core mm in many places. However, I don't really like this idea. Much ugliness is contained in the new routine hugetlb_page_mapping_lock_write() of patch 1. The only other way I can think of to address these issues is by catching all the races. After catching a race, cleanup, backout, retry ... etc, as needed. This can get really ugly, especially for huge page reservations. At one time, I started writing some of the reservation backout code for page faults and it got so ugly and complicated I went down the path of adding synchronization to avoid the races. Any other suggestions would be welcome. [1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/ [2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/ [3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com [4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/ [5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/ This patch (of 2): While looking at BUGs associated with invalid huge page map counts, it was discovered and observed that a huge pte pointer could become 'invalid' and point to another task's page table. Consider the following: A task takes a page fault on a shared hugetlbfs file and calls huge_pte_alloc to get a ptep. Suppose the returned ptep points to a shared pmd. Now, another task truncates the hugetlbfs file. As part of truncation, it unmaps everyone who has the file mapped. If the range being truncated is covered by a shared pmd, huge_pmd_unshare will be called. For all but the last user of the shared pmd, huge_pmd_unshare will clear the pud pointing to the pmd. If the task in the middle of the page fault is not the last user, the ptep returned by huge_pte_alloc now points to another task's page table or worse. This leads to bad things such as incorrect page map/reference counts or invalid memory references. To fix, expand the use of i_mmap_rwsem as follows: - i_mmap_rwsem is held in read mode whenever huge_pmd_share is called. huge_pmd_share is only called via huge_pte_alloc, so callers of huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers of huge_pte_alloc continue to hold the semaphore until finished with the ptep. - i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called. One problem with this scheme is that it requires taking i_mmap_rwsem before taking the page lock during page faults. This is not the order specified in the rest of mm code. Handling of hugetlbfs pages is mostly isolated today. Therefore, we use this alternative locking order for PageHuge() pages. mapping->i_mmap_rwsem hugetlb_fault_mutex (hugetlbfs specific page fault mutex) page->flags PG_locked (lock_page) To help with lock ordering issues, hugetlb_page_mapping_lock_write() is introduced to write lock the i_mmap_rwsem associated with a page. In most cases it is easy to get address_space via vma->vm_file->f_mapping. However, in the case of migration or memory errors for anon pages we do not have an associated vma. A new routine _get_hugetlb_page_mapping() will use anon_vma to get address_space in these cases. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 07:11:05 +03:00
try_to_migrate(src, ttu);
mm: unmapped page migration avoid unmap+remap overhead Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were created for use on pages almost certainly mapped into userspace. But nowadays compaction often applies them to unmapped page cache pages: which may exacerbate contention on i_mmap_rwsem quite unnecessarily, since try_to_unmap_file() makes no preliminary page_mapped() check. Now check page_mapped() in __unmap_and_move(); and avoid repeating the same overhead in rmap_walk_file() - don't remove_migration_ptes() when we never inserted any. (The PageAnon(page) comment blocks now look even sillier than before, but clean that up on some other occasion. And note in passing that try_to_unmap_one() does not use a migration entry when PageSwapCache, so remove_migration_ptes() will then not update that swap entry to newpage pte: not a big deal, but something else to clean up later.) Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex" conversion to i_mmap_rwsem, that "The biggest winner of these changes is migration": a part of the reason might be all of that unnecessary taking of i_mmap_mutex in page migration; and it's rather a shame that I didn't get around to sending this patch in before his - this one is much less useful after Davidlohr's conversion to rwsem, but still good. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 03:56:19 +03:00
page_was_mapped = 1;
hugetlbfs: fix anon huge page migration race Qian Cai reported the following BUG in [1] LTP: starting move_pages12 BUG: unable to handle page fault for address: ffffffffffffffe0 ... RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63 Call Trace: rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864 try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763 migrate_pages+0x1005/0x1fb0 move_pages_and_store_status.isra.47+0xd7/0x1a0 __x64_sys_move_pages+0xa5c/0x1100 do_syscall_64+0x5f/0x310 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Hugh Dickins diagnosed this as a migration bug caused by code introduced to use i_mmap_rwsem for pmd sharing synchronization. Specifically, the routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED flag to try_to_unmap() while holding i_mmap_rwsem. This is wrong for anon pages as the anon_vma_lock should be held in this case. Further analysis suggested that i_mmap_rwsem was not required to he held at all when calling try_to_unmap for anon pages as an anon page could never be part of a shared pmd mapping. Discussion also revealed that the hack in hugetlb_page_mapping_lock_write to drop page lock and acquire i_mmap_rwsem is wrong. There is no way to keep mapping valid while dropping page lock. This patch does the following: - Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when calling try_to_unmap. - Remove the hacky code in hugetlb_page_mapping_lock_write. The routine will now simply do a 'trylock' while still holding the page lock. If the trylock fails, it will return NULL. This could impact the callers: - migration calling code will receive -EAGAIN and retry up to the hard coded limit (10). - memory error code will treat the page as BUSY. This will force killing (SIGKILL) instead of SIGBUS any mapping tasks. Do note that this change in behavior only happens when there is a race. None of the standard kernel testing suites actually hit this race, but it is possible. [1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/ [2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/ Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") Reported-by: Qian Cai <cai@lca.pw> Suggested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 09:52:16 +03:00
if (ttu & TTU_RMAP_LOCKED)
hugetlbfs: fix anon huge page migration race Qian Cai reported the following BUG in [1] LTP: starting move_pages12 BUG: unable to handle page fault for address: ffffffffffffffe0 ... RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63 Call Trace: rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864 try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763 migrate_pages+0x1005/0x1fb0 move_pages_and_store_status.isra.47+0xd7/0x1a0 __x64_sys_move_pages+0xa5c/0x1100 do_syscall_64+0x5f/0x310 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Hugh Dickins diagnosed this as a migration bug caused by code introduced to use i_mmap_rwsem for pmd sharing synchronization. Specifically, the routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED flag to try_to_unmap() while holding i_mmap_rwsem. This is wrong for anon pages as the anon_vma_lock should be held in this case. Further analysis suggested that i_mmap_rwsem was not required to he held at all when calling try_to_unmap for anon pages as an anon page could never be part of a shared pmd mapping. Discussion also revealed that the hack in hugetlb_page_mapping_lock_write to drop page lock and acquire i_mmap_rwsem is wrong. There is no way to keep mapping valid while dropping page lock. This patch does the following: - Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when calling try_to_unmap. - Remove the hacky code in hugetlb_page_mapping_lock_write. The routine will now simply do a 'trylock' while still holding the page lock. If the trylock fails, it will return NULL. This could impact the callers: - migration calling code will receive -EAGAIN and retry up to the hard coded limit (10). - memory error code will treat the page as BUSY. This will force killing (SIGKILL) instead of SIGBUS any mapping tasks. Do note that this change in behavior only happens when there is a race. None of the standard kernel testing suites actually hit this race, but it is possible. [1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/ [2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/ Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") Reported-by: Qian Cai <cai@lca.pw> Suggested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 09:52:16 +03:00
i_mmap_unlock_write(mapping);
mm: unmapped page migration avoid unmap+remap overhead Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were created for use on pages almost certainly mapped into userspace. But nowadays compaction often applies them to unmapped page cache pages: which may exacerbate contention on i_mmap_rwsem quite unnecessarily, since try_to_unmap_file() makes no preliminary page_mapped() check. Now check page_mapped() in __unmap_and_move(); and avoid repeating the same overhead in rmap_walk_file() - don't remove_migration_ptes() when we never inserted any. (The PageAnon(page) comment blocks now look even sillier than before, but clean that up on some other occasion. And note in passing that try_to_unmap_one() does not use a migration entry when PageSwapCache, so remove_migration_ptes() will then not update that swap entry to newpage pte: not a big deal, but something else to clean up later.) Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex" conversion to i_mmap_rwsem, that "The biggest winner of these changes is migration": a part of the reason might be all of that unnecessary taking of i_mmap_mutex in page migration; and it's rather a shame that I didn't get around to sending this patch in before his - this one is much less useful after Davidlohr's conversion to rwsem, but still good. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 03:56:19 +03:00
}
if (!page_mapped(hpage))
rc = move_to_new_page(new_hpage, hpage, mode);
hugetlbfs: fix anon huge page migration race Qian Cai reported the following BUG in [1] LTP: starting move_pages12 BUG: unable to handle page fault for address: ffffffffffffffe0 ... RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63 Call Trace: rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864 try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763 migrate_pages+0x1005/0x1fb0 move_pages_and_store_status.isra.47+0xd7/0x1a0 __x64_sys_move_pages+0xa5c/0x1100 do_syscall_64+0x5f/0x310 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Hugh Dickins diagnosed this as a migration bug caused by code introduced to use i_mmap_rwsem for pmd sharing synchronization. Specifically, the routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED flag to try_to_unmap() while holding i_mmap_rwsem. This is wrong for anon pages as the anon_vma_lock should be held in this case. Further analysis suggested that i_mmap_rwsem was not required to he held at all when calling try_to_unmap for anon pages as an anon page could never be part of a shared pmd mapping. Discussion also revealed that the hack in hugetlb_page_mapping_lock_write to drop page lock and acquire i_mmap_rwsem is wrong. There is no way to keep mapping valid while dropping page lock. This patch does the following: - Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when calling try_to_unmap. - Remove the hacky code in hugetlb_page_mapping_lock_write. The routine will now simply do a 'trylock' while still holding the page lock. If the trylock fails, it will return NULL. This could impact the callers: - migration calling code will receive -EAGAIN and retry up to the hard coded limit (10). - memory error code will treat the page as BUSY. This will force killing (SIGKILL) instead of SIGBUS any mapping tasks. Do note that this change in behavior only happens when there is a race. None of the standard kernel testing suites actually hit this race, but it is possible. [1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/ [2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/ Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") Reported-by: Qian Cai <cai@lca.pw> Suggested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 09:52:16 +03:00
if (page_was_mapped)
remove_migration_ptes(src,
rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2. While discussing the issue with huge_pte_offset [1], I remembered that there were more outstanding hugetlb races. These issues are: 1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become invalid via a call to huge_pmd_unshare by another thread. 2) hugetlbfs page faults can race with truncation causing invalid global reserve counts and state. A previous attempt was made to use i_mmap_rwsem in this manner as described at [2]. However, those patches were reverted starting with [3] due to locking issues. To effectively use i_mmap_rwsem to address the above issues it needs to be held (in read mode) during page fault processing. However, during fault processing we need to lock the page we will be adding. Lock ordering requires we take page lock before i_mmap_rwsem. Waiting until after taking the page lock is too late in the fault process for the synchronization we want to do. To address this lock ordering issue, the following patches change the lock ordering for hugetlb pages. This is not too invasive as hugetlbfs processing is done separate from core mm in many places. However, I don't really like this idea. Much ugliness is contained in the new routine hugetlb_page_mapping_lock_write() of patch 1. The only other way I can think of to address these issues is by catching all the races. After catching a race, cleanup, backout, retry ... etc, as needed. This can get really ugly, especially for huge page reservations. At one time, I started writing some of the reservation backout code for page faults and it got so ugly and complicated I went down the path of adding synchronization to avoid the races. Any other suggestions would be welcome. [1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/ [2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/ [3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com [4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/ [5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/ This patch (of 2): While looking at BUGs associated with invalid huge page map counts, it was discovered and observed that a huge pte pointer could become 'invalid' and point to another task's page table. Consider the following: A task takes a page fault on a shared hugetlbfs file and calls huge_pte_alloc to get a ptep. Suppose the returned ptep points to a shared pmd. Now, another task truncates the hugetlbfs file. As part of truncation, it unmaps everyone who has the file mapped. If the range being truncated is covered by a shared pmd, huge_pmd_unshare will be called. For all but the last user of the shared pmd, huge_pmd_unshare will clear the pud pointing to the pmd. If the task in the middle of the page fault is not the last user, the ptep returned by huge_pte_alloc now points to another task's page table or worse. This leads to bad things such as incorrect page map/reference counts or invalid memory references. To fix, expand the use of i_mmap_rwsem as follows: - i_mmap_rwsem is held in read mode whenever huge_pmd_share is called. huge_pmd_share is only called via huge_pte_alloc, so callers of huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers of huge_pte_alloc continue to hold the semaphore until finished with the ptep. - i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called. One problem with this scheme is that it requires taking i_mmap_rwsem before taking the page lock during page faults. This is not the order specified in the rest of mm code. Handling of hugetlbfs pages is mostly isolated today. Therefore, we use this alternative locking order for PageHuge() pages. mapping->i_mmap_rwsem hugetlb_fault_mutex (hugetlbfs specific page fault mutex) page->flags PG_locked (lock_page) To help with lock ordering issues, hugetlb_page_mapping_lock_write() is introduced to write lock the i_mmap_rwsem associated with a page. In most cases it is easy to get address_space via vma->vm_file->f_mapping. However, in the case of migration or memory errors for anon pages we do not have an associated vma. A new routine _get_hugetlb_page_mapping() will use anon_vma to get address_space in these cases. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 07:11:05 +03:00
unlock_put_anon:
unlock_page(new_hpage);
put_anon:
if (anon_vma)
put_anon_vma(anon_vma);
if (rc == MIGRATEPAGE_SUCCESS) {
mm, hugetlb: do not rely on overcommit limit during migration hugepage migration relies on __alloc_buddy_huge_page to get a new page. This has 2 main disadvantages. 1) it doesn't allow to migrate any huge page if the pool is used completely which is not an exceptional case as the pool is static and unused memory is just wasted. 2) it leads to a weird semantic when migration between two numa nodes might increase the pool size of the destination NUMA node while the page is in use. The issue is caused by per NUMA node surplus pages tracking (see free_huge_page). Address both issues by changing the way how we allocate and account pages allocated for migration. Those should temporal by definition. So we mark them that way (we will abuse page flags in the 3rd page) and update free_huge_page to free such pages to the page allocator. Page migration path then just transfers the temporal status from the new page to the old one which will be freed on the last reference. The global surplus count will never change during this path but we still have to be careful when migrating a per-node suprlus page. This is now handled in move_hugetlb_state which is called from the migration path and it copies the hugetlb specific page state and fixes up the accounting when needed Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better reflect its purpose. The new allocation routine for the migration path is __alloc_migrate_huge_page. The user visible effect of this patch is that migrated pages are really temporal and they travel between NUMA nodes as per the migration request: Before migration /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 After /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 with the previous implementation, both nodes would have nr_hugepages:1 until the page is freed. Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 03:20:48 +03:00
move_hugetlb_state(hpage, new_hpage, reason);
put_new_page = NULL;
}
hugetlbfs: fix races and page leaks during migration hugetlb pages should only be migrated if they are 'active'. The routines set/clear_page_huge_active() modify the active state of hugetlb pages. When a new hugetlb page is allocated at fault time, set_page_huge_active is called before the page is locked. Therefore, another thread could race and migrate the page while it is being added to page table by the fault code. This race is somewhat hard to trigger, but can be seen by strategically adding udelay to simulate worst case scheduling behavior. Depending on 'how' the code races, various BUG()s could be triggered. To address this issue, simply delay the set_page_huge_active call until after the page is successfully added to the page table. Hugetlb pages can also be leaked at migration time if the pages are associated with a file in an explicitly mounted hugetlbfs filesystem. For example, consider a two node system with 4GB worth of huge pages available. A program mmaps a 2G file in a hugetlbfs filesystem. It then migrates the pages associated with the file from one node to another. When the program exits, huge page counts are as follows: node0 1024 free_hugepages 1024 nr_hugepages node1 0 free_hugepages 1024 nr_hugepages Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool That is as expected. 2G of huge pages are taken from the free_hugepages counts, and 2G is the size of the file in the explicitly mounted filesystem. If the file is then removed, the counts become: node0 1024 free_hugepages 1024 nr_hugepages node1 1024 free_hugepages 1024 nr_hugepages Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool Note that the filesystem still shows 2G of pages used, while there actually are no huge pages in use. The only way to 'fix' the filesystem accounting is to unmount the filesystem If a hugetlb page is associated with an explicitly mounted filesystem, this information in contained in the page_private field. At migration time, this information is not preserved. To fix, simply transfer page_private from old to new page at migration time if necessary. There is a related race with removing a huge page from a file and migration. When a huge page is removed from the pagecache, the page_mapping() field is cleared, yet page_private remains set until the page is actually freed by free_huge_page(). A page could be migrated while in this state. However, since page_mapping() is not set the hugetlbfs specific routine to transfer page_private is not called and we leak the page count in the filesystem. To fix that, check for this condition before migrating a huge page. If the condition is detected, return EBUSY for the page. Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: <stable@vger.kernel.org> [mike.kravetz@oracle.com: v2] Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com [mike.kravetz@oracle.com: update comment and changelog] Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 03:22:02 +03:00
out_unlock:
unlock_page(hpage);
out:
2020-12-15 06:13:06 +03:00
if (rc == MIGRATEPAGE_SUCCESS)
2013-09-12 01:22:01 +04:00
putback_active_hugepage(hpage);
else if (rc != -EAGAIN)
2020-12-15 06:13:06 +03:00
list_move_tail(&hpage->lru, ret);
/*
* If migration was not successful and there's a freeing callback, use
* it. Otherwise, put_page() will drop the reference grabbed during
* isolation.
*/
if (put_new_page)
put_new_page(new_hpage, private);
else
putback_active_hugepage(new_hpage);
return rc;
}
static inline int try_split_thp(struct page *page, struct page **page2,
struct list_head *from)
{
int rc = 0;
lock_page(page);
rc = split_huge_page_to_list(page, from);
unlock_page(page);
if (!rc)
list_safe_reset_next(page, *page2, lru);
return rc;
}
/*
* migrate_pages - migrate the pages specified in a list, to the free pages
* supplied as the target for the page migration
*
* @from: The list of pages to be migrated.
* @get_new_page: The function used to allocate free pages to be used
* as the target of the page migration.
* @put_new_page: The function used to free target pages if migration
* fails, or NULL if no special handling is necessary.
* @private: Private data to be passed on to get_new_page()
* @mode: The migration mode that specifies the constraints for
* page migration, if any.
* @reason: The reason for page migration.
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
* @ret_succeeded: Set to the number of normal pages migrated successfully if
* the caller passes a non-NULL pointer.
*
* The function returns after 10 attempts or if no pages are movable any more
* because the list has become empty or no retryable pages exist any more.
2020-12-15 06:13:06 +03:00
* It is caller's responsibility to call putback_movable_pages() to return pages
* to the LRU or free list only if ret != 0.
*
* Returns the number of {normal page, THP, hugetlb} that were not migrated, or
* an error code. The number of THP splits will be considered as the number of
* non-migrated THP, no matter how many subpages of the THP are migrated successfully.
*/
int migrate_pages(struct list_head *from, new_page_t get_new_page,
free_page_t put_new_page, unsigned long private,
enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
{
int retry = 1;
int thp_retry = 1;
int nr_failed = 0;
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
int nr_failed_pages = 0;
int nr_succeeded = 0;
int nr_thp_succeeded = 0;
int nr_thp_failed = 0;
int nr_thp_split = 0;
int pass = 0;
bool is_thp = false;
struct page *page;
struct page *page2;
int rc, nr_subpages;
2020-12-15 06:13:06 +03:00
LIST_HEAD(ret_pages);
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
LIST_HEAD(thp_split_pages);
bool nosplit = (reason == MR_NUMA_MISPLACED);
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
bool no_subpage_counting = false;
trace_mm_migrate_pages_start(mode, reason);
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
thp_subpage_migration:
for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
retry = 0;
thp_retry = 0;
list_for_each_entry_safe(page, page2, from, lru) {
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:30:07 +03:00
retry:
/*
* THP statistics is based on the source huge page.
* Capture required information that might get lost
* during migration.
*/
is_thp = PageTransHuge(page) && !PageHuge(page);
nr_subpages = compound_nr(page);
cond_resched();
mm: migrate: make core migration code aware of hugepage Currently hugepage migration is available only for soft offlining, but it's also useful for some other users of page migration (clearly because users of hugepage can enjoy the benefit of mempolicy and memory hotplug.) So this patchset tries to extend such users to support hugepage migration. The target of this patchset is to enable hugepage migration for NUMA related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and memory hotplug. This patchset does not add hugepage migration for memory compaction, because users of memory compaction mainly expect to construct thp by arranging raw pages, and there's little or no need to compact hugepages. CMA, another user of page migration, can have benefit from hugepage migration, but is not enabled to support it for now (just because of lack of testing and expertise in CMA.) Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in x86_64, or hugepages in architectures like ia64) is not enabled for now (again, because of lack of testing.) As for how these are achived, I extended the API (migrate_pages()) to handle hugepage (with patch 1 and 2) and adjusted code of each caller to check and collect movable hugepages (with patch 3-7). Remaining 2 patches are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is about making sure that we only migrate pmd-based hugepages. And patch 9 is about choosing appropriate zone for hugepage allocation. My test is mainly functional one, simply kicking hugepage migration via each entry point and confirm that migration is done correctly. Test code is available here: git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git And I always run libhugetlbfs test when changing hugetlbfs's code. With this patchset, no regression was found in the test. This patch (of 9): Before enabling each user of page migration to support hugepage, this patch enables the list of pages for migration to link not only LRU pages, but also hugepages. As a result, putback_movable_pages() and migrate_pages() can handle both of LRU pages and hugepages. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:21:59 +04:00
if (PageHuge(page))
rc = unmap_and_move_huge_page(get_new_page,
put_new_page, private, page,
2020-12-15 06:13:06 +03:00
pass > 2, mode, reason,
&ret_pages);
mm: migrate: make core migration code aware of hugepage Currently hugepage migration is available only for soft offlining, but it's also useful for some other users of page migration (clearly because users of hugepage can enjoy the benefit of mempolicy and memory hotplug.) So this patchset tries to extend such users to support hugepage migration. The target of this patchset is to enable hugepage migration for NUMA related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and memory hotplug. This patchset does not add hugepage migration for memory compaction, because users of memory compaction mainly expect to construct thp by arranging raw pages, and there's little or no need to compact hugepages. CMA, another user of page migration, can have benefit from hugepage migration, but is not enabled to support it for now (just because of lack of testing and expertise in CMA.) Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in x86_64, or hugepages in architectures like ia64) is not enabled for now (again, because of lack of testing.) As for how these are achived, I extended the API (migrate_pages()) to handle hugepage (with patch 1 and 2) and adjusted code of each caller to check and collect movable hugepages (with patch 3-7). Remaining 2 patches are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is about making sure that we only migrate pmd-based hugepages. And patch 9 is about choosing appropriate zone for hugepage allocation. My test is mainly functional one, simply kicking hugepage migration via each entry point and confirm that migration is done correctly. Test code is available here: git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git And I always run libhugetlbfs test when changing hugetlbfs's code. With this patchset, no regression was found in the test. This patch (of 9): Before enabling each user of page migration to support hugepage, this patch enables the list of pages for migration to link not only LRU pages, but also hugepages. As a result, putback_movable_pages() and migrate_pages() can handle both of LRU pages and hugepages. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:21:59 +04:00
else
rc = unmap_and_move(get_new_page, put_new_page,
mm: soft-offline: don't free target page in successful page migration Stress testing showed that soft offline events for a process iterating "mmap-pagefault-munmap" loop can trigger VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page(): Soft offlining page 0x70fe1 at 0x70100008d000 Soft offlining page 0x705fb at 0x70300008d000 page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2 flags: 0x1fffff80800000(hwpoison) page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1)) ------------[ cut here ]------------ kernel BUG at /src/linux-dev/mm/page_alloc.c:585! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139 RIP: free_pcppages_bulk+0x52a/0x6f0 Call Trace: drain_pages_zone+0x3d/0x50 drain_local_pages+0x1d/0x30 on_each_cpu_mask+0x46/0x80 drain_all_pages+0x14b/0x1e0 soft_offline_page+0x432/0x6e0 SyS_madvise+0x73c/0x780 system_call_fastpath+0x12/0x17 Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0 RSP <ffff88007a117d28> ---[ end trace 53926436e76d1f35 ]--- When soft offline successfully migrates page, the source page is supposed to be freed. But there is a race condition where a source page looks isolated (i.e. the refcount is 0 and the PageHWPoison is set) but somewhat linked to pcplist. Then another soft offline event calls drain_all_pages() and tries to free such hwpoisoned page, which is forbidden. This odd page state seems to happen due to the race between put_page() in putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play with tweaking drain code as done in commit 9ab3b598d2df "mm: hwpoison: drop lru_add_drain_all() in __soft_offline_page()", or to change page freeing code for this soft offline's purpose. Instead, let's think about the difference between hard offline and soft offline. There is an interesting difference in how to isolate the in-use page between these, that is, hard offline marks PageHWPoison of the target page at first, and doesn't free it by keeping its refcount 1. OTOH, soft offline tries to free the target page then marks PageHWPoison. This difference might be the source of complexity and result in bugs like the above. So making soft offline isolate with keeping refcount can be a solution for this problem. We can pass to page migration code the "reason" which shows the caller, so let's use this more to avoid calling putback_lru_page() when called from soft offline, which effectively does the isolation for soft offline. With this change, target pages of soft offline never be reused without changing migratetype, so this patch also removes the related code. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 02:56:50 +03:00
private, page, pass > 2, mode,
2020-12-15 06:13:06 +03:00
reason, &ret_pages);
/*
* The rules are:
* Success: non hugetlb page will be freed, hugetlb
* page will be put back
* -EAGAIN: stay on the from list
* -ENOMEM: stay on the from list
* Other errno: put on ret_pages list then splice to
* from list
*/
switch(rc) {
/*
* THP migration might be unsupported or the
* allocation could've failed so we should
* retry on the same page with the THP split
* to base pages.
*
* Head page is retried immediately and tail
* pages are added to the tail of the list so
* we encounter them after the rest of the list
* is processed.
*/
case -ENOSYS:
/* THP migration is unsupported */
if (is_thp) {
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
nr_thp_failed++;
if (!try_split_thp(page, &page2, &thp_split_pages)) {
nr_thp_split++;
goto retry;
}
/* Hugetlb migration is unsupported */
} else if (!no_subpage_counting) {
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
nr_failed++;
}
nr_failed_pages += nr_subpages;
break;
case -ENOMEM:
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:30:07 +03:00
/*
* When memory is low, don't bother to try to migrate
* other pages, just exit.
* THP NUMA faulting doesn't split THP to retry.
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:30:07 +03:00
*/
if (is_thp && !nosplit) {
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
nr_thp_failed++;
if (!try_split_thp(page, &page2, &thp_split_pages)) {
nr_thp_split++;
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:30:07 +03:00
goto retry;
}
} else if (!no_subpage_counting) {
nr_failed++;
}
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
nr_failed_pages += nr_subpages;
/*
* There might be some subpages of fail-to-migrate THPs
* left in thp_split_pages list. Move them back to migration
* list so that they could be put back to the right list by
* the caller otherwise the page refcnt will be leaked.
*/
list_splice_init(&thp_split_pages, from);
nr_thp_failed += thp_retry;
goto out;
case -EAGAIN:
if (is_thp)
thp_retry++;
else
retry++;
break;
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
case MIGRATEPAGE_SUCCESS:
nr_succeeded += nr_subpages;
if (is_thp)
nr_thp_succeeded++;
break;
default:
/*
* Permanent failure (-EBUSY, etc.):
* unlike -EAGAIN case, the failed page is
* removed from migration page list and not
* retried in the next outer loop.
*/
if (is_thp)
nr_thp_failed++;
else if (!no_subpage_counting)
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
nr_failed++;
nr_failed_pages += nr_subpages;
break;
}
}
}
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
nr_failed += retry;
nr_thp_failed += thp_retry;
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
/*
* Try to migrate subpages of fail-to-migrate THPs, no nr_failed
* counting in this round, since all subpages of a THP is counted
* as 1 failure in the first round.
*/
if (!list_empty(&thp_split_pages)) {
/*
* Move non-migrated pages (after 10 retries) to ret_pages
* to avoid migrating them again.
*/
list_splice_init(from, &ret_pages);
list_splice_init(&thp_split_pages, from);
no_subpage_counting = true;
retry = 1;
goto thp_subpage_migration;
}
rc = nr_failed + nr_thp_failed;
out:
2020-12-15 06:13:06 +03:00
/*
* Put the permanent failure page back to migration list, they
* will be put back to the right list by the caller.
*/
list_splice(&ret_pages, from);
count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
mm: migrate: fix the return value of migrate_pages() Patch series "Improve the migration stats". According to talk with Zi Yan [1], this patch set changes the return value of migrate_pages() to avoid returning a number which is larger than the number of pages the users tried to migrate by move_pages() syscall. Also fix the hugetlb migration stats and migration stats in trace_mm_compaction_migratepages(). [1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/ This patch (of 3): As Zi Yan pointed out, the syscall move_pages() can return a non-migrated number larger than the number of pages the users tried to migrate, when a THP page is failed to migrate. This is confusing for users. Since other migration scenarios do not care about the actual non-migrated number of pages except the memory compaction migration which will fix in following patch. Thus we can change the return value to return the number of {normal page, THP, hugetlb} instead to avoid this issue, and the number of THP splits will be considered as the number of non-migrated THP, no matter how many subpages of the THP are migrated successfully. Meanwhile we should still keep the migration counters using the number of normal pages. Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Zi Yan <ziy@nvidia.com> Co-developed-by: Zi Yan <ziy@nvidia.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:34 +03:00
trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
nr_thp_failed, nr_thp_split, mode, reason);
if (ret_succeeded)
*ret_succeeded = nr_succeeded;
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:02:31 +04:00
return rc;
}
mm/migrate: introduce a standard migration target allocation function There are some similar functions for migration target allocation. Since there is no fundamental difference, it's better to keep just one rather than keeping all variants. This patch implements base migration target allocation function. In the following patches, variants will be converted to use this function. Changes should be mechanical, but, unfortunately, there are some differences. First, some callers' nodemask is assgined to NULL since NULL nodemask will be considered as all available nodes, that is, &node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if user provided gfp_mask has it. This is because future caller of this function requires to set this node constaint. Lastly, if provided nodeid is NUMA_NO_NODE, nodeid is set up to the node where migration source lives. It helps to remove simple wrappers for setting up the nodeid. Note that PageHighmem() call in previous function is changed to open-code "is_highmem_idx()" since it provides more readability. [akpm@linux-foundation.org: tweak patch title, per Vlastimil] [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 04:37:25 +03:00
struct page *alloc_migration_target(struct page *page, unsigned long private)
{
struct folio *folio = page_folio(page);
mm/migrate: introduce a standard migration target allocation function There are some similar functions for migration target allocation. Since there is no fundamental difference, it's better to keep just one rather than keeping all variants. This patch implements base migration target allocation function. In the following patches, variants will be converted to use this function. Changes should be mechanical, but, unfortunately, there are some differences. First, some callers' nodemask is assgined to NULL since NULL nodemask will be considered as all available nodes, that is, &node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if user provided gfp_mask has it. This is because future caller of this function requires to set this node constaint. Lastly, if provided nodeid is NUMA_NO_NODE, nodeid is set up to the node where migration source lives. It helps to remove simple wrappers for setting up the nodeid. Note that PageHighmem() call in previous function is changed to open-code "is_highmem_idx()" since it provides more readability. [akpm@linux-foundation.org: tweak patch title, per Vlastimil] [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 04:37:25 +03:00
struct migration_target_control *mtc;
gfp_t gfp_mask;
unsigned int order = 0;
struct folio *new_folio = NULL;
mm/migrate: introduce a standard migration target allocation function There are some similar functions for migration target allocation. Since there is no fundamental difference, it's better to keep just one rather than keeping all variants. This patch implements base migration target allocation function. In the following patches, variants will be converted to use this function. Changes should be mechanical, but, unfortunately, there are some differences. First, some callers' nodemask is assgined to NULL since NULL nodemask will be considered as all available nodes, that is, &node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if user provided gfp_mask has it. This is because future caller of this function requires to set this node constaint. Lastly, if provided nodeid is NUMA_NO_NODE, nodeid is set up to the node where migration source lives. It helps to remove simple wrappers for setting up the nodeid. Note that PageHighmem() call in previous function is changed to open-code "is_highmem_idx()" since it provides more readability. [akpm@linux-foundation.org: tweak patch title, per Vlastimil] [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 04:37:25 +03:00
int nid;
int zidx;
mtc = (struct migration_target_control *)private;
gfp_mask = mtc->gfp_mask;
nid = mtc->nid;
if (nid == NUMA_NO_NODE)
nid = folio_nid(folio);
if (folio_test_hugetlb(folio)) {
struct hstate *h = page_hstate(&folio->page);
mm/migrate: introduce a standard migration target allocation function There are some similar functions for migration target allocation. Since there is no fundamental difference, it's better to keep just one rather than keeping all variants. This patch implements base migration target allocation function. In the following patches, variants will be converted to use this function. Changes should be mechanical, but, unfortunately, there are some differences. First, some callers' nodemask is assgined to NULL since NULL nodemask will be considered as all available nodes, that is, &node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if user provided gfp_mask has it. This is because future caller of this function requires to set this node constaint. Lastly, if provided nodeid is NUMA_NO_NODE, nodeid is set up to the node where migration source lives. It helps to remove simple wrappers for setting up the nodeid. Note that PageHighmem() call in previous function is changed to open-code "is_highmem_idx()" since it provides more readability. [akpm@linux-foundation.org: tweak patch title, per Vlastimil] [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 04:37:25 +03:00
gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
}
if (folio_test_large(folio)) {
/*
* clear __GFP_RECLAIM to make the migration callback
* consistent with regular THP allocations.
*/
gfp_mask &= ~__GFP_RECLAIM;
gfp_mask |= GFP_TRANSHUGE;
order = folio_order(folio);
}
zidx = zone_idx(folio_zone(folio));
mm/migrate: introduce a standard migration target allocation function There are some similar functions for migration target allocation. Since there is no fundamental difference, it's better to keep just one rather than keeping all variants. This patch implements base migration target allocation function. In the following patches, variants will be converted to use this function. Changes should be mechanical, but, unfortunately, there are some differences. First, some callers' nodemask is assgined to NULL since NULL nodemask will be considered as all available nodes, that is, &node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if user provided gfp_mask has it. This is because future caller of this function requires to set this node constaint. Lastly, if provided nodeid is NUMA_NO_NODE, nodeid is set up to the node where migration source lives. It helps to remove simple wrappers for setting up the nodeid. Note that PageHighmem() call in previous function is changed to open-code "is_highmem_idx()" since it provides more readability. [akpm@linux-foundation.org: tweak patch title, per Vlastimil] [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 04:37:25 +03:00
if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
gfp_mask |= __GFP_HIGHMEM;
new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
return &new_folio->page;
}
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
#ifdef CONFIG_NUMA
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
static int store_status(int __user *status, int start, int value, int nr)
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
{
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
while (nr-- > 0) {
if (put_user(value, status + start))
return -EFAULT;
start++;
}
return 0;
}
static int do_move_pages_to_node(struct mm_struct *mm,
struct list_head *pagelist, int node)
{
int err;
struct migration_target_control mtc = {
.nid = node,
.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
};
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = migrate_pages(pagelist, alloc_migration_target, NULL,
(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
if (err)
putback_movable_pages(pagelist);
return err;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
}
/*
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
* Resolves the given address to a struct page, isolates it from the LRU and
* puts it to the given pagelist.
mm: move_pages: return valid node id in status if the page is already on the target node Felix Abecassis reports move_pages() would return random status if the pages are already on the target node by the below test program: int main(void) { const long node_id = 1; const long page_size = sysconf(_SC_PAGESIZE); const int64_t num_pages = 8; unsigned long nodemask = 1 << node_id; long ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)); if (ret < 0) return (EXIT_FAILURE); void **pages = malloc(sizeof(void*) * num_pages); for (int i = 0; i < num_pages; ++i) { pages[i] = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_POPULATE | MAP_ANONYMOUS, -1, 0); if (pages[i] == MAP_FAILED) return (EXIT_FAILURE); } ret = set_mempolicy(MPOL_DEFAULT, NULL, 0); if (ret < 0) return (EXIT_FAILURE); int *nodes = malloc(sizeof(int) * num_pages); int *status = malloc(sizeof(int) * num_pages); for (int i = 0; i < num_pages; ++i) { nodes[i] = node_id; status[i] = 0xd0; /* simulate garbage values */ } ret = move_pages(0, num_pages, pages, nodes, status, MPOL_MF_MOVE); printf("move_pages: %ld\n", ret); for (int i = 0; i < num_pages; ++i) printf("status[%d] = %d\n", i, status[i]); } Then running the program would return nonsense status values: $ ./move_pages_bug move_pages: 0 status[0] = 208 status[1] = 208 status[2] = 208 status[3] = 208 status[4] = 208 status[5] = 208 status[6] = 208 status[7] = 208 This is because the status is not set if the page is already on the target node, but move_pages() should return valid status as long as it succeeds. The valid status may be errno or node id. We can't simply initialize status array to zero since the pages may be not on node 0. Fix it by updating status with node id which the page is already on. Link: http://lkml.kernel.org/r/1575584353-125392-1-git-send-email-yang.shi@linux.alibaba.com Fixes: a49bd4d71637 ("mm, numa: rework do_pages_move") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reported-by: Felix Abecassis <fabecassis@nvidia.com> Tested-by: Felix Abecassis <fabecassis@nvidia.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [4.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-04 23:59:46 +03:00
* Returns:
* errno - if the page cannot be found/isolated
* 0 - when it doesn't have to be migrated because it is already on the
* target node
* 1 - when it has been queued
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
*/
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
int node, struct list_head *pagelist, bool migrate_all)
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
{
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
struct vm_area_struct *vma;
struct page *page;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
int err;
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 07:33:25 +03:00
mmap_read_lock(mm);
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = -EFAULT;
vma = vma_lookup(mm, addr);
if (!vma || !vma_migratable(vma))
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
goto out;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
/* FOLL_DUMP to ignore special (like zero) pages */
page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-20 22:18:25 +04:00
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = PTR_ERR(page);
if (IS_ERR(page))
goto out;
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-20 22:18:25 +04:00
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = -ENOENT;
if (!page)
goto out;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = 0;
if (page_to_nid(page) == node)
goto out_putpage;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = -EACCES;
if (page_mapcount(page) > 1 && !migrate_all)
goto out_putpage;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
if (PageHuge(page)) {
if (PageHead(page)) {
isolate_huge_page(page, pagelist);
mm: move_pages: return valid node id in status if the page is already on the target node Felix Abecassis reports move_pages() would return random status if the pages are already on the target node by the below test program: int main(void) { const long node_id = 1; const long page_size = sysconf(_SC_PAGESIZE); const int64_t num_pages = 8; unsigned long nodemask = 1 << node_id; long ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)); if (ret < 0) return (EXIT_FAILURE); void **pages = malloc(sizeof(void*) * num_pages); for (int i = 0; i < num_pages; ++i) { pages[i] = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_POPULATE | MAP_ANONYMOUS, -1, 0); if (pages[i] == MAP_FAILED) return (EXIT_FAILURE); } ret = set_mempolicy(MPOL_DEFAULT, NULL, 0); if (ret < 0) return (EXIT_FAILURE); int *nodes = malloc(sizeof(int) * num_pages); int *status = malloc(sizeof(int) * num_pages); for (int i = 0; i < num_pages; ++i) { nodes[i] = node_id; status[i] = 0xd0; /* simulate garbage values */ } ret = move_pages(0, num_pages, pages, nodes, status, MPOL_MF_MOVE); printf("move_pages: %ld\n", ret); for (int i = 0; i < num_pages; ++i) printf("status[%d] = %d\n", i, status[i]); } Then running the program would return nonsense status values: $ ./move_pages_bug move_pages: 0 status[0] = 208 status[1] = 208 status[2] = 208 status[3] = 208 status[4] = 208 status[5] = 208 status[6] = 208 status[7] = 208 This is because the status is not set if the page is already on the target node, but move_pages() should return valid status as long as it succeeds. The valid status may be errno or node id. We can't simply initialize status array to zero since the pages may be not on node 0. Fix it by updating status with node id which the page is already on. Link: http://lkml.kernel.org/r/1575584353-125392-1-git-send-email-yang.shi@linux.alibaba.com Fixes: a49bd4d71637 ("mm, numa: rework do_pages_move") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reported-by: Felix Abecassis <fabecassis@nvidia.com> Tested-by: Felix Abecassis <fabecassis@nvidia.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [4.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-04 23:59:46 +03:00
err = 1;
}
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
} else {
struct page *head;
head = compound_head(page);
err = isolate_lru_page(head);
if (err)
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
goto out_putpage;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
mm: move_pages: return valid node id in status if the page is already on the target node Felix Abecassis reports move_pages() would return random status if the pages are already on the target node by the below test program: int main(void) { const long node_id = 1; const long page_size = sysconf(_SC_PAGESIZE); const int64_t num_pages = 8; unsigned long nodemask = 1 << node_id; long ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)); if (ret < 0) return (EXIT_FAILURE); void **pages = malloc(sizeof(void*) * num_pages); for (int i = 0; i < num_pages; ++i) { pages[i] = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_POPULATE | MAP_ANONYMOUS, -1, 0); if (pages[i] == MAP_FAILED) return (EXIT_FAILURE); } ret = set_mempolicy(MPOL_DEFAULT, NULL, 0); if (ret < 0) return (EXIT_FAILURE); int *nodes = malloc(sizeof(int) * num_pages); int *status = malloc(sizeof(int) * num_pages); for (int i = 0; i < num_pages; ++i) { nodes[i] = node_id; status[i] = 0xd0; /* simulate garbage values */ } ret = move_pages(0, num_pages, pages, nodes, status, MPOL_MF_MOVE); printf("move_pages: %ld\n", ret); for (int i = 0; i < num_pages; ++i) printf("status[%d] = %d\n", i, status[i]); } Then running the program would return nonsense status values: $ ./move_pages_bug move_pages: 0 status[0] = 208 status[1] = 208 status[2] = 208 status[3] = 208 status[4] = 208 status[5] = 208 status[6] = 208 status[7] = 208 This is because the status is not set if the page is already on the target node, but move_pages() should return valid status as long as it succeeds. The valid status may be errno or node id. We can't simply initialize status array to zero since the pages may be not on node 0. Fix it by updating status with node id which the page is already on. Link: http://lkml.kernel.org/r/1575584353-125392-1-git-send-email-yang.shi@linux.alibaba.com Fixes: a49bd4d71637 ("mm, numa: rework do_pages_move") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reported-by: Felix Abecassis <fabecassis@nvidia.com> Tested-by: Felix Abecassis <fabecassis@nvidia.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [4.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-04 23:59:46 +03:00
err = 1;
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
list_add_tail(&head->lru, pagelist);
mod_node_page_state(page_pgdat(head),
NR_ISOLATED_ANON + page_is_file_lru(head),
thp_nr_pages(head));
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
}
out_putpage:
/*
* Either remove the duplicate refcount from
* isolate_lru_page() or drop the page ref if it was
* not isolated.
*/
put_page(page);
out:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 07:33:25 +03:00
mmap_read_unlock(mm);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
return err;
}
static int move_pages_and_store_status(struct mm_struct *mm, int node,
struct list_head *pagelist, int __user *status,
int start, int i, unsigned long nr_pages)
{
int err;
if (list_empty(pagelist))
return 0;
err = do_move_pages_to_node(mm, pagelist, node);
if (err) {
/*
* Positive err means the number of failed
* pages to migrate. Since we are going to
* abort and return the number of non-migrated
* pages, so need to include the rest of the
* nr_pages that have not been attempted as
* well.
*/
if (err > 0)
err += nr_pages - i - 1;
return err;
}
return store_status(status, start, node, i - start);
}
/*
* Migrate an array of page address onto an array of nodes and fill
* the corresponding array of status.
*/
mm: fix move/migrate_pages() race on task struct Migration functions perform the rcu_read_unlock too early. As a result the task pointed to may change from under us. This can result in an oops, as reported by Dave Hansen in https://lkml.org/lkml/2012/2/23/302. The following patch extend the period of the rcu_read_lock until after the permissions checks are done. We also take a refcount so that the task reference is stable when calling security check functions and performing cpuset node validation (which takes a mutex). The refcount is dropped before actual page migration occurs so there is no change to the refcounts held during page migration. Also move the determination of the mm of the task struct to immediately before the do_migrate*() calls so that it is clear that we switch from handling the task during permission checks to the mm for the actual migration. Since the determination is only done once and we then no longer use the task_struct we can be sure that we operate on a specific address space that will not change from under us. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Reported-by: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 03:34:06 +04:00
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
unsigned long nr_pages,
const void __user * __user *pages,
const int __user *nodes,
int __user *status, int flags)
{
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
int current_node = NUMA_NO_NODE;
LIST_HEAD(pagelist);
int start, i;
int err = 0, err1;
lru_cache_disable();
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
for (i = start = 0; i < nr_pages; i++) {
const void __user *p;
unsigned long addr;
int node;
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = -EFAULT;
if (get_user(p, pages + i))
goto out_flush;
if (get_user(node, nodes + i))
goto out_flush;
addr = (unsigned long)untagged_addr(p);
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = -ENODEV;
if (node < 0 || node >= MAX_NUMNODES)
goto out_flush;
if (!node_state(node, N_MEMORY))
goto out_flush;
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = -EACCES;
if (!node_isset(node, task_nodes))
goto out_flush;
if (current_node == NUMA_NO_NODE) {
current_node = node;
start = i;
} else if (node != current_node) {
err = move_pages_and_store_status(mm, current_node,
&pagelist, status, start, i, nr_pages);
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
if (err)
goto out;
start = i;
current_node = node;
}
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
/*
* Errors in the page lookup or isolation are not fatal and we simply
* report them via status
*/
err = add_page_for_migration(mm, addr, current_node,
&pagelist, flags & MPOL_MF_MOVE_ALL);
mm: move_pages: return valid node id in status if the page is already on the target node Felix Abecassis reports move_pages() would return random status if the pages are already on the target node by the below test program: int main(void) { const long node_id = 1; const long page_size = sysconf(_SC_PAGESIZE); const int64_t num_pages = 8; unsigned long nodemask = 1 << node_id; long ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)); if (ret < 0) return (EXIT_FAILURE); void **pages = malloc(sizeof(void*) * num_pages); for (int i = 0; i < num_pages; ++i) { pages[i] = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_POPULATE | MAP_ANONYMOUS, -1, 0); if (pages[i] == MAP_FAILED) return (EXIT_FAILURE); } ret = set_mempolicy(MPOL_DEFAULT, NULL, 0); if (ret < 0) return (EXIT_FAILURE); int *nodes = malloc(sizeof(int) * num_pages); int *status = malloc(sizeof(int) * num_pages); for (int i = 0; i < num_pages; ++i) { nodes[i] = node_id; status[i] = 0xd0; /* simulate garbage values */ } ret = move_pages(0, num_pages, pages, nodes, status, MPOL_MF_MOVE); printf("move_pages: %ld\n", ret); for (int i = 0; i < num_pages; ++i) printf("status[%d] = %d\n", i, status[i]); } Then running the program would return nonsense status values: $ ./move_pages_bug move_pages: 0 status[0] = 208 status[1] = 208 status[2] = 208 status[3] = 208 status[4] = 208 status[5] = 208 status[6] = 208 status[7] = 208 This is because the status is not set if the page is already on the target node, but move_pages() should return valid status as long as it succeeds. The valid status may be errno or node id. We can't simply initialize status array to zero since the pages may be not on node 0. Fix it by updating status with node id which the page is already on. Link: http://lkml.kernel.org/r/1575584353-125392-1-git-send-email-yang.shi@linux.alibaba.com Fixes: a49bd4d71637 ("mm, numa: rework do_pages_move") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reported-by: Felix Abecassis <fabecassis@nvidia.com> Tested-by: Felix Abecassis <fabecassis@nvidia.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [4.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-04 23:59:46 +03:00
if (err > 0) {
mm: move_pages: return valid node id in status if the page is already on the target node Felix Abecassis reports move_pages() would return random status if the pages are already on the target node by the below test program: int main(void) { const long node_id = 1; const long page_size = sysconf(_SC_PAGESIZE); const int64_t num_pages = 8; unsigned long nodemask = 1 << node_id; long ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)); if (ret < 0) return (EXIT_FAILURE); void **pages = malloc(sizeof(void*) * num_pages); for (int i = 0; i < num_pages; ++i) { pages[i] = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_POPULATE | MAP_ANONYMOUS, -1, 0); if (pages[i] == MAP_FAILED) return (EXIT_FAILURE); } ret = set_mempolicy(MPOL_DEFAULT, NULL, 0); if (ret < 0) return (EXIT_FAILURE); int *nodes = malloc(sizeof(int) * num_pages); int *status = malloc(sizeof(int) * num_pages); for (int i = 0; i < num_pages; ++i) { nodes[i] = node_id; status[i] = 0xd0; /* simulate garbage values */ } ret = move_pages(0, num_pages, pages, nodes, status, MPOL_MF_MOVE); printf("move_pages: %ld\n", ret); for (int i = 0; i < num_pages; ++i) printf("status[%d] = %d\n", i, status[i]); } Then running the program would return nonsense status values: $ ./move_pages_bug move_pages: 0 status[0] = 208 status[1] = 208 status[2] = 208 status[3] = 208 status[4] = 208 status[5] = 208 status[6] = 208 status[7] = 208 This is because the status is not set if the page is already on the target node, but move_pages() should return valid status as long as it succeeds. The valid status may be errno or node id. We can't simply initialize status array to zero since the pages may be not on node 0. Fix it by updating status with node id which the page is already on. Link: http://lkml.kernel.org/r/1575584353-125392-1-git-send-email-yang.shi@linux.alibaba.com Fixes: a49bd4d71637 ("mm, numa: rework do_pages_move") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reported-by: Felix Abecassis <fabecassis@nvidia.com> Tested-by: Felix Abecassis <fabecassis@nvidia.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [4.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-04 23:59:46 +03:00
/* The page is successfully queued for migration */
continue;
}
/*
* The move_pages() man page does not have an -EEXIST choice, so
* use -EFAULT instead.
*/
if (err == -EEXIST)
err = -EFAULT;
/*
* If the page is already on the target node (!err), store the
* node, otherwise, store the err.
*/
err = store_status(status, i, err ? : current_node, 1);
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
if (err)
goto out_flush;
err = move_pages_and_store_status(mm, current_node, &pagelist,
status, start, i, nr_pages);
if (err)
goto out;
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
current_node = NUMA_NO_NODE;
}
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
out_flush:
/* Make sure we do not overwrite the existing error */
err1 = move_pages_and_store_status(mm, current_node, &pagelist,
status, start, i, nr_pages);
if (err >= 0)
mm, numa: rework do_pages_move Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:59 +03:00
err = err1;
out:
lru_cache_enable();
return err;
}
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
/*
* Determine the nodes of an array of pages and store it in an array of status.
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
*/
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
const void __user **pages, int *status)
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
{
unsigned long i;
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 07:33:25 +03:00
mmap_read_lock(mm);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
for (i = 0; i < nr_pages; i++) {
unsigned long addr = (unsigned long)(*pages);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
struct vm_area_struct *vma;
struct page *page;
int err = -EFAULT;
vma = vma_lookup(mm, addr);
if (!vma)
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
goto set_status;
/* FOLL_DUMP to ignore special (like zero) pages */
page = follow_page(vma, addr, FOLL_DUMP);
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-20 22:18:25 +04:00
err = PTR_ERR(page);
if (IS_ERR(page))
goto set_status;
err = page ? page_to_nid(page) : -ENOENT;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
set_status:
*status = err;
pages++;
status++;
}
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 07:33:25 +03:00
mmap_read_unlock(mm);
}
static int get_compat_pages_array(const void __user *chunk_pages[],
const void __user * __user *pages,
unsigned long chunk_nr)
{
compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
compat_uptr_t p;
int i;
for (i = 0; i < chunk_nr; i++) {
if (get_user(p, pages32 + i))
return -EFAULT;
chunk_pages[i] = compat_ptr(p);
}
return 0;
}
/*
* Determine the nodes of a user array of pages and store it in
* a user array of status.
*/
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
const void __user * __user *pages,
int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16UL
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
while (nr_pages) {
unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
if (in_compat_syscall()) {
if (get_compat_pages_array(chunk_pages, pages,
chunk_nr))
break;
} else {
if (copy_from_user(chunk_pages, pages,
chunk_nr * sizeof(*chunk_pages)))
break;
}
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
break;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
pages += chunk_nr;
status += chunk_nr;
nr_pages -= chunk_nr;
}
return nr_pages ? -EFAULT : 0;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
}
static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
{
struct task_struct *task;
struct mm_struct *mm;
/*
* There is no need to check if current process has the right to modify
* the specified process when they are same.
*/
if (!pid) {
mmget(current->mm);
*mem_nodes = cpuset_mems_allowed(current);
return current->mm;
}
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
/* Find the mm_struct */
rcu_read_lock();
task = find_task_by_vpid(pid);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
if (!task) {
rcu_read_unlock();
return ERR_PTR(-ESRCH);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
}
mm: fix move/migrate_pages() race on task struct Migration functions perform the rcu_read_unlock too early. As a result the task pointed to may change from under us. This can result in an oops, as reported by Dave Hansen in https://lkml.org/lkml/2012/2/23/302. The following patch extend the period of the rcu_read_lock until after the permissions checks are done. We also take a refcount so that the task reference is stable when calling security check functions and performing cpuset node validation (which takes a mutex). The refcount is dropped before actual page migration occurs so there is no change to the refcounts held during page migration. Also move the determination of the mm of the task struct to immediately before the do_migrate*() calls so that it is clear that we switch from handling the task during permission checks to the mm for the actual migration. Since the determination is only done once and we then no longer use the task_struct we can be sure that we operate on a specific address space that will not change from under us. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Reported-by: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 03:34:06 +04:00
get_task_struct(task);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
/*
* Check if this process has the right to modify the specified
* process. Use the regular "ptrace_may_access()" checks.
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
rcu_read_unlock();
mm = ERR_PTR(-EPERM);
goto out;
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
}
rcu_read_unlock();
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
mm = ERR_PTR(security_task_movememory(task));
if (IS_ERR(mm))
goto out;
*mem_nodes = cpuset_mems_allowed(task);
mm: fix move/migrate_pages() race on task struct Migration functions perform the rcu_read_unlock too early. As a result the task pointed to may change from under us. This can result in an oops, as reported by Dave Hansen in https://lkml.org/lkml/2012/2/23/302. The following patch extend the period of the rcu_read_lock until after the permissions checks are done. We also take a refcount so that the task reference is stable when calling security check functions and performing cpuset node validation (which takes a mutex). The refcount is dropped before actual page migration occurs so there is no change to the refcounts held during page migration. Also move the determination of the mm of the task struct to immediately before the do_migrate*() calls so that it is clear that we switch from handling the task during permission checks to the mm for the actual migration. Since the determination is only done once and we then no longer use the task_struct we can be sure that we operate on a specific address space that will not change from under us. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Reported-by: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 03:34:06 +04:00
mm = get_task_mm(task);
out:
mm: fix move/migrate_pages() race on task struct Migration functions perform the rcu_read_unlock too early. As a result the task pointed to may change from under us. This can result in an oops, as reported by Dave Hansen in https://lkml.org/lkml/2012/2/23/302. The following patch extend the period of the rcu_read_lock until after the permissions checks are done. We also take a refcount so that the task reference is stable when calling security check functions and performing cpuset node validation (which takes a mutex). The refcount is dropped before actual page migration occurs so there is no change to the refcounts held during page migration. Also move the determination of the mm of the task struct to immediately before the do_migrate*() calls so that it is clear that we switch from handling the task during permission checks to the mm for the actual migration. Since the determination is only done once and we then no longer use the task_struct we can be sure that we operate on a specific address space that will not change from under us. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Reported-by: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 03:34:06 +04:00
put_task_struct(task);
if (!mm)
mm = ERR_PTR(-EINVAL);
return mm;
}
/*
* Move a list of pages in the address space of the currently executing
* process.
*/
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
const void __user * __user *pages,
const int __user *nodes,
int __user *status, int flags)
{
struct mm_struct *mm;
int err;
nodemask_t task_nodes;
/* Check flags */
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
return -EINVAL;
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
return -EPERM;
mm = find_mm_struct(pid, &task_nodes);
if (IS_ERR(mm))
return PTR_ERR(mm);
if (nodes)
err = do_pages_move(mm, task_nodes, nr_pages, pages,
nodes, status, flags);
else
err = do_pages_stat(mm, nr_pages, pages, status);
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:03:55 +04:00
mmput(mm);
return err;
}
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
const void __user * __user *, pages,
const int __user *, nodes,
int __user *, status, int, flags)
{
return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#ifdef CONFIG_NUMA_BALANCING
/*
* Returns true if this is a safe migration target node for misplaced NUMA
* pages. Currently it only checks the watermarks which is crude.
*/
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
unsigned long nr_migrate_pages)
{
int z;
mm, vmscan: move LRU lists to node This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 01:45:31 +03:00
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
struct zone *zone = pgdat->node_zones + z;
if (!managed_zone(zone))
continue;
/* Avoid waking kswapd by allocating pages_to_migrate pages. */
if (!zone_watermark_ok(zone, 0,
high_wmark_pages(zone) +
nr_migrate_pages,
autonuma: fix watermark checking in migrate_balanced_pgdat() When zone_watermark_ok() is called in migrate_balanced_pgdat() to check migration target node, the parameter classzone_idx (for requested zone) is specified as 0 (ZONE_DMA). But when allocating memory for autonuma in alloc_misplaced_dst_page(), the requested zone from GFP flags is ZONE_MOVABLE. That is, the requested zone is different. The size of lowmem_reserve for the different requested zone is different. And this may cause some issues. For example, in the zoneinfo of a test machine as below, Node 0, zone DMA32 pages free 61592 min 29 low 454 high 879 spanned 1044480 present 442306 managed 425921 protection: (0, 0, 62457, 62457, 62457) The free page number of ZONE_DMA32 is greater than "high watermark + lowmem_reserve[ZONE_DMA]", but less than "high watermark + lowmem_reserve[ZONE_MOVABLE]". And because __alloc_pages_node() in alloc_misplaced_dst_page() requests ZONE_MOVABLE, the zone_watermark_ok() on ZONE_DMA32 in migrate_balanced_pgdat() may always return true. So, autonuma may not stop even when memory pressure in node 0 is heavy. To fix the issue, ZONE_MOVABLE is used as parameter to call zone_watermark_ok() in migrate_balanced_pgdat(). This makes it same as requested zone in alloc_misplaced_dst_page(). So that migrate_balanced_pgdat() returns false when memory pressure is heavy. Link: http://lkml.kernel.org/r/20191101075727.26683-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 04:57:28 +03:00
ZONE_MOVABLE, 0))
continue;
return true;
}
return false;
}
static struct page *alloc_misplaced_dst_page(struct page *page,
unsigned long data)
{
int nid = (int) data;
int order = compound_order(page);
gfp_t gfp = __GFP_THISNODE;
struct folio *new;
if (order > 0)
gfp |= GFP_TRANSHUGE_LIGHT;
else {
gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
__GFP_NOWARN;
gfp &= ~__GFP_RECLAIM;
}
new = __folio_alloc_node(gfp, order, nid);
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:51:42 +03:00
return &new->page;
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:51:42 +03:00
}
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
{
int nr_pages = thp_nr_pages(page);
NUMA balancing: optimize page placement for memory tiering system With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:23 +03:00
int order = compound_order(page);
NUMA balancing: optimize page placement for memory tiering system With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:23 +03:00
VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
/* Do not migrate THP mapped by multiple processes */
if (PageTransHuge(page) && total_mapcount(page) > 1)
return 0;
/* Avoid migrating to a node that is nearly full */
NUMA balancing: optimize page placement for memory tiering system With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:23 +03:00
if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
int z;
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
return 0;
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
if (managed_zone(pgdat->node_zones + z))
NUMA balancing: optimize page placement for memory tiering system With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:23 +03:00
break;
}
wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
return 0;
NUMA balancing: optimize page placement for memory tiering system With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:23 +03:00
}
if (isolate_lru_page(page))
return 0;
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
nr_pages);
/*
* Isolating the page has taken another reference, so the
* caller's reference can be safely dropped without the page
* disappearing underneath us during migration.
*/
put_page(page);
return 1;
}
/*
* Attempt to migrate a misplaced page to the specified destination
* node. Caller is expected to have an elevated reference count on
* the page that will be dropped by this function before returning.
*/
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
int node)
{
pg_data_t *pgdat = NODE_DATA(node);
int isolated;
int nr_remaining;
NUMA Balancing: add page promotion counter Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13 With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are different. After commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"), the PMEM could be used as the cost-effective volatile memory in separate NUMA nodes. In a typical memory tiering system, there are CPUs, DRAM and PMEM in each physical NUMA node. The CPUs and the DRAM will be put in one logical node, while the PMEM will be put in another (faked) logical node. To optimize the system overall performance, the hot pages should be placed in DRAM node. To do that, we need to identify the hot pages in the PMEM node and migrate them to DRAM node via NUMA migration. In the original NUMA balancing, there are already a set of existing mechanisms to identify the pages recently accessed by the CPUs in a node and migrate the pages to the node. So we can reuse these mechanisms to build the mechanisms to optimize the page placement in the memory tiering system. This is implemented in this patchset. At the other hand, the cold pages should be placed in PMEM node. So, we also need to identify the cold pages in the DRAM node and migrate them to PMEM node. In commit 26aa2d199d6f ("mm/migrate: demote pages during reclaim"), a mechanism to demote the cold DRAM pages to PMEM node under memory pressure is implemented. Based on that, the cold DRAM pages can be demoted to PMEM node proactively to free some memory space on DRAM node to accommodate the promoted hot PMEM pages. This is implemented in this patchset too. We have tested the solution with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. This patch (of 3): In a system with multiple memory types, e.g. DRAM and PMEM, the CPU and DRAM in one socket will be put in one NUMA node as before, while the PMEM will be put in another NUMA node as described in the description of the commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"). So, the NUMA balancing mechanism will identify all PMEM accesses as remote access and try to promote the PMEM pages to DRAM. To distinguish the number of the inter-type promoted pages from that of the inter-socket migrated pages. A new vmstat count is added. The counter is per-node (count in the target node). So this can be used to identify promotion imbalance among the NUMA nodes. Link: https://lkml.kernel.org/r/20220301085329.3210428-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:20 +03:00
unsigned int nr_succeeded;
LIST_HEAD(migratepages);
int nr_pages = thp_nr_pages(page);
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:51:42 +03:00
/*
* Don't migrate file pages that are mapped in multiple processes
* with execute permissions as they are probably shared libraries.
*/
Revert "mm: migrate: skip shared exec THP for NUMA balancing" This reverts commit c77c5cbafe549eb330e8909861a3e16cbda2c848. Since commit c77c5cbafe54 ("mm: migrate: skip shared exec THP for NUMA balancing"), the NUMA balancing would skip shared exec transhuge page. But this enhancement is not suitable for transhuge page. Because it's required that page_mapcount() must be 1 due to no migration pte dance is done here. On the other hand, the shared exec transhuge page will leave the migrate_misplaced_page() with pte entry untouched and page locked. Thus pagefault for NUMA will be triggered again and deadlock occurs when we start waiting for the page lock held by ourselves. Yang Shi said: "Thanks for catching this. By relooking the code I think the other important reason for removing this is migrate_misplaced_transhuge_page() actually can't see shared exec file THP at all since page_lock_anon_vma_read() is called before and if page is not anonymous page it will just restore the PMD without migrating anything. The pages for private mapped file vma may be anonymous pages due to COW but they can't be THP so it won't trigger THP numa fault at all. I think this is why no bug was reported. I overlooked this in the first place." Link: https://lkml.kernel.org/r/20210325131524.48181-6-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 04:37:16 +03:00
if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
(vma->vm_flags & VM_EXEC))
goto out;
sched/numa: avoid trapping faults and attempting migration of file-backed dirty pages change_pte_range is called from task work context to mark PTEs for receiving NUMA faulting hints. If the marked pages are dirty then migration may fail. Some filesystems cannot migrate dirty pages without blocking so are skipped in MIGRATE_ASYNC mode which just wastes CPU. Even when they can, it can be a waste of cycles when the pages are shared forcing higher scan rates. This patch avoids marking shared dirty pages for hinting faults but also will skip a migration if the page was dirtied after the scanner updated a clean page. This is most noticeable running the NASA Parallel Benchmark when backed by btrfs, the default root filesystem for some distributions, but also noticeable when using XFS. The following are results from a 4-socket machine running a 4.16-rc4 kernel with some scheduler patches that are pending for the next merge window. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 Time cg.D 459.07 ( 0.00%) 444.21 ( 3.24%) Time ep.D 76.96 ( 0.00%) 77.69 ( -0.95%) Time is.D 25.55 ( 0.00%) 27.85 ( -9.00%) Time lu.D 601.58 ( 0.00%) 596.87 ( 0.78%) Time mg.D 107.73 ( 0.00%) 108.22 ( -0.45%) is.D regresses slightly in terms of absolute time but note that that particular load varies quite a bit from run to run. The more relevant observation is the total system CPU usage. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 User 71471.91 70627.04 System 11078.96 8256.13 Elapsed 661.66 632.74 That is a substantial drop in system CPU usage and overall the workload completes faster. The NUMA balancing statistics are also interesting NUMA base PTE updates 111407972 139848884 NUMA huge PMD updates 206506 264869 NUMA page range updates 217139044 275461812 NUMA hint faults 4300924 3719784 NUMA hint local faults 3012539 3416618 NUMA hint local percent 70 91 NUMA pages migrated 1517487 1358420 While more PTEs are scanned due to changes in what faults are gathered, it's clear that a far higher percentage of faults are local as the bulk of the remote hits were dirty pages that, in this case with btrfs, had no chance of migrating. The following is a comparison when using XFS as that is a more realistic filesystem choice for a data partition 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1r47 Time cg.D 485.28 ( 0.00%) 442.62 ( 8.79%) Time ep.D 77.68 ( 0.00%) 77.54 ( 0.18%) Time is.D 26.44 ( 0.00%) 24.79 ( 6.24%) Time lu.D 597.46 ( 0.00%) 597.11 ( 0.06%) Time mg.D 142.65 ( 0.00%) 105.83 ( 25.81%) That is a reasonable gain on two relatively long-lived workloads. While not presented, there is also a substantial drop in system CPu usage and the NUMA balancing stats show similar improvements in locality as btrfs did. Link: http://lkml.kernel.org/r/20180326094334.zserdec62gwmmfqf@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:20 +03:00
/*
* Also do not migrate dirty pages as not all filesystems can move
* dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
*/
if (page_is_file_lru(page) && PageDirty(page))
sched/numa: avoid trapping faults and attempting migration of file-backed dirty pages change_pte_range is called from task work context to mark PTEs for receiving NUMA faulting hints. If the marked pages are dirty then migration may fail. Some filesystems cannot migrate dirty pages without blocking so are skipped in MIGRATE_ASYNC mode which just wastes CPU. Even when they can, it can be a waste of cycles when the pages are shared forcing higher scan rates. This patch avoids marking shared dirty pages for hinting faults but also will skip a migration if the page was dirtied after the scanner updated a clean page. This is most noticeable running the NASA Parallel Benchmark when backed by btrfs, the default root filesystem for some distributions, but also noticeable when using XFS. The following are results from a 4-socket machine running a 4.16-rc4 kernel with some scheduler patches that are pending for the next merge window. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 Time cg.D 459.07 ( 0.00%) 444.21 ( 3.24%) Time ep.D 76.96 ( 0.00%) 77.69 ( -0.95%) Time is.D 25.55 ( 0.00%) 27.85 ( -9.00%) Time lu.D 601.58 ( 0.00%) 596.87 ( 0.78%) Time mg.D 107.73 ( 0.00%) 108.22 ( -0.45%) is.D regresses slightly in terms of absolute time but note that that particular load varies quite a bit from run to run. The more relevant observation is the total system CPU usage. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 User 71471.91 70627.04 System 11078.96 8256.13 Elapsed 661.66 632.74 That is a substantial drop in system CPU usage and overall the workload completes faster. The NUMA balancing statistics are also interesting NUMA base PTE updates 111407972 139848884 NUMA huge PMD updates 206506 264869 NUMA page range updates 217139044 275461812 NUMA hint faults 4300924 3719784 NUMA hint local faults 3012539 3416618 NUMA hint local percent 70 91 NUMA pages migrated 1517487 1358420 While more PTEs are scanned due to changes in what faults are gathered, it's clear that a far higher percentage of faults are local as the bulk of the remote hits were dirty pages that, in this case with btrfs, had no chance of migrating. The following is a comparison when using XFS as that is a more realistic filesystem choice for a data partition 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1r47 Time cg.D 485.28 ( 0.00%) 442.62 ( 8.79%) Time ep.D 77.68 ( 0.00%) 77.54 ( 0.18%) Time is.D 26.44 ( 0.00%) 24.79 ( 6.24%) Time lu.D 597.46 ( 0.00%) 597.11 ( 0.06%) Time mg.D 142.65 ( 0.00%) 105.83 ( 25.81%) That is a reasonable gain on two relatively long-lived workloads. While not presented, there is also a substantial drop in system CPu usage and the NUMA balancing stats show similar improvements in locality as btrfs did. Link: http://lkml.kernel.org/r/20180326094334.zserdec62gwmmfqf@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:29:20 +03:00
goto out;
isolated = numamigrate_isolate_page(pgdat, page);
if (!isolated)
goto out;
list_add(&page->lru, &migratepages);
nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
NULL, node, MIGRATE_ASYNC,
MR_NUMA_MISPLACED, &nr_succeeded);
if (nr_remaining) {
if (!list_empty(&migratepages)) {
list_del(&page->lru);
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
page_is_file_lru(page), -nr_pages);
putback_lru_page(page);
}
isolated = 0;
NUMA Balancing: add page promotion counter Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13 With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are different. After commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"), the PMEM could be used as the cost-effective volatile memory in separate NUMA nodes. In a typical memory tiering system, there are CPUs, DRAM and PMEM in each physical NUMA node. The CPUs and the DRAM will be put in one logical node, while the PMEM will be put in another (faked) logical node. To optimize the system overall performance, the hot pages should be placed in DRAM node. To do that, we need to identify the hot pages in the PMEM node and migrate them to DRAM node via NUMA migration. In the original NUMA balancing, there are already a set of existing mechanisms to identify the pages recently accessed by the CPUs in a node and migrate the pages to the node. So we can reuse these mechanisms to build the mechanisms to optimize the page placement in the memory tiering system. This is implemented in this patchset. At the other hand, the cold pages should be placed in PMEM node. So, we also need to identify the cold pages in the DRAM node and migrate them to PMEM node. In commit 26aa2d199d6f ("mm/migrate: demote pages during reclaim"), a mechanism to demote the cold DRAM pages to PMEM node under memory pressure is implemented. Based on that, the cold DRAM pages can be demoted to PMEM node proactively to free some memory space on DRAM node to accommodate the promoted hot PMEM pages. This is implemented in this patchset too. We have tested the solution with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. This patch (of 3): In a system with multiple memory types, e.g. DRAM and PMEM, the CPU and DRAM in one socket will be put in one NUMA node as before, while the PMEM will be put in another NUMA node as described in the description of the commit c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM"). So, the NUMA balancing mechanism will identify all PMEM accesses as remote access and try to promote the PMEM pages to DRAM. To distinguish the number of the inter-type promoted pages from that of the inter-socket migrated pages. A new vmstat count is added. The counter is per-node (count in the target node). So this can be used to identify promotion imbalance among the NUMA nodes. Link: https://lkml.kernel.org/r/20220301085329.3210428-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220221084529.1052339-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:20 +03:00
}
if (nr_succeeded) {
count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
nr_succeeded);
}
BUG_ON(!list_empty(&migratepages));
return isolated;
out:
put_page(page);
return 0;
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_NUMA */
mm/migrate: new memory migration helper for use with device memory This patch add a new memory migration helpers, which migrate memory backing a range of virtual address of a process to different memory (which can be allocated through special allocator). It differs from numa migration by working on a range of virtual address and thus by doing migration in chunk that can be large enough to use DMA engine or special copy offloading engine. Expected users are any one with heterogeneous memory where different memory have different characteristics (latency, bandwidth, ...). As an example IBM platform with CAPI bus can make use of this feature to migrate between regular memory and CAPI device memory. New CPU architecture with a pool of high performance memory not manage as cache but presented as regular memory (while being faster and with lower latency than DDR) will also be prime user of this patch. Migration to private device memory will be useful for device that have large pool of such like GPU, NVidia plans to use HMM for that. Link: http://lkml.kernel.org/r/20170817000548.32038-15-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 02:12:09 +03:00
/*
* node_demotion[] example:
*
* Consider a system with two sockets. Each socket has
* three classes of memory attached: fast, medium and slow.
* Each memory class is placed in its own NUMA node. The
* CPUs are placed in the node with the "fast" memory. The
* 6 NUMA nodes (0-5) might be split among the sockets like
* this:
*
* Socket A: 0, 1, 2
* Socket B: 3, 4, 5
*
* When Node 0 fills up, its memory should be migrated to
* Node 1. When Node 1 fills up, it should be migrated to
* Node 2. The migration path start on the nodes with the
* processors (since allocations default to this node) and
* fast memory, progress through medium and end with the
* slow memory:
*
* 0 -> 1 -> 2 -> stop
* 3 -> 4 -> 5 -> stop
*
* This is represented in the node_demotion[] like this:
*
* { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
* { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
* { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
* { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
* { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
* { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
*
* Moreover some systems may have multiple slow memory nodes.
* Suppose a system has one socket with 3 memory nodes, node 0
* is fast memory type, and node 1/2 both are slow memory
* type, and the distance between fast memory node and slow
* memory node is same. So the migration path should be:
*
* 0 -> 1/2 -> stop
*
* This is represented in the node_demotion[] like this:
* { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
* { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
* { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
*/
/*
* Writes to this array occur without locking. Cycles are
* not allowed: Node X demotes to Y which demotes to X...
*
* If multiple reads are performed, a single rcu_read_lock()
* must be held over all reads to ensure that no cycles are
* observed.
*/
#define DEFAULT_DEMOTION_TARGET_NODES 15
#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
#else
#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
#endif
struct demotion_nodes {
unsigned short nr;
short nodes[DEMOTION_TARGET_NODES];
};
static struct demotion_nodes *node_demotion __read_mostly;
/**
* next_demotion_node() - Get the next node in the demotion path
* @node: The starting node to lookup the next node
*
* Return: node id for next memory node in the demotion path hierarchy
* from @node; NUMA_NO_NODE if @node is terminal. This does not keep
* @node online or guarantee that it *continues* to be the next demotion
* target.
*/
int next_demotion_node(int node)
{
struct demotion_nodes *nd;
unsigned short target_nr, index;
int target;
if (!node_demotion)
return NUMA_NO_NODE;
nd = &node_demotion[node];
/*
* node_demotion[] is updated without excluding this
* function from running. RCU doesn't provide any
* compiler barriers, so the READ_ONCE() is required
* to avoid compiler reordering or read merging.
*
* Make sure to use RCU over entire code blocks if
* node_demotion[] reads need to be consistent.
*/
rcu_read_lock();
target_nr = READ_ONCE(nd->nr);
switch (target_nr) {
case 0:
target = NUMA_NO_NODE;
goto out;
case 1:
index = 0;
break;
default:
/*
* If there are multiple target nodes, just select one
* target node randomly.
*
* In addition, we can also use round-robin to select
* target node, but we should introduce another variable
* for node_demotion[] to record last selected target node,
* that may cause cache ping-pong due to the changing of
* last target node. Or introducing per-cpu data to avoid
* caching issue, which seems more complicated. So selecting
* target node randomly seems better until now.
*/
index = get_random_int() % target_nr;
break;
}
target = READ_ONCE(nd->nodes[index]);
out:
rcu_read_unlock();
return target;
}
#if defined(CONFIG_HOTPLUG_CPU)
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
/* Disable reclaim-based migration. */
static void __disable_all_migrate_targets(void)
{
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
int node, i;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
if (!node_demotion)
return;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
for_each_online_node(node) {
node_demotion[node].nr = 0;
for (i = 0; i < DEMOTION_TARGET_NODES; i++)
node_demotion[node].nodes[i] = NUMA_NO_NODE;
}
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
}
static void disable_all_migrate_targets(void)
{
__disable_all_migrate_targets();
/*
* Ensure that the "disable" is visible across the system.
* Readers will see either a combination of before+disable
* state or disable+after. They will never see before and
* after state together.
*
* The before+after state together might have cycles and
* could cause readers to do things like loop until this
* function finishes. This ensures they can only see a
* single "bad" read and would, for instance, only loop
* once.
*/
synchronize_rcu();
}
/*
* Find an automatic demotion target for 'node'.
* Failing here is OK. It might just indicate
* being at the end of a chain.
*/
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
static int establish_migrate_target(int node, nodemask_t *used,
int best_distance)
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
{
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
int migration_target, index, val;
struct demotion_nodes *nd;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
if (!node_demotion)
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
return NUMA_NO_NODE;
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
nd = &node_demotion[node];
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
migration_target = find_next_best_node(node, used);
if (migration_target == NUMA_NO_NODE)
return NUMA_NO_NODE;
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
/*
* If the node has been set a migration target node before,
* which means it's the best distance between them. Still
* check if this node can be demoted to other target nodes
* if they have a same best distance.
*/
if (best_distance != -1) {
val = node_distance(node, migration_target);
if (val > best_distance)
mm,migrate: fix establishing demotion target In commit ac16ec835314 ("mm: migrate: support multiple target nodes demotion"), after the first demotion target node is found, we will continue to check the next candidate obtained via find_next_best_node(). This is to find all demotion target nodes with same NUMA distance. But one side effect of find_next_best_node() is that the candidate node returned will be set in "used" parameter, even if the candidate node isn't passed in the following NUMA distance checking, the candidate node will not be used as demotion target node for the following nodes. For example, for system as follows, node distances: node 0 1 2 3 0: 10 21 17 28 1: 21 10 28 17 2: 17 28 10 28 3: 28 17 28 10 when we establish demotion target node for node 0, in the first round node 2 is added to the demotion target node set. Then in the second round, node 3 is checked and failed because distance(0, 3) > distance(0, 2). But node 3 is set in "used" nodemask too. When we establish demotion target node for node 1, there is no available node. This is wrong, node 3 should be set as the demotion target of node 1. To fix this, if the candidate node is failed to pass the distance checking, it will be cleared in "used" nodemask. So that it can be used for the following node. The bug can be reproduced and fixed with this patch on a 2 socket server machine with DRAM and PMEM. Link: https://lkml.kernel.org/r/20220128055940.1792614-1-ying.huang@intel.com Fixes: ac16ec835314 ("mm: migrate: support multiple target nodes demotion") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:05 +03:00
goto out_clear;
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
}
index = nd->nr;
if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
"Exceeds maximum demotion target nodes\n"))
mm,migrate: fix establishing demotion target In commit ac16ec835314 ("mm: migrate: support multiple target nodes demotion"), after the first demotion target node is found, we will continue to check the next candidate obtained via find_next_best_node(). This is to find all demotion target nodes with same NUMA distance. But one side effect of find_next_best_node() is that the candidate node returned will be set in "used" parameter, even if the candidate node isn't passed in the following NUMA distance checking, the candidate node will not be used as demotion target node for the following nodes. For example, for system as follows, node distances: node 0 1 2 3 0: 10 21 17 28 1: 21 10 28 17 2: 17 28 10 28 3: 28 17 28 10 when we establish demotion target node for node 0, in the first round node 2 is added to the demotion target node set. Then in the second round, node 3 is checked and failed because distance(0, 3) > distance(0, 2). But node 3 is set in "used" nodemask too. When we establish demotion target node for node 1, there is no available node. This is wrong, node 3 should be set as the demotion target of node 1. To fix this, if the candidate node is failed to pass the distance checking, it will be cleared in "used" nodemask. So that it can be used for the following node. The bug can be reproduced and fixed with this patch on a 2 socket server machine with DRAM and PMEM. Link: https://lkml.kernel.org/r/20220128055940.1792614-1-ying.huang@intel.com Fixes: ac16ec835314 ("mm: migrate: support multiple target nodes demotion") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:05 +03:00
goto out_clear;
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
nd->nodes[index] = migration_target;
nd->nr++;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
return migration_target;
mm,migrate: fix establishing demotion target In commit ac16ec835314 ("mm: migrate: support multiple target nodes demotion"), after the first demotion target node is found, we will continue to check the next candidate obtained via find_next_best_node(). This is to find all demotion target nodes with same NUMA distance. But one side effect of find_next_best_node() is that the candidate node returned will be set in "used" parameter, even if the candidate node isn't passed in the following NUMA distance checking, the candidate node will not be used as demotion target node for the following nodes. For example, for system as follows, node distances: node 0 1 2 3 0: 10 21 17 28 1: 21 10 28 17 2: 17 28 10 28 3: 28 17 28 10 when we establish demotion target node for node 0, in the first round node 2 is added to the demotion target node set. Then in the second round, node 3 is checked and failed because distance(0, 3) > distance(0, 2). But node 3 is set in "used" nodemask too. When we establish demotion target node for node 1, there is no available node. This is wrong, node 3 should be set as the demotion target of node 1. To fix this, if the candidate node is failed to pass the distance checking, it will be cleared in "used" nodemask. So that it can be used for the following node. The bug can be reproduced and fixed with this patch on a 2 socket server machine with DRAM and PMEM. Link: https://lkml.kernel.org/r/20220128055940.1792614-1-ying.huang@intel.com Fixes: ac16ec835314 ("mm: migrate: support multiple target nodes demotion") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:46:05 +03:00
out_clear:
node_clear(migration_target, *used);
return NUMA_NO_NODE;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
}
/*
* When memory fills up on a node, memory contents can be
* automatically migrated to another node instead of
* discarded at reclaim.
*
* Establish a "migration path" which will start at nodes
* with CPUs and will follow the priorities used to build the
* page allocator zonelists.
*
* The difference here is that cycles must be avoided. If
* node0 migrates to node1, then neither node1, nor anything
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
* node1 migrates to can migrate to node0. Also one node can
* be migrated to multiple nodes if the target nodes all have
* a same best-distance against the source node.
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
*
* This function can run simultaneously with readers of
* node_demotion[]. However, it can not run simultaneously
* with itself. Exclusion is provided by memory hotplug events
* being single-threaded.
*/
static void __set_migration_target_nodes(void)
{
nodemask_t next_pass;
nodemask_t this_pass;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
nodemask_t used_targets = NODE_MASK_NONE;
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
int node, best_distance;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
/*
* Avoid any oddities like cycles that could occur
* from changes in the topology. This will leave
* a momentary gap when migration is disabled.
*/
disable_all_migrate_targets();
/*
* Allocations go close to CPUs, first. Assume that
* the migration path starts at the nodes with CPUs.
*/
next_pass = node_states[N_CPU];
again:
this_pass = next_pass;
next_pass = NODE_MASK_NONE;
/*
* To avoid cycles in the migration "graph", ensure
* that migration sources are not future targets by
* setting them in 'used_targets'. Do this only
* once per pass so that multiple source nodes can
* share a target node.
*
* 'used_targets' will become unavailable in future
* passes. This limits some opportunities for
* multiple source nodes to share a destination.
*/
nodes_or(used_targets, used_targets, this_pass);
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
for_each_node_mask(node, this_pass) {
best_distance = -1;
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
/*
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
* Try to set up the migration path for the node, and the target
* migration nodes can be multiple, so doing a loop to find all
* the target nodes if they all have a best node distance.
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
*/
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
do {
int target_node =
establish_migrate_target(node, &used_targets,
best_distance);
if (target_node == NUMA_NO_NODE)
break;
if (best_distance == -1)
best_distance = node_distance(node, target_node);
/*
* Visit targets from this pass in the next pass.
* Eventually, every node will have been part of
* a pass, and will become set in 'used_targets'.
*/
node_set(target_node, next_pass);
} while (1);
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
}
/*
* 'next_pass' contains nodes which became migration
* targets in this pass. Make additional passes until
* no more migrations targets are available.
*/
if (!nodes_empty(next_pass))
goto again;
}
/*
* For callers that do not hold get_online_mems() already.
*/
mm: only re-generate demotion targets when a numa node changes its N_CPU state Abhishek reported that after patch [1], hotplug operations are taking roughly double the expected time. [2] The reason behind is that the CPU callbacks that migrate_on_reclaim_init() sets always call set_migration_target_nodes() whenever a CPU is brought up/down. But we only care about numa nodes going from having cpus to become cpuless, and vice versa, as that influences the demotion_target order. We do already have two CPU callbacks (vmstat_cpu_online() and vmstat_cpu_dead()) that check exactly that, so get rid of the CPU callbacks in migrate_on_reclaim_init() and only call set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a numa node change its N_CPU state. [1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/ [2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/ [osalvador@suse.de: add feedback from Huang Ying] Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de Fixes: 884a6e5d1f93b ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:47:37 +03:00
void set_migration_target_nodes(void)
mm/numa: automatically generate node migration order Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:06 +03:00
{
get_online_mems();
__set_migration_target_nodes();
put_online_mems();
}
mm/migrate: update node demotion order on hotplug events Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:09 +03:00
/*
* This leaves migrate-on-reclaim transiently disabled between
* the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
* whether reclaim-based migration is enabled or not, which
* ensures that the user can turn reclaim-based migration at
* any time without needing to recalculate migration targets.
*
* These callbacks already hold get_online_mems(). That is why
* __set_migration_target_nodes() can be used as opposed to
* set_migration_target_nodes().
*/
static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
mm/migrate: optimize hotplug-time demotion order updates Patch series "mm/migrate: 5.15 fixes for automatic demotion", v2. This contains two fixes for the "automatic demotion" code which was merged into 5.15: * Fix memory hotplug performance regression by watching suppressing any real action on irrelevant hotplug events. * Ensure CPU hotplug handler is registered when memory hotplug is disabled. This patch (of 2): == tl;dr == Automatic demotion opted for a simple, lazy approach to handling hotplug events. This noticeably slows down memory hotplug[1]. Optimize away updates to the demotion order when memory hotplug events should have no effect. This has no effect on CPU hotplug. There is no known problem on the CPU side and any work there will be in a separate series. == Background == Automatic demotion is a memory migration strategy to ensure that new allocations have room in faster memory tiers on tiered memory systems. The kernel maintains an array (node_demotion[]) to drive these migrations. The node_demotion[] path is calculated by starting at nodes with CPUs and then "walking" to nodes with memory. Only hotplug events which online or offline a node with memory (N_ONLINE) or CPUs (N_CPU) will actually affect the migration order. == Problem == However, the current code is lazy. It completely regenerates the migration order on *any* CPU or memory hotplug event. The logic was that these events are extremely rare and that the overhead from indiscriminate order regeneration is minimal. Part of the update logic involves a synchronize_rcu(), which is a pretty big hammer. Its overhead was large enough to be detected by some 0day tests that watch memory hotplug performance[1]. == Solution == Add a new helper (node_demotion_topo_changed()) which can differentiate between superfluous and impactful hotplug events. Skip the expensive update operation for superfluous events. == Aside: Locking == It took me a few moments to declare the locking to be safe enough for node_demotion_topo_changed() to work. It all hinges on the memory hotplug lock: During memory hotplug events, 'mem_hotplug_lock' is held for write. This ensures that two memory hotplug events can not be called simultaneously. CPU hotplug has a similar lock (cpuhp_state_mutex) which also provides mutual exclusion between CPU hotplug events. In addition, the demotion code acquire and hold the mem_hotplug_lock for read during its CPU hotplug handlers. This provides mutual exclusion between the demotion memory hotplug callbacks and the CPU hotplug callbacks. This effectively allows treating the migration target generation code to act as if it is single-threaded. 1. https://lore.kernel.org/all/20210905135932.GE15026@xsang-OptiPlex-9020/ Link: https://lkml.kernel.org/r/20210924161251.093CCD06@davehans-spike.ostc.intel.com Link: https://lkml.kernel.org/r/20210924161253.D7673E31@davehans-spike.ostc.intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reported-by: kernel test robot <oliver.sang@intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-19 01:15:29 +03:00
unsigned long action, void *_arg)
mm/migrate: update node demotion order on hotplug events Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:09 +03:00
{
mm/migrate: optimize hotplug-time demotion order updates Patch series "mm/migrate: 5.15 fixes for automatic demotion", v2. This contains two fixes for the "automatic demotion" code which was merged into 5.15: * Fix memory hotplug performance regression by watching suppressing any real action on irrelevant hotplug events. * Ensure CPU hotplug handler is registered when memory hotplug is disabled. This patch (of 2): == tl;dr == Automatic demotion opted for a simple, lazy approach to handling hotplug events. This noticeably slows down memory hotplug[1]. Optimize away updates to the demotion order when memory hotplug events should have no effect. This has no effect on CPU hotplug. There is no known problem on the CPU side and any work there will be in a separate series. == Background == Automatic demotion is a memory migration strategy to ensure that new allocations have room in faster memory tiers on tiered memory systems. The kernel maintains an array (node_demotion[]) to drive these migrations. The node_demotion[] path is calculated by starting at nodes with CPUs and then "walking" to nodes with memory. Only hotplug events which online or offline a node with memory (N_ONLINE) or CPUs (N_CPU) will actually affect the migration order. == Problem == However, the current code is lazy. It completely regenerates the migration order on *any* CPU or memory hotplug event. The logic was that these events are extremely rare and that the overhead from indiscriminate order regeneration is minimal. Part of the update logic involves a synchronize_rcu(), which is a pretty big hammer. Its overhead was large enough to be detected by some 0day tests that watch memory hotplug performance[1]. == Solution == Add a new helper (node_demotion_topo_changed()) which can differentiate between superfluous and impactful hotplug events. Skip the expensive update operation for superfluous events. == Aside: Locking == It took me a few moments to declare the locking to be safe enough for node_demotion_topo_changed() to work. It all hinges on the memory hotplug lock: During memory hotplug events, 'mem_hotplug_lock' is held for write. This ensures that two memory hotplug events can not be called simultaneously. CPU hotplug has a similar lock (cpuhp_state_mutex) which also provides mutual exclusion between CPU hotplug events. In addition, the demotion code acquire and hold the mem_hotplug_lock for read during its CPU hotplug handlers. This provides mutual exclusion between the demotion memory hotplug callbacks and the CPU hotplug callbacks. This effectively allows treating the migration target generation code to act as if it is single-threaded. 1. https://lore.kernel.org/all/20210905135932.GE15026@xsang-OptiPlex-9020/ Link: https://lkml.kernel.org/r/20210924161251.093CCD06@davehans-spike.ostc.intel.com Link: https://lkml.kernel.org/r/20210924161253.D7673E31@davehans-spike.ostc.intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reported-by: kernel test robot <oliver.sang@intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-19 01:15:29 +03:00
struct memory_notify *arg = _arg;
/*
* Only update the node migration order when a node is
* changing status, like online->offline. This avoids
* the overhead of synchronize_rcu() in most cases.
*/
if (arg->status_change_nid < 0)
return notifier_from_errno(0);
mm/migrate: update node demotion order on hotplug events Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:09 +03:00
switch (action) {
case MEM_GOING_OFFLINE:
/*
* Make sure there are not transient states where
* an offline node is a migration target. This
* will leave migration disabled until the offline
* completes and the MEM_OFFLINE case below runs.
*/
disable_all_migrate_targets();
break;
case MEM_OFFLINE:
case MEM_ONLINE:
/*
* Recalculate the target nodes once the node
* reaches its final state (online or offline).
*/
__set_migration_target_nodes();
break;
case MEM_CANCEL_OFFLINE:
/*
* MEM_GOING_OFFLINE disabled all the migration
* targets. Reenable them.
*/
__set_migration_target_nodes();
break;
case MEM_GOING_ONLINE:
case MEM_CANCEL_ONLINE:
break;
}
return notifier_from_errno(0);
}
mm: only re-generate demotion targets when a numa node changes its N_CPU state Abhishek reported that after patch [1], hotplug operations are taking roughly double the expected time. [2] The reason behind is that the CPU callbacks that migrate_on_reclaim_init() sets always call set_migration_target_nodes() whenever a CPU is brought up/down. But we only care about numa nodes going from having cpus to become cpuless, and vice versa, as that influences the demotion_target order. We do already have two CPU callbacks (vmstat_cpu_online() and vmstat_cpu_dead()) that check exactly that, so get rid of the CPU callbacks in migrate_on_reclaim_init() and only call set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a numa node change its N_CPU state. [1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/ [2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/ [osalvador@suse.de: add feedback from Huang Ying] Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de Fixes: 884a6e5d1f93b ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:47:37 +03:00
void __init migrate_on_reclaim_init(void)
{
node_demotion = kcalloc(nr_node_ids,
sizeof(struct demotion_nodes),
GFP_KERNEL);
mm: migrate: support multiple target nodes demotion We have some machines with multiple memory types like below, which have one fast (DRAM) memory node and two slow (persistent memory) memory nodes. According to current node demotion policy, if node 0 fills up, its memory should be migrated to node 1, when node 1 fills up, its memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop. But this is not efficient and suitbale memory migration route for our machine with multiple slow memory nodes. Since the distance between node 0 to node 1 and node 0 to node 2 is equal, and memory migration between slow memory nodes will increase persistent memory bandwidth greatly, which will hurt the whole system's performance. Thus for this case, we can treat the slow memory node 1 and node 2 as a whole slow memory region, and we should migrate memory from node 0 to node 1 and node 2 if node 0 fills up. This patch changes the node_demotion data structure to support multiple target nodes, and establishes the migration path to support multiple target nodes with validating if the node distance is the best or not. available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 62153 MB node 0 free: 55135 MB node 1 cpus: node 1 size: 127007 MB node 1 free: 126930 MB node 2 cpus: node 2 size: 126968 MB node 2 free: 126878 MB node distances: node 0 1 2 0: 10 20 20 1: 20 10 20 2: 20 20 10 Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:08:43 +03:00
WARN_ON(!node_demotion);
mm: only re-generate demotion targets when a numa node changes its N_CPU state Abhishek reported that after patch [1], hotplug operations are taking roughly double the expected time. [2] The reason behind is that the CPU callbacks that migrate_on_reclaim_init() sets always call set_migration_target_nodes() whenever a CPU is brought up/down. But we only care about numa nodes going from having cpus to become cpuless, and vice versa, as that influences the demotion_target order. We do already have two CPU callbacks (vmstat_cpu_online() and vmstat_cpu_dead()) that check exactly that, so get rid of the CPU callbacks in migrate_on_reclaim_init() and only call set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a numa node change its N_CPU state. [1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/ [2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/ [osalvador@suse.de: add feedback from Huang Ying] Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de Fixes: 884a6e5d1f93b ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:47:37 +03:00
hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
mm/migrate: update node demotion order on hotplug events Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:09 +03:00
/*
mm: only re-generate demotion targets when a numa node changes its N_CPU state Abhishek reported that after patch [1], hotplug operations are taking roughly double the expected time. [2] The reason behind is that the CPU callbacks that migrate_on_reclaim_init() sets always call set_migration_target_nodes() whenever a CPU is brought up/down. But we only care about numa nodes going from having cpus to become cpuless, and vice versa, as that influences the demotion_target order. We do already have two CPU callbacks (vmstat_cpu_online() and vmstat_cpu_dead()) that check exactly that, so get rid of the CPU callbacks in migrate_on_reclaim_init() and only call set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a numa node change its N_CPU state. [1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/ [2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/ [osalvador@suse.de: add feedback from Huang Ying] Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de Fixes: 884a6e5d1f93b ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:47:37 +03:00
* At this point, all numa nodes with memory/CPus have their state
* properly set, so we can build the demotion order now.
* Let us hold the cpu_hotplug lock just, as we could possibily have
* CPU hotplug events during boot.
mm/migrate: update node demotion order on hotplug events Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:09 +03:00
*/
mm: only re-generate demotion targets when a numa node changes its N_CPU state Abhishek reported that after patch [1], hotplug operations are taking roughly double the expected time. [2] The reason behind is that the CPU callbacks that migrate_on_reclaim_init() sets always call set_migration_target_nodes() whenever a CPU is brought up/down. But we only care about numa nodes going from having cpus to become cpuless, and vice versa, as that influences the demotion_target order. We do already have two CPU callbacks (vmstat_cpu_online() and vmstat_cpu_dead()) that check exactly that, so get rid of the CPU callbacks in migrate_on_reclaim_init() and only call set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a numa node change its N_CPU state. [1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/ [2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/ [osalvador@suse.de: add feedback from Huang Ying] Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de Fixes: 884a6e5d1f93b ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 00:47:37 +03:00
cpus_read_lock();
set_migration_target_nodes();
cpus_read_unlock();
mm/migrate: update node demotion order on hotplug events Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 00:59:09 +03:00
}
#endif /* CONFIG_HOTPLUG_CPU */
bool numa_demotion_enabled = false;
#ifdef CONFIG_SYSFS
static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%s\n",
numa_demotion_enabled ? "true" : "false");
}
static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
numa_demotion_enabled = true;
else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
numa_demotion_enabled = false;
else
return -EINVAL;
return count;
}
static struct kobj_attribute numa_demotion_enabled_attr =
__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
numa_demotion_enabled_store);
static struct attribute *numa_attrs[] = {
&numa_demotion_enabled_attr.attr,
NULL,
};
static const struct attribute_group numa_attr_group = {
.attrs = numa_attrs,
};
static int __init numa_init_sysfs(void)
{
int err;
struct kobject *numa_kobj;
numa_kobj = kobject_create_and_add("numa", mm_kobj);
if (!numa_kobj) {
pr_err("failed to create numa kobject\n");
return -ENOMEM;
}
err = sysfs_create_group(numa_kobj, &numa_attr_group);
if (err) {
pr_err("failed to register numa group\n");
goto delete_obj;
}
return 0;
delete_obj:
kobject_put(numa_kobj);
return err;
}
subsys_initcall(numa_init_sysfs);
#endif