2005-04-16 15:20:36 -07:00
/*
* * z2ram - Amiga pseudo - driver to access 16 bit - RAM in ZorroII space
* * as a block device , to be used as a RAM disk or swap space
* *
* * Copyright ( C ) 1994 by Ingo Wilken ( Ingo . Wilken @ informatik . uni - oldenburg . de )
* *
* * + + Geert : support for zorro_unused_z2ram , better range checking
* * + + roman : translate accesses via an array
* * + + Milan : support for ChipRAM usage
* * + + yambo : converted to 2.0 kernel
* * + + yambo : modularized and support added for 3 minor devices including :
* * MAJOR MINOR DESCRIPTION
* * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* * 37 0 Use Zorro II and Chip ram
* * 37 1 Use only Zorro II ram
* * 37 2 Use only Chip ram
* * 37 4 - 7 Use memory list entry 1 - 4 ( first is 0 )
* * + + jskov : support for 1 - 4 th memory list entry .
* *
* * Permission to use , copy , modify , and distribute this software and its
* * documentation for any purpose and without fee is hereby granted , provided
* * that the above copyright notice appear in all copies and that both that
* * copyright notice and this permission notice appear in supporting
* * documentation . This software is provided " as is " without express or
* * implied warranty .
*/
# define DEVICE_NAME "Z2RAM"
# include <linux/major.h>
# include <linux/vmalloc.h>
# include <linux/init.h>
# include <linux/module.h>
# include <linux/blkdev.h>
# include <linux/bitops.h>
2010-06-02 14:28:52 +02:00
# include <linux/mutex.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
# include <linux/slab.h>
2005-04-16 15:20:36 -07:00
# include <asm/setup.h>
# include <asm/amigahw.h>
# include <asm/pgtable.h>
# include <linux/zorro.h>
# define Z2MINOR_COMBINED (0)
# define Z2MINOR_Z2ONLY (1)
# define Z2MINOR_CHIPONLY (2)
# define Z2MINOR_MEMLIST1 (4)
# define Z2MINOR_MEMLIST2 (5)
# define Z2MINOR_MEMLIST3 (6)
# define Z2MINOR_MEMLIST4 (7)
# define Z2MINOR_COUNT (8) /* Move this down when adding a new minor */
# define Z2RAM_CHUNK1024 ( Z2RAM_CHUNKSIZE >> 10 )
2010-06-02 14:28:52 +02:00
static DEFINE_MUTEX ( z2ram_mutex ) ;
2005-04-16 15:20:36 -07:00
static u_long * z2ram_map = NULL ;
static u_long z2ram_size = 0 ;
static int z2_count = 0 ;
static int chip_count = 0 ;
static int list_count = 0 ;
static int current_device = - 1 ;
static DEFINE_SPINLOCK ( z2ram_lock ) ;
static struct gendisk * z2ram_gendisk ;
2007-07-24 09:28:11 +02:00
static void do_z2_request ( struct request_queue * q )
2005-04-16 15:20:36 -07:00
{
struct request * req ;
2009-05-08 11:54:13 +09:00
2009-05-08 11:54:16 +09:00
req = blk_fetch_request ( q ) ;
2009-05-08 11:54:13 +09:00
while ( req ) {
2009-05-07 22:24:39 +09:00
unsigned long start = blk_rq_pos ( req ) < < 9 ;
2009-05-07 22:24:45 +09:00
unsigned long len = blk_rq_cur_bytes ( req ) ;
2017-06-03 09:38:04 +02:00
blk_status_t err = BLK_STS_OK ;
2005-04-16 15:20:36 -07:00
if ( start + len > z2ram_size ) {
2010-10-28 06:15:26 -06:00
pr_err ( DEVICE_NAME " : bad access: block=%llu, "
" count=%u \n " ,
( unsigned long long ) blk_rq_pos ( req ) ,
blk_rq_cur_sectors ( req ) ) ;
2017-06-03 09:38:04 +02:00
err = BLK_STS_IOERR ;
2009-05-08 11:54:13 +09:00
goto done ;
2005-04-16 15:20:36 -07:00
}
while ( len ) {
unsigned long addr = start & Z2RAM_CHUNKMASK ;
unsigned long size = Z2RAM_CHUNKSIZE - addr ;
2014-04-10 09:46:28 -06:00
void * buffer = bio_data ( req - > bio ) ;
2005-04-16 15:20:36 -07:00
if ( len < size )
size = len ;
addr + = z2ram_map [ start > > Z2RAM_CHUNKSHIFT ] ;
if ( rq_data_dir ( req ) = = READ )
2014-04-10 09:46:28 -06:00
memcpy ( buffer , ( char * ) addr , size ) ;
2005-04-16 15:20:36 -07:00
else
2014-04-10 09:46:28 -06:00
memcpy ( ( char * ) addr , buffer , size ) ;
2005-04-16 15:20:36 -07:00
start + = size ;
len - = size ;
}
2009-05-08 11:54:13 +09:00
done :
2009-05-08 11:54:16 +09:00
if ( ! __blk_end_request_cur ( req , err ) )
req = blk_fetch_request ( q ) ;
2005-04-16 15:20:36 -07:00
}
}
static void
get_z2ram ( void )
{
int i ;
for ( i = 0 ; i < Z2RAM_SIZE / Z2RAM_CHUNKSIZE ; i + + )
{
if ( test_bit ( i , zorro_unused_z2ram ) )
{
z2_count + + ;
2011-01-09 11:03:43 +01:00
z2ram_map [ z2ram_size + + ] = ( unsigned long ) ZTWO_VADDR ( Z2RAM_START ) +
( i < < Z2RAM_CHUNKSHIFT ) ;
2005-04-16 15:20:36 -07:00
clear_bit ( i , zorro_unused_z2ram ) ;
}
}
return ;
}
static void
get_chipram ( void )
{
while ( amiga_chip_avail ( ) > ( Z2RAM_CHUNKSIZE * 4 ) )
{
chip_count + + ;
z2ram_map [ z2ram_size ] =
( u_long ) amiga_chip_alloc ( Z2RAM_CHUNKSIZE , " z2ram " ) ;
if ( z2ram_map [ z2ram_size ] = = 0 )
{
break ;
}
z2ram_size + + ;
}
return ;
}
2008-03-02 10:24:45 -05:00
static int z2_open ( struct block_device * bdev , fmode_t mode )
2005-04-16 15:20:36 -07:00
{
int device ;
int max_z2_map = ( Z2RAM_SIZE / Z2RAM_CHUNKSIZE ) *
sizeof ( z2ram_map [ 0 ] ) ;
int max_chip_map = ( amiga_chip_size / Z2RAM_CHUNKSIZE ) *
sizeof ( z2ram_map [ 0 ] ) ;
int rc = - ENOMEM ;
2008-03-02 10:24:45 -05:00
device = MINOR ( bdev - > bd_dev ) ;
2005-04-16 15:20:36 -07:00
2010-06-02 14:28:52 +02:00
mutex_lock ( & z2ram_mutex ) ;
2005-04-16 15:20:36 -07:00
if ( current_device ! = - 1 & & current_device ! = device )
{
rc = - EBUSY ;
goto err_out ;
}
if ( current_device = = - 1 )
{
z2_count = 0 ;
chip_count = 0 ;
list_count = 0 ;
z2ram_size = 0 ;
/* Use a specific list entry. */
if ( device > = Z2MINOR_MEMLIST1 & & device < = Z2MINOR_MEMLIST4 ) {
int index = device - Z2MINOR_MEMLIST1 + 1 ;
unsigned long size , paddr , vaddr ;
if ( index > = m68k_realnum_memory ) {
printk ( KERN_ERR DEVICE_NAME
" : no such entry in z2ram_map \n " ) ;
goto err_out ;
}
paddr = m68k_memory [ index ] . addr ;
size = m68k_memory [ index ] . size & ~ ( Z2RAM_CHUNKSIZE - 1 ) ;
# ifdef __powerpc__
/* FIXME: ioremap doesn't build correct memory tables. */
{
vfree ( vmalloc ( size ) ) ;
}
vaddr = ( unsigned long ) __ioremap ( paddr , size ,
_PAGE_WRITETHRU ) ;
# else
vaddr = ( unsigned long ) z_remap_nocache_nonser ( paddr , size ) ;
# endif
z2ram_map =
treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
kmalloc(a * b, gfp)
with:
kmalloc_array(a * b, gfp)
as well as handling cases of:
kmalloc(a * b * c, gfp)
with:
kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 13:55:00 -07:00
kmalloc_array ( size / Z2RAM_CHUNKSIZE ,
sizeof ( z2ram_map [ 0 ] ) ,
GFP_KERNEL ) ;
2005-04-16 15:20:36 -07:00
if ( z2ram_map = = NULL )
{
printk ( KERN_ERR DEVICE_NAME
" : cannot get mem for z2ram_map \n " ) ;
goto err_out ;
}
while ( size ) {
z2ram_map [ z2ram_size + + ] = vaddr ;
size - = Z2RAM_CHUNKSIZE ;
vaddr + = Z2RAM_CHUNKSIZE ;
list_count + + ;
}
if ( z2ram_size ! = 0 )
printk ( KERN_INFO DEVICE_NAME
" : using %iK List Entry %d Memory \n " ,
list_count * Z2RAM_CHUNK1024 , index ) ;
} else
switch ( device )
{
case Z2MINOR_COMBINED :
z2ram_map = kmalloc ( max_z2_map + max_chip_map , GFP_KERNEL ) ;
if ( z2ram_map = = NULL )
{
printk ( KERN_ERR DEVICE_NAME
" : cannot get mem for z2ram_map \n " ) ;
goto err_out ;
}
get_z2ram ( ) ;
get_chipram ( ) ;
if ( z2ram_size ! = 0 )
printk ( KERN_INFO DEVICE_NAME
" : using %iK Zorro II RAM and %iK Chip RAM (Total %dK) \n " ,
z2_count * Z2RAM_CHUNK1024 ,
chip_count * Z2RAM_CHUNK1024 ,
( z2_count + chip_count ) * Z2RAM_CHUNK1024 ) ;
break ;
case Z2MINOR_Z2ONLY :
z2ram_map = kmalloc ( max_z2_map , GFP_KERNEL ) ;
if ( z2ram_map = = NULL )
{
printk ( KERN_ERR DEVICE_NAME
" : cannot get mem for z2ram_map \n " ) ;
goto err_out ;
}
get_z2ram ( ) ;
if ( z2ram_size ! = 0 )
printk ( KERN_INFO DEVICE_NAME
" : using %iK of Zorro II RAM \n " ,
z2_count * Z2RAM_CHUNK1024 ) ;
break ;
case Z2MINOR_CHIPONLY :
z2ram_map = kmalloc ( max_chip_map , GFP_KERNEL ) ;
if ( z2ram_map = = NULL )
{
printk ( KERN_ERR DEVICE_NAME
" : cannot get mem for z2ram_map \n " ) ;
goto err_out ;
}
get_chipram ( ) ;
if ( z2ram_size ! = 0 )
printk ( KERN_INFO DEVICE_NAME
" : using %iK Chip RAM \n " ,
chip_count * Z2RAM_CHUNK1024 ) ;
break ;
default :
rc = - ENODEV ;
goto err_out ;
break ;
}
if ( z2ram_size = = 0 )
{
printk ( KERN_NOTICE DEVICE_NAME
" : no unused ZII/Chip RAM found \n " ) ;
goto err_out_kfree ;
}
current_device = device ;
z2ram_size < < = Z2RAM_CHUNKSHIFT ;
set_capacity ( z2ram_gendisk , z2ram_size > > 9 ) ;
}
2010-06-02 14:28:52 +02:00
mutex_unlock ( & z2ram_mutex ) ;
2005-04-16 15:20:36 -07:00
return 0 ;
err_out_kfree :
2005-09-10 00:26:54 -07:00
kfree ( z2ram_map ) ;
2005-04-16 15:20:36 -07:00
err_out :
2010-06-02 14:28:52 +02:00
mutex_unlock ( & z2ram_mutex ) ;
2005-04-16 15:20:36 -07:00
return rc ;
}
2013-05-05 21:52:57 -04:00
static void
2008-03-02 10:24:45 -05:00
z2_release ( struct gendisk * disk , fmode_t mode )
2005-04-16 15:20:36 -07:00
{
2010-06-02 14:28:52 +02:00
mutex_lock ( & z2ram_mutex ) ;
2010-08-07 18:25:34 +02:00
if ( current_device = = - 1 ) {
2010-06-02 14:28:52 +02:00
mutex_unlock ( & z2ram_mutex ) ;
2013-05-05 21:52:57 -04:00
return ;
2010-08-07 18:25:34 +02:00
}
2010-06-02 14:28:52 +02:00
mutex_unlock ( & z2ram_mutex ) ;
2005-04-16 15:20:36 -07:00
/*
* FIXME : unmap memory
*/
}
2009-09-21 17:01:13 -07:00
static const struct block_device_operations z2_fops =
2005-04-16 15:20:36 -07:00
{
. owner = THIS_MODULE ,
2008-03-02 10:24:45 -05:00
. open = z2_open ,
. release = z2_release ,
2005-04-16 15:20:36 -07:00
} ;
static struct kobject * z2_find ( dev_t dev , int * part , void * data )
{
* part = 0 ;
2018-02-26 13:01:38 +01:00
return get_disk_and_module ( z2ram_gendisk ) ;
2005-04-16 15:20:36 -07:00
}
static struct request_queue * z2_queue ;
2006-10-11 17:28:47 +01:00
static int __init
2005-04-16 15:20:36 -07:00
z2_init ( void )
{
int ret ;
if ( ! MACH_IS_AMIGA )
2008-05-18 20:47:18 +02:00
return - ENODEV ;
2005-04-16 15:20:36 -07:00
ret = - EBUSY ;
if ( register_blkdev ( Z2RAM_MAJOR , DEVICE_NAME ) )
goto err ;
ret = - ENOMEM ;
z2ram_gendisk = alloc_disk ( 1 ) ;
if ( ! z2ram_gendisk )
goto out_disk ;
z2_queue = blk_init_queue ( do_z2_request , & z2ram_lock ) ;
if ( ! z2_queue )
goto out_queue ;
z2ram_gendisk - > major = Z2RAM_MAJOR ;
z2ram_gendisk - > first_minor = 0 ;
z2ram_gendisk - > fops = & z2_fops ;
sprintf ( z2ram_gendisk - > disk_name , " z2ram " ) ;
z2ram_gendisk - > queue = z2_queue ;
add_disk ( z2ram_gendisk ) ;
blk_register_region ( MKDEV ( Z2RAM_MAJOR , 0 ) , Z2MINOR_COUNT , THIS_MODULE ,
z2_find , NULL , NULL ) ;
return 0 ;
out_queue :
put_disk ( z2ram_gendisk ) ;
out_disk :
unregister_blkdev ( Z2RAM_MAJOR , DEVICE_NAME ) ;
err :
return ret ;
}
2006-10-11 17:28:47 +01:00
static void __exit z2_exit ( void )
2005-04-16 15:20:36 -07:00
{
int i , j ;
2009-07-14 17:59:05 +08:00
blk_unregister_region ( MKDEV ( Z2RAM_MAJOR , 0 ) , Z2MINOR_COUNT ) ;
2007-07-17 04:03:46 -07:00
unregister_blkdev ( Z2RAM_MAJOR , DEVICE_NAME ) ;
2005-04-16 15:20:36 -07:00
del_gendisk ( z2ram_gendisk ) ;
put_disk ( z2ram_gendisk ) ;
blk_cleanup_queue ( z2_queue ) ;
if ( current_device ! = - 1 )
{
i = 0 ;
for ( j = 0 ; j < z2_count ; j + + )
{
set_bit ( i + + , zorro_unused_z2ram ) ;
}
for ( j = 0 ; j < chip_count ; j + + )
{
if ( z2ram_map [ i ] )
{
amiga_chip_free ( ( void * ) z2ram_map [ i + + ] ) ;
}
}
if ( z2ram_map ! = NULL )
{
kfree ( z2ram_map ) ;
}
}
return ;
}
2006-10-11 17:28:47 +01:00
module_init ( z2_init ) ;
module_exit ( z2_exit ) ;
MODULE_LICENSE ( " GPL " ) ;