2007-04-30 10:30:56 +04:00
# ifndef _ASM_POWERPC_PGTABLE_PPC32_H
# define _ASM_POWERPC_PGTABLE_PPC32_H
2007-05-08 06:46:49 +04:00
# include <asm-generic/pgtable-nopmd.h>
2007-04-30 10:30:56 +04:00
# ifndef __ASSEMBLY__
# include <linux/sched.h>
# include <linux/threads.h>
# include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
extern unsigned long va_to_phys ( unsigned long address ) ;
extern pte_t * va_to_pte ( unsigned long address ) ;
extern unsigned long ioremap_bot , ioremap_base ;
# endif /* __ASSEMBLY__ */
/*
* The PowerPC MMU uses a hash table containing PTEs , together with
* a set of 16 segment registers ( on 32 - bit implementations ) , to define
* the virtual to physical address mapping .
*
* We use the hash table as an extended TLB , i . e . a cache of currently
* active mappings . We maintain a two - level page table tree , much
* like that used by the i386 , for the sake of the Linux memory
* management code . Low - level assembler code in hashtable . S
* ( procedure hash_page ) is responsible for extracting ptes from the
* tree and putting them into the hash table when necessary , and
* updating the accessed and modified bits in the page table tree .
*/
/*
* The PowerPC MPC8xx uses a TLB with hardware assisted , software tablewalk .
* We also use the two level tables , but we can put the real bits in them
* needed for the TLB and tablewalk . These definitions require Mx_CTR . PPM = 0 ,
* Mx_CTR . PPCS = 0 , and MD_CTR . TWAM = 1. The level 2 descriptor has
* additional page protection ( when Mx_CTR . PPCS = 1 ) that allows TLB hit
* based upon user / super access . The TLB does not have accessed nor write
* protect . We assume that if the TLB get loaded with an entry it is
* accessed , and overload the changed bit for write protect . We use
* two bits in the software pte that are supposed to be set to zero in
* the TLB entry ( 24 and 25 ) for these indicators . Although the level 1
* descriptor contains the guarded and writethrough / copyback bits , we can
* set these at the page level since they get copied from the Mx_TWC
* register when the TLB entry is loaded . We will use bit 27 for guard , since
* that is where it exists in the MD_TWC , and bit 26 for writethrough .
* These will get masked from the level 2 descriptor at TLB load time , and
* copied to the MD_TWC before it gets loaded .
* Large page sizes added . We currently support two sizes , 4 K and 8 M .
* This also allows a TLB hander optimization because we can directly
* load the PMD into MD_TWC . The 8 M pages are only used for kernel
* mapping of well known areas . The PMD ( PGD ) entries contain control
* flags in addition to the address , so care must be taken that the
* software no longer assumes these are only pointers .
*/
/*
* At present , all PowerPC 400 - class processors share a similar TLB
* architecture . The instruction and data sides share a unified ,
* 64 - entry , fully - associative TLB which is maintained totally under
* software control . In addition , the instruction side has a
* hardware - managed , 4 - entry , fully - associative TLB which serves as a
* first level to the shared TLB . These two TLBs are known as the UTLB
* and ITLB , respectively ( see " mmu.h " for definitions ) .
*/
/*
* The normal case is that PTEs are 32 - bits and we have a 1 - page
* 1024 - entry pgdir pointing to 1 - page 1024 - entry PTE pages . - - paulus
*
* For any > 32 - bit physical address platform , we can use the following
* two level page table layout where the pgdir is 8 KB and the MS 13 bits
* are an index to the second level table . The combined pgdir / pmd first
* level has 2048 entries and the second level has 512 64 - bit PTE entries .
* - Matt
*/
/* PGDIR_SHIFT determines what a top-level page table entry can map */
2007-05-08 06:46:49 +04:00
# define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
2007-04-30 10:30:56 +04:00
# define PGDIR_SIZE (1UL << PGDIR_SHIFT)
# define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level : our page - table tree is two - level , so
* we don ' t really have any PMD directory .
*/
# define PTRS_PER_PTE (1 << PTE_SHIFT)
# define PTRS_PER_PMD 1
# define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
# define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
# define FIRST_USER_ADDRESS 0
# define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
# define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
# define pte_ERROR(e) \
2007-05-04 10:47:51 +04:00
printk ( " %s:%d: bad pte %llx. \n " , __FILE__ , __LINE__ , \
( unsigned long long ) pte_val ( e ) )
2007-04-30 10:30:56 +04:00
# define pgd_ERROR(e) \
printk ( " %s:%d: bad pgd %08lx. \n " , __FILE__ , __LINE__ , pgd_val ( e ) )
/*
* Just any arbitrary offset to the start of the vmalloc VM area : the
* current 64 MB value just means that there will be a 64 MB " hole " after the
* physical memory until the kernel virtual memory starts . That means that
* any out - of - bounds memory accesses will hopefully be caught .
* The vmalloc ( ) routines leaves a hole of 4 kB between each vmalloced
* area for the same reason . ; )
*
* We no longer map larger than phys RAM with the BATs so we don ' t have
* to worry about the VMALLOC_OFFSET causing problems . We do have to worry
* about clashes between our early calls to ioremap ( ) that start growing down
* from ioremap_base being run into the VM area allocations ( growing upwards
* from VMALLOC_START ) . For this reason we have ioremap_bot to check when
* we actually run into our mappings setup in the early boot with the VM
* system . This really does become a problem for machines with good amounts
* of RAM . - - Cort
*/
# define VMALLOC_OFFSET (0x1000000) /* 16M */
# ifdef PPC_PIN_SIZE
# define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
# else
# define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
# endif
# define VMALLOC_END ioremap_bot
/*
* Bits in a linux - style PTE . These match the bits in the
* ( hardware - defined ) PowerPC PTE as closely as possible .
*/
# if defined(CONFIG_40x)
/* There are several potential gotchas here. The 40x hardware TLBLO
field looks like this :
0 1 2 3 4 . . . 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RPN . . . . . . . . . . . . . . . . . . . . . 0 0 EX WR ZSEL . . . . . . . W I M G
Where possible we make the Linux PTE bits match up with this
- bits 20 and 21 must be cleared , because we use 4 k pages ( 40 x can
support down to 1 k pages ) , this is done in the TLBMiss exception
handler .
- We use only zones 0 ( for kernel pages ) and 1 ( for user pages )
of the 16 available . Bit 24 - 26 of the TLB are cleared in the TLB
miss handler . Bit 27 is PAGE_USER , thus selecting the correct
zone .
- PRESENT * must * be in the bottom two bits because swap cache
entries use the top 30 bits . Because 40 x doesn ' t support SMP
anyway , M is irrelevant so we borrow it for PAGE_PRESENT . Bit 30
is cleared in the TLB miss handler before the TLB entry is loaded .
- All other bits of the PTE are loaded into TLBLO without
modification , leaving us only the bits 20 , 21 , 24 , 25 , 26 , 30 for
software PTE bits . We actually use use bits 21 , 24 , 25 , and
30 respectively for the software bits : ACCESSED , DIRTY , RW , and
PRESENT .
*/
/* Definitions for 40x embedded chips. */
# define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
# define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */
# define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
# define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
# define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
# define _PAGE_USER 0x010 /* matches one of the zone permission bits */
# define _PAGE_RW 0x040 /* software: Writes permitted */
# define _PAGE_DIRTY 0x080 /* software: dirty page */
# define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
# define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
# define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
# define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */
# define _PMD_BAD 0x802
# define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */
# define _PMD_SIZE_4M 0x0c0
# define _PMD_SIZE_16M 0x0e0
# define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4))
# elif defined(CONFIG_44x)
/*
* Definitions for PPC440
*
* Because of the 3 word TLB entries to support 36 - bit addressing ,
* the attribute are difficult to map in such a fashion that they
* are easily loaded during exception processing . I decided to
* organize the entry so the ERPN is the only portion in the
* upper word of the PTE and the attribute bits below are packed
* in as sensibly as they can be in the area below a 4 KB page size
* oriented RPN . This at least makes it easy to load the RPN and
* ERPN fields in the TLB . - Matt
*
* Note that these bits preclude future use of a page size
* less than 4 KB .
*
*
* PPC 440 core has following TLB attribute fields ;
*
* TLB1 :
* 0 1 2 3 4 . . . 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
* RPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - - - - - ERPN . . . . . . .
*
* TLB2 :
* 0 1 2 3 4 . . . 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
* - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR
*
* There are some constrains and options , to decide mapping software bits
* into TLB entry .
*
* - PRESENT * must * be in the bottom three bits because swap cache
* entries use the top 29 bits for TLB2 .
*
* - FILE * must * be in the bottom three bits because swap cache
* entries use the top 29 bits for TLB2 .
*
* - CACHE COHERENT bit ( M ) has no effect on PPC440 core , because it
* doesn ' t support SMP . So we can use this as software bit , like
* DIRTY .
*
* With the PPC 44 x Linux implementation , the 0 - 11 th LSBs of the PTE are used
* for memory protection related functions ( see PTE structure in
* include / asm - ppc / mmu . h ) . The _PAGE_XXX definitions in this file map to the
* above bits . Note that the bit values are CPU specific , not architecture
* specific .
*
* The kernel PTE entry holds an arch - dependent swp_entry structure under
* certain situations . In other words , in such situations some portion of
* the PTE bits are used as a swp_entry . In the PPC implementation , the
* 3 - 24 th LSB are shared with swp_entry , however the 0 - 2 nd three LSB still
* hold protection values . That means the three protection bits are
* reserved for both PTE and SWAP entry at the most significant three
* LSBs .
*
* There are three protection bits available for SWAP entry :
* _PAGE_PRESENT
* _PAGE_FILE
* _PAGE_HASHPTE ( if HW has )
*
* So those three bits have to be inside of 0 - 2 nd LSB of PTE .
*
*/
# define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
# define _PAGE_RW 0x00000002 /* S: Write permission */
# define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */
# define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
# define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */
# define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */
# define _PAGE_USER 0x00000040 /* S: User page */
# define _PAGE_ENDIAN 0x00000080 /* H: E bit */
# define _PAGE_GUARDED 0x00000100 /* H: G bit */
# define _PAGE_DIRTY 0x00000200 /* S: Page dirty */
# define _PAGE_NO_CACHE 0x00000400 /* H: I bit */
# define _PAGE_WRITETHRU 0x00000800 /* H: W bit */
/* TODO: Add large page lowmem mapping support */
# define _PMD_PRESENT 0
# define _PMD_PRESENT_MASK (PAGE_MASK)
# define _PMD_BAD (~PAGE_MASK)
/* ERPN in a PTE never gets cleared, ignore it */
# define _PTE_NONE_MASK 0xffffffff00000000ULL
# elif defined(CONFIG_FSL_BOOKE)
/*
MMU Assist Register 3 :
32 33 34 35 36 . . . 50 51 52 53 54 55 56 57 58 59 60 61 62 63
RPN . . . . . . . . . . . . . . . . . . . . . . 0 0 U0 U1 U2 U3 UX SX UW SW UR SR
- PRESENT * must * be in the bottom three bits because swap cache
entries use the top 29 bits .
- FILE * must * be in the bottom three bits because swap cache
entries use the top 29 bits .
*/
/* Definitions for FSL Book-E Cores */
# define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */
# define _PAGE_USER 0x00002 /* S: User page (maps to UR) */
# define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */
# define _PAGE_ACCESSED 0x00004 /* S: Page referenced */
# define _PAGE_HWWRITE 0x00008 /* H: Dirty & RW, set in exception */
# define _PAGE_RW 0x00010 /* S: Write permission */
# define _PAGE_HWEXEC 0x00020 /* H: UX permission */
# define _PAGE_ENDIAN 0x00040 /* H: E bit */
# define _PAGE_GUARDED 0x00080 /* H: G bit */
# define _PAGE_COHERENT 0x00100 /* H: M bit */
# define _PAGE_NO_CACHE 0x00200 /* H: I bit */
# define _PAGE_WRITETHRU 0x00400 /* H: W bit */
# ifdef CONFIG_PTE_64BIT
# define _PAGE_DIRTY 0x08000 /* S: Page dirty */
/* ERPN in a PTE never gets cleared, ignore it */
# define _PTE_NONE_MASK 0xffffffffffff0000ULL
# else
# define _PAGE_DIRTY 0x00800 /* S: Page dirty */
# endif
# define _PMD_PRESENT 0
# define _PMD_PRESENT_MASK (PAGE_MASK)
# define _PMD_BAD (~PAGE_MASK)
# elif defined(CONFIG_8xx)
/* Definitions for 8xx embedded chips. */
# define _PAGE_PRESENT 0x0001 /* Page is valid */
# define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */
# define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
# define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
/* These five software bits must be masked out when the entry is loaded
* into the TLB .
*/
# define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */
# define _PAGE_GUARDED 0x0010 /* software: guarded access */
# define _PAGE_DIRTY 0x0020 /* software: page changed */
# define _PAGE_RW 0x0040 /* software: user write access allowed */
# define _PAGE_ACCESSED 0x0080 /* software: page referenced */
/* Setting any bits in the nibble with the follow two controls will
* require a TLB exception handler change . It is assumed unused bits
* are always zero .
*/
# define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */
# define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */
# define _PMD_PRESENT 0x0001
# define _PMD_BAD 0x0ff0
# define _PMD_PAGE_MASK 0x000c
# define _PMD_PAGE_8M 0x000c
/*
* The 8 xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE
* for an address even if _PAGE_PRESENT is not set , as a performance
* optimization . This is a bug if you ever want to use swap unless
* _PAGE_ACCESSED is 2 , which it isn ' t , or unless you have 8 xx - specific
* definitions for __swp_entry etc . below , which would be gross .
* - - paulus
*/
# define _PTE_NONE_MASK _PAGE_ACCESSED
# else /* CONFIG_6xx */
/* Definitions for 60x, 740/750, etc. */
# define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
# define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
# define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */
# define _PAGE_USER 0x004 /* usermode access allowed */
# define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
# define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
# define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
# define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
# define _PAGE_DIRTY 0x080 /* C: page changed */
# define _PAGE_ACCESSED 0x100 /* R: page referenced */
# define _PAGE_EXEC 0x200 /* software: i-cache coherency required */
# define _PAGE_RW 0x400 /* software: user write access allowed */
# define _PTE_NONE_MASK _PAGE_HASHPTE
# define _PMD_PRESENT 0
# define _PMD_PRESENT_MASK (PAGE_MASK)
# define _PMD_BAD (~PAGE_MASK)
# endif
/*
* Some bits are only used on some cpu families . . .
*/
# ifndef _PAGE_HASHPTE
# define _PAGE_HASHPTE 0
# endif
# ifndef _PTE_NONE_MASK
# define _PTE_NONE_MASK 0
# endif
# ifndef _PAGE_SHARED
# define _PAGE_SHARED 0
# endif
# ifndef _PAGE_HWWRITE
# define _PAGE_HWWRITE 0
# endif
# ifndef _PAGE_HWEXEC
# define _PAGE_HWEXEC 0
# endif
# ifndef _PAGE_EXEC
# define _PAGE_EXEC 0
# endif
# ifndef _PMD_PRESENT_MASK
# define _PMD_PRESENT_MASK _PMD_PRESENT
# endif
# ifndef _PMD_SIZE
# define _PMD_SIZE 0
# define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE()
# endif
# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
/*
* Note : the _PAGE_COHERENT bit automatically gets set in the hardware
* PTE if CONFIG_SMP is defined ( hash_page does this ) ; there is no need
* to have it in the Linux PTE , and in fact the bit could be reused for
* another purpose . - - paulus .
*/
# ifdef CONFIG_44x
# define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED)
# else
# define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
# endif
# define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
# define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
# ifdef CONFIG_PPC_STD_MMU
/* On standard PPC MMU, no user access implies kernel read/write access,
* so to write - protect kernel memory we must turn on user access */
# define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
# else
# define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
# endif
# define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
# define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC)
# if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH)
/* We want the debuggers to be able to set breakpoints anywhere, so
* don ' t write protect the kernel text */
# define _PAGE_RAM_TEXT _PAGE_RAM
# else
# define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
# endif
# define PAGE_NONE __pgprot(_PAGE_BASE)
# define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
# define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
# define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
# define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
# define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
# define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
# define PAGE_KERNEL __pgprot(_PAGE_RAM)
# define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO)
/*
* The PowerPC can only do execute protection on a segment ( 256 MB ) basis ,
* not on a page basis . So we consider execute permission the same as read .
* Also , write permissions imply read permissions .
* This is the closest we can get . .
*/
# define __P000 PAGE_NONE
# define __P001 PAGE_READONLY_X
# define __P010 PAGE_COPY
# define __P011 PAGE_COPY_X
# define __P100 PAGE_READONLY
# define __P101 PAGE_READONLY_X
# define __P110 PAGE_COPY
# define __P111 PAGE_COPY_X
# define __S000 PAGE_NONE
# define __S001 PAGE_READONLY_X
# define __S010 PAGE_SHARED
# define __S011 PAGE_SHARED_X
# define __S100 PAGE_READONLY
# define __S101 PAGE_READONLY_X
# define __S110 PAGE_SHARED
# define __S111 PAGE_SHARED_X
# ifndef __ASSEMBLY__
/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
* kernel without large page PMD support */
extern unsigned long bad_call_to_PMD_PAGE_SIZE ( void ) ;
/*
* Conversions between PTE values and page frame numbers .
*/
/* in some case we want to additionaly adjust where the pfn is in the pte to
* allow room for more flags */
# if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
# define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8)
# else
# define PFN_SHIFT_OFFSET (PAGE_SHIFT)
# endif
# define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
# define pte_page(x) pfn_to_page(pte_pfn(x))
# define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
pgprot_val ( prot ) )
# define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
# endif /* __ASSEMBLY__ */
# define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
# define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
# define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
# define pmd_none(pmd) (!pmd_val(pmd))
# define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
# define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
# define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
# ifndef __ASSEMBLY__
/*
* The following only work if pte_present ( ) is true .
* Undefined behaviour if not . .
*/
static inline int pte_write ( pte_t pte ) { return pte_val ( pte ) & _PAGE_RW ; }
static inline int pte_dirty ( pte_t pte ) { return pte_val ( pte ) & _PAGE_DIRTY ; }
static inline int pte_young ( pte_t pte ) { return pte_val ( pte ) & _PAGE_ACCESSED ; }
static inline int pte_file ( pte_t pte ) { return pte_val ( pte ) & _PAGE_FILE ; }
static inline void pte_uncache ( pte_t pte ) { pte_val ( pte ) | = _PAGE_NO_CACHE ; }
static inline void pte_cache ( pte_t pte ) { pte_val ( pte ) & = ~ _PAGE_NO_CACHE ; }
static inline pte_t pte_wrprotect ( pte_t pte ) {
pte_val ( pte ) & = ~ ( _PAGE_RW | _PAGE_HWWRITE ) ; return pte ; }
static inline pte_t pte_mkclean ( pte_t pte ) {
pte_val ( pte ) & = ~ ( _PAGE_DIRTY | _PAGE_HWWRITE ) ; return pte ; }
static inline pte_t pte_mkold ( pte_t pte ) {
pte_val ( pte ) & = ~ _PAGE_ACCESSED ; return pte ; }
static inline pte_t pte_mkwrite ( pte_t pte ) {
pte_val ( pte ) | = _PAGE_RW ; return pte ; }
static inline pte_t pte_mkdirty ( pte_t pte ) {
pte_val ( pte ) | = _PAGE_DIRTY ; return pte ; }
static inline pte_t pte_mkyoung ( pte_t pte ) {
pte_val ( pte ) | = _PAGE_ACCESSED ; return pte ; }
static inline pte_t pte_modify ( pte_t pte , pgprot_t newprot )
{
pte_val ( pte ) = ( pte_val ( pte ) & _PAGE_CHG_MASK ) | pgprot_val ( newprot ) ;
return pte ;
}
/*
* When flushing the tlb entry for a page , we also need to flush the hash
* table entry . flush_hash_pages is assembler ( for speed ) in hashtable . S .
*/
extern int flush_hash_pages ( unsigned context , unsigned long va ,
unsigned long pmdval , int count ) ;
/* Add an HPTE to the hash table */
extern void add_hash_page ( unsigned context , unsigned long va ,
unsigned long pmdval ) ;
/*
* Atomic PTE updates .
*
* pte_update clears and sets bit atomically , and returns
* the old pte value . In the 64 - bit PTE case we lock around the
* low PTE word since we expect ALL flag bits to be there
*/
# ifndef CONFIG_PTE_64BIT
static inline unsigned long pte_update ( pte_t * p , unsigned long clr ,
unsigned long set )
{
unsigned long old , tmp ;
__asm__ __volatile__ ( " \
1 : lwarx % 0 , 0 , % 3 \ n \
andc % 1 , % 0 , % 4 \ n \
or % 1 , % 1 , % 5 \ n "
PPC405_ERR77 ( 0 , % 3 )
" stwcx. %1,0,%3 \n \
bne - 1 b "
: " =&r " ( old ) , " =&r " ( tmp ) , " =m " ( * p )
: " r " ( p ) , " r " ( clr ) , " r " ( set ) , " m " ( * p )
: " cc " ) ;
return old ;
}
# else
static inline unsigned long long pte_update ( pte_t * p , unsigned long clr ,
unsigned long set )
{
unsigned long long old ;
unsigned long tmp ;
__asm__ __volatile__ ( " \
1 : lwarx % L0 , 0 , % 4 \ n \
lwzx % 0 , 0 , % 3 \ n \
andc % 1 , % L0 , % 5 \ n \
or % 1 , % 1 , % 6 \ n "
PPC405_ERR77 ( 0 , % 3 )
" stwcx. %1,0,%4 \n \
bne - 1 b "
: " =&r " ( old ) , " =&r " ( tmp ) , " =m " ( * p )
: " r " ( p ) , " r " ( ( unsigned long ) ( p ) + 4 ) , " r " ( clr ) , " r " ( set ) , " m " ( * p )
: " cc " ) ;
return old ;
}
# endif
/*
* set_pte stores a linux PTE into the linux page table .
* On machines which use an MMU hash table we avoid changing the
* _PAGE_HASHPTE bit .
*/
static inline void set_pte_at ( struct mm_struct * mm , unsigned long addr ,
pte_t * ptep , pte_t pte )
{
# if _PAGE_HASHPTE != 0
pte_update ( ptep , ~ _PAGE_HASHPTE , pte_val ( pte ) & ~ _PAGE_HASHPTE ) ;
# else
* ptep = pte ;
# endif
}
/*
* 2.6 calles this without flushing the TLB entry , this is wrong
* for our hash - based implementation , we fix that up here
*/
# define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young ( unsigned int context , unsigned long addr , pte_t * ptep )
{
unsigned long old ;
old = pte_update ( ptep , _PAGE_ACCESSED , 0 ) ;
# if _PAGE_HASHPTE != 0
if ( old & _PAGE_HASHPTE ) {
unsigned long ptephys = __pa ( ptep ) & PAGE_MASK ;
flush_hash_pages ( context , addr , ptephys , 1 ) ;
}
# endif
return ( old & _PAGE_ACCESSED ) ! = 0 ;
}
# define ptep_test_and_clear_young(__vma, __addr, __ptep) \
__ptep_test_and_clear_young ( ( __vma ) - > vm_mm - > context . id , __addr , __ptep )
# define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear ( struct mm_struct * mm , unsigned long addr ,
pte_t * ptep )
{
return __pte ( pte_update ( ptep , ~ _PAGE_HASHPTE , 0 ) ) ;
}
# define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect ( struct mm_struct * mm , unsigned long addr ,
pte_t * ptep )
{
pte_update ( ptep , ( _PAGE_RW | _PAGE_HWWRITE ) , 0 ) ;
}
# define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
static inline void __ptep_set_access_flags ( pte_t * ptep , pte_t entry , int dirty )
{
unsigned long bits = pte_val ( entry ) &
( _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW ) ;
pte_update ( ptep , 0 , bits ) ;
}
# define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
2007-06-16 21:16:12 +04:00
( { \
int __changed = ! pte_same ( * ( __ptep ) , __entry ) ; \
if ( __changed ) { \
__ptep_set_access_flags ( __ptep , __entry , __dirty ) ; \
flush_tlb_page_nohash ( __vma , __address ) ; \
} \
__changed ; \
} )
2007-04-30 10:30:56 +04:00
/*
* Macro to mark a page protection value as " uncacheable " .
*/
# define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
struct file ;
extern pgprot_t phys_mem_access_prot ( struct file * file , unsigned long pfn ,
unsigned long size , pgprot_t vma_prot ) ;
# define __HAVE_PHYS_MEM_ACCESS_PROT
# define __HAVE_ARCH_PTE_SAME
# define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
/*
* Note that on Book E processors , the pmd contains the kernel virtual
* ( lowmem ) address of the pte page . The physical address is less useful
* because everything runs with translation enabled ( even the TLB miss
* handler ) . On everything else the pmd contains the physical address
* of the pte page . - - paulus
*/
# ifndef CONFIG_BOOKE
# define pmd_page_vaddr(pmd) \
( ( unsigned long ) __va ( pmd_val ( pmd ) & PAGE_MASK ) )
# define pmd_page(pmd) \
( mem_map + ( pmd_val ( pmd ) > > PAGE_SHIFT ) )
# else
# define pmd_page_vaddr(pmd) \
( ( unsigned long ) ( pmd_val ( pmd ) & PAGE_MASK ) )
# define pmd_page(pmd) \
( mem_map + ( __pa ( pmd_val ( pmd ) ) > > PAGE_SHIFT ) )
# endif
/* to find an entry in a kernel page-table-directory */
# define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
# define pgd_index(address) ((address) >> PGDIR_SHIFT)
# define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/* Find an entry in the third-level page table.. */
# define pte_index(address) \
( ( ( address ) > > PAGE_SHIFT ) & ( PTRS_PER_PTE - 1 ) )
# define pte_offset_kernel(dir, addr) \
( ( pte_t * ) pmd_page_vaddr ( * ( dir ) ) + pte_index ( addr ) )
# define pte_offset_map(dir, addr) \
( ( pte_t * ) kmap_atomic ( pmd_page ( * ( dir ) ) , KM_PTE0 ) + pte_index ( addr ) )
# define pte_offset_map_nested(dir, addr) \
( ( pte_t * ) kmap_atomic ( pmd_page ( * ( dir ) ) , KM_PTE1 ) + pte_index ( addr ) )
# define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
# define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
/*
* Encode and decode a swap entry .
* Note that the bits we use in a PTE for representing a swap entry
* must not include the _PAGE_PRESENT bit , the _PAGE_FILE bit , or the
* _PAGE_HASHPTE bit ( if used ) . - - paulus
*/
# define __swp_type(entry) ((entry).val & 0x1f)
# define __swp_offset(entry) ((entry).val >> 5)
# define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
# define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
# define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
/* Encode and decode a nonlinear file mapping entry */
# define PTE_FILE_MAX_BITS 29
# define pte_to_pgoff(pte) (pte_val(pte) >> 3)
# define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
/*
* No page table caches to initialise
*/
# define pgtable_cache_init() do { } while (0)
extern int get_pteptr ( struct mm_struct * mm , unsigned long addr , pte_t * * ptep ,
pmd_t * * pmdp ) ;
# endif /* !__ASSEMBLY__ */
# endif /* _ASM_POWERPC_PGTABLE_PPC32_H */