linux/drivers/infiniband/core/addr.c

459 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/inetdevice.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <net/arp.h>
#include <net/neighbour.h>
#include <net/route.h>
#include <net/netevent.h>
#include <net/addrconf.h>
#include <net/ip6_route.h>
#include <rdma/ib_addr.h>
MODULE_AUTHOR("Sean Hefty");
MODULE_DESCRIPTION("IB Address Translation");
MODULE_LICENSE("Dual BSD/GPL");
struct addr_req {
struct list_head list;
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
struct rdma_dev_addr *addr;
struct rdma_addr_client *client;
void *context;
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context);
unsigned long timeout;
int status;
};
static void process_req(struct work_struct *work);
static DEFINE_MUTEX(lock);
static LIST_HEAD(req_list);
static DECLARE_DELAYED_WORK(work, process_req);
static struct workqueue_struct *addr_wq;
void rdma_addr_register_client(struct rdma_addr_client *client)
{
atomic_set(&client->refcount, 1);
init_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_register_client);
static inline void put_client(struct rdma_addr_client *client)
{
if (atomic_dec_and_test(&client->refcount))
complete(&client->comp);
}
void rdma_addr_unregister_client(struct rdma_addr_client *client)
{
put_client(client);
wait_for_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_unregister_client);
int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
const unsigned char *dst_dev_addr)
{
dev_addr->dev_type = dev->type;
memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
if (dst_dev_addr)
memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
dev_addr->bound_dev_if = dev->ifindex;
return 0;
}
EXPORT_SYMBOL(rdma_copy_addr);
int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
{
struct net_device *dev;
int ret = -EADDRNOTAVAIL;
if (dev_addr->bound_dev_if) {
dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
if (!dev)
return -ENODEV;
ret = rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
return ret;
}
switch (addr->sa_family) {
case AF_INET:
dev = ip_dev_find(&init_net,
((struct sockaddr_in *) addr)->sin_addr.s_addr);
if (!dev)
return ret;
ret = rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
break;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
case AF_INET6:
rcu_read_lock();
for_each_netdev_rcu(&init_net, dev) {
if (ipv6_chk_addr(&init_net,
&((struct sockaddr_in6 *) addr)->sin6_addr,
dev, 1)) {
ret = rdma_copy_addr(dev_addr, dev, NULL);
break;
}
}
rcu_read_unlock();
break;
#endif
}
return ret;
}
EXPORT_SYMBOL(rdma_translate_ip);
static void set_timeout(unsigned long time)
{
unsigned long delay;
cancel_delayed_work(&work);
delay = time - jiffies;
if ((long)delay <= 0)
delay = 1;
queue_delayed_work(addr_wq, &work, delay);
}
static void queue_req(struct addr_req *req)
{
struct addr_req *temp_req;
mutex_lock(&lock);
list_for_each_entry_reverse(temp_req, &req_list, list) {
if (time_after_eq(req->timeout, temp_req->timeout))
break;
}
list_add(&req->list, &temp_req->list);
if (req_list.next == &req->list)
set_timeout(req->timeout);
mutex_unlock(&lock);
}
static int addr4_resolve(struct sockaddr_in *src_in,
struct sockaddr_in *dst_in,
struct rdma_dev_addr *addr)
{
__be32 src_ip = src_in->sin_addr.s_addr;
__be32 dst_ip = dst_in->sin_addr.s_addr;
struct rtable *rt;
struct neighbour *neigh;
struct flowi4 fl4;
int ret;
memset(&fl4, 0, sizeof(fl4));
fl4.daddr = dst_ip;
fl4.saddr = src_ip;
fl4.flowi4_oif = addr->bound_dev_if;
rt = ip_route_output_key(&init_net, &fl4);
if (IS_ERR(rt)) {
ret = PTR_ERR(rt);
goto out;
}
src_in->sin_family = AF_INET;
src_in->sin_addr.s_addr = fl4.saddr;
if (rt->dst.dev->flags & IFF_LOOPBACK) {
ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
if (!ret)
memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
goto put;
}
/* If the device does ARP internally, return 'done' */
if (rt->dst.dev->flags & IFF_NOARP) {
ret = rdma_copy_addr(addr, rt->dst.dev, NULL);
goto put;
}
neigh = neigh_lookup(&arp_tbl, &rt->rt_gateway, rt->dst.dev);
if (!neigh || !(neigh->nud_state & NUD_VALID)) {
neigh_event_send(dst_get_neighbour(&rt->dst), NULL);
ret = -ENODATA;
if (neigh)
goto release;
goto put;
}
ret = rdma_copy_addr(addr, neigh->dev, neigh->ha);
release:
neigh_release(neigh);
put:
ip_rt_put(rt);
out:
return ret;
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
static int addr6_resolve(struct sockaddr_in6 *src_in,
struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr)
{
struct flowi6 fl6;
struct neighbour *neigh;
struct dst_entry *dst;
int ret;
memset(&fl6, 0, sizeof fl6);
ipv6_addr_copy(&fl6.daddr, &dst_in->sin6_addr);
ipv6_addr_copy(&fl6.saddr, &src_in->sin6_addr);
fl6.flowi6_oif = addr->bound_dev_if;
dst = ip6_route_output(&init_net, NULL, &fl6);
if ((ret = dst->error))
goto put;
if (ipv6_addr_any(&fl6.saddr)) {
ret = ipv6_dev_get_saddr(&init_net, ip6_dst_idev(dst)->dev,
&fl6.daddr, 0, &fl6.saddr);
if (ret)
goto put;
src_in->sin6_family = AF_INET6;
ipv6_addr_copy(&src_in->sin6_addr, &fl6.saddr);
}
if (dst->dev->flags & IFF_LOOPBACK) {
ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
if (!ret)
memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
goto put;
}
/* If the device does ARP internally, return 'done' */
if (dst->dev->flags & IFF_NOARP) {
ret = rdma_copy_addr(addr, dst->dev, NULL);
goto put;
}
neigh = dst_get_neighbour(dst);
if (!neigh || !(neigh->nud_state & NUD_VALID)) {
if (neigh)
neigh_event_send(neigh, NULL);
ret = -ENODATA;
goto put;
}
ret = rdma_copy_addr(addr, dst->dev, neigh->ha);
put:
dst_release(dst);
return ret;
}
#else
static int addr6_resolve(struct sockaddr_in6 *src_in,
struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr)
{
return -EADDRNOTAVAIL;
}
#endif
static int addr_resolve(struct sockaddr *src_in,
struct sockaddr *dst_in,
struct rdma_dev_addr *addr)
{
if (src_in->sa_family == AF_INET) {
return addr4_resolve((struct sockaddr_in *) src_in,
(struct sockaddr_in *) dst_in, addr);
} else
return addr6_resolve((struct sockaddr_in6 *) src_in,
(struct sockaddr_in6 *) dst_in, addr);
}
static void process_req(struct work_struct *work)
{
struct addr_req *req, *temp_req;
struct sockaddr *src_in, *dst_in;
struct list_head done_list;
INIT_LIST_HEAD(&done_list);
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->status == -ENODATA) {
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr);
if (req->status && time_after_eq(jiffies, req->timeout))
req->status = -ETIMEDOUT;
else if (req->status == -ENODATA)
continue;
}
list_move_tail(&req->list, &done_list);
}
if (!list_empty(&req_list)) {
req = list_entry(req_list.next, struct addr_req, list);
set_timeout(req->timeout);
}
mutex_unlock(&lock);
list_for_each_entry_safe(req, temp_req, &done_list, list) {
list_del(&req->list);
req->callback(req->status, (struct sockaddr *) &req->src_addr,
req->addr, req->context);
put_client(req->client);
kfree(req);
}
}
int rdma_resolve_ip(struct rdma_addr_client *client,
struct sockaddr *src_addr, struct sockaddr *dst_addr,
struct rdma_dev_addr *addr, int timeout_ms,
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context),
void *context)
{
struct sockaddr *src_in, *dst_in;
struct addr_req *req;
int ret = 0;
2007-07-19 12:49:03 +04:00
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family) {
ret = -EINVAL;
goto err;
}
memcpy(src_in, src_addr, ip_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
memcpy(dst_in, dst_addr, ip_addr_size(dst_addr));
req->addr = addr;
req->callback = callback;
req->context = context;
req->client = client;
atomic_inc(&client->refcount);
req->status = addr_resolve(src_in, dst_in, addr);
switch (req->status) {
case 0:
req->timeout = jiffies;
queue_req(req);
break;
case -ENODATA:
req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
queue_req(req);
break;
default:
ret = req->status;
atomic_dec(&client->refcount);
goto err;
}
return ret;
err:
kfree(req);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_ip);
void rdma_addr_cancel(struct rdma_dev_addr *addr)
{
struct addr_req *req, *temp_req;
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->addr == addr) {
req->status = -ECANCELED;
req->timeout = jiffies;
list_move(&req->list, &req_list);
set_timeout(req->timeout);
break;
}
}
mutex_unlock(&lock);
}
EXPORT_SYMBOL(rdma_addr_cancel);
static int netevent_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
if (event == NETEVENT_NEIGH_UPDATE) {
struct neighbour *neigh = ctx;
if (neigh->nud_state & NUD_VALID) {
set_timeout(jiffies);
}
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = netevent_callback
};
static int __init addr_init(void)
{
addr_wq = create_singlethread_workqueue("ib_addr");
if (!addr_wq)
return -ENOMEM;
register_netevent_notifier(&nb);
return 0;
}
static void __exit addr_cleanup(void)
{
unregister_netevent_notifier(&nb);
destroy_workqueue(addr_wq);
}
module_init(addr_init);
module_exit(addr_cleanup);