2006-09-27 15:27:33 +01:00
/*
* linux / arch / arm / mm / mmu . c
*
* Copyright ( C ) 1995 - 2005 Russell King
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
2006-09-27 15:38:34 +01:00
# include <linux/module.h>
2006-09-27 15:27:33 +01:00
# include <linux/kernel.h>
# include <linux/errno.h>
# include <linux/init.h>
# include <linux/bootmem.h>
# include <linux/mman.h>
# include <linux/nodemask.h>
# include <asm/mach-types.h>
# include <asm/setup.h>
# include <asm/sizes.h>
# include <asm/tlb.h>
# include <asm/mach/arch.h>
# include <asm/mach/map.h>
# include "mm.h"
DEFINE_PER_CPU ( struct mmu_gather , mmu_gathers ) ;
2006-09-30 10:50:05 +01:00
extern void _stext , _etext , __data_start , _end ;
2006-09-27 15:27:33 +01:00
extern pgd_t swapper_pg_dir [ PTRS_PER_PGD ] ;
/*
* empty_zero_page is a special page that is used for
* zero - initialized data and COW .
*/
struct page * empty_zero_page ;
2008-04-29 08:11:12 -04:00
EXPORT_SYMBOL ( empty_zero_page ) ;
2006-09-27 15:27:33 +01:00
/*
* The pmd table for the upper - most set of pages .
*/
pmd_t * top_pmd ;
2006-09-27 15:38:34 +01:00
# define CPOLICY_UNCACHED 0
# define CPOLICY_BUFFERED 1
# define CPOLICY_WRITETHROUGH 2
# define CPOLICY_WRITEBACK 3
# define CPOLICY_WRITEALLOC 4
static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK ;
static unsigned int ecc_mask __initdata = 0 ;
2007-02-11 13:45:13 +01:00
pgprot_t pgprot_user ;
2006-09-27 15:38:34 +01:00
pgprot_t pgprot_kernel ;
2007-02-11 13:45:13 +01:00
EXPORT_SYMBOL ( pgprot_user ) ;
2006-09-27 15:38:34 +01:00
EXPORT_SYMBOL ( pgprot_kernel ) ;
struct cachepolicy {
const char policy [ 16 ] ;
unsigned int cr_mask ;
unsigned int pmd ;
unsigned int pte ;
} ;
static struct cachepolicy cache_policies [ ] __initdata = {
{
. policy = " uncached " ,
. cr_mask = CR_W | CR_C ,
. pmd = PMD_SECT_UNCACHED ,
2008-09-06 20:04:59 +01:00
. pte = L_PTE_MT_UNCACHED ,
2006-09-27 15:38:34 +01:00
} , {
. policy = " buffered " ,
. cr_mask = CR_C ,
. pmd = PMD_SECT_BUFFERED ,
2008-09-06 20:04:59 +01:00
. pte = L_PTE_MT_BUFFERABLE ,
2006-09-27 15:38:34 +01:00
} , {
. policy = " writethrough " ,
. cr_mask = 0 ,
. pmd = PMD_SECT_WT ,
2008-09-06 20:04:59 +01:00
. pte = L_PTE_MT_WRITETHROUGH ,
2006-09-27 15:38:34 +01:00
} , {
. policy = " writeback " ,
. cr_mask = 0 ,
. pmd = PMD_SECT_WB ,
2008-09-06 20:04:59 +01:00
. pte = L_PTE_MT_WRITEBACK ,
2006-09-27 15:38:34 +01:00
} , {
. policy = " writealloc " ,
. cr_mask = 0 ,
. pmd = PMD_SECT_WBWA ,
2008-09-06 20:04:59 +01:00
. pte = L_PTE_MT_WRITEALLOC ,
2006-09-27 15:38:34 +01:00
}
} ;
/*
2007-05-11 20:40:30 +01:00
* These are useful for identifying cache coherency
2006-09-27 15:38:34 +01:00
* problems by allowing the cache or the cache and
* writebuffer to be turned off . ( Note : the write
* buffer should not be on and the cache off ) .
*/
static void __init early_cachepolicy ( char * * p )
{
int i ;
for ( i = 0 ; i < ARRAY_SIZE ( cache_policies ) ; i + + ) {
int len = strlen ( cache_policies [ i ] . policy ) ;
if ( memcmp ( * p , cache_policies [ i ] . policy , len ) = = 0 ) {
cachepolicy = i ;
cr_alignment & = ~ cache_policies [ i ] . cr_mask ;
cr_no_alignment & = ~ cache_policies [ i ] . cr_mask ;
* p + = len ;
break ;
}
}
if ( i = = ARRAY_SIZE ( cache_policies ) )
printk ( KERN_ERR " ERROR: unknown or unsupported cache policy \n " ) ;
2007-07-20 11:42:24 +01:00
if ( cpu_architecture ( ) > = CPU_ARCH_ARMv6 ) {
printk ( KERN_WARNING " Only cachepolicy=writeback supported on ARMv6 and later \n " ) ;
cachepolicy = CPOLICY_WRITEBACK ;
}
2006-09-27 15:38:34 +01:00
flush_cache_all ( ) ;
set_cr ( cr_alignment ) ;
}
__early_param ( " cachepolicy= " , early_cachepolicy ) ;
static void __init early_nocache ( char * * __unused )
{
char * p = " buffered " ;
printk ( KERN_WARNING " nocache is deprecated; use cachepolicy=%s \n " , p ) ;
early_cachepolicy ( & p ) ;
}
__early_param ( " nocache " , early_nocache ) ;
static void __init early_nowrite ( char * * __unused )
{
char * p = " uncached " ;
printk ( KERN_WARNING " nowb is deprecated; use cachepolicy=%s \n " , p ) ;
early_cachepolicy ( & p ) ;
}
__early_param ( " nowb " , early_nowrite ) ;
static void __init early_ecc ( char * * p )
{
if ( memcmp ( * p , " on " , 2 ) = = 0 ) {
ecc_mask = PMD_PROTECTION ;
* p + = 2 ;
} else if ( memcmp ( * p , " off " , 3 ) = = 0 ) {
ecc_mask = 0 ;
* p + = 3 ;
}
}
__early_param ( " ecc= " , early_ecc ) ;
static int __init noalign_setup ( char * __unused )
{
cr_alignment & = ~ CR_A ;
cr_no_alignment & = ~ CR_A ;
set_cr ( cr_alignment ) ;
return 1 ;
}
__setup ( " noalign " , noalign_setup ) ;
2006-12-18 00:12:47 +00:00
# ifndef CONFIG_SMP
void adjust_cr ( unsigned long mask , unsigned long set )
{
unsigned long flags ;
mask & = ~ CR_A ;
set & = mask ;
local_irq_save ( flags ) ;
cr_no_alignment = ( cr_no_alignment & ~ mask ) | set ;
cr_alignment = ( cr_alignment & ~ mask ) | set ;
set_cr ( ( get_cr ( ) & ~ mask ) | set ) ;
local_irq_restore ( flags ) ;
}
# endif
2007-05-05 20:28:16 +01:00
# define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
# define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
2007-04-21 10:47:29 +01:00
static struct mem_type mem_types [ ] = {
2007-05-05 20:28:16 +01:00
[ MT_DEVICE ] = { /* Strongly ordered / ARMv6 shared device */
2008-09-06 20:04:59 +01:00
. prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
L_PTE_SHARED ,
2007-05-05 20:28:16 +01:00
. prot_l1 = PMD_TYPE_TABLE ,
. prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED ,
. domain = DOMAIN_IO ,
} ,
[ MT_DEVICE_NONSHARED ] = { /* ARMv6 non-shared device */
2008-09-06 20:04:59 +01:00
. prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED ,
2007-05-05 20:28:16 +01:00
. prot_l1 = PMD_TYPE_TABLE ,
. prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX ( 2 ) ,
. domain = DOMAIN_IO ,
} ,
[ MT_DEVICE_CACHED ] = { /* ioremap_cached */
2008-09-06 20:04:59 +01:00
. prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED ,
2007-05-05 20:28:16 +01:00
. prot_l1 = PMD_TYPE_TABLE ,
. prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB ,
. domain = DOMAIN_IO ,
} ,
[ MT_DEVICE_IXP2000 ] = { /* IXP2400 requires XCB=101 for on-chip I/O */
2008-09-06 20:04:59 +01:00
. prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_IXP2000 ,
2007-05-05 20:28:16 +01:00
. prot_l1 = PMD_TYPE_TABLE ,
. prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
PMD_SECT_TEX ( 1 ) ,
. domain = DOMAIN_IO ,
2006-09-27 15:38:34 +01:00
} ,
[ARM] 5241/1: provide ioremap_wc()
This patch provides an ARM implementation of ioremap_wc().
We use different page table attributes depending on which CPU we
are running on:
- Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four
possible mapping types (CB=00/01/10/11). We can't use any of the
cached memory types (CB=10/11), since that breaks coherency with
peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and
CB=01 (Uncached/Buffered) allows the hardware more freedom than
CB=00, so we'll use that.
(The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores
but isn't allowed to merge them, but there is no other mapping type
we can use that allows the hardware to delay and merge stores, so
we'll go with CB=01.)
- XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight
difference that on these platforms, CB=01 actually _does_ allow
merging stores. (If you want noncoalescing bufferable behavior
on Xscale v1/v2, you need to use XCB=101.)
- Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100
mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal
in ARMv6 parlance).
The ARMv6 ARM explicitly says that any accesses to Normal memory can
be merged, which makes Normal memory more suitable for _wc mappings
than Device or Strongly Ordered memory, as the latter two mapping
types are guaranteed to maintain transaction number, size and order.
We use the Uncached variety of Normal mappings for the same reason
that we can't use C=1 mappings on ARMv5.
The xsc3 Architecture Specification documents TEXCB=00100 as being
Uncacheable and allowing coalescing of writes, which is also just
what we need.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 13:17:11 +01:00
[ MT_DEVICE_WC ] = { /* ioremap_wc */
2008-09-06 20:04:59 +01:00
. prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC ,
[ARM] 5241/1: provide ioremap_wc()
This patch provides an ARM implementation of ioremap_wc().
We use different page table attributes depending on which CPU we
are running on:
- Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four
possible mapping types (CB=00/01/10/11). We can't use any of the
cached memory types (CB=10/11), since that breaks coherency with
peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and
CB=01 (Uncached/Buffered) allows the hardware more freedom than
CB=00, so we'll use that.
(The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores
but isn't allowed to merge them, but there is no other mapping type
we can use that allows the hardware to delay and merge stores, so
we'll go with CB=01.)
- XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight
difference that on these platforms, CB=01 actually _does_ allow
merging stores. (If you want noncoalescing bufferable behavior
on Xscale v1/v2, you need to use XCB=101.)
- Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100
mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal
in ARMv6 parlance).
The ARMv6 ARM explicitly says that any accesses to Normal memory can
be merged, which makes Normal memory more suitable for _wc mappings
than Device or Strongly Ordered memory, as the latter two mapping
types are guaranteed to maintain transaction number, size and order.
We use the Uncached variety of Normal mappings for the same reason
that we can't use C=1 mappings on ARMv5.
The xsc3 Architecture Specification documents TEXCB=00100 as being
Uncacheable and allowing coalescing of writes, which is also just
what we need.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 13:17:11 +01:00
. prot_l1 = PMD_TYPE_TABLE ,
2008-09-06 20:04:59 +01:00
. prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE ,
[ARM] 5241/1: provide ioremap_wc()
This patch provides an ARM implementation of ioremap_wc().
We use different page table attributes depending on which CPU we
are running on:
- Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four
possible mapping types (CB=00/01/10/11). We can't use any of the
cached memory types (CB=10/11), since that breaks coherency with
peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and
CB=01 (Uncached/Buffered) allows the hardware more freedom than
CB=00, so we'll use that.
(The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores
but isn't allowed to merge them, but there is no other mapping type
we can use that allows the hardware to delay and merge stores, so
we'll go with CB=01.)
- XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight
difference that on these platforms, CB=01 actually _does_ allow
merging stores. (If you want noncoalescing bufferable behavior
on Xscale v1/v2, you need to use XCB=101.)
- Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100
mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal
in ARMv6 parlance).
The ARMv6 ARM explicitly says that any accesses to Normal memory can
be merged, which makes Normal memory more suitable for _wc mappings
than Device or Strongly Ordered memory, as the latter two mapping
types are guaranteed to maintain transaction number, size and order.
We use the Uncached variety of Normal mappings for the same reason
that we can't use C=1 mappings on ARMv5.
The xsc3 Architecture Specification documents TEXCB=00100 as being
Uncacheable and allowing coalescing of writes, which is also just
what we need.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 13:17:11 +01:00
. domain = DOMAIN_IO ,
} ,
2006-09-27 15:38:34 +01:00
[ MT_CACHECLEAN ] = {
2007-05-05 20:03:35 +01:00
. prot_sect = PMD_TYPE_SECT | PMD_SECT_XN ,
2006-09-27 15:38:34 +01:00
. domain = DOMAIN_KERNEL ,
} ,
[ MT_MINICLEAN ] = {
2007-05-05 20:03:35 +01:00
. prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE ,
2006-09-27 15:38:34 +01:00
. domain = DOMAIN_KERNEL ,
} ,
[ MT_LOW_VECTORS ] = {
. prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_EXEC ,
. prot_l1 = PMD_TYPE_TABLE ,
. domain = DOMAIN_USER ,
} ,
[ MT_HIGH_VECTORS ] = {
. prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_USER | L_PTE_EXEC ,
. prot_l1 = PMD_TYPE_TABLE ,
. domain = DOMAIN_USER ,
} ,
[ MT_MEMORY ] = {
2007-05-05 20:03:35 +01:00
. prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE ,
2006-09-27 15:38:34 +01:00
. domain = DOMAIN_KERNEL ,
} ,
[ MT_ROM ] = {
2007-05-05 20:03:35 +01:00
. prot_sect = PMD_TYPE_SECT ,
2006-09-27 15:38:34 +01:00
. domain = DOMAIN_KERNEL ,
} ,
} ;
2007-04-21 10:47:29 +01:00
const struct mem_type * get_mem_type ( unsigned int type )
{
return type < ARRAY_SIZE ( mem_types ) ? & mem_types [ type ] : NULL ;
}
2006-09-27 15:38:34 +01:00
/*
* Adjust the PMD section entries according to the CPU in use .
*/
static void __init build_mem_type_table ( void )
{
struct cachepolicy * cp ;
unsigned int cr = get_cr ( ) ;
2008-09-06 20:04:59 +01:00
unsigned int user_pgprot , kern_pgprot , vecs_pgprot ;
2006-09-27 15:38:34 +01:00
int cpu_arch = cpu_architecture ( ) ;
int i ;
2007-07-20 11:42:24 +01:00
if ( cpu_arch < CPU_ARCH_ARMv6 ) {
2006-09-27 15:38:34 +01:00
# if defined(CONFIG_CPU_DCACHE_DISABLE)
2007-07-20 11:42:24 +01:00
if ( cachepolicy > CPOLICY_BUFFERED )
cachepolicy = CPOLICY_BUFFERED ;
2006-09-27 15:38:34 +01:00
# elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
2007-07-20 11:42:24 +01:00
if ( cachepolicy > CPOLICY_WRITETHROUGH )
cachepolicy = CPOLICY_WRITETHROUGH ;
2006-09-27 15:38:34 +01:00
# endif
2007-07-20 11:42:24 +01:00
}
2006-09-27 15:38:34 +01:00
if ( cpu_arch < CPU_ARCH_ARMv5 ) {
if ( cachepolicy > = CPOLICY_WRITEALLOC )
cachepolicy = CPOLICY_WRITEBACK ;
ecc_mask = 0 ;
}
2008-09-06 20:04:59 +01:00
# ifdef CONFIG_SMP
cachepolicy = CPOLICY_WRITEALLOC ;
# endif
2006-09-27 15:38:34 +01:00
[ARM] 5241/1: provide ioremap_wc()
This patch provides an ARM implementation of ioremap_wc().
We use different page table attributes depending on which CPU we
are running on:
- Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four
possible mapping types (CB=00/01/10/11). We can't use any of the
cached memory types (CB=10/11), since that breaks coherency with
peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and
CB=01 (Uncached/Buffered) allows the hardware more freedom than
CB=00, so we'll use that.
(The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores
but isn't allowed to merge them, but there is no other mapping type
we can use that allows the hardware to delay and merge stores, so
we'll go with CB=01.)
- XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight
difference that on these platforms, CB=01 actually _does_ allow
merging stores. (If you want noncoalescing bufferable behavior
on Xscale v1/v2, you need to use XCB=101.)
- Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100
mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal
in ARMv6 parlance).
The ARMv6 ARM explicitly says that any accesses to Normal memory can
be merged, which makes Normal memory more suitable for _wc mappings
than Device or Strongly Ordered memory, as the latter two mapping
types are guaranteed to maintain transaction number, size and order.
We use the Uncached variety of Normal mappings for the same reason
that we can't use C=1 mappings on ARMv5.
The xsc3 Architecture Specification documents TEXCB=00100 as being
Uncacheable and allowing coalescing of writes, which is also just
what we need.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 13:17:11 +01:00
/*
* On non - Xscale3 ARMv5 - and - older systems , use CB = 01
* ( Uncached / Buffered ) for ioremap_wc ( ) mappings . On XScale3
* and ARMv6 + , use TEXCB = 00100 mappings ( Inner / Outer Uncacheable
* in xsc3 parlance , Uncached Normal in ARMv6 parlance ) .
*/
if ( cpu_is_xsc3 ( ) | | cpu_arch > = CPU_ARCH_ARMv6 ) {
mem_types [ MT_DEVICE_WC ] . prot_sect | = PMD_SECT_TEX ( 1 ) ;
2008-09-06 20:04:59 +01:00
mem_types [ MT_DEVICE_WC ] . prot_sect & = ~ PMD_SECT_BUFFERABLE ;
[ARM] 5241/1: provide ioremap_wc()
This patch provides an ARM implementation of ioremap_wc().
We use different page table attributes depending on which CPU we
are running on:
- Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four
possible mapping types (CB=00/01/10/11). We can't use any of the
cached memory types (CB=10/11), since that breaks coherency with
peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and
CB=01 (Uncached/Buffered) allows the hardware more freedom than
CB=00, so we'll use that.
(The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores
but isn't allowed to merge them, but there is no other mapping type
we can use that allows the hardware to delay and merge stores, so
we'll go with CB=01.)
- XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight
difference that on these platforms, CB=01 actually _does_ allow
merging stores. (If you want noncoalescing bufferable behavior
on Xscale v1/v2, you need to use XCB=101.)
- Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100
mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal
in ARMv6 parlance).
The ARMv6 ARM explicitly says that any accesses to Normal memory can
be merged, which makes Normal memory more suitable for _wc mappings
than Device or Strongly Ordered memory, as the latter two mapping
types are guaranteed to maintain transaction number, size and order.
We use the Uncached variety of Normal mappings for the same reason
that we can't use C=1 mappings on ARMv5.
The xsc3 Architecture Specification documents TEXCB=00100 as being
Uncacheable and allowing coalescing of writes, which is also just
what we need.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 13:17:11 +01:00
}
2006-09-27 15:38:34 +01:00
/*
2007-05-05 20:03:35 +01:00
* ARMv5 and lower , bit 4 must be set for page tables .
* ( was : cache " update-able on write " bit on ARM610 )
* However , Xscale cores require this bit to be cleared .
2006-09-27 15:38:34 +01:00
*/
2007-05-05 20:03:35 +01:00
if ( cpu_is_xscale ( ) ) {
for ( i = 0 ; i < ARRAY_SIZE ( mem_types ) ; i + + ) {
2006-09-27 15:38:34 +01:00
mem_types [ i ] . prot_sect & = ~ PMD_BIT4 ;
2007-05-05 20:03:35 +01:00
mem_types [ i ] . prot_l1 & = ~ PMD_BIT4 ;
}
} else if ( cpu_arch < CPU_ARCH_ARMv6 ) {
for ( i = 0 ; i < ARRAY_SIZE ( mem_types ) ; i + + ) {
2006-09-27 15:38:34 +01:00
if ( mem_types [ i ] . prot_l1 )
mem_types [ i ] . prot_l1 | = PMD_BIT4 ;
2007-05-05 20:03:35 +01:00
if ( mem_types [ i ] . prot_sect )
mem_types [ i ] . prot_sect | = PMD_BIT4 ;
}
}
2006-09-27 15:38:34 +01:00
cp = & cache_policies [ cachepolicy ] ;
2008-09-06 20:04:59 +01:00
vecs_pgprot = kern_pgprot = user_pgprot = cp - > pte ;
# ifndef CONFIG_SMP
/*
* Only use write - through for non - SMP systems
*/
if ( cpu_arch > = CPU_ARCH_ARMv5 & & cachepolicy > CPOLICY_WRITETHROUGH )
vecs_pgprot = cache_policies [ CPOLICY_WRITETHROUGH ] . pte ;
# endif
2006-09-27 15:38:34 +01:00
/*
* Enable CPU - specific coherency if supported .
* ( Only available on XSC3 at the moment . )
*/
if ( arch_is_coherent ( ) ) {
if ( cpu_is_xsc3 ( ) ) {
mem_types [ MT_MEMORY ] . prot_sect | = PMD_SECT_S ;
2006-12-02 00:03:47 +01:00
mem_types [ MT_MEMORY ] . prot_pte | = L_PTE_SHARED ;
2006-09-27 15:38:34 +01:00
}
}
/*
* ARMv6 and above have extended page tables .
*/
if ( cpu_arch > = CPU_ARCH_ARMv6 & & ( cr & CR_XP ) ) {
/*
* Mark cache clean areas and XIP ROM read only
* from SVC mode and no access from userspace .
*/
mem_types [ MT_ROM ] . prot_sect | = PMD_SECT_APX | PMD_SECT_AP_WRITE ;
mem_types [ MT_MINICLEAN ] . prot_sect | = PMD_SECT_APX | PMD_SECT_AP_WRITE ;
mem_types [ MT_CACHECLEAN ] . prot_sect | = PMD_SECT_APX | PMD_SECT_AP_WRITE ;
/*
* Mark the device area as " shared device "
*/
mem_types [ MT_DEVICE ] . prot_sect | = PMD_SECT_BUFFERED ;
# ifdef CONFIG_SMP
/*
* Mark memory with the " shared " attribute for SMP systems
*/
user_pgprot | = L_PTE_SHARED ;
kern_pgprot | = L_PTE_SHARED ;
2008-09-06 20:04:59 +01:00
vecs_pgprot | = L_PTE_SHARED ;
2006-09-27 15:38:34 +01:00
mem_types [ MT_MEMORY ] . prot_sect | = PMD_SECT_S ;
# endif
}
for ( i = 0 ; i < 16 ; i + + ) {
unsigned long v = pgprot_val ( protection_map [ i ] ) ;
2008-09-06 20:04:59 +01:00
protection_map [ i ] = __pgprot ( v | user_pgprot ) ;
2006-09-27 15:38:34 +01:00
}
2008-09-06 20:04:59 +01:00
mem_types [ MT_LOW_VECTORS ] . prot_pte | = vecs_pgprot ;
mem_types [ MT_HIGH_VECTORS ] . prot_pte | = vecs_pgprot ;
2006-09-27 15:38:34 +01:00
2008-09-06 20:04:59 +01:00
if ( cpu_arch < CPU_ARCH_ARMv5 )
2006-09-27 15:38:34 +01:00
mem_types [ MT_MINICLEAN ] . prot_sect & = ~ PMD_SECT_TEX ( 1 ) ;
2007-02-11 13:45:13 +01:00
pgprot_user = __pgprot ( L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot ) ;
2006-09-27 15:38:34 +01:00
pgprot_kernel = __pgprot ( L_PTE_PRESENT | L_PTE_YOUNG |
L_PTE_DIRTY | L_PTE_WRITE |
L_PTE_EXEC | kern_pgprot ) ;
mem_types [ MT_LOW_VECTORS ] . prot_l1 | = ecc_mask ;
mem_types [ MT_HIGH_VECTORS ] . prot_l1 | = ecc_mask ;
mem_types [ MT_MEMORY ] . prot_sect | = ecc_mask | cp - > pmd ;
mem_types [ MT_ROM ] . prot_sect | = cp - > pmd ;
switch ( cp - > pmd ) {
case PMD_SECT_WT :
mem_types [ MT_CACHECLEAN ] . prot_sect | = PMD_SECT_WT ;
break ;
case PMD_SECT_WB :
case PMD_SECT_WBWA :
mem_types [ MT_CACHECLEAN ] . prot_sect | = PMD_SECT_WB ;
break ;
}
printk ( " Memory policy: ECC %sabled, Data cache %s \n " ,
ecc_mask ? " en " : " dis " , cp - > policy ) ;
2007-04-21 09:59:44 +01:00
for ( i = 0 ; i < ARRAY_SIZE ( mem_types ) ; i + + ) {
struct mem_type * t = & mem_types [ i ] ;
if ( t - > prot_l1 )
t - > prot_l1 | = PMD_DOMAIN ( t - > domain ) ;
if ( t - > prot_sect )
t - > prot_sect | = PMD_DOMAIN ( t - > domain ) ;
}
2006-09-27 15:38:34 +01:00
}
# define vectors_base() (vectors_high() ? 0xffff0000 : 0)
2007-04-21 10:21:28 +01:00
static void __init alloc_init_pte ( pmd_t * pmd , unsigned long addr ,
unsigned long end , unsigned long pfn ,
const struct mem_type * type )
2006-09-27 15:38:34 +01:00
{
2007-04-21 10:21:28 +01:00
pte_t * pte ;
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
if ( pmd_none ( * pmd ) ) {
pte = alloc_bootmem_low_pages ( 2 * PTRS_PER_PTE * sizeof ( pte_t ) ) ;
__pmd_populate ( pmd , __pa ( pte ) | type - > prot_l1 ) ;
}
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
pte = pte_offset_kernel ( pmd , addr ) ;
do {
2008-09-06 21:15:56 +01:00
set_pte_ext ( pte , pfn_pte ( pfn , __pgprot ( type - > prot_pte ) ) , 0 ) ;
2007-04-21 10:21:28 +01:00
pfn + + ;
} while ( pte + + , addr + = PAGE_SIZE , addr ! = end ) ;
2006-09-27 15:38:34 +01:00
}
2007-04-21 10:21:28 +01:00
static void __init alloc_init_section ( pgd_t * pgd , unsigned long addr ,
unsigned long end , unsigned long phys ,
const struct mem_type * type )
2006-09-27 15:38:34 +01:00
{
2007-04-21 10:21:28 +01:00
pmd_t * pmd = pmd_offset ( pgd , addr ) ;
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
/*
* Try a section mapping - end , addr and phys must all be aligned
* to a section boundary . Note that PMDs refer to the individual
* L1 entries , whereas PGDs refer to a group of L1 entries making
* up one logical pointer to an L2 table .
*/
if ( ( ( addr | end | phys ) & ~ SECTION_MASK ) = = 0 ) {
pmd_t * p = pmd ;
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
if ( addr & SECTION_SIZE )
pmd + + ;
do {
* pmd = __pmd ( phys | type - > prot_sect ) ;
phys + = SECTION_SIZE ;
} while ( pmd + + , addr + = SECTION_SIZE , addr ! = end ) ;
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
flush_pmd_entry ( p ) ;
} else {
/*
* No need to loop ; pte ' s aren ' t interested in the
* individual L1 entries .
*/
alloc_init_pte ( pmd , addr , end , __phys_to_pfn ( phys ) , type ) ;
}
2006-09-27 15:38:34 +01:00
}
2007-04-21 10:16:48 +01:00
static void __init create_36bit_mapping ( struct map_desc * md ,
const struct mem_type * type )
{
unsigned long phys , addr , length , end ;
pgd_t * pgd ;
addr = md - > virtual ;
phys = ( unsigned long ) __pfn_to_phys ( md - > pfn ) ;
length = PAGE_ALIGN ( md - > length ) ;
if ( ! ( cpu_architecture ( ) > = CPU_ARCH_ARMv6 | | cpu_is_xsc3 ( ) ) ) {
printk ( KERN_ERR " MM: CPU does not support supersection "
" mapping for 0x%08llx at 0x%08lx \n " ,
__pfn_to_phys ( ( u64 ) md - > pfn ) , addr ) ;
return ;
}
/* N.B. ARMv6 supersections are only defined to work with domain 0.
* Since domain assignments can in fact be arbitrary , the
* ' domain = = 0 ' check below is required to insure that ARMv6
* supersections are only allocated for domain 0 regardless
* of the actual domain assignments in use .
*/
if ( type - > domain ) {
printk ( KERN_ERR " MM: invalid domain in supersection "
" mapping for 0x%08llx at 0x%08lx \n " ,
__pfn_to_phys ( ( u64 ) md - > pfn ) , addr ) ;
return ;
}
if ( ( addr | length | __pfn_to_phys ( md - > pfn ) ) & ~ SUPERSECTION_MASK ) {
printk ( KERN_ERR " MM: cannot create mapping for "
" 0x%08llx at 0x%08lx invalid alignment \n " ,
__pfn_to_phys ( ( u64 ) md - > pfn ) , addr ) ;
return ;
}
/*
* Shift bits [ 35 : 32 ] of address into bits [ 23 : 20 ] of PMD
* ( See ARMv6 spec ) .
*/
phys | = ( ( ( md - > pfn > > ( 32 - PAGE_SHIFT ) ) & 0xF ) < < 20 ) ;
pgd = pgd_offset_k ( addr ) ;
end = addr + length ;
do {
pmd_t * pmd = pmd_offset ( pgd , addr ) ;
int i ;
for ( i = 0 ; i < 16 ; i + + )
* pmd + + = __pmd ( phys | type - > prot_sect | PMD_SECT_SUPER ) ;
addr + = SUPERSECTION_SIZE ;
phys + = SUPERSECTION_SIZE ;
pgd + = SUPERSECTION_SIZE > > PGDIR_SHIFT ;
} while ( addr ! = end ) ;
}
2006-09-27 15:38:34 +01:00
/*
* Create the page directory entries and any necessary
* page tables for the mapping specified by ` md ' . We
* are able to cope here with varying sizes and address
* offsets , and we take full advantage of sections and
* supersections .
*/
void __init create_mapping ( struct map_desc * md )
{
2007-04-21 10:21:28 +01:00
unsigned long phys , addr , length , end ;
2007-04-21 10:05:32 +01:00
const struct mem_type * type ;
2007-04-21 10:21:28 +01:00
pgd_t * pgd ;
2006-09-27 15:38:34 +01:00
if ( md - > virtual ! = vectors_base ( ) & & md - > virtual < TASK_SIZE ) {
printk ( KERN_WARNING " BUG: not creating mapping for "
" 0x%08llx at 0x%08lx in user region \n " ,
__pfn_to_phys ( ( u64 ) md - > pfn ) , md - > virtual ) ;
return ;
}
if ( ( md - > type = = MT_DEVICE | | md - > type = = MT_ROM ) & &
md - > virtual > = PAGE_OFFSET & & md - > virtual < VMALLOC_END ) {
printk ( KERN_WARNING " BUG: mapping for 0x%08llx at 0x%08lx "
" overlaps vmalloc space \n " ,
__pfn_to_phys ( ( u64 ) md - > pfn ) , md - > virtual ) ;
}
2007-04-21 10:05:32 +01:00
type = & mem_types [ md - > type ] ;
2006-09-27 15:38:34 +01:00
/*
* Catch 36 - bit addresses
*/
2007-04-21 10:16:48 +01:00
if ( md - > pfn > = 0x100000 ) {
create_36bit_mapping ( md , type ) ;
return ;
2006-09-27 15:38:34 +01:00
}
2007-07-04 21:16:33 +01:00
addr = md - > virtual & PAGE_MASK ;
2007-04-21 10:21:28 +01:00
phys = ( unsigned long ) __pfn_to_phys ( md - > pfn ) ;
2007-07-04 21:16:33 +01:00
length = PAGE_ALIGN ( md - > length + ( md - > virtual & ~ PAGE_MASK ) ) ;
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
if ( type - > prot_l1 = = 0 & & ( ( addr | phys | length ) & ~ SECTION_MASK ) ) {
2006-09-27 15:38:34 +01:00
printk ( KERN_WARNING " BUG: map for 0x%08lx at 0x%08lx can not "
" be mapped using pages, ignoring. \n " ,
2007-04-21 10:21:28 +01:00
__pfn_to_phys ( md - > pfn ) , addr ) ;
2006-09-27 15:38:34 +01:00
return ;
}
2007-04-21 10:21:28 +01:00
pgd = pgd_offset_k ( addr ) ;
end = addr + length ;
do {
unsigned long next = pgd_addr_end ( addr , end ) ;
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
alloc_init_section ( pgd , addr , next , phys , type ) ;
2006-09-27 15:38:34 +01:00
2007-04-21 10:21:28 +01:00
phys + = next - addr ;
addr = next ;
} while ( pgd + + , addr ! = end ) ;
2006-09-27 15:38:34 +01:00
}
/*
* Create the architecture specific mappings
*/
void __init iotable_init ( struct map_desc * io_desc , int nr )
{
int i ;
for ( i = 0 ; i < nr ; i + + )
create_mapping ( io_desc + i ) ;
}
[ARM] prevent crashing when too much RAM installed
This patch will truncate and/or ignore memory banks if their kernel
direct mappings would (partially) overlap with the vmalloc area or
the mappings between the vmalloc area and the address space top, to
prevent crashing during early boot if there happens to be more RAM
installed than we are expecting.
Since the start of the vmalloc area is not at a fixed address (but
the vmalloc end address is, via the per-platform VMALLOC_END define),
a default area of 128M is reserved for vmalloc mappings, which can
be shrunk or enlarged by passing an appropriate vmalloc= command line
option as it is done on x86.
On a board with a 3:1 user:kernel split, VMALLOC_END at 0xfe000000,
two 512M RAM banks and vmalloc=128M (the default), this patch gives:
Truncating RAM at 20000000-3fffffff to -35ffffff (vmalloc region overlap).
Memory: 512MB 352MB = 864MB total
On a board with a 3:1 user:kernel split, VMALLOC_END at 0xfe800000,
two 256M RAM banks and vmalloc=768M, this patch gives:
Truncating RAM at 00000000-0fffffff to -0e7fffff (vmalloc region overlap).
Ignoring RAM at 10000000-1fffffff (vmalloc region overlap).
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Riku Voipio <riku.voipio@iki.fi>
2008-08-05 01:56:13 +02:00
static int __init check_membank_valid ( struct membank * mb )
{
/*
* Check whether this memory region has non - zero size .
*/
if ( mb - > size = = 0 )
return 0 ;
/*
* Check whether this memory region would entirely overlap
* the vmalloc area .
*/
if ( phys_to_virt ( mb - > start ) > = VMALLOC_MIN ) {
printk ( KERN_NOTICE " Ignoring RAM at %.8lx-%.8lx "
" (vmalloc region overlap). \n " ,
mb - > start , mb - > start + mb - > size - 1 ) ;
return 0 ;
}
/*
* Check whether this memory region would partially overlap
* the vmalloc area .
*/
if ( phys_to_virt ( mb - > start + mb - > size ) < phys_to_virt ( mb - > start ) | |
phys_to_virt ( mb - > start + mb - > size ) > VMALLOC_MIN ) {
unsigned long newsize = VMALLOC_MIN - phys_to_virt ( mb - > start ) ;
printk ( KERN_NOTICE " Truncating RAM at %.8lx-%.8lx "
" to -%.8lx (vmalloc region overlap). \n " ,
mb - > start , mb - > start + mb - > size - 1 ,
mb - > start + newsize - 1 ) ;
mb - > size = newsize ;
}
return 1 ;
}
static void __init sanity_check_meminfo ( struct meminfo * mi )
{
int i ;
int j ;
for ( i = 0 , j = 0 ; i < mi - > nr_banks ; i + + ) {
if ( check_membank_valid ( & mi - > bank [ i ] ) )
mi - > bank [ j + + ] = mi - > bank [ i ] ;
}
mi - > nr_banks = j ;
}
2006-09-27 15:27:33 +01:00
static inline void prepare_page_table ( struct meminfo * mi )
{
unsigned long addr ;
/*
* Clear out all the mappings below the kernel image .
*/
for ( addr = 0 ; addr < MODULE_START ; addr + = PGDIR_SIZE )
pmd_clear ( pmd_off_k ( addr ) ) ;
# ifdef CONFIG_XIP_KERNEL
/* The XIP kernel is mapped in the module area -- skip over it */
addr = ( ( unsigned long ) & _etext + PGDIR_SIZE - 1 ) & PGDIR_MASK ;
# endif
for ( ; addr < PAGE_OFFSET ; addr + = PGDIR_SIZE )
pmd_clear ( pmd_off_k ( addr ) ) ;
/*
* Clear out all the kernel space mappings , except for the first
* memory bank , up to the end of the vmalloc region .
*/
for ( addr = __phys_to_virt ( mi - > bank [ 0 ] . start + mi - > bank [ 0 ] . size ) ;
addr < VMALLOC_END ; addr + = PGDIR_SIZE )
pmd_clear ( pmd_off_k ( addr ) ) ;
}
/*
* Reserve the various regions of node 0
*/
void __init reserve_node_zero ( pg_data_t * pgdat )
{
unsigned long res_size = 0 ;
/*
* Register the kernel text and data with bootmem .
* Note that this can only be in node 0.
*/
# ifdef CONFIG_XIP_KERNEL
2008-02-07 00:15:17 -08:00
reserve_bootmem_node ( pgdat , __pa ( & __data_start ) , & _end - & __data_start ,
BOOTMEM_DEFAULT ) ;
2006-09-27 15:27:33 +01:00
# else
2008-02-07 00:15:17 -08:00
reserve_bootmem_node ( pgdat , __pa ( & _stext ) , & _end - & _stext ,
BOOTMEM_DEFAULT ) ;
2006-09-27 15:27:33 +01:00
# endif
/*
* Reserve the page tables . These are already in use ,
* and can only be in node 0.
*/
reserve_bootmem_node ( pgdat , __pa ( swapper_pg_dir ) ,
2008-02-07 00:15:17 -08:00
PTRS_PER_PGD * sizeof ( pgd_t ) , BOOTMEM_DEFAULT ) ;
2006-09-27 15:27:33 +01:00
/*
* Hmm . . . This should go elsewhere , but we really really need to
* stop things allocating the low memory ; ideally we need a better
* implementation of GFP_DMA which does not assume that DMA - able
* memory starts at zero .
*/
if ( machine_is_integrator ( ) | | machine_is_cintegrator ( ) )
res_size = __pa ( swapper_pg_dir ) - PHYS_OFFSET ;
/*
* These should likewise go elsewhere . They pre - reserve the
* screen memory region at the start of main system memory .
*/
if ( machine_is_edb7211 ( ) )
res_size = 0x00020000 ;
if ( machine_is_p720t ( ) )
res_size = 0x00014000 ;
2006-12-07 20:47:58 +01:00
/* H1940 and RX3715 need to reserve this for suspend */
if ( machine_is_h1940 ( ) | | machine_is_rx3715 ( ) ) {
2008-02-07 00:15:17 -08:00
reserve_bootmem_node ( pgdat , 0x30003000 , 0x1000 ,
BOOTMEM_DEFAULT ) ;
reserve_bootmem_node ( pgdat , 0x30081000 , 0x1000 ,
BOOTMEM_DEFAULT ) ;
2006-12-06 01:50:24 +01:00
}
2006-09-27 15:27:33 +01:00
# ifdef CONFIG_SA1111
/*
* Because of the SA1111 DMA bug , we want to preserve our
* precious DMA - able memory . . .
*/
res_size = __pa ( swapper_pg_dir ) - PHYS_OFFSET ;
# endif
if ( res_size )
2008-02-07 00:15:17 -08:00
reserve_bootmem_node ( pgdat , PHYS_OFFSET , res_size ,
BOOTMEM_DEFAULT ) ;
2006-09-27 15:27:33 +01:00
}
/*
* Set up device the mappings . Since we clear out the page tables for all
* mappings above VMALLOC_END , we will remove any debug device mappings .
* This means you have to be careful how you debug this function , or any
* called function . This means you can ' t use any function or debugging
* method which may touch any device , otherwise the kernel _will_ crash .
*/
static void __init devicemaps_init ( struct machine_desc * mdesc )
{
struct map_desc map ;
unsigned long addr ;
void * vectors ;
/*
* Allocate the vector page early .
*/
vectors = alloc_bootmem_low_pages ( PAGE_SIZE ) ;
BUG_ON ( ! vectors ) ;
for ( addr = VMALLOC_END ; addr ; addr + = PGDIR_SIZE )
pmd_clear ( pmd_off_k ( addr ) ) ;
/*
* Map the kernel if it is XIP .
* It is always first in the modulearea .
*/
# ifdef CONFIG_XIP_KERNEL
map . pfn = __phys_to_pfn ( CONFIG_XIP_PHYS_ADDR & SECTION_MASK ) ;
map . virtual = MODULE_START ;
map . length = ( ( unsigned long ) & _etext - map . virtual + ~ SECTION_MASK ) & SECTION_MASK ;
map . type = MT_ROM ;
create_mapping ( & map ) ;
# endif
/*
* Map the cache flushing regions .
*/
# ifdef FLUSH_BASE
map . pfn = __phys_to_pfn ( FLUSH_BASE_PHYS ) ;
map . virtual = FLUSH_BASE ;
map . length = SZ_1M ;
map . type = MT_CACHECLEAN ;
create_mapping ( & map ) ;
# endif
# ifdef FLUSH_BASE_MINICACHE
map . pfn = __phys_to_pfn ( FLUSH_BASE_PHYS + SZ_1M ) ;
map . virtual = FLUSH_BASE_MINICACHE ;
map . length = SZ_1M ;
map . type = MT_MINICLEAN ;
create_mapping ( & map ) ;
# endif
/*
* Create a mapping for the machine vectors at the high - vectors
* location ( 0xffff0000 ) . If we aren ' t using high - vectors , also
* create a mapping at the low - vectors virtual address .
*/
map . pfn = __phys_to_pfn ( virt_to_phys ( vectors ) ) ;
map . virtual = 0xffff0000 ;
map . length = PAGE_SIZE ;
map . type = MT_HIGH_VECTORS ;
create_mapping ( & map ) ;
if ( ! vectors_high ( ) ) {
map . virtual = 0 ;
map . type = MT_LOW_VECTORS ;
create_mapping ( & map ) ;
}
/*
* Ask the machine support to map in the statically mapped devices .
*/
if ( mdesc - > map_io )
mdesc - > map_io ( ) ;
/*
* Finally flush the caches and tlb to ensure that we ' re in a
* consistent state wrt the writebuffer . This also ensures that
* any write - allocated cache lines in the vector page are written
* back . After this point , we can start to touch devices again .
*/
local_flush_tlb_all ( ) ;
flush_cache_all ( ) ;
}
/*
* paging_init ( ) sets up the page tables , initialises the zone memory
* maps , and sets up the zero page , bad page and bad page tables .
*/
void __init paging_init ( struct meminfo * mi , struct machine_desc * mdesc )
{
void * zero_page ;
build_mem_type_table ( ) ;
[ARM] prevent crashing when too much RAM installed
This patch will truncate and/or ignore memory banks if their kernel
direct mappings would (partially) overlap with the vmalloc area or
the mappings between the vmalloc area and the address space top, to
prevent crashing during early boot if there happens to be more RAM
installed than we are expecting.
Since the start of the vmalloc area is not at a fixed address (but
the vmalloc end address is, via the per-platform VMALLOC_END define),
a default area of 128M is reserved for vmalloc mappings, which can
be shrunk or enlarged by passing an appropriate vmalloc= command line
option as it is done on x86.
On a board with a 3:1 user:kernel split, VMALLOC_END at 0xfe000000,
two 512M RAM banks and vmalloc=128M (the default), this patch gives:
Truncating RAM at 20000000-3fffffff to -35ffffff (vmalloc region overlap).
Memory: 512MB 352MB = 864MB total
On a board with a 3:1 user:kernel split, VMALLOC_END at 0xfe800000,
two 256M RAM banks and vmalloc=768M, this patch gives:
Truncating RAM at 00000000-0fffffff to -0e7fffff (vmalloc region overlap).
Ignoring RAM at 10000000-1fffffff (vmalloc region overlap).
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Riku Voipio <riku.voipio@iki.fi>
2008-08-05 01:56:13 +02:00
sanity_check_meminfo ( mi ) ;
2006-09-27 15:27:33 +01:00
prepare_page_table ( mi ) ;
bootmem_init ( mi ) ;
devicemaps_init ( mdesc ) ;
top_pmd = pmd_off_k ( 0xffff0000 ) ;
/*
* allocate the zero page . Note that we count on this going ok .
*/
zero_page = alloc_bootmem_low_pages ( PAGE_SIZE ) ;
memzero ( zero_page , PAGE_SIZE ) ;
empty_zero_page = virt_to_page ( zero_page ) ;
flush_dcache_page ( empty_zero_page ) ;
}
2006-09-27 15:38:34 +01:00
/*
* In order to soft - boot , we need to insert a 1 : 1 mapping in place of
* the user - mode pages . This will then ensure that we have predictable
* results when turning the mmu off
*/
void setup_mm_for_reboot ( char mode )
{
unsigned long base_pmdval ;
pgd_t * pgd ;
int i ;
if ( current - > mm & & current - > mm - > pgd )
pgd = current - > mm - > pgd ;
else
pgd = init_mm . pgd ;
base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT ;
if ( cpu_architecture ( ) < = CPU_ARCH_ARMv5TEJ & & ! cpu_is_xscale ( ) )
base_pmdval | = PMD_BIT4 ;
for ( i = 0 ; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD ; i + + , pgd + + ) {
unsigned long pmdval = ( i < < PGDIR_SHIFT ) | base_pmdval ;
pmd_t * pmd ;
pmd = pmd_off ( pgd , i < < PGDIR_SHIFT ) ;
pmd [ 0 ] = __pmd ( pmdval ) ;
pmd [ 1 ] = __pmd ( pmdval + ( 1 < < ( PGDIR_SHIFT - 1 ) ) ) ;
flush_pmd_entry ( pmd ) ;
}
}