2005-04-16 15:20:36 -07:00
/*
2006-09-04 15:41:16 +02:00
* Copyright ( C ) 2001 Jens Axboe < axboe @ kernel . dk >
2005-04-16 15:20:36 -07:00
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public Licens
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 -
*
*/
# include <linux/mm.h>
# include <linux/swap.h>
# include <linux/bio.h>
# include <linux/blkdev.h>
2013-05-07 16:19:08 -07:00
# include <linux/uio.h>
2012-03-05 13:15:27 -08:00
# include <linux/iocontext.h>
2005-04-16 15:20:36 -07:00
# include <linux/slab.h>
# include <linux/init.h>
# include <linux/kernel.h>
2011-11-16 23:57:37 -05:00
# include <linux/export.h>
2005-04-16 15:20:36 -07:00
# include <linux/mempool.h>
# include <linux/workqueue.h>
2012-03-05 13:15:27 -08:00
# include <linux/cgroup.h>
2018-07-03 11:14:50 -04:00
# include <linux/blk-cgroup.h>
2005-04-16 15:20:36 -07:00
tracing/events: convert block trace points to TRACE_EVENT()
TRACE_EVENT is a more generic way to define tracepoints. Doing so adds
these new capabilities to this tracepoint:
- zero-copy and per-cpu splice() tracing
- binary tracing without printf overhead
- structured logging records exposed under /debug/tracing/events
- trace events embedded in function tracer output and other plugins
- user-defined, per tracepoint filter expressions
...
Cons:
- no dev_t info for the output of plug, unplug_timer and unplug_io events.
no dev_t info for getrq and sleeprq events if bio == NULL.
no dev_t info for rq_abort,...,rq_requeue events if rq->rq_disk == NULL.
This is mainly because we can't get the deivce from a request queue.
But this may change in the future.
- A packet command is converted to a string in TP_assign, not TP_print.
While blktrace do the convertion just before output.
Since pc requests should be rather rare, this is not a big issue.
- In blktrace, an event can have 2 different print formats, but a TRACE_EVENT
has a unique format, which means we have some unused data in a trace entry.
The overhead is minimized by using __dynamic_array() instead of __array().
I've benchmarked the ioctl blktrace vs the splice based TRACE_EVENT tracing:
dd dd + ioctl blktrace dd + TRACE_EVENT (splice)
1 7.36s, 42.7 MB/s 7.50s, 42.0 MB/s 7.41s, 42.5 MB/s
2 7.43s, 42.3 MB/s 7.48s, 42.1 MB/s 7.43s, 42.4 MB/s
3 7.38s, 42.6 MB/s 7.45s, 42.2 MB/s 7.41s, 42.5 MB/s
So the overhead of tracing is very small, and no regression when using
those trace events vs blktrace.
And the binary output of TRACE_EVENT is much smaller than blktrace:
# ls -l -h
-rw-r--r-- 1 root root 8.8M 06-09 13:24 sda.blktrace.0
-rw-r--r-- 1 root root 195K 06-09 13:24 sda.blktrace.1
-rw-r--r-- 1 root root 2.7M 06-09 13:25 trace_splice.out
Following are some comparisons between TRACE_EVENT and blktrace:
plug:
kjournald-480 [000] 303.084981: block_plug: [kjournald]
kjournald-480 [000] 303.084981: 8,0 P N [kjournald]
unplug_io:
kblockd/0-118 [000] 300.052973: block_unplug_io: [kblockd/0] 1
kblockd/0-118 [000] 300.052974: 8,0 U N [kblockd/0] 1
remap:
kjournald-480 [000] 303.085042: block_remap: 8,0 W 102736992 + 8 <- (8,8) 33384
kjournald-480 [000] 303.085043: 8,0 A W 102736992 + 8 <- (8,8) 33384
bio_backmerge:
kjournald-480 [000] 303.085086: block_bio_backmerge: 8,0 W 102737032 + 8 [kjournald]
kjournald-480 [000] 303.085086: 8,0 M W 102737032 + 8 [kjournald]
getrq:
kjournald-480 [000] 303.084974: block_getrq: 8,0 W 102736984 + 8 [kjournald]
kjournald-480 [000] 303.084975: 8,0 G W 102736984 + 8 [kjournald]
bash-2066 [001] 1072.953770: 8,0 G N [bash]
bash-2066 [001] 1072.953773: block_getrq: 0,0 N 0 + 0 [bash]
rq_complete:
konsole-2065 [001] 300.053184: block_rq_complete: 8,0 W () 103669040 + 16 [0]
konsole-2065 [001] 300.053191: 8,0 C W 103669040 + 16 [0]
ksoftirqd/1-7 [001] 1072.953811: 8,0 C N (5a 00 08 00 00 00 00 00 24 00) [0]
ksoftirqd/1-7 [001] 1072.953813: block_rq_complete: 0,0 N (5a 00 08 00 00 00 00 00 24 00) 0 + 0 [0]
rq_insert:
kjournald-480 [000] 303.084985: block_rq_insert: 8,0 W 0 () 102736984 + 8 [kjournald]
kjournald-480 [000] 303.084986: 8,0 I W 102736984 + 8 [kjournald]
Changelog from v2 -> v3:
- use the newly introduced __dynamic_array().
Changelog from v1 -> v2:
- use __string() instead of __array() to minimize the memory required
to store hex dump of rq->cmd().
- support large pc requests.
- add missing blk_fill_rwbs_rq() in block_rq_requeue TRACE_EVENT.
- some cleanups.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4A2DF669.5070905@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-06-09 13:43:05 +08:00
# include <trace/events/block.h>
blk-throttle: add a simple idle detection
A cgroup gets assigned a low limit, but the cgroup could never dispatch
enough IO to cross the low limit. In such case, the queue state machine
will remain in LIMIT_LOW state and all other cgroups will be throttled
according to low limit. This is unfair for other cgroups. We should
treat the cgroup idle and upgrade the state machine to lower state.
We also have a downgrade logic. If the state machine upgrades because of
cgroup idle (real idle), the state machine will downgrade soon as the
cgroup is below its low limit. This isn't what we want. A more
complicated case is cgroup isn't idle when queue is in LIMIT_LOW. But
when queue gets upgraded to lower state, other cgroups could dispatch
more IO and this cgroup can't dispatch enough IO, so the cgroup is below
its low limit and looks like idle (fake idle). In this case, the queue
should downgrade soon. The key to determine if we should do downgrade is
to detect if cgroup is truely idle.
Unfortunately it's very hard to determine if a cgroup is real idle. This
patch uses the 'think time check' idea from CFQ for the purpose. Please
note, the idea doesn't work for all workloads. For example, a workload
with io depth 8 has disk utilization 100%, hence think time is 0, eg,
not idle. But the workload can run higher bandwidth with io depth 16.
Compared to io depth 16, the io depth 8 workload is idle. We use the
idea to roughly determine if a cgroup is idle.
We treat a cgroup idle if its think time is above a threshold (by
default 1ms for SSD and 100ms for HD). The idea is think time above the
threshold will start to harm performance. HD is much slower so a longer
think time is ok.
The patch (and the latter patches) uses 'unsigned long' to track time.
We convert 'ns' to 'us' with 'ns >> 10'. This is fast but loses
precision, should not a big deal.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-27 10:51:41 -07:00
# include "blk.h"
2018-07-03 11:15:00 -04:00
# include "blk-rq-qos.h"
2008-11-26 11:59:56 +01:00
2008-12-23 12:42:54 +01:00
/*
* Test patch to inline a certain number of bi_io_vec ' s inside the bio
* itself , to shrink a bio data allocation from two mempool calls to one
*/
# define BIO_INLINE_VECS 4
2005-04-16 15:20:36 -07:00
/*
* if you change this list , also change bvec_alloc or things will
* break badly ! cannot be bigger than what you can fit into an
* unsigned short
*/
2018-03-21 12:49:29 -04:00
# define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
2016-07-19 11:28:42 +02:00
static struct biovec_slab bvec_slabs [ BVEC_POOL_NR ] __read_mostly = {
2018-03-21 12:49:29 -04:00
BV ( 1 , 1 ) , BV ( 4 , 4 ) , BV ( 16 , 16 ) , BV ( 64 , 64 ) , BV ( 128 , 128 ) , BV ( BIO_MAX_PAGES , max ) ,
2005-04-16 15:20:36 -07:00
} ;
# undef BV
/*
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
* IO code that does not need private memory pools .
*/
2018-05-08 21:33:52 -04:00
struct bio_set fs_bio_set ;
2012-09-06 15:35:01 -07:00
EXPORT_SYMBOL ( fs_bio_set ) ;
2005-04-16 15:20:36 -07:00
2008-12-10 15:35:05 +01:00
/*
* Our slab pool management
*/
struct bio_slab {
struct kmem_cache * slab ;
unsigned int slab_ref ;
unsigned int slab_size ;
char name [ 8 ] ;
} ;
static DEFINE_MUTEX ( bio_slab_lock ) ;
static struct bio_slab * bio_slabs ;
static unsigned int bio_slab_nr , bio_slab_max ;
static struct kmem_cache * bio_find_or_create_slab ( unsigned int extra_size )
{
unsigned int sz = sizeof ( struct bio ) + extra_size ;
struct kmem_cache * slab = NULL ;
2012-08-09 15:19:25 +02:00
struct bio_slab * bslab , * new_bio_slabs ;
2012-10-22 21:53:36 +02:00
unsigned int new_bio_slab_max ;
2008-12-10 15:35:05 +01:00
unsigned int i , entry = - 1 ;
mutex_lock ( & bio_slab_lock ) ;
i = 0 ;
while ( i < bio_slab_nr ) {
2010-01-19 14:07:09 +01:00
bslab = & bio_slabs [ i ] ;
2008-12-10 15:35:05 +01:00
if ( ! bslab - > slab & & entry = = - 1 )
entry = i ;
else if ( bslab - > slab_size = = sz ) {
slab = bslab - > slab ;
bslab - > slab_ref + + ;
break ;
}
i + + ;
}
if ( slab )
goto out_unlock ;
if ( bio_slab_nr = = bio_slab_max & & entry = = - 1 ) {
2012-10-22 21:53:36 +02:00
new_bio_slab_max = bio_slab_max < < 1 ;
2012-08-09 15:19:25 +02:00
new_bio_slabs = krealloc ( bio_slabs ,
2012-10-22 21:53:36 +02:00
new_bio_slab_max * sizeof ( struct bio_slab ) ,
2012-08-09 15:19:25 +02:00
GFP_KERNEL ) ;
if ( ! new_bio_slabs )
2008-12-10 15:35:05 +01:00
goto out_unlock ;
2012-10-22 21:53:36 +02:00
bio_slab_max = new_bio_slab_max ;
2012-08-09 15:19:25 +02:00
bio_slabs = new_bio_slabs ;
2008-12-10 15:35:05 +01:00
}
if ( entry = = - 1 )
entry = bio_slab_nr + + ;
bslab = & bio_slabs [ entry ] ;
snprintf ( bslab - > name , sizeof ( bslab - > name ) , " bio-%d " , entry ) ;
2014-03-28 15:51:55 -04:00
slab = kmem_cache_create ( bslab - > name , sz , ARCH_KMALLOC_MINALIGN ,
SLAB_HWCACHE_ALIGN , NULL ) ;
2008-12-10 15:35:05 +01:00
if ( ! slab )
goto out_unlock ;
bslab - > slab = slab ;
bslab - > slab_ref = 1 ;
bslab - > slab_size = sz ;
out_unlock :
mutex_unlock ( & bio_slab_lock ) ;
return slab ;
}
static void bio_put_slab ( struct bio_set * bs )
{
struct bio_slab * bslab = NULL ;
unsigned int i ;
mutex_lock ( & bio_slab_lock ) ;
for ( i = 0 ; i < bio_slab_nr ; i + + ) {
if ( bs - > bio_slab = = bio_slabs [ i ] . slab ) {
bslab = & bio_slabs [ i ] ;
break ;
}
}
if ( WARN ( ! bslab , KERN_ERR " bio: unable to find slab! \n " ) )
goto out ;
WARN_ON ( ! bslab - > slab_ref ) ;
if ( - - bslab - > slab_ref )
goto out ;
kmem_cache_destroy ( bslab - > slab ) ;
bslab - > slab = NULL ;
out :
mutex_unlock ( & bio_slab_lock ) ;
}
2008-06-30 20:04:41 +02:00
unsigned int bvec_nr_vecs ( unsigned short idx )
{
2018-08-08 13:27:53 -06:00
return bvec_slabs [ - - idx ] . nr_vecs ;
2008-06-30 20:04:41 +02:00
}
2012-10-12 15:29:33 -07:00
void bvec_free ( mempool_t * pool , struct bio_vec * bv , unsigned int idx )
2008-12-10 15:35:05 +01:00
{
2016-07-19 11:28:42 +02:00
if ( ! idx )
return ;
idx - - ;
BIO_BUG_ON ( idx > = BVEC_POOL_NR ) ;
2008-12-10 15:35:05 +01:00
2016-07-19 11:28:42 +02:00
if ( idx = = BVEC_POOL_MAX ) {
2012-10-12 15:29:33 -07:00
mempool_free ( bv , pool ) ;
2016-07-19 11:28:42 +02:00
} else {
2008-12-10 15:35:05 +01:00
struct biovec_slab * bvs = bvec_slabs + idx ;
kmem_cache_free ( bvs - > slab , bv ) ;
}
}
2012-10-12 15:29:33 -07:00
struct bio_vec * bvec_alloc ( gfp_t gfp_mask , int nr , unsigned long * idx ,
mempool_t * pool )
2005-04-16 15:20:36 -07:00
{
struct bio_vec * bvl ;
2008-12-11 11:53:43 +01:00
/*
* see comment near bvec_array define !
*/
switch ( nr ) {
case 1 :
* idx = 0 ;
break ;
case 2 . . . 4 :
* idx = 1 ;
break ;
case 5 . . . 16 :
* idx = 2 ;
break ;
case 17 . . . 64 :
* idx = 3 ;
break ;
case 65 . . . 128 :
* idx = 4 ;
break ;
case 129 . . . BIO_MAX_PAGES :
* idx = 5 ;
break ;
default :
return NULL ;
}
/*
* idx now points to the pool we want to allocate from . only the
* 1 - vec entry pool is mempool backed .
*/
2016-07-19 11:28:42 +02:00
if ( * idx = = BVEC_POOL_MAX ) {
2008-12-11 11:53:43 +01:00
fallback :
2012-10-12 15:29:33 -07:00
bvl = mempool_alloc ( pool , gfp_mask ) ;
2008-12-11 11:53:43 +01:00
} else {
struct biovec_slab * bvs = bvec_slabs + * idx ;
2015-11-06 16:28:21 -08:00
gfp_t __gfp_mask = gfp_mask & ~ ( __GFP_DIRECT_RECLAIM | __GFP_IO ) ;
2008-12-11 11:53:43 +01:00
2008-09-11 13:17:37 +02:00
/*
2008-12-11 11:53:43 +01:00
* Make this allocation restricted and don ' t dump info on
* allocation failures , since we ' ll fallback to the mempool
* in case of failure .
2008-09-11 13:17:37 +02:00
*/
2008-12-11 11:53:43 +01:00
__gfp_mask | = __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN ;
2005-04-16 15:20:36 -07:00
2008-09-11 13:17:37 +02:00
/*
2015-11-06 16:28:21 -08:00
* Try a slab allocation . If this fails and __GFP_DIRECT_RECLAIM
2008-12-11 11:53:43 +01:00
* is set , retry with the 1 - entry mempool
2008-09-11 13:17:37 +02:00
*/
2008-12-11 11:53:43 +01:00
bvl = kmem_cache_alloc ( bvs - > slab , __gfp_mask ) ;
2015-11-06 16:28:21 -08:00
if ( unlikely ( ! bvl & & ( gfp_mask & __GFP_DIRECT_RECLAIM ) ) ) {
2016-07-19 11:28:42 +02:00
* idx = BVEC_POOL_MAX ;
2008-12-11 11:53:43 +01:00
goto fallback ;
}
}
2016-07-19 11:28:42 +02:00
( * idx ) + + ;
2005-04-16 15:20:36 -07:00
return bvl ;
}
2017-06-28 15:30:13 -06:00
void bio_uninit ( struct bio * bio )
2005-04-16 15:20:36 -07:00
{
2012-09-06 15:35:00 -07:00
bio_disassociate_task ( bio ) ;
}
2017-06-28 15:30:13 -06:00
EXPORT_SYMBOL ( bio_uninit ) ;
2008-06-30 20:04:41 +02:00
2012-09-06 15:35:00 -07:00
static void bio_free ( struct bio * bio )
{
struct bio_set * bs = bio - > bi_pool ;
void * p ;
2017-06-28 15:30:13 -06:00
bio_uninit ( bio ) ;
2012-09-06 15:35:00 -07:00
if ( bs ) {
2018-05-08 21:33:50 -04:00
bvec_free ( & bs - > bvec_pool , bio - > bi_io_vec , BVEC_POOL_IDX ( bio ) ) ;
2012-09-06 15:35:00 -07:00
/*
* If we have front padding , adjust the bio pointer before freeing
*/
p = bio ;
2008-12-10 15:35:05 +01:00
p - = bs - > front_pad ;
2018-05-08 21:33:50 -04:00
mempool_free ( p , & bs - > bio_pool ) ;
2012-09-06 15:35:00 -07:00
} else {
/* Bio was allocated by bio_kmalloc() */
kfree ( bio ) ;
}
2005-09-06 15:16:42 -07:00
}
2017-06-28 15:30:13 -06:00
/*
* Users of this function have their own bio allocation . Subsequently ,
* they must remember to pair any call to bio_init ( ) with bio_uninit ( )
* when IO has completed , or when the bio is released .
*/
2016-11-22 08:57:21 -07:00
void bio_init ( struct bio * bio , struct bio_vec * table ,
unsigned short max_vecs )
2005-04-16 15:20:36 -07:00
{
2007-07-18 13:14:03 +02:00
memset ( bio , 0 , sizeof ( * bio ) ) ;
2015-04-17 16:15:18 -06:00
atomic_set ( & bio - > __bi_remaining , 1 ) ;
2015-04-17 16:23:59 -06:00
atomic_set ( & bio - > __bi_cnt , 1 ) ;
2016-11-22 08:57:21 -07:00
bio - > bi_io_vec = table ;
bio - > bi_max_vecs = max_vecs ;
2005-04-16 15:20:36 -07:00
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_init ) ;
2005-04-16 15:20:36 -07:00
2012-09-06 15:34:58 -07:00
/**
* bio_reset - reinitialize a bio
* @ bio : bio to reset
*
* Description :
* After calling bio_reset ( ) , @ bio will be in the same state as a freshly
* allocated bio returned bio bio_alloc_bioset ( ) - the only fields that are
* preserved are the ones that are initialized by bio_alloc_bioset ( ) . See
* comment in struct bio .
*/
void bio_reset ( struct bio * bio )
{
unsigned long flags = bio - > bi_flags & ( ~ 0UL < < BIO_RESET_BITS ) ;
2017-06-28 15:30:13 -06:00
bio_uninit ( bio ) ;
2012-09-06 15:34:58 -07:00
memset ( bio , 0 , BIO_RESET_BYTES ) ;
2015-07-20 15:29:37 +02:00
bio - > bi_flags = flags ;
2015-04-17 16:15:18 -06:00
atomic_set ( & bio - > __bi_remaining , 1 ) ;
2012-09-06 15:34:58 -07:00
}
EXPORT_SYMBOL ( bio_reset ) ;
2016-03-11 17:34:51 +01:00
static struct bio * __bio_chain_endio ( struct bio * bio )
2013-11-23 18:34:15 -08:00
{
2015-07-20 15:29:37 +02:00
struct bio * parent = bio - > bi_private ;
2017-06-03 09:38:06 +02:00
if ( ! parent - > bi_status )
parent - > bi_status = bio - > bi_status ;
2013-11-23 18:34:15 -08:00
bio_put ( bio ) ;
2016-03-11 17:34:51 +01:00
return parent ;
}
static void bio_chain_endio ( struct bio * bio )
{
bio_endio ( __bio_chain_endio ( bio ) ) ;
2013-11-23 18:34:15 -08:00
}
/**
* bio_chain - chain bio completions
2014-04-20 16:03:31 -07:00
* @ bio : the target bio
* @ parent : the @ bio ' s parent bio
2013-11-23 18:34:15 -08:00
*
* The caller won ' t have a bi_end_io called when @ bio completes - instead ,
* @ parent ' s bi_end_io won ' t be called until both @ parent and @ bio have
* completed ; the chained bio will also be freed when it completes .
*
* The caller must not set bi_private or bi_end_io in @ bio .
*/
void bio_chain ( struct bio * bio , struct bio * parent )
{
BUG_ON ( bio - > bi_private | | bio - > bi_end_io ) ;
bio - > bi_private = parent ;
bio - > bi_end_io = bio_chain_endio ;
2015-04-17 16:15:18 -06:00
bio_inc_remaining ( parent ) ;
2013-11-23 18:34:15 -08:00
}
EXPORT_SYMBOL ( bio_chain ) ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
static void bio_alloc_rescue ( struct work_struct * work )
{
struct bio_set * bs = container_of ( work , struct bio_set , rescue_work ) ;
struct bio * bio ;
while ( 1 ) {
spin_lock ( & bs - > rescue_lock ) ;
bio = bio_list_pop ( & bs - > rescue_list ) ;
spin_unlock ( & bs - > rescue_lock ) ;
if ( ! bio )
break ;
generic_make_request ( bio ) ;
}
}
static void punt_bios_to_rescuer ( struct bio_set * bs )
{
struct bio_list punt , nopunt ;
struct bio * bio ;
2017-06-18 14:38:57 +10:00
if ( WARN_ON_ONCE ( ! bs - > rescue_workqueue ) )
return ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
/*
* In order to guarantee forward progress we must punt only bios that
* were allocated from this bio_set ; otherwise , if there was a bio on
* there for a stacking driver higher up in the stack , processing it
* could require allocating bios from this bio_set , and doing that from
* our own rescuer would be bad .
*
* Since bio lists are singly linked , pop them all instead of trying to
* remove from the middle of the list :
*/
bio_list_init ( & punt ) ;
bio_list_init ( & nopunt ) ;
2017-03-10 17:00:47 +11:00
while ( ( bio = bio_list_pop ( & current - > bio_list [ 0 ] ) ) )
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
bio_list_add ( bio - > bi_pool = = bs ? & punt : & nopunt , bio ) ;
2017-03-10 17:00:47 +11:00
current - > bio_list [ 0 ] = nopunt ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
2017-03-10 17:00:47 +11:00
bio_list_init ( & nopunt ) ;
while ( ( bio = bio_list_pop ( & current - > bio_list [ 1 ] ) ) )
bio_list_add ( bio - > bi_pool = = bs ? & punt : & nopunt , bio ) ;
current - > bio_list [ 1 ] = nopunt ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
spin_lock ( & bs - > rescue_lock ) ;
bio_list_merge ( & bs - > rescue_list , & punt ) ;
spin_unlock ( & bs - > rescue_lock ) ;
queue_work ( bs - > rescue_workqueue , & bs - > rescue_work ) ;
}
2005-04-16 15:20:36 -07:00
/**
* bio_alloc_bioset - allocate a bio for I / O
2017-10-16 11:01:00 -07:00
* @ gfp_mask : the GFP_ * mask given to the slab allocator
2005-04-16 15:20:36 -07:00
* @ nr_iovecs : number of iovecs to pre - allocate
2010-01-15 12:05:07 +02:00
* @ bs : the bio_set to allocate from .
2005-04-16 15:20:36 -07:00
*
* Description :
2012-09-06 15:35:01 -07:00
* If @ bs is NULL , uses kmalloc ( ) to allocate the bio ; else the allocation is
* backed by the @ bs ' s mempool .
*
2015-11-06 16:28:21 -08:00
* When @ bs is not NULL , if % __GFP_DIRECT_RECLAIM is set then bio_alloc will
* always be able to allocate a bio . This is due to the mempool guarantees .
* To make this work , callers must never allocate more than 1 bio at a time
* from this pool . Callers that need to allocate more than 1 bio must always
* submit the previously allocated bio for IO before attempting to allocate
* a new one . Failure to do so can cause deadlocks under memory pressure .
2012-09-06 15:35:01 -07:00
*
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
* Note that when running under generic_make_request ( ) ( i . e . any block
* driver ) , bios are not submitted until after you return - see the code in
* generic_make_request ( ) that converts recursion into iteration , to prevent
* stack overflows .
*
* This would normally mean allocating multiple bios under
* generic_make_request ( ) would be susceptible to deadlocks , but we have
* deadlock avoidance code that resubmits any blocked bios from a rescuer
* thread .
*
* However , we do not guarantee forward progress for allocations from other
* mempools . Doing multiple allocations from the same mempool under
* generic_make_request ( ) should be avoided - instead , use bio_set ' s front_pad
* for per bio allocations .
*
2012-09-06 15:35:01 -07:00
* RETURNS :
* Pointer to new bio on success , NULL on failure .
*/
2017-03-23 13:24:55 +03:00
struct bio * bio_alloc_bioset ( gfp_t gfp_mask , unsigned int nr_iovecs ,
struct bio_set * bs )
2005-04-16 15:20:36 -07:00
{
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
gfp_t saved_gfp = gfp_mask ;
2012-09-06 15:35:01 -07:00
unsigned front_pad ;
unsigned inline_vecs ;
2009-02-21 11:16:36 +01:00
struct bio_vec * bvl = NULL ;
2009-04-15 19:50:51 +02:00
struct bio * bio ;
void * p ;
2012-09-06 15:35:01 -07:00
if ( ! bs ) {
if ( nr_iovecs > UIO_MAXIOV )
return NULL ;
p = kmalloc ( sizeof ( struct bio ) +
nr_iovecs * sizeof ( struct bio_vec ) ,
gfp_mask ) ;
front_pad = 0 ;
inline_vecs = nr_iovecs ;
} else {
2014-10-03 17:27:12 -04:00
/* should not use nobvec bioset for nr_iovecs > 0 */
2018-05-08 21:33:50 -04:00
if ( WARN_ON_ONCE ( ! mempool_initialized ( & bs - > bvec_pool ) & &
nr_iovecs > 0 ) )
2014-10-03 17:27:12 -04:00
return NULL ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
/*
* generic_make_request ( ) converts recursion to iteration ; this
* means if we ' re running beneath it , any bios we allocate and
* submit will not be submitted ( and thus freed ) until after we
* return .
*
* This exposes us to a potential deadlock if we allocate
* multiple bios from the same bio_set ( ) while running
* underneath generic_make_request ( ) . If we were to allocate
* multiple bios ( say a stacking block driver that was splitting
* bios ) , we would deadlock if we exhausted the mempool ' s
* reserve .
*
* We solve this , and guarantee forward progress , with a rescuer
* workqueue per bio_set . If we go to allocate and there are
* bios on current - > bio_list , we first try the allocation
2015-11-06 16:28:21 -08:00
* without __GFP_DIRECT_RECLAIM ; if that fails , we punt those
* bios we would be blocking to the rescuer workqueue before
* we retry with the original gfp_flags .
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
*/
2017-03-10 17:00:47 +11:00
if ( current - > bio_list & &
( ! bio_list_empty ( & current - > bio_list [ 0 ] ) | |
2017-06-18 14:38:57 +10:00
! bio_list_empty ( & current - > bio_list [ 1 ] ) ) & &
bs - > rescue_workqueue )
2015-11-06 16:28:21 -08:00
gfp_mask & = ~ __GFP_DIRECT_RECLAIM ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
2018-05-08 21:33:50 -04:00
p = mempool_alloc ( & bs - > bio_pool , gfp_mask ) ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
if ( ! p & & gfp_mask ! = saved_gfp ) {
punt_bios_to_rescuer ( bs ) ;
gfp_mask = saved_gfp ;
2018-05-08 21:33:50 -04:00
p = mempool_alloc ( & bs - > bio_pool , gfp_mask ) ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
}
2012-09-06 15:35:01 -07:00
front_pad = bs - > front_pad ;
inline_vecs = BIO_INLINE_VECS ;
}
2009-04-15 19:50:51 +02:00
if ( unlikely ( ! p ) )
return NULL ;
2005-04-16 15:20:36 -07:00
2012-09-06 15:35:01 -07:00
bio = p + front_pad ;
2016-11-22 08:57:21 -07:00
bio_init ( bio , NULL , 0 ) ;
2009-02-21 11:16:36 +01:00
2012-09-06 15:35:01 -07:00
if ( nr_iovecs > inline_vecs ) {
2016-07-19 11:28:42 +02:00
unsigned long idx = 0 ;
2018-05-08 21:33:50 -04:00
bvl = bvec_alloc ( gfp_mask , nr_iovecs , & idx , & bs - > bvec_pool ) ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
if ( ! bvl & & gfp_mask ! = saved_gfp ) {
punt_bios_to_rescuer ( bs ) ;
gfp_mask = saved_gfp ;
2018-05-08 21:33:50 -04:00
bvl = bvec_alloc ( gfp_mask , nr_iovecs , & idx , & bs - > bvec_pool ) ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
}
2009-02-21 11:16:36 +01:00
if ( unlikely ( ! bvl ) )
goto err_free ;
2012-05-25 13:03:11 -07:00
2016-07-19 11:28:42 +02:00
bio - > bi_flags | = idx < < BVEC_POOL_OFFSET ;
2012-09-06 15:35:01 -07:00
} else if ( nr_iovecs ) {
bvl = bio - > bi_inline_vecs ;
2005-04-16 15:20:36 -07:00
}
2012-09-06 15:35:01 -07:00
bio - > bi_pool = bs ;
2009-02-21 11:16:36 +01:00
bio - > bi_max_vecs = nr_iovecs ;
bio - > bi_io_vec = bvl ;
2005-04-16 15:20:36 -07:00
return bio ;
2009-02-21 11:16:36 +01:00
err_free :
2018-05-08 21:33:50 -04:00
mempool_free ( p , & bs - > bio_pool ) ;
2009-02-21 11:16:36 +01:00
return NULL ;
2005-04-16 15:20:36 -07:00
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_alloc_bioset ) ;
2005-04-16 15:20:36 -07:00
2018-05-08 21:33:53 -04:00
void zero_fill_bio_iter ( struct bio * bio , struct bvec_iter start )
2005-04-16 15:20:36 -07:00
{
unsigned long flags ;
2013-11-23 17:19:00 -08:00
struct bio_vec bv ;
struct bvec_iter iter ;
2005-04-16 15:20:36 -07:00
2018-05-08 21:33:53 -04:00
__bio_for_each_segment ( bv , bio , iter , start ) {
2013-11-23 17:19:00 -08:00
char * data = bvec_kmap_irq ( & bv , & flags ) ;
memset ( data , 0 , bv . bv_len ) ;
flush_dcache_page ( bv . bv_page ) ;
2005-04-16 15:20:36 -07:00
bvec_kunmap_irq ( data , & flags ) ;
}
}
2018-05-08 21:33:53 -04:00
EXPORT_SYMBOL ( zero_fill_bio_iter ) ;
2005-04-16 15:20:36 -07:00
/**
* bio_put - release a reference to a bio
* @ bio : bio to release reference to
*
* Description :
* Put a reference to a & struct bio , either one you have gotten with
2017-06-18 14:38:59 +10:00
* bio_alloc , bio_get or bio_clone_ * . The last put of a bio will free it .
2005-04-16 15:20:36 -07:00
* */
void bio_put ( struct bio * bio )
{
2015-04-17 16:23:59 -06:00
if ( ! bio_flagged ( bio , BIO_REFFED ) )
2012-09-06 15:35:00 -07:00
bio_free ( bio ) ;
2015-04-17 16:23:59 -06:00
else {
BIO_BUG_ON ( ! atomic_read ( & bio - > __bi_cnt ) ) ;
/*
* last put frees it
*/
if ( atomic_dec_and_test ( & bio - > __bi_cnt ) )
bio_free ( bio ) ;
}
2005-04-16 15:20:36 -07:00
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_put ) ;
2005-04-16 15:20:36 -07:00
2007-07-24 09:28:11 +02:00
inline int bio_phys_segments ( struct request_queue * q , struct bio * bio )
2005-04-16 15:20:36 -07:00
{
if ( unlikely ( ! bio_flagged ( bio , BIO_SEG_VALID ) ) )
blk_recount_segments ( q , bio ) ;
return bio - > bi_phys_segments ;
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_phys_segments ) ;
2005-04-16 15:20:36 -07:00
2013-11-23 18:19:27 -08:00
/**
* __bio_clone_fast - clone a bio that shares the original bio ' s biovec
* @ bio : destination bio
* @ bio_src : bio to clone
*
* Clone a & bio . Caller will own the returned bio , but not
* the actual data it points to . Reference count of returned
* bio will be one .
*
* Caller must ensure that @ bio_src is not freed before @ bio .
*/
void __bio_clone_fast ( struct bio * bio , struct bio * bio_src )
{
2016-07-19 11:28:42 +02:00
BUG_ON ( bio - > bi_pool & & BVEC_POOL_IDX ( bio ) ) ;
2013-11-23 18:19:27 -08:00
/*
2017-08-23 19:10:32 +02:00
* most users will be overriding - > bi_disk with a new target ,
2013-11-23 18:19:27 -08:00
* so we don ' t set nor calculate new physical / hw segment counts here
*/
2017-08-23 19:10:32 +02:00
bio - > bi_disk = bio_src - > bi_disk ;
2017-11-16 23:47:25 -08:00
bio - > bi_partno = bio_src - > bi_partno ;
2015-07-24 12:37:59 -06:00
bio_set_flag ( bio , BIO_CLONED ) ;
2017-12-20 11:10:17 -07:00
if ( bio_flagged ( bio_src , BIO_THROTTLED ) )
bio_set_flag ( bio , BIO_THROTTLED ) ;
2016-08-05 15:35:16 -06:00
bio - > bi_opf = bio_src - > bi_opf ;
2017-06-27 09:22:02 -06:00
bio - > bi_write_hint = bio_src - > bi_write_hint ;
2013-11-23 18:19:27 -08:00
bio - > bi_iter = bio_src - > bi_iter ;
bio - > bi_io_vec = bio_src - > bi_io_vec ;
2016-07-27 07:22:05 +02:00
bio_clone_blkcg_association ( bio , bio_src ) ;
2013-11-23 18:19:27 -08:00
}
EXPORT_SYMBOL ( __bio_clone_fast ) ;
/**
* bio_clone_fast - clone a bio that shares the original bio ' s biovec
* @ bio : bio to clone
* @ gfp_mask : allocation priority
* @ bs : bio_set to allocate from
*
* Like __bio_clone_fast , only also allocates the returned bio
*/
struct bio * bio_clone_fast ( struct bio * bio , gfp_t gfp_mask , struct bio_set * bs )
{
struct bio * b ;
b = bio_alloc_bioset ( gfp_mask , 0 , bs ) ;
if ( ! b )
return NULL ;
__bio_clone_fast ( b , bio ) ;
if ( bio_integrity ( bio ) ) {
int ret ;
ret = bio_integrity_clone ( b , bio , gfp_mask ) ;
if ( ret < 0 ) {
bio_put ( b ) ;
return NULL ;
}
}
return b ;
}
EXPORT_SYMBOL ( bio_clone_fast ) ;
2005-04-16 15:20:36 -07:00
/**
2013-11-23 22:30:22 -08:00
* bio_add_pc_page - attempt to add page to bio
* @ q : the target queue
* @ bio : destination bio
* @ page : page to add
* @ len : vec entry length
* @ offset : vec entry offset
2005-04-16 15:20:36 -07:00
*
2013-11-23 22:30:22 -08:00
* Attempt to add a page to the bio_vec maplist . This can fail for a
* number of reasons , such as the bio being full or target block device
* limitations . The target block device must allow bio ' s up to PAGE_SIZE ,
* so it is always possible to add a single page to an empty bio .
*
* This should only be used by REQ_PC bios .
2005-04-16 15:20:36 -07:00
*/
2013-11-23 22:30:22 -08:00
int bio_add_pc_page ( struct request_queue * q , struct bio * bio , struct page
* page , unsigned int len , unsigned int offset )
2005-04-16 15:20:36 -07:00
{
int retried_segments = 0 ;
struct bio_vec * bvec ;
/*
* cloned bio must not modify vec list
*/
if ( unlikely ( bio_flagged ( bio , BIO_CLONED ) ) )
return 0 ;
2013-11-23 22:30:22 -08:00
if ( ( ( bio - > bi_iter . bi_size + len ) > > 9 ) > queue_max_hw_sectors ( q ) )
2005-04-16 15:20:36 -07:00
return 0 ;
2006-01-06 09:43:28 +01:00
/*
* For filesystems with a blocksize smaller than the pagesize
* we will often be called with the same page as last time and
* a consecutive offset . Optimize this special case .
*/
if ( bio - > bi_vcnt > 0 ) {
struct bio_vec * prev = & bio - > bi_io_vec [ bio - > bi_vcnt - 1 ] ;
if ( page = = prev - > bv_page & &
offset = = prev - > bv_offset + prev - > bv_len ) {
prev - > bv_len + = len ;
2014-12-10 14:16:53 -08:00
bio - > bi_iter . bi_size + = len ;
2006-01-06 09:43:28 +01:00
goto done ;
}
2014-06-24 16:22:24 -06:00
/*
* If the queue doesn ' t support SG gaps and adding this
* offset would create a gap , disallow it .
*/
2015-08-19 14:24:05 -07:00
if ( bvec_gap_to_prev ( q , prev , offset ) )
2014-06-24 16:22:24 -06:00
return 0 ;
2006-01-06 09:43:28 +01:00
}
2018-06-01 09:03:05 -07:00
if ( bio_full ( bio ) )
2005-04-16 15:20:36 -07:00
return 0 ;
/*
2014-12-10 14:16:53 -08:00
* setup the new entry , we might clear it again later if we
* cannot add the page
*/
bvec = & bio - > bi_io_vec [ bio - > bi_vcnt ] ;
bvec - > bv_page = page ;
bvec - > bv_len = len ;
bvec - > bv_offset = offset ;
bio - > bi_vcnt + + ;
bio - > bi_phys_segments + + ;
bio - > bi_iter . bi_size + = len ;
/*
* Perform a recount if the number of segments is greater
* than queue_max_segments ( q ) .
2005-04-16 15:20:36 -07:00
*/
2014-12-10 14:16:53 -08:00
while ( bio - > bi_phys_segments > queue_max_segments ( q ) ) {
2005-04-16 15:20:36 -07:00
if ( retried_segments )
2014-12-10 14:16:53 -08:00
goto failed ;
2005-04-16 15:20:36 -07:00
retried_segments = 1 ;
blk_recount_segments ( q , bio ) ;
}
/* If we may be able to merge these biovecs, force a recount */
2014-12-10 14:16:53 -08:00
if ( bio - > bi_vcnt > 1 & & ( BIOVEC_PHYS_MERGEABLE ( bvec - 1 , bvec ) ) )
2015-07-24 12:37:59 -06:00
bio_clear_flag ( bio , BIO_SEG_VALID ) ;
2005-04-16 15:20:36 -07:00
2006-01-06 09:43:28 +01:00
done :
2005-04-16 15:20:36 -07:00
return len ;
2014-12-10 14:16:53 -08:00
failed :
bvec - > bv_page = NULL ;
bvec - > bv_len = 0 ;
bvec - > bv_offset = 0 ;
bio - > bi_vcnt - - ;
bio - > bi_iter . bi_size - = len ;
blk_recount_segments ( q , bio ) ;
return 0 ;
2005-04-16 15:20:36 -07:00
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_add_pc_page ) ;
2005-11-11 05:30:27 -06:00
2005-04-16 15:20:36 -07:00
/**
2018-06-01 09:03:05 -07:00
* __bio_try_merge_page - try appending data to an existing bvec .
* @ bio : destination bio
* @ page : page to add
* @ len : length of the data to add
* @ off : offset of the data in @ page
2005-04-16 15:20:36 -07:00
*
2018-06-01 09:03:05 -07:00
* Try to add the data at @ page + @ off to the last bvec of @ bio . This is a
* a useful optimisation for file systems with a block size smaller than the
* page size .
*
* Return % true on success or % false on failure .
2005-04-16 15:20:36 -07:00
*/
2018-06-01 09:03:05 -07:00
bool __bio_try_merge_page ( struct bio * bio , struct page * page ,
unsigned int len , unsigned int off )
2005-04-16 15:20:36 -07:00
{
2013-11-23 22:30:22 -08:00
if ( WARN_ON_ONCE ( bio_flagged ( bio , BIO_CLONED ) ) )
2018-06-01 09:03:05 -07:00
return false ;
2014-06-05 13:38:39 -06:00
2013-11-23 22:30:22 -08:00
if ( bio - > bi_vcnt > 0 ) {
2018-06-01 09:03:05 -07:00
struct bio_vec * bv = & bio - > bi_io_vec [ bio - > bi_vcnt - 1 ] ;
2014-06-10 12:53:56 -06:00
2018-06-01 09:03:05 -07:00
if ( page = = bv - > bv_page & & off = = bv - > bv_offset + bv - > bv_len ) {
2013-11-23 22:30:22 -08:00
bv - > bv_len + = len ;
2018-06-01 09:03:05 -07:00
bio - > bi_iter . bi_size + = len ;
return true ;
2013-11-23 22:30:22 -08:00
}
}
2018-06-01 09:03:05 -07:00
return false ;
}
EXPORT_SYMBOL_GPL ( __bio_try_merge_page ) ;
2013-11-23 22:30:22 -08:00
2018-06-01 09:03:05 -07:00
/**
* __bio_add_page - add page to a bio in a new segment
* @ bio : destination bio
* @ page : page to add
* @ len : length of the data to add
* @ off : offset of the data in @ page
*
* Add the data at @ page + @ off to @ bio as a new bvec . The caller must ensure
* that @ bio has space for another bvec .
*/
void __bio_add_page ( struct bio * bio , struct page * page ,
unsigned int len , unsigned int off )
{
struct bio_vec * bv = & bio - > bi_io_vec [ bio - > bi_vcnt ] ;
2013-11-23 22:30:22 -08:00
2018-06-01 09:03:05 -07:00
WARN_ON_ONCE ( bio_flagged ( bio , BIO_CLONED ) ) ;
WARN_ON_ONCE ( bio_full ( bio ) ) ;
bv - > bv_page = page ;
bv - > bv_offset = off ;
bv - > bv_len = len ;
2013-11-23 22:30:22 -08:00
bio - > bi_iter . bi_size + = len ;
2018-06-01 09:03:05 -07:00
bio - > bi_vcnt + + ;
}
EXPORT_SYMBOL_GPL ( __bio_add_page ) ;
/**
* bio_add_page - attempt to add page to bio
* @ bio : destination bio
* @ page : page to add
* @ len : vec entry length
* @ offset : vec entry offset
*
* Attempt to add a page to the bio_vec maplist . This will only fail
* if either bio - > bi_vcnt = = bio - > bi_max_vecs or it ' s a cloned bio .
*/
int bio_add_page ( struct bio * bio , struct page * page ,
unsigned int len , unsigned int offset )
{
if ( ! __bio_try_merge_page ( bio , page , len , offset ) ) {
if ( bio_full ( bio ) )
return 0 ;
__bio_add_page ( bio , page , len , offset ) ;
}
2013-11-23 22:30:22 -08:00
return len ;
2005-04-16 15:20:36 -07:00
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_add_page ) ;
2005-04-16 15:20:36 -07:00
2016-10-31 11:59:24 -06:00
/**
2018-07-25 23:15:09 +02:00
* __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2016-10-31 11:59:24 -06:00
* @ bio : bio to add pages to
* @ iter : iov iterator describing the region to be mapped
*
2018-07-25 23:15:09 +02:00
* Pins pages from * iter and appends them to @ bio ' s bvec array . The
2016-10-31 11:59:24 -06:00
* pages will have to be released using put_page ( ) when done .
2018-07-25 23:15:09 +02:00
* For multi - segment * iter , this function only adds pages from the
* the next non - empty segment of the iov iterator .
2016-10-31 11:59:24 -06:00
*/
2018-07-25 23:15:09 +02:00
static int __bio_iov_iter_get_pages ( struct bio * bio , struct iov_iter * iter )
2016-10-31 11:59:24 -06:00
{
2018-07-25 23:15:07 +02:00
unsigned short nr_pages = bio - > bi_max_vecs - bio - > bi_vcnt , idx ;
2016-10-31 11:59:24 -06:00
struct bio_vec * bv = bio - > bi_io_vec + bio - > bi_vcnt ;
struct page * * pages = ( struct page * * ) bv ;
2018-07-25 23:15:07 +02:00
size_t offset ;
2016-10-31 11:59:24 -06:00
ssize_t size ;
size = iov_iter_get_pages ( iter , pages , LONG_MAX , nr_pages , & offset ) ;
if ( unlikely ( size < = 0 ) )
return size ? size : - EFAULT ;
2018-07-25 23:15:07 +02:00
idx = nr_pages = ( size + offset + PAGE_SIZE - 1 ) / PAGE_SIZE ;
2016-10-31 11:59:24 -06:00
/*
* Deep magic below : We need to walk the pinned pages backwards
* because we are abusing the space allocated for the bio_vecs
* for the page array . Because the bio_vecs are larger than the
* page pointers by definition this will always work . But it also
* means we can ' t use bio_add_page , so any changes to it ' s semantics
* need to be reflected here as well .
*/
bio - > bi_iter . bi_size + = size ;
bio - > bi_vcnt + = nr_pages ;
2018-07-25 23:15:07 +02:00
while ( idx - - ) {
bv [ idx ] . bv_page = pages [ idx ] ;
bv [ idx ] . bv_len = PAGE_SIZE ;
bv [ idx ] . bv_offset = 0 ;
2016-10-31 11:59:24 -06:00
}
bv [ 0 ] . bv_offset + = offset ;
bv [ 0 ] . bv_len - = offset ;
2018-07-25 23:15:07 +02:00
bv [ nr_pages - 1 ] . bv_len - = nr_pages * PAGE_SIZE - offset - size ;
2016-10-31 11:59:24 -06:00
iov_iter_advance ( iter , size ) ;
return 0 ;
}
2018-07-25 23:15:09 +02:00
/**
* bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
* @ bio : bio to add pages to
* @ iter : iov iterator describing the region to be mapped
*
* Pins pages from * iter and appends them to @ bio ' s bvec array . The
* pages will have to be released using put_page ( ) when done .
* The function tries , but does not guarantee , to pin as many pages as
* fit into the bio , or are requested in * iter , whatever is smaller .
* If MM encounters an error pinning the requested pages , it stops .
* Error is returned only if 0 pages could be pinned .
*/
int bio_iov_iter_get_pages ( struct bio * bio , struct iov_iter * iter )
{
unsigned short orig_vcnt = bio - > bi_vcnt ;
do {
int ret = __bio_iov_iter_get_pages ( bio , iter ) ;
if ( unlikely ( ret ) )
return bio - > bi_vcnt > orig_vcnt ? 0 : ret ;
} while ( iov_iter_count ( iter ) & & ! bio_full ( bio ) ) ;
return 0 ;
}
2016-10-31 11:59:24 -06:00
EXPORT_SYMBOL_GPL ( bio_iov_iter_get_pages ) ;
2015-07-20 15:29:37 +02:00
static void submit_bio_wait_endio ( struct bio * bio )
2012-09-10 14:41:12 -07:00
{
2017-10-25 17:55:57 +09:00
complete ( bio - > bi_private ) ;
2012-09-10 14:41:12 -07:00
}
/**
* submit_bio_wait - submit a bio , and wait until it completes
* @ bio : The & struct bio which describes the I / O
*
* Simple wrapper around submit_bio ( ) . Returns 0 on success , or the error from
* bio_endio ( ) on failure .
2017-08-02 10:25:21 +02:00
*
* WARNING : Unlike to how submit_bio ( ) is usually used , this function does not
* result in bio reference to be consumed . The caller must drop the reference
* on his own .
2012-09-10 14:41:12 -07:00
*/
2016-06-05 14:31:41 -05:00
int submit_bio_wait ( struct bio * bio )
2012-09-10 14:41:12 -07:00
{
2017-10-25 17:56:05 +09:00
DECLARE_COMPLETION_ONSTACK_MAP ( done , bio - > bi_disk - > lockdep_map ) ;
2012-09-10 14:41:12 -07:00
2017-10-25 17:55:57 +09:00
bio - > bi_private = & done ;
2012-09-10 14:41:12 -07:00
bio - > bi_end_io = submit_bio_wait_endio ;
2016-08-05 15:35:16 -06:00
bio - > bi_opf | = REQ_SYNC ;
2016-06-05 14:31:41 -05:00
submit_bio ( bio ) ;
2017-10-25 17:55:57 +09:00
wait_for_completion_io ( & done ) ;
2012-09-10 14:41:12 -07:00
2017-10-25 17:55:57 +09:00
return blk_status_to_errno ( bio - > bi_status ) ;
2012-09-10 14:41:12 -07:00
}
EXPORT_SYMBOL ( submit_bio_wait ) ;
2012-09-28 13:17:55 -07:00
/**
* bio_advance - increment / complete a bio by some number of bytes
* @ bio : bio to advance
* @ bytes : number of bytes to complete
*
* This updates bi_sector , bi_size and bi_idx ; if the number of bytes to
* complete doesn ' t align with a bvec boundary , then bv_len and bv_offset will
* be updated on the last bvec as well .
*
* @ bio will then represent the remaining , uncompleted portion of the io .
*/
void bio_advance ( struct bio * bio , unsigned bytes )
{
if ( bio_integrity ( bio ) )
bio_integrity_advance ( bio , bytes ) ;
2013-08-07 14:26:21 -07:00
bio_advance_iter ( bio , & bio - > bi_iter , bytes ) ;
2012-09-28 13:17:55 -07:00
}
EXPORT_SYMBOL ( bio_advance ) ;
2018-05-08 21:33:54 -04:00
void bio_copy_data_iter ( struct bio * dst , struct bvec_iter * dst_iter ,
struct bio * src , struct bvec_iter * src_iter )
2012-09-10 13:57:51 -07:00
{
2013-08-07 14:26:39 -07:00
struct bio_vec src_bv , dst_bv ;
2012-09-10 13:57:51 -07:00
void * src_p , * dst_p ;
2013-08-07 14:26:39 -07:00
unsigned bytes ;
2012-09-10 13:57:51 -07:00
2018-05-08 21:33:54 -04:00
while ( src_iter - > bi_size & & dst_iter - > bi_size ) {
src_bv = bio_iter_iovec ( src , * src_iter ) ;
dst_bv = bio_iter_iovec ( dst , * dst_iter ) ;
2013-08-07 14:26:39 -07:00
bytes = min ( src_bv . bv_len , dst_bv . bv_len ) ;
2012-09-10 13:57:51 -07:00
2013-08-07 14:26:39 -07:00
src_p = kmap_atomic ( src_bv . bv_page ) ;
dst_p = kmap_atomic ( dst_bv . bv_page ) ;
2012-09-10 13:57:51 -07:00
2013-08-07 14:26:39 -07:00
memcpy ( dst_p + dst_bv . bv_offset ,
src_p + src_bv . bv_offset ,
2012-09-10 13:57:51 -07:00
bytes ) ;
kunmap_atomic ( dst_p ) ;
kunmap_atomic ( src_p ) ;
2018-05-08 21:33:55 -04:00
flush_dcache_page ( dst_bv . bv_page ) ;
2018-05-08 21:33:54 -04:00
bio_advance_iter ( src , src_iter , bytes ) ;
bio_advance_iter ( dst , dst_iter , bytes ) ;
2012-09-10 13:57:51 -07:00
}
}
2018-05-08 21:33:53 -04:00
EXPORT_SYMBOL ( bio_copy_data_iter ) ;
/**
2018-05-08 21:33:54 -04:00
* bio_copy_data - copy contents of data buffers from one bio to another
* @ src : source bio
* @ dst : destination bio
2018-05-08 21:33:53 -04:00
*
* Stops when it reaches the end of either @ src or @ dst - that is , copies
* min ( src - > bi_size , dst - > bi_size ) bytes ( or the equivalent for lists of bios ) .
*/
void bio_copy_data ( struct bio * dst , struct bio * src )
{
2018-05-08 21:33:54 -04:00
struct bvec_iter src_iter = src - > bi_iter ;
struct bvec_iter dst_iter = dst - > bi_iter ;
bio_copy_data_iter ( dst , & dst_iter , src , & src_iter ) ;
2018-05-08 21:33:53 -04:00
}
2012-09-10 13:57:51 -07:00
EXPORT_SYMBOL ( bio_copy_data ) ;
2018-05-08 21:33:54 -04:00
/**
* bio_list_copy_data - copy contents of data buffers from one chain of bios to
* another
* @ src : source bio list
* @ dst : destination bio list
*
* Stops when it reaches the end of either the @ src list or @ dst list - that is ,
* copies min ( src - > bi_size , dst - > bi_size ) bytes ( or the equivalent for lists of
* bios ) .
*/
void bio_list_copy_data ( struct bio * dst , struct bio * src )
{
struct bvec_iter src_iter = src - > bi_iter ;
struct bvec_iter dst_iter = dst - > bi_iter ;
while ( 1 ) {
if ( ! src_iter . bi_size ) {
src = src - > bi_next ;
if ( ! src )
break ;
src_iter = src - > bi_iter ;
}
if ( ! dst_iter . bi_size ) {
dst = dst - > bi_next ;
if ( ! dst )
break ;
dst_iter = dst - > bi_iter ;
}
bio_copy_data_iter ( dst , & dst_iter , src , & src_iter ) ;
}
}
EXPORT_SYMBOL ( bio_list_copy_data ) ;
2005-04-16 15:20:36 -07:00
struct bio_map_data {
2008-08-28 16:17:06 +09:00
int is_our_pages ;
2015-01-18 16:16:31 +01:00
struct iov_iter iter ;
struct iovec iov [ ] ;
2005-04-16 15:20:36 -07:00
} ;
2017-09-24 13:14:35 -04:00
static struct bio_map_data * bio_alloc_map_data ( struct iov_iter * data ,
2008-08-25 20:36:08 +02:00
gfp_t gfp_mask )
2005-04-16 15:20:36 -07:00
{
2017-09-24 13:14:35 -04:00
struct bio_map_data * bmd ;
if ( data - > nr_segs > UIO_MAXIOV )
2010-10-29 11:46:56 -06:00
return NULL ;
2005-04-16 15:20:36 -07:00
2017-09-24 13:14:35 -04:00
bmd = kmalloc ( sizeof ( struct bio_map_data ) +
sizeof ( struct iovec ) * data - > nr_segs , gfp_mask ) ;
if ( ! bmd )
return NULL ;
memcpy ( bmd - > iov , data - > iov , sizeof ( struct iovec ) * data - > nr_segs ) ;
bmd - > iter = * data ;
bmd - > iter . iov = bmd - > iov ;
return bmd ;
2005-04-16 15:20:36 -07:00
}
2015-01-18 16:16:34 +01:00
/**
* bio_copy_from_iter - copy all pages from iov_iter to bio
* @ bio : The & struct bio which describes the I / O as destination
* @ iter : iov_iter as source
*
* Copy all pages from iov_iter to bio .
* Returns 0 on success , or error on failure .
*/
2017-09-24 12:14:36 -04:00
static int bio_copy_from_iter ( struct bio * bio , struct iov_iter * iter )
2008-04-11 12:56:49 +02:00
{
2015-01-18 16:16:34 +01:00
int i ;
2008-04-11 12:56:49 +02:00
struct bio_vec * bvec ;
2013-02-06 12:23:11 -08:00
bio_for_each_segment_all ( bvec , bio , i ) {
2015-01-18 16:16:34 +01:00
ssize_t ret ;
2008-04-11 12:56:49 +02:00
2015-01-18 16:16:34 +01:00
ret = copy_page_from_iter ( bvec - > bv_page ,
bvec - > bv_offset ,
bvec - > bv_len ,
2017-09-24 12:14:36 -04:00
iter ) ;
2015-01-18 16:16:34 +01:00
2017-09-24 12:14:36 -04:00
if ( ! iov_iter_count ( iter ) )
2015-01-18 16:16:34 +01:00
break ;
if ( ret < bvec - > bv_len )
return - EFAULT ;
2008-04-11 12:56:49 +02:00
}
2015-01-18 16:16:34 +01:00
return 0 ;
}
/**
* bio_copy_to_iter - copy all pages from bio to iov_iter
* @ bio : The & struct bio which describes the I / O as source
* @ iter : iov_iter as destination
*
* Copy all pages from bio to iov_iter .
* Returns 0 on success , or error on failure .
*/
static int bio_copy_to_iter ( struct bio * bio , struct iov_iter iter )
{
int i ;
struct bio_vec * bvec ;
bio_for_each_segment_all ( bvec , bio , i ) {
ssize_t ret ;
ret = copy_page_to_iter ( bvec - > bv_page ,
bvec - > bv_offset ,
bvec - > bv_len ,
& iter ) ;
if ( ! iov_iter_count ( & iter ) )
break ;
if ( ret < bvec - > bv_len )
return - EFAULT ;
}
return 0 ;
2008-04-11 12:56:49 +02:00
}
2016-09-22 03:10:01 -04:00
void bio_free_pages ( struct bio * bio )
2015-01-18 16:16:30 +01:00
{
struct bio_vec * bvec ;
int i ;
bio_for_each_segment_all ( bvec , bio , i )
__free_page ( bvec - > bv_page ) ;
}
2016-09-22 03:10:01 -04:00
EXPORT_SYMBOL ( bio_free_pages ) ;
2015-01-18 16:16:30 +01:00
2005-04-16 15:20:36 -07:00
/**
* bio_uncopy_user - finish previously mapped bio
* @ bio : bio being terminated
*
2015-01-18 16:16:29 +01:00
* Free pages allocated from bio_copy_user_iov ( ) and write back data
2005-04-16 15:20:36 -07:00
* to user space in case of a read .
*/
int bio_uncopy_user ( struct bio * bio )
{
struct bio_map_data * bmd = bio - > bi_private ;
2015-01-18 16:16:30 +01:00
int ret = 0 ;
2005-04-16 15:20:36 -07:00
[SCSI] sg: Fix user memory corruption when SG_IO is interrupted by a signal
There is a nasty bug in the SCSI SG_IO ioctl that in some circumstances
leads to one process writing data into the address space of some other
random unrelated process if the ioctl is interrupted by a signal.
What happens is the following:
- A process issues an SG_IO ioctl with direction DXFER_FROM_DEV (ie the
underlying SCSI command will transfer data from the SCSI device to
the buffer provided in the ioctl)
- Before the command finishes, a signal is sent to the process waiting
in the ioctl. This will end up waking up the sg_ioctl() code:
result = wait_event_interruptible(sfp->read_wait,
(srp_done(sfp, srp) || sdp->detached));
but neither srp_done() nor sdp->detached is true, so we end up just
setting srp->orphan and returning to userspace:
srp->orphan = 1;
write_unlock_irq(&sfp->rq_list_lock);
return result; /* -ERESTARTSYS because signal hit process */
At this point the original process is done with the ioctl and
blithely goes ahead handling the signal, reissuing the ioctl, etc.
- Eventually, the SCSI command issued by the first ioctl finishes and
ends up in sg_rq_end_io(). At the end of that function, we run through:
write_lock_irqsave(&sfp->rq_list_lock, iflags);
if (unlikely(srp->orphan)) {
if (sfp->keep_orphan)
srp->sg_io_owned = 0;
else
done = 0;
}
srp->done = done;
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
if (likely(done)) {
/* Now wake up any sg_read() that is waiting for this
* packet.
*/
wake_up_interruptible(&sfp->read_wait);
kill_fasync(&sfp->async_qp, SIGPOLL, POLL_IN);
kref_put(&sfp->f_ref, sg_remove_sfp);
} else {
INIT_WORK(&srp->ew.work, sg_rq_end_io_usercontext);
schedule_work(&srp->ew.work);
}
Since srp->orphan *is* set, we set done to 0 (assuming the
userspace app has not set keep_orphan via an SG_SET_KEEP_ORPHAN
ioctl), and therefore we end up scheduling sg_rq_end_io_usercontext()
to run in a workqueue.
- In workqueue context we go through sg_rq_end_io_usercontext() ->
sg_finish_rem_req() -> blk_rq_unmap_user() -> ... ->
bio_uncopy_user() -> __bio_copy_iov() -> copy_to_user().
The key point here is that we are doing copy_to_user() on a
workqueue -- that is, we're on a kernel thread with current->mm
equal to whatever random previous user process was scheduled before
this kernel thread. So we end up copying whatever data the SCSI
command returned to the virtual address of the buffer passed into
the original ioctl, but it's quite likely we do this copying into a
different address space!
As suggested by James Bottomley <James.Bottomley@hansenpartnership.com>,
add a check for current->mm (which is NULL if we're on a kernel thread
without a real userspace address space) in bio_uncopy_user(), and skip
the copy if we're on a kernel thread.
There's no reason that I can think of for any caller of bio_uncopy_user()
to want to do copying on a kernel thread with a random active userspace
address space.
Huge thanks to Costa Sapuntzakis <costa@purestorage.com> for the
original pointer to this bug in the sg code.
Signed-off-by: Roland Dreier <roland@purestorage.com>
Tested-by: David Milburn <dmilburn@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-08-05 17:55:01 -07:00
if ( ! bio_flagged ( bio , BIO_NULL_MAPPED ) ) {
/*
* if we ' re in a workqueue , the request is orphaned , so
2016-02-12 09:39:15 +01:00
* don ' t copy into a random user address space , just free
* and return - EINTR so user space doesn ' t expect any data .
[SCSI] sg: Fix user memory corruption when SG_IO is interrupted by a signal
There is a nasty bug in the SCSI SG_IO ioctl that in some circumstances
leads to one process writing data into the address space of some other
random unrelated process if the ioctl is interrupted by a signal.
What happens is the following:
- A process issues an SG_IO ioctl with direction DXFER_FROM_DEV (ie the
underlying SCSI command will transfer data from the SCSI device to
the buffer provided in the ioctl)
- Before the command finishes, a signal is sent to the process waiting
in the ioctl. This will end up waking up the sg_ioctl() code:
result = wait_event_interruptible(sfp->read_wait,
(srp_done(sfp, srp) || sdp->detached));
but neither srp_done() nor sdp->detached is true, so we end up just
setting srp->orphan and returning to userspace:
srp->orphan = 1;
write_unlock_irq(&sfp->rq_list_lock);
return result; /* -ERESTARTSYS because signal hit process */
At this point the original process is done with the ioctl and
blithely goes ahead handling the signal, reissuing the ioctl, etc.
- Eventually, the SCSI command issued by the first ioctl finishes and
ends up in sg_rq_end_io(). At the end of that function, we run through:
write_lock_irqsave(&sfp->rq_list_lock, iflags);
if (unlikely(srp->orphan)) {
if (sfp->keep_orphan)
srp->sg_io_owned = 0;
else
done = 0;
}
srp->done = done;
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
if (likely(done)) {
/* Now wake up any sg_read() that is waiting for this
* packet.
*/
wake_up_interruptible(&sfp->read_wait);
kill_fasync(&sfp->async_qp, SIGPOLL, POLL_IN);
kref_put(&sfp->f_ref, sg_remove_sfp);
} else {
INIT_WORK(&srp->ew.work, sg_rq_end_io_usercontext);
schedule_work(&srp->ew.work);
}
Since srp->orphan *is* set, we set done to 0 (assuming the
userspace app has not set keep_orphan via an SG_SET_KEEP_ORPHAN
ioctl), and therefore we end up scheduling sg_rq_end_io_usercontext()
to run in a workqueue.
- In workqueue context we go through sg_rq_end_io_usercontext() ->
sg_finish_rem_req() -> blk_rq_unmap_user() -> ... ->
bio_uncopy_user() -> __bio_copy_iov() -> copy_to_user().
The key point here is that we are doing copy_to_user() on a
workqueue -- that is, we're on a kernel thread with current->mm
equal to whatever random previous user process was scheduled before
this kernel thread. So we end up copying whatever data the SCSI
command returned to the virtual address of the buffer passed into
the original ioctl, but it's quite likely we do this copying into a
different address space!
As suggested by James Bottomley <James.Bottomley@hansenpartnership.com>,
add a check for current->mm (which is NULL if we're on a kernel thread
without a real userspace address space) in bio_uncopy_user(), and skip
the copy if we're on a kernel thread.
There's no reason that I can think of for any caller of bio_uncopy_user()
to want to do copying on a kernel thread with a random active userspace
address space.
Huge thanks to Costa Sapuntzakis <costa@purestorage.com> for the
original pointer to this bug in the sg code.
Signed-off-by: Roland Dreier <roland@purestorage.com>
Tested-by: David Milburn <dmilburn@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-08-05 17:55:01 -07:00
*/
2016-02-12 09:39:15 +01:00
if ( ! current - > mm )
ret = - EINTR ;
else if ( bio_data_dir ( bio ) = = READ )
2015-01-18 16:16:34 +01:00
ret = bio_copy_to_iter ( bio , bmd - > iter ) ;
2015-01-18 16:16:30 +01:00
if ( bmd - > is_our_pages )
bio_free_pages ( bio ) ;
[SCSI] sg: Fix user memory corruption when SG_IO is interrupted by a signal
There is a nasty bug in the SCSI SG_IO ioctl that in some circumstances
leads to one process writing data into the address space of some other
random unrelated process if the ioctl is interrupted by a signal.
What happens is the following:
- A process issues an SG_IO ioctl with direction DXFER_FROM_DEV (ie the
underlying SCSI command will transfer data from the SCSI device to
the buffer provided in the ioctl)
- Before the command finishes, a signal is sent to the process waiting
in the ioctl. This will end up waking up the sg_ioctl() code:
result = wait_event_interruptible(sfp->read_wait,
(srp_done(sfp, srp) || sdp->detached));
but neither srp_done() nor sdp->detached is true, so we end up just
setting srp->orphan and returning to userspace:
srp->orphan = 1;
write_unlock_irq(&sfp->rq_list_lock);
return result; /* -ERESTARTSYS because signal hit process */
At this point the original process is done with the ioctl and
blithely goes ahead handling the signal, reissuing the ioctl, etc.
- Eventually, the SCSI command issued by the first ioctl finishes and
ends up in sg_rq_end_io(). At the end of that function, we run through:
write_lock_irqsave(&sfp->rq_list_lock, iflags);
if (unlikely(srp->orphan)) {
if (sfp->keep_orphan)
srp->sg_io_owned = 0;
else
done = 0;
}
srp->done = done;
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
if (likely(done)) {
/* Now wake up any sg_read() that is waiting for this
* packet.
*/
wake_up_interruptible(&sfp->read_wait);
kill_fasync(&sfp->async_qp, SIGPOLL, POLL_IN);
kref_put(&sfp->f_ref, sg_remove_sfp);
} else {
INIT_WORK(&srp->ew.work, sg_rq_end_io_usercontext);
schedule_work(&srp->ew.work);
}
Since srp->orphan *is* set, we set done to 0 (assuming the
userspace app has not set keep_orphan via an SG_SET_KEEP_ORPHAN
ioctl), and therefore we end up scheduling sg_rq_end_io_usercontext()
to run in a workqueue.
- In workqueue context we go through sg_rq_end_io_usercontext() ->
sg_finish_rem_req() -> blk_rq_unmap_user() -> ... ->
bio_uncopy_user() -> __bio_copy_iov() -> copy_to_user().
The key point here is that we are doing copy_to_user() on a
workqueue -- that is, we're on a kernel thread with current->mm
equal to whatever random previous user process was scheduled before
this kernel thread. So we end up copying whatever data the SCSI
command returned to the virtual address of the buffer passed into
the original ioctl, but it's quite likely we do this copying into a
different address space!
As suggested by James Bottomley <James.Bottomley@hansenpartnership.com>,
add a check for current->mm (which is NULL if we're on a kernel thread
without a real userspace address space) in bio_uncopy_user(), and skip
the copy if we're on a kernel thread.
There's no reason that I can think of for any caller of bio_uncopy_user()
to want to do copying on a kernel thread with a random active userspace
address space.
Huge thanks to Costa Sapuntzakis <costa@purestorage.com> for the
original pointer to this bug in the sg code.
Signed-off-by: Roland Dreier <roland@purestorage.com>
Tested-by: David Milburn <dmilburn@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-08-05 17:55:01 -07:00
}
2013-11-22 19:39:06 -08:00
kfree ( bmd ) ;
2005-04-16 15:20:36 -07:00
bio_put ( bio ) ;
return ret ;
}
/**
2008-04-11 12:56:49 +02:00
* bio_copy_user_iov - copy user data to bio
2015-01-18 16:16:31 +01:00
* @ q : destination block queue
* @ map_data : pointer to the rq_map_data holding pages ( if necessary )
* @ iter : iovec iterator
* @ gfp_mask : memory allocation flags
2005-04-16 15:20:36 -07:00
*
* Prepares and returns a bio for indirect user io , bouncing data
* to / from kernel pages as necessary . Must be paired with
* call bio_uncopy_user ( ) on io completion .
*/
2008-08-28 16:17:06 +09:00
struct bio * bio_copy_user_iov ( struct request_queue * q ,
struct rq_map_data * map_data ,
2017-09-24 09:25:39 -04:00
struct iov_iter * iter ,
2015-01-18 16:16:31 +01:00
gfp_t gfp_mask )
2005-04-16 15:20:36 -07:00
{
struct bio_map_data * bmd ;
struct page * page ;
struct bio * bio ;
2017-09-24 13:09:18 -04:00
int i = 0 , ret ;
int nr_pages ;
2015-01-18 16:16:31 +01:00
unsigned int len = iter - > count ;
2015-11-21 17:27:31 +08:00
unsigned int offset = map_data ? offset_in_page ( map_data - > offset ) : 0 ;
2005-04-16 15:20:36 -07:00
2017-09-24 13:14:35 -04:00
bmd = bio_alloc_map_data ( iter , gfp_mask ) ;
2005-04-16 15:20:36 -07:00
if ( ! bmd )
return ERR_PTR ( - ENOMEM ) ;
2015-01-18 16:16:31 +01:00
/*
* We need to do a deep copy of the iov_iter including the iovecs .
* The caller provided iov might point to an on - stack or otherwise
* shortlived one .
*/
bmd - > is_our_pages = map_data ? 0 : 1 ;
2017-09-24 13:09:18 -04:00
nr_pages = DIV_ROUND_UP ( offset + len , PAGE_SIZE ) ;
if ( nr_pages > BIO_MAX_PAGES )
nr_pages = BIO_MAX_PAGES ;
2015-01-18 16:16:31 +01:00
2005-04-16 15:20:36 -07:00
ret = - ENOMEM ;
2009-04-15 22:10:27 +09:00
bio = bio_kmalloc ( gfp_mask , nr_pages ) ;
2005-04-16 15:20:36 -07:00
if ( ! bio )
goto out_bmd ;
ret = 0 ;
2008-12-18 14:49:37 +09:00
if ( map_data ) {
2008-12-18 14:49:36 +09:00
nr_pages = 1 < < map_data - > page_order ;
2008-12-18 14:49:37 +09:00
i = map_data - > offset / PAGE_SIZE ;
}
2005-04-16 15:20:36 -07:00
while ( len ) {
2008-12-18 14:49:36 +09:00
unsigned int bytes = PAGE_SIZE ;
2005-04-16 15:20:36 -07:00
2008-12-18 14:49:37 +09:00
bytes - = offset ;
2005-04-16 15:20:36 -07:00
if ( bytes > len )
bytes = len ;
2008-08-28 16:17:06 +09:00
if ( map_data ) {
2008-12-18 14:49:36 +09:00
if ( i = = map_data - > nr_entries * nr_pages ) {
2008-08-28 16:17:06 +09:00
ret = - ENOMEM ;
break ;
}
2008-12-18 14:49:36 +09:00
page = map_data - > pages [ i / nr_pages ] ;
page + = ( i % nr_pages ) ;
i + + ;
} else {
2008-08-28 16:17:06 +09:00
page = alloc_page ( q - > bounce_gfp | gfp_mask ) ;
2008-12-18 14:49:36 +09:00
if ( ! page ) {
ret = - ENOMEM ;
break ;
}
2005-04-16 15:20:36 -07:00
}
2008-12-18 14:49:37 +09:00
if ( bio_add_pc_page ( q , bio , page , bytes , offset ) < bytes )
2005-04-16 15:20:36 -07:00
break ;
len - = bytes ;
2008-12-18 14:49:37 +09:00
offset = 0 ;
2005-04-16 15:20:36 -07:00
}
if ( ret )
goto cleanup ;
2017-09-24 12:09:21 -04:00
if ( map_data )
map_data - > offset + = bio - > bi_iter . bi_size ;
2005-04-16 15:20:36 -07:00
/*
* success
*/
2015-01-18 16:16:31 +01:00
if ( ( ( iter - > type & WRITE ) & & ( ! map_data | | ! map_data - > null_mapped ) ) | |
2009-07-09 14:46:53 +02:00
( map_data & & map_data - > from_user ) ) {
2017-09-24 12:14:36 -04:00
ret = bio_copy_from_iter ( bio , iter ) ;
2008-04-11 12:56:49 +02:00
if ( ret )
goto cleanup ;
2017-09-24 12:14:36 -04:00
} else {
iov_iter_advance ( iter , bio - > bi_iter . bi_size ) ;
2005-04-16 15:20:36 -07:00
}
2015-01-18 16:16:31 +01:00
bio - > bi_private = bmd ;
2017-09-24 12:09:21 -04:00
if ( map_data & & map_data - > null_mapped )
bio_set_flag ( bio , BIO_NULL_MAPPED ) ;
2005-04-16 15:20:36 -07:00
return bio ;
cleanup :
2008-08-28 16:17:06 +09:00
if ( ! map_data )
2015-01-18 16:16:30 +01:00
bio_free_pages ( bio ) ;
2005-04-16 15:20:36 -07:00
bio_put ( bio ) ;
out_bmd :
2013-11-22 19:39:06 -08:00
kfree ( bmd ) ;
2005-04-16 15:20:36 -07:00
return ERR_PTR ( ret ) ;
}
2015-01-18 16:16:33 +01:00
/**
* bio_map_user_iov - map user iovec into bio
* @ q : the struct request_queue for the bio
* @ iter : iovec iterator
* @ gfp_mask : memory allocation flags
*
* Map the user space address into a bio suitable for io to a block
* device . Returns an error pointer in case of error .
*/
struct bio * bio_map_user_iov ( struct request_queue * q ,
2017-09-24 09:25:39 -04:00
struct iov_iter * iter ,
2015-01-18 16:16:33 +01:00
gfp_t gfp_mask )
2005-04-16 15:20:36 -07:00
{
2015-01-18 16:16:31 +01:00
int j ;
2005-04-16 15:20:36 -07:00
struct bio * bio ;
2017-09-23 16:08:57 -04:00
int ret ;
2017-09-23 15:51:23 -04:00
struct bio_vec * bvec ;
2005-04-16 15:20:36 -07:00
2017-09-23 16:24:59 -04:00
if ( ! iov_iter_count ( iter ) )
2005-04-16 15:20:36 -07:00
return ERR_PTR ( - EINVAL ) ;
2017-09-23 16:24:59 -04:00
bio = bio_kmalloc ( gfp_mask , iov_iter_npages ( iter , BIO_MAX_PAGES ) ) ;
2005-04-16 15:20:36 -07:00
if ( ! bio )
return ERR_PTR ( - ENOMEM ) ;
2017-09-24 12:30:17 -04:00
while ( iov_iter_count ( iter ) ) {
2017-09-23 16:13:10 -04:00
struct page * * pages ;
2017-09-23 16:08:57 -04:00
ssize_t bytes ;
size_t offs , added = 0 ;
int npages ;
2005-04-16 15:20:36 -07:00
2017-09-24 12:30:17 -04:00
bytes = iov_iter_get_pages_alloc ( iter , & pages , LONG_MAX , & offs ) ;
2017-09-23 16:08:57 -04:00
if ( unlikely ( bytes < = 0 ) ) {
ret = bytes ? bytes : - EFAULT ;
2005-06-20 14:06:52 +02:00
goto out_unmap ;
2006-06-16 13:02:29 +02:00
}
2005-06-20 14:06:52 +02:00
2017-09-23 16:08:57 -04:00
npages = DIV_ROUND_UP ( offs + bytes , PAGE_SIZE ) ;
2005-06-20 14:06:52 +02:00
2017-09-23 16:23:18 -04:00
if ( unlikely ( offs & queue_dma_alignment ( q ) ) ) {
ret = - EINVAL ;
j = 0 ;
} else {
for ( j = 0 ; j < npages ; j + + ) {
struct page * page = pages [ j ] ;
unsigned int n = PAGE_SIZE - offs ;
unsigned short prev_bi_vcnt = bio - > bi_vcnt ;
2005-06-20 14:06:52 +02:00
2017-09-23 16:23:18 -04:00
if ( n > bytes )
n = bytes ;
2017-09-22 01:18:39 -04:00
2017-09-23 16:23:18 -04:00
if ( ! bio_add_pc_page ( q , bio , page , n , offs ) )
break ;
2005-04-16 15:20:36 -07:00
2017-09-23 16:23:18 -04:00
/*
* check if vector was merged with previous
* drop page reference if needed
*/
if ( bio - > bi_vcnt = = prev_bi_vcnt )
put_page ( page ) ;
added + = n ;
bytes - = n ;
offs = 0 ;
}
2017-09-24 12:30:17 -04:00
iov_iter_advance ( iter , added ) ;
2005-06-20 14:06:52 +02:00
}
2005-04-16 15:20:36 -07:00
/*
2005-06-20 14:06:52 +02:00
* release the pages we didn ' t map into the bio , if any
2005-04-16 15:20:36 -07:00
*/
2017-09-23 16:13:10 -04:00
while ( j < npages )
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
put_page ( pages [ j + + ] ) ;
2017-09-23 16:13:10 -04:00
kvfree ( pages ) ;
2017-09-23 16:16:06 -04:00
/* couldn't stuff something into bio? */
if ( bytes )
break ;
2005-04-16 15:20:36 -07:00
}
2015-07-24 12:37:59 -06:00
bio_set_flag ( bio , BIO_USER_MAPPED ) ;
2015-01-18 16:16:33 +01:00
/*
2017-02-01 08:20:08 -08:00
* subtle - - if bio_map_user_iov ( ) ended up bouncing a bio ,
2015-01-18 16:16:33 +01:00
* it would normally disappear when its bi_end_io is run .
* however , we need it for the unmap , so grab an extra
* reference to it
*/
bio_get ( bio ) ;
2005-04-16 15:20:36 -07:00
return bio ;
2005-06-20 14:06:52 +02:00
out_unmap :
2017-09-23 15:51:23 -04:00
bio_for_each_segment_all ( bvec , bio , j ) {
put_page ( bvec - > bv_page ) ;
2005-06-20 14:06:52 +02:00
}
2005-04-16 15:20:36 -07:00
bio_put ( bio ) ;
return ERR_PTR ( ret ) ;
}
static void __bio_unmap_user ( struct bio * bio )
{
struct bio_vec * bvec ;
int i ;
/*
* make sure we dirty pages we wrote to
*/
2013-02-06 12:23:11 -08:00
bio_for_each_segment_all ( bvec , bio , i ) {
2005-04-16 15:20:36 -07:00
if ( bio_data_dir ( bio ) = = READ )
set_page_dirty_lock ( bvec - > bv_page ) ;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
put_page ( bvec - > bv_page ) ;
2005-04-16 15:20:36 -07:00
}
bio_put ( bio ) ;
}
/**
* bio_unmap_user - unmap a bio
* @ bio : the bio being unmapped
*
2017-02-01 08:20:08 -08:00
* Unmap a bio previously mapped by bio_map_user_iov ( ) . Must be called from
* process context .
2005-04-16 15:20:36 -07:00
*
* bio_unmap_user ( ) may sleep .
*/
void bio_unmap_user ( struct bio * bio )
{
__bio_unmap_user ( bio ) ;
bio_put ( bio ) ;
}
2015-07-20 15:29:37 +02:00
static void bio_map_kern_endio ( struct bio * bio )
2005-06-20 14:05:27 +02:00
{
bio_put ( bio ) ;
}
2015-01-18 16:16:32 +01:00
/**
* bio_map_kern - map kernel address into bio
* @ q : the struct request_queue for the bio
* @ data : pointer to buffer to map
* @ len : length in bytes
* @ gfp_mask : allocation flags for bio allocation
*
* Map the kernel address into a bio suitable for io to a block
* device . Returns an error pointer in case of error .
*/
struct bio * bio_map_kern ( struct request_queue * q , void * data , unsigned int len ,
gfp_t gfp_mask )
2005-06-20 14:04:44 +02:00
{
unsigned long kaddr = ( unsigned long ) data ;
unsigned long end = ( kaddr + len + PAGE_SIZE - 1 ) > > PAGE_SHIFT ;
unsigned long start = kaddr > > PAGE_SHIFT ;
const int nr_pages = end - start ;
int offset , i ;
struct bio * bio ;
2009-04-15 22:10:27 +09:00
bio = bio_kmalloc ( gfp_mask , nr_pages ) ;
2005-06-20 14:04:44 +02:00
if ( ! bio )
return ERR_PTR ( - ENOMEM ) ;
offset = offset_in_page ( kaddr ) ;
for ( i = 0 ; i < nr_pages ; i + + ) {
unsigned int bytes = PAGE_SIZE - offset ;
if ( len < = 0 )
break ;
if ( bytes > len )
bytes = len ;
2005-12-05 02:37:06 -06:00
if ( bio_add_pc_page ( q , bio , virt_to_page ( data ) , bytes ,
2015-01-18 16:16:32 +01:00
offset ) < bytes ) {
/* we don't support partial mappings */
bio_put ( bio ) ;
return ERR_PTR ( - EINVAL ) ;
}
2005-06-20 14:04:44 +02:00
data + = bytes ;
len - = bytes ;
offset = 0 ;
}
2005-06-20 14:05:27 +02:00
bio - > bi_end_io = bio_map_kern_endio ;
2005-06-20 14:04:44 +02:00
return bio ;
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_map_kern ) ;
2005-06-20 14:04:44 +02:00
2015-07-20 15:29:37 +02:00
static void bio_copy_kern_endio ( struct bio * bio )
2008-04-25 12:47:50 +02:00
{
2015-01-18 16:16:30 +01:00
bio_free_pages ( bio ) ;
bio_put ( bio ) ;
}
2015-07-20 15:29:37 +02:00
static void bio_copy_kern_endio_read ( struct bio * bio )
2015-01-18 16:16:30 +01:00
{
2015-01-18 16:16:28 +01:00
char * p = bio - > bi_private ;
2015-01-18 16:16:30 +01:00
struct bio_vec * bvec ;
2008-04-25 12:47:50 +02:00
int i ;
2013-02-06 12:23:11 -08:00
bio_for_each_segment_all ( bvec , bio , i ) {
2015-01-18 16:16:30 +01:00
memcpy ( p , page_address ( bvec - > bv_page ) , bvec - > bv_len ) ;
2013-11-22 19:39:06 -08:00
p + = bvec - > bv_len ;
2008-04-25 12:47:50 +02:00
}
2015-07-20 15:29:37 +02:00
bio_copy_kern_endio ( bio ) ;
2008-04-25 12:47:50 +02:00
}
/**
* bio_copy_kern - copy kernel address into bio
* @ q : the struct request_queue for the bio
* @ data : pointer to buffer to copy
* @ len : length in bytes
* @ gfp_mask : allocation flags for bio and page allocation
2008-04-30 09:08:54 +02:00
* @ reading : data direction is READ
2008-04-25 12:47:50 +02:00
*
* copy the kernel address into a bio suitable for io to a block
* device . Returns an error pointer in case of error .
*/
struct bio * bio_copy_kern ( struct request_queue * q , void * data , unsigned int len ,
gfp_t gfp_mask , int reading )
{
2015-01-18 16:16:28 +01:00
unsigned long kaddr = ( unsigned long ) data ;
unsigned long end = ( kaddr + len + PAGE_SIZE - 1 ) > > PAGE_SHIFT ;
unsigned long start = kaddr > > PAGE_SHIFT ;
struct bio * bio ;
void * p = data ;
2015-01-18 16:16:30 +01:00
int nr_pages = 0 ;
2008-04-25 12:47:50 +02:00
2015-01-18 16:16:28 +01:00
/*
* Overflow , abort
*/
if ( end < start )
return ERR_PTR ( - EINVAL ) ;
2008-04-25 12:47:50 +02:00
2015-01-18 16:16:28 +01:00
nr_pages = end - start ;
bio = bio_kmalloc ( gfp_mask , nr_pages ) ;
if ( ! bio )
return ERR_PTR ( - ENOMEM ) ;
2008-04-25 12:47:50 +02:00
2015-01-18 16:16:28 +01:00
while ( len ) {
struct page * page ;
unsigned int bytes = PAGE_SIZE ;
2008-04-25 12:47:50 +02:00
2015-01-18 16:16:28 +01:00
if ( bytes > len )
bytes = len ;
page = alloc_page ( q - > bounce_gfp | gfp_mask ) ;
if ( ! page )
goto cleanup ;
if ( ! reading )
memcpy ( page_address ( page ) , p , bytes ) ;
if ( bio_add_pc_page ( q , bio , page , bytes , 0 ) < bytes )
break ;
len - = bytes ;
p + = bytes ;
2008-04-25 12:47:50 +02:00
}
2015-01-18 16:16:30 +01:00
if ( reading ) {
bio - > bi_end_io = bio_copy_kern_endio_read ;
bio - > bi_private = data ;
} else {
bio - > bi_end_io = bio_copy_kern_endio ;
}
2008-08-25 20:36:08 +02:00
2008-04-25 12:47:50 +02:00
return bio ;
2015-01-18 16:16:28 +01:00
cleanup :
2015-01-18 16:16:30 +01:00
bio_free_pages ( bio ) ;
2015-01-18 16:16:28 +01:00
bio_put ( bio ) ;
return ERR_PTR ( - ENOMEM ) ;
2008-04-25 12:47:50 +02:00
}
2005-04-16 15:20:36 -07:00
/*
* bio_set_pages_dirty ( ) and bio_check_pages_dirty ( ) are support functions
* for performing direct - IO in BIOs .
*
* The problem is that we cannot run set_page_dirty ( ) from interrupt context
* because the required locks are not interrupt - safe . So what we can do is to
* mark the pages dirty _before_ performing IO . And in interrupt context ,
* check that the pages are still dirty . If so , fine . If not , redirty them
* in process context .
*
* We special - case compound pages here : normally this means reads into hugetlb
* pages . The logic in here doesn ' t really work right for compound pages
* because the VM does not uniformly chase down the head page in all cases .
* But dirtiness of compound pages is pretty meaningless anyway : the VM doesn ' t
* handle them at all . So we skip compound pages here at an early stage .
*
* Note that this code is very hard to test under normal circumstances because
* direct - io pins the pages with get_user_pages ( ) . This makes
* is_page_cache_freeable return false , and the VM will not clean the pages .
2012-07-25 18:12:08 +03:00
* But other code ( eg , flusher threads ) could clean the pages if they are mapped
2005-04-16 15:20:36 -07:00
* pagecache .
*
* Simply disabling the call to bio_set_pages_dirty ( ) is a good way to test the
* deferred bio dirtying paths .
*/
/*
* bio_set_pages_dirty ( ) will mark all the bio ' s pages as dirty .
*/
void bio_set_pages_dirty ( struct bio * bio )
{
2012-09-05 15:22:02 -07:00
struct bio_vec * bvec ;
2005-04-16 15:20:36 -07:00
int i ;
2012-09-05 15:22:02 -07:00
bio_for_each_segment_all ( bvec , bio , i ) {
2018-07-24 14:04:13 +02:00
if ( ! PageCompound ( bvec - > bv_page ) )
set_page_dirty_lock ( bvec - > bv_page ) ;
2005-04-16 15:20:36 -07:00
}
}
2018-05-08 21:33:57 -04:00
EXPORT_SYMBOL_GPL ( bio_set_pages_dirty ) ;
2005-04-16 15:20:36 -07:00
2008-02-18 13:48:32 +01:00
static void bio_release_pages ( struct bio * bio )
2005-04-16 15:20:36 -07:00
{
2012-09-05 15:22:02 -07:00
struct bio_vec * bvec ;
2005-04-16 15:20:36 -07:00
int i ;
2018-07-24 14:04:12 +02:00
bio_for_each_segment_all ( bvec , bio , i )
put_page ( bvec - > bv_page ) ;
2005-04-16 15:20:36 -07:00
}
/*
* bio_check_pages_dirty ( ) will check that all the BIO ' s pages are still dirty .
* If they are , then fine . If , however , some pages are clean then they must
* have been written out during the direct - IO read . So we take another ref on
2018-07-24 14:04:12 +02:00
* the BIO and re - dirty the pages in process context .
2005-04-16 15:20:36 -07:00
*
* It is expected that bio_check_pages_dirty ( ) will wholly own the BIO from
2016-04-01 15:29:48 +03:00
* here on . It will run one put_page ( ) against each page and will run one
* bio_put ( ) against the BIO .
2005-04-16 15:20:36 -07:00
*/
2006-11-22 14:55:48 +00:00
static void bio_dirty_fn ( struct work_struct * work ) ;
2005-04-16 15:20:36 -07:00
2006-11-22 14:55:48 +00:00
static DECLARE_WORK ( bio_dirty_work , bio_dirty_fn ) ;
2005-04-16 15:20:36 -07:00
static DEFINE_SPINLOCK ( bio_dirty_lock ) ;
static struct bio * bio_dirty_list ;
/*
* This runs in process context
*/
2006-11-22 14:55:48 +00:00
static void bio_dirty_fn ( struct work_struct * work )
2005-04-16 15:20:36 -07:00
{
2018-07-24 14:04:12 +02:00
struct bio * bio , * next ;
2005-04-16 15:20:36 -07:00
2018-07-24 14:04:12 +02:00
spin_lock_irq ( & bio_dirty_lock ) ;
next = bio_dirty_list ;
2005-04-16 15:20:36 -07:00
bio_dirty_list = NULL ;
2018-07-24 14:04:12 +02:00
spin_unlock_irq ( & bio_dirty_lock ) ;
2005-04-16 15:20:36 -07:00
2018-07-24 14:04:12 +02:00
while ( ( bio = next ) ! = NULL ) {
next = bio - > bi_private ;
2005-04-16 15:20:36 -07:00
bio_set_pages_dirty ( bio ) ;
bio_release_pages ( bio ) ;
bio_put ( bio ) ;
}
}
void bio_check_pages_dirty ( struct bio * bio )
{
2012-09-05 15:22:02 -07:00
struct bio_vec * bvec ;
2018-07-24 14:04:12 +02:00
unsigned long flags ;
2005-04-16 15:20:36 -07:00
int i ;
2012-09-05 15:22:02 -07:00
bio_for_each_segment_all ( bvec , bio , i ) {
2018-07-24 14:04:12 +02:00
if ( ! PageDirty ( bvec - > bv_page ) & & ! PageCompound ( bvec - > bv_page ) )
goto defer ;
2005-04-16 15:20:36 -07:00
}
2018-07-24 14:04:12 +02:00
bio_release_pages ( bio ) ;
bio_put ( bio ) ;
return ;
defer :
spin_lock_irqsave ( & bio_dirty_lock , flags ) ;
bio - > bi_private = bio_dirty_list ;
bio_dirty_list = bio ;
spin_unlock_irqrestore ( & bio_dirty_lock , flags ) ;
schedule_work ( & bio_dirty_work ) ;
2005-04-16 15:20:36 -07:00
}
2018-05-08 21:33:57 -04:00
EXPORT_SYMBOL_GPL ( bio_check_pages_dirty ) ;
2005-04-16 15:20:36 -07:00
2018-07-18 04:47:39 -07:00
void generic_start_io_acct ( struct request_queue * q , int op ,
2017-06-30 21:55:08 -06:00
unsigned long sectors , struct hd_struct * part )
2014-11-24 11:05:22 +08:00
{
2018-07-18 04:47:39 -07:00
const int sgrp = op_stat_group ( op ) ;
2014-11-24 11:05:22 +08:00
int cpu = part_stat_lock ( ) ;
2017-06-30 21:55:08 -06:00
part_round_stats ( q , cpu , part ) ;
2018-07-18 04:47:39 -07:00
part_stat_inc ( cpu , part , ios [ sgrp ] ) ;
part_stat_add ( cpu , part , sectors [ sgrp ] , sectors ) ;
part_inc_in_flight ( q , part , op_is_write ( op ) ) ;
2014-11-24 11:05:22 +08:00
part_stat_unlock ( ) ;
}
EXPORT_SYMBOL ( generic_start_io_acct ) ;
2018-07-18 04:47:39 -07:00
void generic_end_io_acct ( struct request_queue * q , int req_op ,
2017-06-30 21:55:08 -06:00
struct hd_struct * part , unsigned long start_time )
2014-11-24 11:05:22 +08:00
{
unsigned long duration = jiffies - start_time ;
2018-07-18 04:47:39 -07:00
const int sgrp = op_stat_group ( req_op ) ;
2014-11-24 11:05:22 +08:00
int cpu = part_stat_lock ( ) ;
2018-07-18 04:47:39 -07:00
part_stat_add ( cpu , part , ticks [ sgrp ] , duration ) ;
2017-06-30 21:55:08 -06:00
part_round_stats ( q , cpu , part ) ;
2018-07-18 04:47:39 -07:00
part_dec_in_flight ( q , part , op_is_write ( req_op ) ) ;
2014-11-24 11:05:22 +08:00
part_stat_unlock ( ) ;
}
EXPORT_SYMBOL ( generic_end_io_acct ) ;
2009-11-26 09:16:19 +01:00
# if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages ( struct bio * bi )
{
2013-11-23 17:19:00 -08:00
struct bio_vec bvec ;
struct bvec_iter iter ;
2009-11-26 09:16:19 +01:00
2013-11-23 17:19:00 -08:00
bio_for_each_segment ( bvec , bi , iter )
flush_dcache_page ( bvec . bv_page ) ;
2009-11-26 09:16:19 +01:00
}
EXPORT_SYMBOL ( bio_flush_dcache_pages ) ;
# endif
2015-04-17 16:15:18 -06:00
static inline bool bio_remaining_done ( struct bio * bio )
{
/*
* If we ' re not chaining , then - > __bi_remaining is always 1 and
* we always end io on the first invocation .
*/
if ( ! bio_flagged ( bio , BIO_CHAIN ) )
return true ;
BUG_ON ( atomic_read ( & bio - > __bi_remaining ) < = 0 ) ;
2015-05-22 09:14:03 -04:00
if ( atomic_dec_and_test ( & bio - > __bi_remaining ) ) {
2015-07-24 12:37:59 -06:00
bio_clear_flag ( bio , BIO_CHAIN ) ;
2015-04-17 16:15:18 -06:00
return true ;
2015-05-22 09:14:03 -04:00
}
2015-04-17 16:15:18 -06:00
return false ;
}
2005-04-16 15:20:36 -07:00
/**
* bio_endio - end I / O on a bio
* @ bio : bio
*
* Description :
2015-07-20 15:29:37 +02:00
* bio_endio ( ) will end I / O on the whole bio . bio_endio ( ) is the preferred
* way to end I / O on a bio . No one should call bi_end_io ( ) directly on a
* bio unless they own it and thus know that it has an end_io function .
block: trace completion of all bios.
Currently only dm and md/raid5 bios trigger
trace_block_bio_complete(). Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete. Only bio_endio() knows that.
So move the trace_block_bio_complete() call to bio_endio().
Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.
There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
trace event at the 'request' level, there is no point generating
one at the bio level too. In this case the bi_sector and bi_size
will have changed, so the bio level event would be wrong
2/ If the bio hasn't actually been queued yet, but is being aborted
early, then a trace event could be confusing. Some filesystems
call bio_endio() but do not want tracing.
3/ The bio_integrity code interposes itself by replacing bi_end_io,
then restoring it and calling bio_endio() again. This would produce
two identical trace events if left like that.
To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.
When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication. A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component. To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.
So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
*
* bio_endio ( ) can be called several times on a bio that has been chained
* using bio_chain ( ) . The - > bi_end_io ( ) function will only be called the
* last time . At this point the BLK_TA_COMPLETE tracing event will be
* generated if BIO_TRACE_COMPLETION is set .
2005-04-16 15:20:36 -07:00
* */
2015-07-20 15:29:37 +02:00
void bio_endio ( struct bio * bio )
2005-04-16 15:20:36 -07:00
{
2016-03-11 17:34:52 +01:00
again :
2016-03-11 17:34:53 +01:00
if ( ! bio_remaining_done ( bio ) )
2016-03-11 17:34:52 +01:00
return ;
2017-07-03 16:58:43 -06:00
if ( ! bio_integrity_endio ( bio ) )
return ;
2005-04-16 15:20:36 -07:00
2018-07-03 11:15:00 -04:00
if ( bio - > bi_disk )
rq_qos_done_bio ( bio - > bi_disk - > queue , bio ) ;
2016-03-11 17:34:52 +01:00
/*
* Need to have a real endio function for chained bios , otherwise
* various corner cases will break ( like stacking block devices that
* save / restore bi_end_io ) - however , we want to avoid unbounded
* recursion and blowing the stack . Tail call optimization would
* handle this , but compiling with frame pointers also disables
* gcc ' s sibling call optimization .
*/
if ( bio - > bi_end_io = = bio_chain_endio ) {
bio = __bio_chain_endio ( bio ) ;
goto again ;
2013-11-23 18:34:15 -08:00
}
2016-03-11 17:34:52 +01:00
2017-08-23 19:10:32 +02:00
if ( bio - > bi_disk & & bio_flagged ( bio , BIO_TRACE_COMPLETION ) ) {
trace_block_bio_complete ( bio - > bi_disk - > queue , bio ,
2017-06-13 08:07:33 -07:00
blk_status_to_errno ( bio - > bi_status ) ) ;
block: trace completion of all bios.
Currently only dm and md/raid5 bios trigger
trace_block_bio_complete(). Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete. Only bio_endio() knows that.
So move the trace_block_bio_complete() call to bio_endio().
Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.
There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
trace event at the 'request' level, there is no point generating
one at the bio level too. In this case the bi_sector and bi_size
will have changed, so the bio level event would be wrong
2/ If the bio hasn't actually been queued yet, but is being aborted
early, then a trace event could be confusing. Some filesystems
call bio_endio() but do not want tracing.
3/ The bio_integrity code interposes itself by replacing bi_end_io,
then restoring it and calling bio_endio() again. This would produce
two identical trace events if left like that.
To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.
When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication. A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component. To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.
So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
bio_clear_flag ( bio , BIO_TRACE_COMPLETION ) ;
}
blk-throttle: add a simple idle detection
A cgroup gets assigned a low limit, but the cgroup could never dispatch
enough IO to cross the low limit. In such case, the queue state machine
will remain in LIMIT_LOW state and all other cgroups will be throttled
according to low limit. This is unfair for other cgroups. We should
treat the cgroup idle and upgrade the state machine to lower state.
We also have a downgrade logic. If the state machine upgrades because of
cgroup idle (real idle), the state machine will downgrade soon as the
cgroup is below its low limit. This isn't what we want. A more
complicated case is cgroup isn't idle when queue is in LIMIT_LOW. But
when queue gets upgraded to lower state, other cgroups could dispatch
more IO and this cgroup can't dispatch enough IO, so the cgroup is below
its low limit and looks like idle (fake idle). In this case, the queue
should downgrade soon. The key to determine if we should do downgrade is
to detect if cgroup is truely idle.
Unfortunately it's very hard to determine if a cgroup is real idle. This
patch uses the 'think time check' idea from CFQ for the purpose. Please
note, the idea doesn't work for all workloads. For example, a workload
with io depth 8 has disk utilization 100%, hence think time is 0, eg,
not idle. But the workload can run higher bandwidth with io depth 16.
Compared to io depth 16, the io depth 8 workload is idle. We use the
idea to roughly determine if a cgroup is idle.
We treat a cgroup idle if its think time is above a threshold (by
default 1ms for SSD and 100ms for HD). The idea is think time above the
threshold will start to harm performance. HD is much slower so a longer
think time is ok.
The patch (and the latter patches) uses 'unsigned long' to track time.
We convert 'ns' to 'us' with 'ns >> 10'. This is fast but loses
precision, should not a big deal.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-27 10:51:41 -07:00
blk_throtl_bio_endio ( bio ) ;
2017-07-10 11:40:17 -07:00
/* release cgroup info */
bio_uninit ( bio ) ;
2016-03-11 17:34:52 +01:00
if ( bio - > bi_end_io )
bio - > bi_end_io ( bio ) ;
2005-04-16 15:20:36 -07:00
}
2009-09-26 16:19:21 +02:00
EXPORT_SYMBOL ( bio_endio ) ;
2005-04-16 15:20:36 -07:00
2013-11-23 18:21:01 -08:00
/**
* bio_split - split a bio
* @ bio : bio to split
* @ sectors : number of sectors to split from the front of @ bio
* @ gfp : gfp mask
* @ bs : bio set to allocate from
*
* Allocates and returns a new bio which represents @ sectors from the start of
* @ bio , and updates @ bio to represent the remaining sectors .
*
2015-07-22 07:57:12 -04:00
* Unless this is a discard request the newly allocated bio will point
* to @ bio ' s bi_io_vec ; it is the caller ' s responsibility to ensure that
* @ bio is not freed before the split .
2013-11-23 18:21:01 -08:00
*/
struct bio * bio_split ( struct bio * bio , int sectors ,
gfp_t gfp , struct bio_set * bs )
{
2017-11-22 13:18:05 -05:00
struct bio * split ;
2013-11-23 18:21:01 -08:00
BUG_ON ( sectors < = 0 ) ;
BUG_ON ( sectors > = bio_sectors ( bio ) ) ;
2016-12-08 15:20:32 -07:00
split = bio_clone_fast ( bio , gfp , bs ) ;
2013-11-23 18:21:01 -08:00
if ( ! split )
return NULL ;
split - > bi_iter . bi_size = sectors < < 9 ;
if ( bio_integrity ( split ) )
2017-06-29 11:31:10 -07:00
bio_integrity_trim ( split ) ;
2013-11-23 18:21:01 -08:00
bio_advance ( bio , split - > bi_iter . bi_size ) ;
2018-07-26 14:39:37 -04:00
bio - > bi_iter . bi_done = 0 ;
2013-11-23 18:21:01 -08:00
block: trace completion of all bios.
Currently only dm and md/raid5 bios trigger
trace_block_bio_complete(). Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete. Only bio_endio() knows that.
So move the trace_block_bio_complete() call to bio_endio().
Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.
There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
trace event at the 'request' level, there is no point generating
one at the bio level too. In this case the bi_sector and bi_size
will have changed, so the bio level event would be wrong
2/ If the bio hasn't actually been queued yet, but is being aborted
early, then a trace event could be confusing. Some filesystems
call bio_endio() but do not want tracing.
3/ The bio_integrity code interposes itself by replacing bi_end_io,
then restoring it and calling bio_endio() again. This would produce
two identical trace events if left like that.
To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.
When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication. A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component. To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.
So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
if ( bio_flagged ( bio , BIO_TRACE_COMPLETION ) )
2018-01-23 09:10:19 -07:00
bio_set_flag ( split , BIO_TRACE_COMPLETION ) ;
block: trace completion of all bios.
Currently only dm and md/raid5 bios trigger
trace_block_bio_complete(). Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete. Only bio_endio() knows that.
So move the trace_block_bio_complete() call to bio_endio().
Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.
There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
trace event at the 'request' level, there is no point generating
one at the bio level too. In this case the bi_sector and bi_size
will have changed, so the bio level event would be wrong
2/ If the bio hasn't actually been queued yet, but is being aborted
early, then a trace event could be confusing. Some filesystems
call bio_endio() but do not want tracing.
3/ The bio_integrity code interposes itself by replacing bi_end_io,
then restoring it and calling bio_endio() again. This would produce
two identical trace events if left like that.
To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.
When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication. A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component. To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.
So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
2013-11-23 18:21:01 -08:00
return split ;
}
EXPORT_SYMBOL ( bio_split ) ;
2013-08-07 11:14:32 -07:00
/**
* bio_trim - trim a bio
* @ bio : bio to trim
* @ offset : number of sectors to trim from the front of @ bio
* @ size : size we want to trim @ bio to , in sectors
*/
void bio_trim ( struct bio * bio , int offset , int size )
{
/* 'bio' is a cloned bio which we need to trim to match
* the given offset and size .
*/
size < < = 9 ;
2013-10-11 15:44:27 -07:00
if ( offset = = 0 & & size = = bio - > bi_iter . bi_size )
2013-08-07 11:14:32 -07:00
return ;
2015-07-24 12:37:59 -06:00
bio_clear_flag ( bio , BIO_SEG_VALID ) ;
2013-08-07 11:14:32 -07:00
bio_advance ( bio , offset < < 9 ) ;
2013-10-11 15:44:27 -07:00
bio - > bi_iter . bi_size = size ;
2017-06-29 11:31:08 -07:00
if ( bio_integrity ( bio ) )
2017-06-29 11:31:10 -07:00
bio_integrity_trim ( bio ) ;
2017-06-29 11:31:08 -07:00
2013-08-07 11:14:32 -07:00
}
EXPORT_SYMBOL_GPL ( bio_trim ) ;
2005-04-16 15:20:36 -07:00
/*
* create memory pools for biovec ' s in a bio_set .
* use the global biovec slabs created for general use .
*/
2018-05-08 21:33:50 -04:00
int biovec_init_pool ( mempool_t * pool , int pool_entries )
2005-04-16 15:20:36 -07:00
{
2016-07-19 11:28:42 +02:00
struct biovec_slab * bp = bvec_slabs + BVEC_POOL_MAX ;
2005-04-16 15:20:36 -07:00
2018-05-08 21:33:50 -04:00
return mempool_init_slab_pool ( pool , pool_entries , bp - > slab ) ;
2005-04-16 15:20:36 -07:00
}
2018-05-08 21:33:51 -04:00
/*
* bioset_exit - exit a bioset initialized with bioset_init ( )
*
* May be called on a zeroed but uninitialized bioset ( i . e . allocated with
* kzalloc ( ) ) .
*/
void bioset_exit ( struct bio_set * bs )
2005-04-16 15:20:36 -07:00
{
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
if ( bs - > rescue_workqueue )
destroy_workqueue ( bs - > rescue_workqueue ) ;
2018-05-08 21:33:51 -04:00
bs - > rescue_workqueue = NULL ;
block: Avoid deadlocks with bio allocation by stacking drivers
Previously, if we ever try to allocate more than once from the same bio
set while running under generic_make_request() (i.e. a stacking block
driver), we risk deadlock.
This is because of the code in generic_make_request() that converts
recursion to iteration; any bios we submit won't actually be submitted
(so they can complete and eventually be freed) until after we return -
this means if we allocate a second bio, we're blocking the first one
from ever being freed.
Thus if enough threads call into a stacking block driver at the same
time with bios that need multiple splits, and the bio_set's reserve gets
used up, we deadlock.
This can be worked around in the driver code - we could check if we're
running under generic_make_request(), then mask out __GFP_WAIT when we
go to allocate a bio, and if the allocation fails punt to workqueue and
retry the allocation.
But this is tricky and not a generic solution. This patch solves it for
all users by inverting the previously described technique. We allocate a
rescuer workqueue for each bio_set, and then in the allocation code if
there are bios on current->bio_list we would be blocking, we punt them
to the rescuer workqueue to be submitted.
This guarantees forward progress for bio allocations under
generic_make_request() provided each bio is submitted before allocating
the next, and provided the bios are freed after they complete.
Note that this doesn't do anything for allocation from other mempools.
Instead of allocating per bio data structures from a mempool, code
should use bio_set's front_pad.
Tested it by forcing the rescue codepath to be taken (by disabling the
first GFP_NOWAIT) attempt, and then ran it with bcache (which does a lot
of arbitrary bio splitting) and verified that the rescuer was being
invoked.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Muthukumar Ratty <muthur@gmail.com>
2012-09-10 14:33:46 -07:00
2018-05-08 21:33:50 -04:00
mempool_exit ( & bs - > bio_pool ) ;
mempool_exit ( & bs - > bvec_pool ) ;
2012-10-12 15:29:33 -07:00
2009-06-26 15:37:49 +02:00
bioset_integrity_free ( bs ) ;
2018-05-08 21:33:51 -04:00
if ( bs - > bio_slab )
bio_put_slab ( bs ) ;
bs - > bio_slab = NULL ;
}
EXPORT_SYMBOL ( bioset_exit ) ;
2005-04-16 15:20:36 -07:00
2018-05-08 21:33:51 -04:00
/**
* bioset_init - Initialize a bio_set
2018-05-20 18:25:58 -04:00
* @ bs : pool to initialize
2018-05-08 21:33:51 -04:00
* @ pool_size : Number of bio and bio_vecs to cache in the mempool
* @ front_pad : Number of bytes to allocate in front of the returned bio
* @ flags : Flags to modify behavior , currently % BIOSET_NEED_BVECS
* and % BIOSET_NEED_RESCUER
*
2018-05-20 18:25:58 -04:00
* Description :
* Set up a bio_set to be used with @ bio_alloc_bioset . Allows the caller
* to ask for a number of bytes to be allocated in front of the bio .
* Front pad allocation is useful for embedding the bio inside
* another structure , to avoid allocating extra data to go with the bio .
* Note that the bio must be embedded at the END of that structure always ,
* or things will break badly .
* If % BIOSET_NEED_BVECS is set in @ flags , a separate pool will be allocated
* for allocating iovecs . This pool is not needed e . g . for bio_clone_fast ( ) .
* If % BIOSET_NEED_RESCUER is set , a workqueue is created which can be used to
* dispatch queued requests when the mempool runs out of space .
*
2018-05-08 21:33:51 -04:00
*/
int bioset_init ( struct bio_set * bs ,
unsigned int pool_size ,
unsigned int front_pad ,
int flags )
{
unsigned int back_pad = BIO_INLINE_VECS * sizeof ( struct bio_vec ) ;
bs - > front_pad = front_pad ;
spin_lock_init ( & bs - > rescue_lock ) ;
bio_list_init ( & bs - > rescue_list ) ;
INIT_WORK ( & bs - > rescue_work , bio_alloc_rescue ) ;
bs - > bio_slab = bio_find_or_create_slab ( front_pad + back_pad ) ;
if ( ! bs - > bio_slab )
return - ENOMEM ;
if ( mempool_init_slab_pool ( & bs - > bio_pool , pool_size , bs - > bio_slab ) )
goto bad ;
if ( ( flags & BIOSET_NEED_BVECS ) & &
biovec_init_pool ( & bs - > bvec_pool , pool_size ) )
goto bad ;
if ( ! ( flags & BIOSET_NEED_RESCUER ) )
return 0 ;
bs - > rescue_workqueue = alloc_workqueue ( " bioset " , WQ_MEM_RECLAIM , 0 ) ;
if ( ! bs - > rescue_workqueue )
goto bad ;
return 0 ;
bad :
bioset_exit ( bs ) ;
return - ENOMEM ;
}
EXPORT_SYMBOL ( bioset_init ) ;
2018-06-07 14:42:05 -06:00
/*
* Initialize and setup a new bio_set , based on the settings from
* another bio_set .
*/
int bioset_init_from_src ( struct bio_set * bs , struct bio_set * src )
{
int flags ;
flags = 0 ;
if ( src - > bvec_pool . min_nr )
flags | = BIOSET_NEED_BVECS ;
if ( src - > rescue_workqueue )
flags | = BIOSET_NEED_RESCUER ;
return bioset_init ( bs , src - > bio_pool . min_nr , src - > front_pad , flags ) ;
}
EXPORT_SYMBOL ( bioset_init_from_src ) ;
2012-03-05 13:15:27 -08:00
# ifdef CONFIG_BLK_CGROUP
2015-05-22 17:13:24 -04:00
2018-07-03 11:14:54 -04:00
# ifdef CONFIG_MEMCG
/**
* bio_associate_blkcg_from_page - associate a bio with the page ' s blkcg
* @ bio : target bio
* @ page : the page to lookup the blkcg from
*
* Associate @ bio with the blkcg from @ page ' s owning memcg . This works like
* every other associate function wrt references .
*/
int bio_associate_blkcg_from_page ( struct bio * bio , struct page * page )
{
struct cgroup_subsys_state * blkcg_css ;
if ( unlikely ( bio - > bi_css ) )
return - EBUSY ;
if ( ! page - > mem_cgroup )
return 0 ;
blkcg_css = cgroup_get_e_css ( page - > mem_cgroup - > css . cgroup ,
& io_cgrp_subsys ) ;
bio - > bi_css = blkcg_css ;
return 0 ;
}
# endif /* CONFIG_MEMCG */
2015-05-22 17:13:24 -04:00
/**
* bio_associate_blkcg - associate a bio with the specified blkcg
* @ bio : target bio
* @ blkcg_css : css of the blkcg to associate
*
* Associate @ bio with the blkcg specified by @ blkcg_css . Block layer will
* treat @ bio as if it were issued by a task which belongs to the blkcg .
*
* This function takes an extra reference of @ blkcg_css which will be put
* when @ bio is released . The caller must own @ bio and is responsible for
* synchronizing calls to this function .
*/
int bio_associate_blkcg ( struct bio * bio , struct cgroup_subsys_state * blkcg_css )
{
if ( unlikely ( bio - > bi_css ) )
return - EBUSY ;
css_get ( blkcg_css ) ;
bio - > bi_css = blkcg_css ;
return 0 ;
}
2015-07-23 14:27:09 -04:00
EXPORT_SYMBOL_GPL ( bio_associate_blkcg ) ;
2015-05-22 17:13:24 -04:00
2018-07-03 11:14:50 -04:00
/**
* bio_associate_blkg - associate a bio with the specified blkg
* @ bio : target bio
* @ blkg : the blkg to associate
*
* Associate @ bio with the blkg specified by @ blkg . This is the queue specific
* blkcg information associated with the @ bio , a reference will be taken on the
* @ blkg and will be freed when the bio is freed .
*/
int bio_associate_blkg ( struct bio * bio , struct blkcg_gq * blkg )
{
if ( unlikely ( bio - > bi_blkg ) )
return - EBUSY ;
blkg_get ( blkg ) ;
bio - > bi_blkg = blkg ;
return 0 ;
}
2012-03-05 13:15:27 -08:00
/**
* bio_disassociate_task - undo bio_associate_current ( )
* @ bio : target bio
*/
void bio_disassociate_task ( struct bio * bio )
{
if ( bio - > bi_ioc ) {
put_io_context ( bio - > bi_ioc ) ;
bio - > bi_ioc = NULL ;
}
if ( bio - > bi_css ) {
css_put ( bio - > bi_css ) ;
bio - > bi_css = NULL ;
}
2018-07-03 11:14:50 -04:00
if ( bio - > bi_blkg ) {
blkg_put ( bio - > bi_blkg ) ;
bio - > bi_blkg = NULL ;
}
2012-03-05 13:15:27 -08:00
}
2016-07-27 07:22:05 +02:00
/**
* bio_clone_blkcg_association - clone blkcg association from src to dst bio
* @ dst : destination bio
* @ src : source bio
*/
void bio_clone_blkcg_association ( struct bio * dst , struct bio * src )
{
if ( src - > bi_css )
WARN_ON ( bio_associate_blkcg ( dst , src - > bi_css ) ) ;
}
2017-08-18 10:27:59 -07:00
EXPORT_SYMBOL_GPL ( bio_clone_blkcg_association ) ;
2012-03-05 13:15:27 -08:00
# endif /* CONFIG_BLK_CGROUP */
2005-04-16 15:20:36 -07:00
static void __init biovec_init_slabs ( void )
{
int i ;
2016-07-19 11:28:42 +02:00
for ( i = 0 ; i < BVEC_POOL_NR ; i + + ) {
2005-04-16 15:20:36 -07:00
int size ;
struct biovec_slab * bvs = bvec_slabs + i ;
2008-12-05 16:10:29 +01:00
if ( bvs - > nr_vecs < = BIO_INLINE_VECS ) {
bvs - > slab = NULL ;
continue ;
}
2005-04-16 15:20:36 -07:00
size = bvs - > nr_vecs * sizeof ( struct bio_vec ) ;
bvs - > slab = kmem_cache_create ( bvs - > name , size , 0 ,
2007-07-20 10:11:58 +09:00
SLAB_HWCACHE_ALIGN | SLAB_PANIC , NULL ) ;
2005-04-16 15:20:36 -07:00
}
}
static int __init init_bio ( void )
{
2008-12-10 15:35:05 +01:00
bio_slab_max = 2 ;
bio_slab_nr = 0 ;
treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:03:40 -07:00
bio_slabs = kcalloc ( bio_slab_max , sizeof ( struct bio_slab ) ,
GFP_KERNEL ) ;
2008-12-10 15:35:05 +01:00
if ( ! bio_slabs )
panic ( " bio: can't allocate bios \n " ) ;
2005-04-16 15:20:36 -07:00
2009-06-26 15:37:49 +02:00
bio_integrity_init ( ) ;
2005-04-16 15:20:36 -07:00
biovec_init_slabs ( ) ;
2018-05-08 21:33:52 -04:00
if ( bioset_init ( & fs_bio_set , BIO_POOL_SIZE , 0 , BIOSET_NEED_BVECS ) )
2005-04-16 15:20:36 -07:00
panic ( " bio: can't allocate bios \n " ) ;
2018-05-08 21:33:52 -04:00
if ( bioset_integrity_create ( & fs_bio_set , BIO_POOL_SIZE ) )
2011-03-17 11:11:05 +01:00
panic ( " bio: can't create integrity pool \n " ) ;
2005-04-16 15:20:36 -07:00
return 0 ;
}
subsys_initcall ( init_bio ) ;