2007-06-13 02:30:17 +10:00
source "arch/powerpc/platforms/Kconfig.cputype"
2007-03-19 11:53:53 +01:00
2005-09-26 16:04:21 +10:00
config PPC32
bool
default y if !PPC64
2010-10-22 00:17:55 +00:00
config 32BIT
bool
default y if PPC32
2005-09-26 16:04:21 +10:00
config 64BIT
bool
default y if PPC64
2007-09-21 10:16:20 +10:00
config WORD_SIZE
int
default 64 if PPC64
default 32 if !PPC64
2008-09-11 01:31:45 -07:00
config ARCH_PHYS_ADDR_T_64BIT
def_bool PPC64 || PHYS_64BIT
2010-10-01 11:12:54 +00:00
config ARCH_DMA_ADDR_T_64BIT
def_bool ARCH_PHYS_ADDR_T_64BIT
2005-09-26 16:04:21 +10:00
config MMU
bool
default y
2009-08-14 15:00:53 +09:00
config HAVE_SETUP_PER_CPU_AREA
2009-03-30 19:07:44 +09:00
def_bool PPC64
2009-08-14 15:00:53 +09:00
config NEED_PER_CPU_EMBED_FIRST_CHUNK
2008-01-30 13:32:51 +01:00
def_bool PPC64
2009-10-13 19:44:44 +00:00
config NR_IRQS
int "Number of virtual interrupt numbers"
2010-01-31 01:14:03 +00:00
range 32 32768
2009-10-13 19:44:44 +00:00
default "512"
help
This defines the number of virtual interrupt numbers the kernel
can manage. Virtual interrupt numbers are what you see in
/proc/interrupts. If you configure your system to have too few,
drivers will fail to load or worse - handle with care.
2008-04-17 14:35:00 +10:00
config STACKTRACE_SUPPORT
bool
default y
2008-07-11 00:08:18 +10:00
config HAVE_LATENCYTOP_SUPPORT
def_bool y
2008-04-17 14:35:01 +10:00
config TRACE_IRQFLAGS_SUPPORT
bool
default y
config LOCKDEP_SUPPORT
bool
default y
2005-09-26 16:04:21 +10:00
config RWSEM_GENERIC_SPINLOCK
bool
config RWSEM_XCHGADD_ALGORITHM
bool
default y
2008-01-30 13:31:20 +01:00
config GENERIC_LOCKBREAK
bool
default y
depends on SMP && PREEMPT
2006-12-08 02:37:49 -08:00
config ARCH_HAS_ILOG2_U32
bool
2006-12-08 02:37:53 -08:00
default y
2006-12-08 02:37:49 -08:00
config ARCH_HAS_ILOG2_U64
bool
2006-12-08 02:37:53 -08:00
default y if 64BIT
2006-12-08 02:37:49 -08:00
2006-03-26 01:39:33 -08:00
config GENERIC_HWEIGHT
bool
default y
2008-04-11 23:06:36 +10:00
config GENERIC_GPIO
bool
help
Generic GPIO API support
2007-07-15 23:40:05 -07:00
config ARCH_NO_VIRT_TO_BUS
def_bool PPC64
2005-09-26 16:04:21 +10:00
config PPC
bool
default y
2010-06-29 12:43:34 +10:00
select OF
2010-11-18 15:54:56 -08:00
select OF_EARLY_FLATTREE
2009-01-06 18:49:17 +00:00
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_DYNAMIC_FTRACE
2008-10-06 19:06:12 -04:00
select HAVE_FUNCTION_TRACER
2009-02-11 20:06:43 -05:00
select HAVE_FUNCTION_GRAPH_TRACER
2008-07-25 01:46:11 -07:00
select ARCH_WANT_OPTIONAL_GPIOLIB
2008-02-09 10:46:40 +01:00
select HAVE_IDE
2008-07-23 21:27:08 -07:00
select HAVE_IOREMAP_PROT
2008-07-25 01:45:33 -07:00
select HAVE_EFFICIENT_UNALIGNED_ACCESS
2008-02-02 15:10:35 -05:00
select HAVE_KPROBES
2008-07-23 11:30:15 -05:00
select HAVE_ARCH_KGDB
2008-03-04 14:28:37 -08:00
select HAVE_KRETPROBES
2008-07-27 16:53:20 +10:00
select HAVE_ARCH_TRACEHOOK
2010-07-12 14:36:09 +10:00
select HAVE_MEMBLOCK
2011-12-08 10:22:08 -08:00
select HAVE_MEMBLOCK_NODE_MAP
2009-08-04 19:08:26 +00:00
select HAVE_DMA_ATTRS
2009-08-04 19:08:28 +00:00
select HAVE_DMA_API_DEBUG
2008-06-26 11:22:13 +02:00
select USE_GENERIC_SMP_HELPERS if SMP
2008-05-14 23:49:44 -04:00
select HAVE_OPROFILE
2009-01-14 14:14:00 +01:00
select HAVE_SYSCALL_WRAPPERS if PPC64
2009-06-12 21:10:41 +00:00
select GENERIC_ATOMIC64 if PPC32
2012-07-30 14:41:09 -07:00
select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
2010-10-14 14:01:34 +08:00
select HAVE_IRQ_WORK
perf: Do the big rename: Performance Counters -> Performance Events
Bye-bye Performance Counters, welcome Performance Events!
In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.
Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.
All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)
The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.
Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.
User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)
This patch has been generated via the following script:
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/PERF_EVENT_/PERF_RECORD_/g' \
-e 's/PERF_COUNTER/PERF_EVENT/g' \
-e 's/perf_counter/perf_event/g' \
-e 's/nb_counters/nb_events/g' \
-e 's/swcounter/swevent/g' \
-e 's/tpcounter_event/tp_event/g' \
$FILES
for N in $(find . -name perf_counter.[ch]); do
M=$(echo $N | sed 's/perf_counter/perf_event/g')
mv $N $M
done
FILES=$(find . -name perf_event.*)
sed -i \
-e 's/COUNTER_MASK/REG_MASK/g' \
-e 's/COUNTER/EVENT/g' \
-e 's/\<event\>/event_id/g' \
-e 's/counter/event/g' \
-e 's/Counter/Event/g' \
$FILES
... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.
Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.
( NOTE: 'counters' are still the proper terminology when we deal
with hardware registers - and these sed scripts are a bit
over-eager in renaming them. I've undone some of that, but
in case there's something left where 'counter' would be
better than 'event' we can undo that on an individual basis
instead of touching an otherwise nicely automated patch. )
Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 12:02:48 +02:00
select HAVE_PERF_EVENTS
2010-04-07 18:10:20 +10:00
select HAVE_REGS_AND_STACK_ACCESS_API
2010-06-15 11:35:19 +05:30
select HAVE_HW_BREAKPOINT if PERF_EVENTS && PPC_BOOK3S_64
2011-01-19 20:39:39 +01:00
select HAVE_GENERIC_HARDIRQS
2012-07-30 14:42:46 -07:00
select ARCH_WANT_IPC_PARSE_VERSION
2012-01-30 08:02:19 +00:00
select SPARSE_IRQ
2011-01-19 20:39:39 +01:00
select IRQ_PER_CPU
2012-02-16 01:37:49 -07:00
select IRQ_DOMAIN
2011-03-25 17:04:59 +01:00
select GENERIC_IRQ_SHOW
select GENERIC_IRQ_SHOW_LEVEL
2011-10-05 02:30:51 +00:00
select IRQ_FORCED_THREADING
2011-05-24 17:12:00 -07:00
select HAVE_RCU_TABLE_FREE if SMP
2011-02-02 17:27:24 +00:00
select HAVE_SYSCALL_TRACEPOINTS
2012-05-21 20:45:37 +02:00
select HAVE_BPF_JIT if PPC64
2011-06-29 19:16:59 +00:00
select HAVE_ARCH_JUMP_LABEL
2011-07-13 13:14:22 +08:00
select ARCH_HAVE_NMI_SAFE_CMPXCHG
2012-04-20 13:05:48 +00:00
select GENERIC_SMP_IDLE_THREAD
2012-05-18 16:45:51 +00:00
select GENERIC_CMOS_UPDATE
select GENERIC_TIME_VSYSCALL
select GENERIC_CLOCKEVENTS
2012-05-28 13:03:47 +10:00
select GENERIC_STRNCPY_FROM_USER
select GENERIC_STRNLEN_USER
2005-09-26 16:04:21 +10:00
config EARLY_PRINTK
bool
2005-11-23 17:57:25 +11:00
default y
2005-09-26 16:04:21 +10:00
config COMPAT
bool
default y if PPC64
2008-01-02 17:03:11 -08:00
select COMPAT_BINFMT_ELF
[PATCH v3] ipc: provide generic compat versions of IPC syscalls
When using the "compat" APIs, architectures will generally want to
be able to make direct syscalls to msgsnd(), shmctl(), etc., and
in the kernel we would want them to be handled directly by
compat_sys_xxx() functions, as is true for other compat syscalls.
However, for historical reasons, several of the existing compat IPC
syscalls do not do this. semctl() expects a pointer to the fourth
argument, instead of the fourth argument itself. msgsnd(), msgrcv()
and shmat() expect arguments in different order.
This change adds an ARCH_WANT_OLD_COMPAT_IPC config option that can be
set to preserve this behavior for ports that use it (x86, sparc, powerpc,
s390, and mips). No actual semantics are changed for those architectures,
and there is only a minimal amount of code refactoring in ipc/compat.c.
Newer architectures like tile (and perhaps future architectures such
as arm64 and unicore64) should not select this option, and thus can
avoid having any IPC-specific code at all in their architecture-specific
compat layer. In the same vein, if this option is not selected, IPC_64
mode is assumed, since that's what the <asm-generic> headers expect.
The workaround code in "tile" for msgsnd() and msgrcv() is removed
with this change; it also fixes the bug that shmat() and semctl() were
not being properly handled.
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
2012-03-15 13:13:38 -04:00
select ARCH_WANT_OLD_COMPAT_IPC
2005-09-26 16:04:21 +10:00
config SYSVIPC_COMPAT
bool
depends on COMPAT && SYSVIPC
default y
# All PPC32s use generic nvram driver through ppc_md
config GENERIC_NVRAM
bool
default y if PPC32
2008-11-11 09:05:16 +01:00
config SCHED_OMIT_FRAME_POINTER
2005-09-26 16:04:21 +10:00
bool
default y
config ARCH_MAY_HAVE_PC_FDC
bool
2007-03-04 17:04:44 +11:00
default !PPC_PSERIES || PCI
2005-09-26 16:04:21 +10:00
2006-01-10 21:43:56 -06:00
config PPC_OF
def_bool y
config PPC_UDBG_16550
bool
default n
config GENERIC_TBSYNC
bool
default y if PPC32 && SMP
default n
2006-09-12 03:04:40 -04:00
config AUDIT_ARCH
bool
default y
2006-12-08 03:30:41 -08:00
config GENERIC_BUG
bool
default y
depends on BUG
2007-03-20 05:18:02 +11:00
config SYS_SUPPORTS_APM_EMULATION
2007-05-23 09:51:46 -05:00
default y if PMAC_APM_EMU
2007-03-20 05:18:02 +11:00
bool
2011-04-14 18:29:16 +00:00
config EPAPR_BOOT
bool
help
Used to allow a board to specify it wants an ePAPR compliant wrapper.
default n
2006-01-16 10:53:22 -06:00
config DEFAULT_UIMAGE
bool
help
Used to allow a board to specify it wants a uImage built by default
default n
2008-01-17 16:31:40 -06:00
config REDBOOT
bool
2007-12-08 02:12:39 +01:00
config ARCH_HIBERNATION_POSSIBLE
bool
2007-05-03 22:31:38 +10:00
default y
2007-12-08 02:14:00 +01:00
config ARCH_SUSPEND_POSSIBLE
def_bool y
2009-09-16 01:43:57 +04:00
depends on ADB_PMU || PPC_EFIKA || PPC_LITE5200 || PPC_83xx || \
2011-04-08 04:20:54 -05:00
(PPC_85xx && !SMP) || PPC_86xx || PPC_PSERIES || 44x || 40x
2007-12-08 02:14:00 +01:00
2006-11-11 17:24:53 +11:00
config PPC_DCR_NATIVE
bool
default n
config PPC_DCR_MMIO
bool
default n
config PPC_DCR
bool
depends on PPC_DCR_NATIVE || PPC_DCR_MMIO
default y
2006-11-11 17:25:08 +11:00
config PPC_OF_PLATFORM_PCI
bool
2007-12-21 15:37:07 +11:00
depends on PCI
2006-11-11 17:25:08 +11:00
depends on PPC64 # not supported on 32 bits yet
default n
2009-03-31 15:23:17 -07:00
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
def_bool y
2010-02-08 11:50:57 +00:00
config PPC_ADV_DEBUG_REGS
bool
depends on 40x || BOOKE
default y
config PPC_ADV_DEBUG_IACS
int
depends on PPC_ADV_DEBUG_REGS
default 4 if 44x
default 2
config PPC_ADV_DEBUG_DACS
int
depends on PPC_ADV_DEBUG_REGS
default 2
config PPC_ADV_DEBUG_DVCS
int
depends on PPC_ADV_DEBUG_REGS
default 2 if 44x
default 0
config PPC_ADV_DEBUG_DAC_RANGE
bool
depends on PPC_ADV_DEBUG_REGS && 44x
default y
2005-09-26 16:04:21 +10:00
source "init/Kconfig"
2008-10-18 20:27:21 -07:00
source "kernel/Kconfig.freezer"
[POWERPC] 4xx: PLB to PCI Express support
This adds to the previous 2 patches the support for the 4xx PCI Express
cells as found in the 440SPe revA, revB and 405EX.
Unfortunately, due to significant differences between these, and other
interesting "features" of those pieces of HW, the code isn't as simple
as it is for PCI and PCI-X and some of the functions differ significantly
between the 3 implementations. Thus, not only this code can only support
those 3 implementations for now and will refuse to operate on any other,
but there are added ifdef's to avoid the bloat of building a fairly large
amount of code on platforms that don't need it.
Also, this code currently only supports fully initializing root complex
nodes, not endpoint. Some more code will have to be lifted from the
arch/ppc implementation to add the endpoint support, though it's mostly
differences in memory mapping, and the question on how to represent
endpoint mode PCI in the device-tree is thus open.
Many thanks to Stefan Roese for testing & fixing up the 405EX bits !
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2007-12-21 15:39:24 +11:00
source "arch/powerpc/sysdev/Kconfig"
2007-03-16 09:32:17 -05:00
source "arch/powerpc/platforms/Kconfig"
2005-09-26 16:04:21 +10:00
menu "Kernel options"
config HIGHMEM
bool "High memory support"
depends on PPC32
source kernel/Kconfig.hz
source kernel/Kconfig.preempt
source "fs/Kconfig.binfmt"
2007-11-28 16:21:13 -08:00
config HUGETLB_PAGE_SIZE_VARIABLE
bool
depends on HUGETLB_PAGE
default y
2005-09-26 16:04:21 +10:00
config MATH_EMULATION
bool "Math emulation"
2007-01-26 00:23:34 -06:00
depends on 4xx || 8xx || E200 || PPC_MPC832x || E500
2005-09-26 16:04:21 +10:00
---help---
Some PowerPC chips designed for embedded applications do not have
a floating-point unit and therefore do not implement the
floating-point instructions in the PowerPC instruction set. If you
say Y here, the kernel will include code to emulate a floating-point
unit, which will allow programs that use floating-point
instructions to run.
2007-09-18 15:29:35 -05:00
config 8XX_MINIMAL_FPEMU
bool "Minimal math emulation for 8xx"
depends on 8xx && !MATH_EMULATION
help
Older arch/ppc kernels still emulated a few floating point
instructions such as load and store, even when full math
emulation is disabled. Say "Y" here if you want to preserve
this behavior.
It is recommended that you build a soft-float userspace instead.
2008-02-04 22:28:08 -08:00
config IOMMU_HELPER
def_bool PPC64
2009-05-14 12:42:28 +00:00
config SWIOTLB
bool "SWIOTLB support"
default n
select IOMMU_HELPER
---help---
Support for IO bounce buffering for systems without an IOMMU.
This allows us to DMA to the full physical address space on
platforms where the size of a physical address is larger
than the bus address. Not all platforms support this.
2005-09-26 16:04:21 +10:00
config HOTPLUG_CPU
bool "Support for enabling/disabling CPUs"
2011-09-19 17:44:54 +00:00
depends on SMP && HOTPLUG && EXPERIMENTAL && (PPC_PSERIES || PPC_PMAC || PPC_POWERNV)
2005-09-26 16:04:21 +10:00
---help---
Say Y here to be able to disable and re-enable individual
CPUs at runtime on SMP machines.
Say N if you are unsure.
2009-11-25 17:23:25 +00:00
config ARCH_CPU_PROBE_RELEASE
def_bool y
depends on HOTPLUG_CPU
2006-06-29 02:24:27 -07:00
config ARCH_ENABLE_MEMORY_HOTPLUG
def_bool y
2008-02-05 00:10:18 -08:00
config ARCH_HAS_WALK_MEMORY
def_bool y
2008-02-05 00:10:17 -08:00
config ARCH_ENABLE_MEMORY_HOTREMOVE
def_bool y
2005-09-26 16:04:21 +10:00
config KEXEC
bool "kexec system call (EXPERIMENTAL)"
2012-04-15 22:27:18 +00:00
depends on (PPC_BOOK3S || FSL_BOOKE || (44x && !SMP)) && EXPERIMENTAL
2005-09-26 16:04:21 +10:00
help
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
2006-06-29 01:32:47 -04:00
but it is independent of the system firmware. And like a reboot
2005-09-26 16:04:21 +10:00
you can start any kernel with it, not just Linux.
2006-06-29 01:32:47 -04:00
The name comes from the similarity to the exec system call.
2005-09-26 16:04:21 +10:00
It is an ongoing process to be certain the hardware in a machine
is properly shutdown, so do not be surprised if this code does not
initially work for you. It may help to enable device hotplugging
support. As of this writing the exact hardware interface is
strongly in flux, so no good recommendation can be made.
2006-01-14 13:48:25 -08:00
config CRASH_DUMP
2008-06-27 03:02:15 +10:00
bool "Build a kdump crash kernel"
2012-04-15 22:27:35 +00:00
depends on PPC64 || 6xx || FSL_BOOKE || (44x && !SMP)
2011-12-14 22:59:37 +00:00
select RELOCATABLE if PPC64 || 44x
2011-12-14 22:57:15 +00:00
select DYNAMIC_MEMSTART if FSL_BOOKE
2006-01-14 13:48:25 -08:00
help
Build a kernel suitable for use as a kdump capture kernel.
2008-10-21 17:38:10 +00:00
The same kernel binary can be used as production kernel and dump
capture kernel.
2006-01-14 13:48:25 -08:00
2012-02-16 01:14:22 +00:00
config FA_DUMP
bool "Firmware-assisted dump"
depends on PPC64 && PPC_RTAS && CRASH_DUMP
2008-03-22 10:50:50 +11:00
help
2012-02-16 01:14:22 +00:00
A robust mechanism to get reliable kernel crash dump with
assistance from firmware. This approach does not use kexec,
instead firmware assists in booting the kdump kernel
while preserving memory contents. Firmware-assisted dump
is meant to be a kdump replacement offering robustness and
speed not possible without system firmware assistance.
2008-03-22 10:50:50 +11:00
If unsure, say "N"
2005-09-26 16:04:21 +10:00
config IRQ_ALL_CPUS
bool "Distribute interrupts on all CPUs by default"
depends on SMP && !MV64360
help
This option gives the kernel permission to distribute IRQs across
multiple CPUs. Saying N here will route all IRQs to the first
CPU. Generally saying Y is safe, although some problems have been
reported with SMP Power Macintoshes with this option enabled.
2005-10-28 17:46:58 -07:00
config NUMA
bool "NUMA support"
depends on PPC64
default y if SMP && PPC_PSERIES
2006-04-10 22:53:53 -07:00
config NODES_SHIFT
int
2009-09-21 19:56:43 +00:00
default "8" if PPC64
2006-04-10 22:53:53 -07:00
default "4"
depends on NEED_MULTIPLE_NODES
2009-09-21 19:56:43 +00:00
config MAX_ACTIVE_REGIONS
int
default "256" if PPC64
default "32"
2005-09-26 16:04:21 +10:00
config ARCH_SELECT_MEMORY_MODEL
def_bool y
depends on PPC64
config ARCH_FLATMEM_ENABLE
2005-11-29 19:20:55 +00:00
def_bool y
depends on (PPC64 && !NUMA) || PPC32
2005-09-26 16:04:21 +10:00
2005-11-11 14:22:35 +11:00
config ARCH_SPARSEMEM_ENABLE
2005-09-26 16:04:21 +10:00
def_bool y
2005-11-29 19:20:55 +00:00
depends on PPC64
2007-10-16 01:24:17 -07:00
select SPARSEMEM_VMEMMAP_ENABLE
2005-09-26 16:04:21 +10:00
2005-11-11 14:22:35 +11:00
config ARCH_SPARSEMEM_DEFAULT
2005-09-26 16:04:21 +10:00
def_bool y
2007-02-13 11:46:06 +11:00
depends on (SMP && PPC_PSERIES) || PPC_PS3
2005-09-26 16:04:21 +10:00
2009-10-30 15:03:54 +11:00
config SYS_SUPPORTS_HUGETLBFS
2011-06-28 09:54:48 +00:00
bool
2009-10-30 15:03:54 +11:00
2006-09-27 01:49:49 -07:00
source "mm/Kconfig"
2005-09-26 16:04:21 +10:00
2005-11-07 09:39:48 -08:00
config ARCH_MEMORY_PROBE
def_bool y
depends on MEMORY_HOTPLUG
2006-10-21 10:24:14 -07:00
# Some NUMA nodes have memory ranges that span
# other nodes. Even though a pfn is valid and
# between a node's start and end pfns, it may not
# reside on that node. See memmap_init_zone()
# for details.
config NODES_SPAN_OTHER_NODES
def_bool y
depends on NEED_MULTIPLE_NODES
2007-05-08 16:27:28 +10:00
config PPC_HAS_HASH_64K
bool
depends on PPC64
default n
powerpc/44x: Support for 256KB PAGE_SIZE
This patch adds support for 256KB pages on ppc44x-based boards.
For simplification of implementation with 256KB pages we still assume
2-level paging. As a side effect this leads to wasting extra memory space
reserved for PTE tables: only 1/4 of pages allocated for PTEs are
actually used. But this may be an acceptable trade-off to achieve the
high performance we have with big PAGE_SIZEs in some applications (e.g.
RAID).
Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize
the risk of stack overflows in the cases of on-stack arrays, which size
depends on the page size (e.g. multipage BIOs, NTFS, etc.).
With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down
to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be
occupied by PKMAP addresses leaving no place for vmalloc. We do not
separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that
value of 10 in support for 16K/64K had been selected rather intuitively.
Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB,
one) we have 512 pages for PKMAP.
Because ELF standard supports only page sizes up to 64K, then you should
use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K
for building applications, which are to be run with the 256KB-page sized
kernel. If using the older binutils, then you should patch them like follows:
--- binutils/bfd/elf32-ppc.c.orig
+++ binutils/bfd/elf32-ppc.c
-#define ELF_MAXPAGESIZE 0x10000
+#define ELF_MAXPAGESIZE 0x40000
One more restriction we currently have with 256KB page sizes is inability
to use shmem safely, so, for now, the 256KB is available only if you turn
the CONFIG_SHMEM option off (another variant is to use BROKEN).
Though, if you need shmem with 256KB pages, you can always remove the !SHMEM
dependency in 'config PPC_256K_PAGES', and use the workaround available here:
http://lkml.org/lkml/2008/12/19/20
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2009-01-29 01:40:44 +00:00
config STDBINUTILS
bool "Using standard binutils settings"
depends on 44x
default y
help
Turning this option off allows you to select 256KB PAGE_SIZE on 44x.
Note, that kernel will be able to run only those applications,
which had been compiled using binutils later than 2.17.50.0.3 with
'-zmax-page-size' set to 256K (the default is 64K). Or, if using
the older binutils, you can patch them with a trivial patch, which
changes the ELF_MAXPAGESIZE definition from 0x10000 to 0x40000.
2008-12-11 04:55:41 +03:00
choice
prompt "Page size"
default PPC_4K_PAGES
2005-11-07 11:06:55 +11:00
help
2008-12-11 04:55:41 +03:00
Select the kernel logical page size. Increasing the page size
will reduce software overhead at each page boundary, allow
hardware prefetch mechanisms to be more effective, and allow
larger dma transfers increasing IO efficiency and reducing
overhead. However the utilization of memory will increase.
For example, each cached file will using a multiple of the
page size to hold its contents and the difference between the
end of file and the end of page is wasted.
Some dedicated systems, such as software raid serving with
accelerated calculations, have shown significant increases.
If you configure a 64 bit kernel for 64k pages but the
processor does not support them, then the kernel will simulate
them with 4k pages, loading them on demand, but with the
reduced software overhead and larger internal fragmentation.
For the 32 bit kernel, a large page option will not be offered
unless it is supported by the configured processor.
If unsure, choose 4K_PAGES.
config PPC_4K_PAGES
bool "4k page size"
config PPC_16K_PAGES
bool "16k page size" if 44x
config PPC_64K_PAGES
2009-07-23 23:15:59 +00:00
bool "64k page size" if 44x || PPC_STD_MMU_64 || PPC_BOOK3E_64
2008-12-11 04:55:41 +03:00
select PPC_HAS_HASH_64K if PPC_STD_MMU_64
powerpc/44x: Support for 256KB PAGE_SIZE
This patch adds support for 256KB pages on ppc44x-based boards.
For simplification of implementation with 256KB pages we still assume
2-level paging. As a side effect this leads to wasting extra memory space
reserved for PTE tables: only 1/4 of pages allocated for PTEs are
actually used. But this may be an acceptable trade-off to achieve the
high performance we have with big PAGE_SIZEs in some applications (e.g.
RAID).
Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize
the risk of stack overflows in the cases of on-stack arrays, which size
depends on the page size (e.g. multipage BIOs, NTFS, etc.).
With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down
to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be
occupied by PKMAP addresses leaving no place for vmalloc. We do not
separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that
value of 10 in support for 16K/64K had been selected rather intuitively.
Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB,
one) we have 512 pages for PKMAP.
Because ELF standard supports only page sizes up to 64K, then you should
use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K
for building applications, which are to be run with the 256KB-page sized
kernel. If using the older binutils, then you should patch them like follows:
--- binutils/bfd/elf32-ppc.c.orig
+++ binutils/bfd/elf32-ppc.c
-#define ELF_MAXPAGESIZE 0x10000
+#define ELF_MAXPAGESIZE 0x40000
One more restriction we currently have with 256KB page sizes is inability
to use shmem safely, so, for now, the 256KB is available only if you turn
the CONFIG_SHMEM option off (another variant is to use BROKEN).
Though, if you need shmem with 256KB pages, you can always remove the !SHMEM
dependency in 'config PPC_256K_PAGES', and use the workaround available here:
http://lkml.org/lkml/2008/12/19/20
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2009-01-29 01:40:44 +00:00
config PPC_256K_PAGES
bool "256k page size" if 44x
2009-04-06 11:01:15 +00:00
depends on !STDBINUTILS
powerpc/44x: Support for 256KB PAGE_SIZE
This patch adds support for 256KB pages on ppc44x-based boards.
For simplification of implementation with 256KB pages we still assume
2-level paging. As a side effect this leads to wasting extra memory space
reserved for PTE tables: only 1/4 of pages allocated for PTEs are
actually used. But this may be an acceptable trade-off to achieve the
high performance we have with big PAGE_SIZEs in some applications (e.g.
RAID).
Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize
the risk of stack overflows in the cases of on-stack arrays, which size
depends on the page size (e.g. multipage BIOs, NTFS, etc.).
With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down
to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be
occupied by PKMAP addresses leaving no place for vmalloc. We do not
separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that
value of 10 in support for 16K/64K had been selected rather intuitively.
Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB,
one) we have 512 pages for PKMAP.
Because ELF standard supports only page sizes up to 64K, then you should
use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K
for building applications, which are to be run with the 256KB-page sized
kernel. If using the older binutils, then you should patch them like follows:
--- binutils/bfd/elf32-ppc.c.orig
+++ binutils/bfd/elf32-ppc.c
-#define ELF_MAXPAGESIZE 0x10000
+#define ELF_MAXPAGESIZE 0x40000
One more restriction we currently have with 256KB page sizes is inability
to use shmem safely, so, for now, the 256KB is available only if you turn
the CONFIG_SHMEM option off (another variant is to use BROKEN).
Though, if you need shmem with 256KB pages, you can always remove the !SHMEM
dependency in 'config PPC_256K_PAGES', and use the workaround available here:
http://lkml.org/lkml/2008/12/19/20
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2009-01-29 01:40:44 +00:00
help
Make the page size 256k.
As the ELF standard only requires alignment to support page
sizes up to 64k, you will need to compile all of your user
space applications with a non-standard binutils settings
(see the STDBINUTILS description for details).
Say N unless you know what you are doing.
2008-12-11 04:55:41 +03:00
endchoice
2005-11-07 11:06:55 +11:00
2008-04-11 11:11:56 +10:00
config FORCE_MAX_ZONEORDER
int "Maximum zone order"
2009-07-21 15:25:53 +00:00
range 9 64 if PPC64 && PPC_64K_PAGES
default "9" if PPC64 && PPC_64K_PAGES
range 13 64 if PPC64 && !PPC_64K_PAGES
default "13" if PPC64 && !PPC_64K_PAGES
range 9 64 if PPC32 && PPC_16K_PAGES
default "9" if PPC32 && PPC_16K_PAGES
range 7 64 if PPC32 && PPC_64K_PAGES
default "7" if PPC32 && PPC_64K_PAGES
range 5 64 if PPC32 && PPC_256K_PAGES
default "5" if PPC32 && PPC_256K_PAGES
2008-09-24 04:29:08 +00:00
range 11 64
2008-04-11 11:11:56 +10:00
default "11"
help
The kernel memory allocator divides physically contiguous memory
blocks into "zones", where each zone is a power of two number of
pages. This option selects the largest power of two that the kernel
keeps in the memory allocator. If you need to allocate very large
blocks of physically contiguous memory, then you may need to
increase this value.
This config option is actually maximum order plus one. For example,
a value of 11 means that the largest free memory block is 2^10 pages.
The page size is not necessarily 4KB. For example, on 64-bit
systems, 64KB pages can be enabled via CONFIG_PPC_64K_PAGES. Keep
this in mind when choosing a value for this option.
[POWERPC] Provide a way to protect 4k subpages when using 64k pages
Using 64k pages on 64-bit PowerPC systems makes life difficult for
emulators that are trying to emulate an ISA, such as x86, which use a
smaller page size, since the emulator can no longer use the MMU and
the normal system calls for controlling page protections. Of course,
the emulator can emulate the MMU by checking and possibly remapping
the address for each memory access in software, but that is pretty
slow.
This provides a facility for such programs to control the access
permissions on individual 4k sub-pages of 64k pages. The idea is
that the emulator supplies an array of protection masks to apply to a
specified range of virtual addresses. These masks are applied at the
level where hardware PTEs are inserted into the hardware page table
based on the Linux PTEs, so the Linux PTEs are not affected. Note
that this new mechanism does not allow any access that would otherwise
be prohibited; it can only prohibit accesses that would otherwise be
allowed. This new facility is only available on 64-bit PowerPC and
only when the kernel is configured for 64k pages.
The masks are supplied using a new subpage_prot system call, which
takes a starting virtual address and length, and a pointer to an array
of protection masks in memory. The array has a 32-bit word per 64k
page to be protected; each 32-bit word consists of 16 2-bit fields,
for which 0 allows any access (that is otherwise allowed), 1 prevents
write accesses, and 2 or 3 prevent any access.
Implicit in this is that the regions of the address space that are
protected are switched to use 4k hardware pages rather than 64k
hardware pages (on machines with hardware 64k page support). In fact
the whole process is switched to use 4k hardware pages when the
subpage_prot system call is used, but this could be improved in future
to switch only the affected segments.
The subpage protection bits are stored in a 3 level tree akin to the
page table tree. The top level of this tree is stored in a structure
that is appended to the top level of the page table tree, i.e., the
pgd array. Since it will often only be 32-bit addresses (below 4GB)
that are protected, the pointers to the first four bottom level pages
are also stored in this structure (each bottom level page contains the
protection bits for 1GB of address space), so the protection bits for
addresses below 4GB can be accessed with one fewer loads than those
for higher addresses.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-01-24 08:35:13 +11:00
config PPC_SUBPAGE_PROT
bool "Support setting protections for 4k subpages"
2008-12-11 04:55:41 +03:00
depends on PPC_STD_MMU_64 && PPC_64K_PAGES
[POWERPC] Provide a way to protect 4k subpages when using 64k pages
Using 64k pages on 64-bit PowerPC systems makes life difficult for
emulators that are trying to emulate an ISA, such as x86, which use a
smaller page size, since the emulator can no longer use the MMU and
the normal system calls for controlling page protections. Of course,
the emulator can emulate the MMU by checking and possibly remapping
the address for each memory access in software, but that is pretty
slow.
This provides a facility for such programs to control the access
permissions on individual 4k sub-pages of 64k pages. The idea is
that the emulator supplies an array of protection masks to apply to a
specified range of virtual addresses. These masks are applied at the
level where hardware PTEs are inserted into the hardware page table
based on the Linux PTEs, so the Linux PTEs are not affected. Note
that this new mechanism does not allow any access that would otherwise
be prohibited; it can only prohibit accesses that would otherwise be
allowed. This new facility is only available on 64-bit PowerPC and
only when the kernel is configured for 64k pages.
The masks are supplied using a new subpage_prot system call, which
takes a starting virtual address and length, and a pointer to an array
of protection masks in memory. The array has a 32-bit word per 64k
page to be protected; each 32-bit word consists of 16 2-bit fields,
for which 0 allows any access (that is otherwise allowed), 1 prevents
write accesses, and 2 or 3 prevent any access.
Implicit in this is that the regions of the address space that are
protected are switched to use 4k hardware pages rather than 64k
hardware pages (on machines with hardware 64k page support). In fact
the whole process is switched to use 4k hardware pages when the
subpage_prot system call is used, but this could be improved in future
to switch only the affected segments.
The subpage protection bits are stored in a 3 level tree akin to the
page table tree. The top level of this tree is stored in a structure
that is appended to the top level of the page table tree, i.e., the
pgd array. Since it will often only be 32-bit addresses (below 4GB)
that are protected, the pointers to the first four bottom level pages
are also stored in this structure (each bottom level page contains the
protection bits for 1GB of address space), so the protection bits for
addresses below 4GB can be accessed with one fewer loads than those
for higher addresses.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-01-24 08:35:13 +11:00
help
This option adds support for a system call to allow user programs
to set access permissions (read/write, readonly, or no access)
on the 4k subpages of each 64k page.
2005-09-26 16:04:21 +10:00
config SCHED_SMT
bool "SMT (Hyperthreading) scheduler support"
depends on PPC64 && SMP
help
SMT scheduler support improves the CPU scheduler's decision making
when dealing with POWER5 cpus at a cost of slightly increased
overhead in some places. If unsure say N here.
config CMDLINE_BOOL
bool "Default bootloader kernel arguments"
config CMDLINE
string "Initial kernel command string"
depends on CMDLINE_BOOL
default "console=ttyS0,9600 console=tty0 root=/dev/sda2"
help
On some platforms, there is currently no way for the boot loader to
pass arguments to the kernel. For these platforms, you can supply
some command-line options at build time by entering them here. In
most cases you will need to specify the root device here.
2008-07-09 09:41:52 -06:00
config EXTRA_TARGETS
string "Additional default image types"
help
List additional targets to be built by the bootwrapper here (separated
by spaces). This is useful for targets that depend of device tree
files in the .dts directory.
Targets in this list will be build as part of the default build
target, or when the user does a 'make zImage' or a
'make zImage.initrd'.
If unsure, leave blank
2008-01-15 23:17:00 -05:00
config ARCH_WANTS_FREEZER_CONTROL
def_bool y
depends on ADB_PMU
2005-09-26 16:04:21 +10:00
source kernel/power/Kconfig
config SECCOMP
bool "Enable seccomp to safely compute untrusted bytecode"
depends on PROC_FS
default y
help
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via /proc/<pid>/seccomp, it cannot be disabled
and the task is only allowed to execute a few safe syscalls
defined by each seccomp mode.
If unsure, say Y. Only embedded should say N here.
endmenu
config ISA_DMA_API
bool
2012-02-22 14:10:12 +00:00
default PCI
2005-09-26 16:04:21 +10:00
menu "Bus options"
config ISA
bool "Support for ISA-bus hardware"
depends on PPC_PREP || PPC_CHRP
2005-10-26 16:47:42 +10:00
select PPC_I8259
2005-09-26 16:04:21 +10:00
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. If you have an Apple machine, say N here; if you
have an IBM RS/6000 or pSeries machine or a PReP machine, say Y. If
you have an embedded board, consult your board documentation.
2007-02-10 01:43:14 -08:00
config ZONE_DMA
bool
default y
2010-03-10 15:23:27 -08:00
config NEED_DMA_MAP_STATE
def_bool (PPC64 || NOT_COHERENT_CACHE)
2010-05-26 14:44:33 -07:00
config NEED_SG_DMA_LENGTH
def_bool y
2005-09-26 16:04:21 +10:00
config GENERIC_ISA_DMA
bool
2010-07-15 07:38:16 +00:00
depends on ISA_DMA_API
2005-09-26 16:04:21 +10:00
default y
2005-10-26 16:36:55 +10:00
config PPC_INDIRECT_PCI
bool
depends on PCI
2006-01-14 16:57:39 -06:00
default y if 40x || 44x
2005-10-26 16:36:55 +10:00
default n
2005-09-26 16:04:21 +10:00
config EISA
bool
config SBUS
bool
2006-01-10 21:43:56 -06:00
config FSL_SOC
bool
2011-08-16 17:32:24 +00:00
select HAVE_CAN_FLEXCAN if NET && CAN
2012-03-30 13:38:56 +08:00
select PPC_CLOCK
2006-01-10 21:43:56 -06:00
2007-07-10 18:44:34 +08:00
config FSL_PCI
bool
select PPC_INDIRECT_PCI
2009-01-28 13:25:29 -06:00
select PCI_QUIRKS
2007-07-10 18:44:34 +08:00
2009-09-16 01:43:57 +04:00
config FSL_PMC
bool
default y
depends on SUSPEND && (PPC_85xx || PPC_86xx)
help
Freescale MPC85xx/MPC86xx power management controller support
(suspend/resume). For MPC83xx see platforms/83xx/suspend.c
2010-10-08 10:25:27 +00:00
config PPC4xx_CPM
bool
default y
depends on SUSPEND && (44x || 40x)
help
PPC4xx Clock Power Management (CPM) support (suspend/resume).
It also enables support for two different idle states (idle-wait
and idle-doze).
2008-03-26 22:39:50 +11:00
config 4xx_SOC
bool
2008-04-11 21:03:40 +04:00
config FSL_LBC
2010-10-18 15:22:31 +08:00
bool "Freescale Local Bus support"
depends on FSL_SOC
2008-04-11 21:03:40 +04:00
help
2010-10-18 15:22:31 +08:00
Enables reporting of errors from the Freescale local bus
controller. Also contains some common code used by
drivers for specific local bus peripherals.
2008-04-11 21:03:40 +04:00
2011-12-27 17:39:13 +05:30
config FSL_IFC
bool
depends on FSL_SOC
2008-05-23 20:38:54 +04:00
config FSL_GTM
bool
depends on PPC_83xx || QUICC_ENGINE || CPM2
help
Freescale General-purpose Timers support
2005-09-26 16:04:21 +10:00
# Yes MCA RS/6000s exist but Linux-PPC does not currently support any
config MCA
bool
2008-06-26 11:07:56 -06:00
# Platforms that what PCI turned unconditionally just do select PCI
# in their config node. Platforms that want to choose at config
# time should select PPC_PCI_CHOICE
config PPC_PCI_CHOICE
bool
2005-09-26 16:04:21 +10:00
config PCI
2008-06-26 11:07:56 -06:00
bool "PCI support" if PPC_PCI_CHOICE
default y if !40x && !CPM2 && !8xx && !PPC_83xx \
2009-12-12 06:31:39 +00:00
&& !PPC_85xx && !PPC_86xx && !GAMECUBE_COMMON
2007-06-13 14:52:54 +10:00
default PCI_PERMEDIA if !4xx && !CPM2 && !8xx
2005-09-26 16:04:21 +10:00
default PCI_QSPAN if !4xx && !CPM2 && 8xx
2007-05-08 12:58:34 +10:00
select ARCH_SUPPORTS_MSI
2011-11-24 21:06:41 +02:00
select GENERIC_PCI_IOMAP
2005-09-26 16:04:21 +10:00
help
Find out whether your system includes a PCI bus. PCI is the name of
a bus system, i.e. the way the CPU talks to the other stuff inside
your box. If you say Y here, the kernel will include drivers and
infrastructure code to support PCI bus devices.
config PCI_DOMAINS
2007-07-10 10:54:40 -06:00
def_bool PCI
config PCI_SYSCALL
def_bool PCI
2005-09-26 16:04:21 +10:00
config PCI_QSPAN
bool "QSpan PCI"
depends on !4xx && !CPM2 && 8xx
2005-10-26 16:47:42 +10:00
select PPC_I8259
2005-09-26 16:04:21 +10:00
help
Say Y here if you have a system based on a Motorola 8xx-series
embedded processor with a QSPAN PCI interface, otherwise say N.
config PCI_8260
bool
depends on PCI && 8260
2005-10-26 16:36:55 +10:00
select PPC_INDIRECT_PCI
2005-09-26 16:04:21 +10:00
default y
config 8260_PCI9
2006-06-01 20:36:04 -07:00
bool "Enable workaround for MPC826x erratum PCI 9"
2007-09-14 15:41:56 -05:00
depends on PCI_8260 && !8272
2005-09-26 16:04:21 +10:00
default y
2006-06-07 16:05:46 -05:00
source "drivers/pci/pcie/Kconfig"
2005-09-26 16:04:21 +10:00
source "drivers/pci/Kconfig"
source "drivers/pcmcia/Kconfig"
source "drivers/pci/hotplug/Kconfig"
2008-04-18 13:33:39 -07:00
config HAS_RAPIDIO
bool
default n
config RAPIDIO
bool "RapidIO support"
2011-03-23 16:43:03 -07:00
depends on HAS_RAPIDIO || PCI
2008-04-18 13:33:39 -07:00
help
If you say Y here, the kernel will include drivers and
infrastructure code to support RapidIO interconnect devices.
2011-03-23 16:43:03 -07:00
config FSL_RIO
bool "Freescale Embedded SRIO Controller support"
depends on RAPIDIO && HAS_RAPIDIO
default "n"
---help---
Include support for RapidIO controller on Freescale embedded
processors (MPC8548, MPC8641, etc).
2008-04-18 13:33:39 -07:00
source "drivers/rapidio/Kconfig"
2005-09-26 16:04:21 +10:00
endmenu
2011-12-14 22:57:15 +00:00
config NONSTATIC_KERNEL
bool
default n
2005-09-26 16:04:21 +10:00
menu "Advanced setup"
depends on PPC32
config ADVANCED_OPTIONS
bool "Prompt for advanced kernel configuration options"
help
This option will enable prompting for a variety of advanced kernel
configuration options. These options can cause the kernel to not
work if they are set incorrectly, but can be used to optimize certain
aspects of kernel memory management.
Unless you know what you are doing, say N here.
comment "Default settings for advanced configuration options are used"
depends on !ADVANCED_OPTIONS
config LOWMEM_SIZE_BOOL
bool "Set maximum low memory"
depends on ADVANCED_OPTIONS
help
This option allows you to set the maximum amount of memory which
will be used as "low memory", that is, memory which the kernel can
access directly, without having to set up a kernel virtual mapping.
This can be useful in optimizing the layout of kernel virtual
memory.
Say N here unless you know what you are doing.
config LOWMEM_SIZE
hex "Maximum low memory size (in bytes)" if LOWMEM_SIZE_BOOL
default "0x30000000"
2008-12-08 19:34:58 -08:00
config LOWMEM_CAM_NUM_BOOL
bool "Set number of CAMs to use to map low memory"
depends on ADVANCED_OPTIONS && FSL_BOOKE
help
This option allows you to set the maximum number of CAM slots that
will be used to map low memory. There are a limited number of slots
available and even more limited number that will fit in the L1 MMU.
However, using more entries will allow mapping more low memory. This
can be useful in optimizing the layout of kernel virtual memory.
Say N here unless you know what you are doing.
config LOWMEM_CAM_NUM
2009-03-31 08:05:50 -04:00
depends on FSL_BOOKE
2008-12-08 19:34:58 -08:00
int "Number of CAMs to use to map low memory" if LOWMEM_CAM_NUM_BOOL
default 3
2011-12-14 22:57:15 +00:00
config DYNAMIC_MEMSTART
bool "Enable page aligned dynamic load address for kernel (EXPERIMENTAL)"
2011-12-14 22:57:57 +00:00
depends on EXPERIMENTAL && ADVANCED_OPTIONS && FLATMEM && (FSL_BOOKE || 44x)
2011-12-14 22:57:15 +00:00
select NONSTATIC_KERNEL
help
This option enables the kernel to be loaded at any page aligned
physical address. The kernel creates a mapping from KERNELBASE to
the address where the kernel is loaded. The page size here implies
the TLB page size of the mapping for kernel on the particular platform.
Please refer to the init code for finding the TLB page size.
DYNAMIC_MEMSTART is an easy way of implementing pseudo-RELOCATABLE
kernel image, where the only restriction is the page aligned kernel
load address. When this option is enabled, the compile time physical
address CONFIG_PHYSICAL_START is ignored.
2011-12-14 22:58:12 +00:00
This option is overridden by CONFIG_RELOCATABLE
2008-04-22 04:22:34 +10:00
config RELOCATABLE
bool "Build a relocatable kernel (EXPERIMENTAL)"
2011-12-14 22:59:24 +00:00
depends on EXPERIMENTAL && ADVANCED_OPTIONS && FLATMEM && 44x
2011-12-14 22:58:12 +00:00
select NONSTATIC_KERNEL
2008-04-22 04:22:34 +10:00
help
This builds a kernel image that is capable of running at the
2011-12-14 22:58:12 +00:00
location the kernel is loaded at, without any alignment restrictions.
This feature is a superset of DYNAMIC_MEMSTART and hence overrides it.
2008-04-22 04:22:34 +10:00
One use is for the kexec on panic case where the recovery kernel
must live at a different physical address than the primary
kernel.
Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
it has been loaded at and the compile time physical addresses
CONFIG_PHYSICAL_START is ignored. However CONFIG_PHYSICAL_START
setting can still be useful to bootwrappers that need to know the
2011-12-14 22:58:12 +00:00
load address of the kernel (eg. u-boot/mkimage).
config RELOCATABLE_PPC32
def_bool y
depends on PPC32 && RELOCATABLE
2008-04-22 04:22:34 +10:00
config PAGE_OFFSET_BOOL
bool "Set custom page offset address"
depends on ADVANCED_OPTIONS
help
This option allows you to set the kernel virtual address at which
the kernel will map low memory. This can be useful in optimizing
the virtual memory layout of the system.
Say N here unless you know what you are doing.
config PAGE_OFFSET
hex "Virtual address of memory base" if PAGE_OFFSET_BOOL
default "0xc0000000"
2005-09-26 16:04:21 +10:00
config KERNEL_START_BOOL
bool "Set custom kernel base address"
depends on ADVANCED_OPTIONS
help
This option allows you to set the kernel virtual address at which
2008-04-22 04:22:34 +10:00
the kernel will be loaded. Normally this should match PAGE_OFFSET
however there are times (like kdump) that one might not want them
to be the same.
2005-09-26 16:04:21 +10:00
Say N here unless you know what you are doing.
config KERNEL_START
hex "Virtual address of kernel base" if KERNEL_START_BOOL
2008-04-22 04:22:34 +10:00
default PAGE_OFFSET if PAGE_OFFSET_BOOL
2011-12-14 22:57:15 +00:00
default "0xc2000000" if CRASH_DUMP && !NONSTATIC_KERNEL
2005-09-26 16:04:21 +10:00
default "0xc0000000"
2008-04-22 04:22:34 +10:00
config PHYSICAL_START_BOOL
bool "Set physical address where the kernel is loaded"
depends on ADVANCED_OPTIONS && FLATMEM && FSL_BOOKE
help
This gives the physical address where the kernel is loaded.
Say N here unless you know what you are doing.
config PHYSICAL_START
hex "Physical address where the kernel is loaded" if PHYSICAL_START_BOOL
2011-12-14 22:57:15 +00:00
default "0x02000000" if PPC_STD_MMU && CRASH_DUMP && !NONSTATIC_KERNEL
2008-04-22 04:22:34 +10:00
default "0x00000000"
config PHYSICAL_ALIGN
hex
2008-12-08 19:34:59 -08:00
default "0x04000000" if FSL_BOOKE
2008-04-22 04:22:34 +10:00
help
This value puts the alignment restrictions on physical address
where kernel is loaded and run from. Kernel is compiled for an
address which meets above alignment restriction.
2005-09-26 16:04:21 +10:00
config TASK_SIZE_BOOL
bool "Set custom user task size"
depends on ADVANCED_OPTIONS
help
This option allows you to set the amount of virtual address space
allocated to user tasks. This can be useful in optimizing the
virtual memory layout of the system.
Say N here unless you know what you are doing.
config TASK_SIZE
hex "Size of user task space" if TASK_SIZE_BOOL
2007-10-11 13:40:21 -05:00
default "0x80000000" if PPC_PREP || PPC_8xx
default "0xc0000000"
2005-09-26 16:04:21 +10:00
2009-05-27 13:33:14 +10:00
config CONSISTENT_SIZE_BOOL
bool "Set custom consistent memory pool size"
depends on ADVANCED_OPTIONS && NOT_COHERENT_CACHE
help
This option allows you to set the size of the
consistent memory pool. This pool of virtual memory
is used to make consistent memory allocations.
config CONSISTENT_SIZE
hex "Size of consistent memory pool" if CONSISTENT_SIZE_BOOL
default "0x00200000" if NOT_COHERENT_CACHE
2005-09-26 16:04:21 +10:00
config PIN_TLB
bool "Pinned Kernel TLBs (860 ONLY)"
depends on ADVANCED_OPTIONS && 8xx
endmenu
2005-09-30 16:16:52 +10:00
if PPC64
powerpc: Make the 64-bit kernel as a position-independent executable
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-30 11:43:47 +10:00
config RELOCATABLE
bool "Build a relocatable kernel"
2011-12-14 22:57:15 +00:00
select NONSTATIC_KERNEL
powerpc: Make the 64-bit kernel as a position-independent executable
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-30 11:43:47 +10:00
help
This builds a kernel image that is capable of running anywhere
in the RMA (real memory area) at any 16k-aligned base address.
The kernel is linked as a position-independent executable (PIE)
and contains dynamic relocations which are processed early
in the bootup process.
One use is for the kexec on panic case where the recovery kernel
must live at a different physical address than the primary
kernel.
2008-04-22 04:22:34 +10:00
config PAGE_OFFSET
hex
default "0xc000000000000000"
2005-09-30 16:16:52 +10:00
config KERNEL_START
hex
2005-09-30 17:24:15 +10:00
default "0xc000000000000000"
2008-04-22 04:22:34 +10:00
config PHYSICAL_START
hex
default "0x00000000"
2005-09-30 16:16:52 +10:00
endif
2005-09-26 16:04:21 +10:00
source "net/Kconfig"
source "drivers/Kconfig"
source "fs/Kconfig"
[POWERPC] Add QUICC Engine (QE) infrastructure
Add QUICC Engine (QE) configuration, header files, and
QE management and library code that are used by QE devices
drivers.
Includes Leo's modifications up to, and including, the
platform_device to of_device adaptation:
"The series of patches add generic QE infrastructure called
qe_lib, and MPC8360EMDS board support. Qe_lib is used by
QE device drivers such as ucc_geth driver.
This version updates QE interrupt controller to use new irq
mapping mechanism, addresses all the comments received with
last submission and includes some style fixes.
v2: Change to use device tree for BCSR and MURAM;
Remove I/O port interrupt handling code as it is not generic
enough.
v3: Address comments from Kumar; Update definition of several
device tree nodes; Copyright style change."
In addition, the following changes have been made:
o removed typedefs
o uint -> u32 conversions
o removed following defines:
QE_SIZEOF_BD, BD_BUFFER_ARG, BD_BUFFER_CLEAR, BD_BUFFER,
BD_STATUS_AND_LENGTH_SET, BD_STATUS_AND_LENGTH, and BD_BUFFER_SET
because they hid sizeof/in_be32/out_be32 operations from the reader.
o fixed qe_snums_init() serial num assignment to use a const array
o made CONFIG_UCC_FAST select UCC_SLOW
o reduced NR_QE_IC_INTS from 128 to 64
o remove _IO_BASE, etc. defines (not used)
o removed irrelevant comments, added others to resemble removed BD_ defines
o realigned struct definitions in headers
o various other style fixes including things like pinMask -> pin_mask
o fixed a ton of whitespace issues
o marked ioregs as __be32/__be16
o removed platform_device code and redundant get_qe_base()
o removed redundant comments
o added cpu_relax() to qe_reset
o uncasted all get_property() assignments
o eliminated unneeded casts
o eliminated immrbar_phys_to_virt (not used)
Signed-off-by: Li Yang <leoli@freescale.com>
Signed-off-by: Shlomi Gridish <gridish@freescale.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-03 23:10:46 -05:00
source "arch/powerpc/sysdev/qe_lib/Kconfig"
2005-09-26 16:04:21 +10:00
source "lib/Kconfig"
source "arch/powerpc/Kconfig.debug"
source "security/Kconfig"
config KEYS_COMPAT
bool
depends on COMPAT && KEYS
default y
source "crypto/Kconfig"
2007-09-21 00:00:11 +10:00
config PPC_CLOCK
bool
default n
2008-07-23 21:26:48 -07:00
select HAVE_CLK
2007-09-16 20:53:25 +10:00
config PPC_LIB_RHEAP
bool
2008-04-16 23:28:09 -05:00
source "arch/powerpc/kvm/Kconfig"