2005-11-08 21:37:55 -08:00
/*
* cs53l32a ( Adaptec AVC - 2010 and AVC - 2410 ) i2c ivtv driver .
* Copyright ( C ) 2005 Martin Vaughan
*
* Audio source switching for Adaptec AVC - 2410 added by Trev Jackson
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 675 Mass Ave , Cambridge , MA 0213 9 , USA .
*/
# include <linux/module.h>
# include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
# include <linux/slab.h>
2005-11-08 21:37:55 -08:00
# include <linux/ioctl.h>
# include <asm/uaccess.h>
# include <linux/i2c.h>
2005-11-08 21:38:49 -08:00
# include <linux/i2c-id.h>
2008-07-25 05:32:50 -03:00
# include <linux/videodev2.h>
2008-11-29 12:45:59 -03:00
# include <media/v4l2-device.h>
2007-04-27 12:31:26 -03:00
# include <media/v4l2-chip-ident.h>
2009-03-28 09:32:42 -03:00
# include <media/v4l2-i2c-drv.h>
2005-11-08 21:37:55 -08:00
MODULE_DESCRIPTION ( " i2c device driver for cs53l32a Audio ADC " ) ;
MODULE_AUTHOR ( " Martin Vaughan " ) ;
MODULE_LICENSE ( " GPL " ) ;
2007-11-01 07:54:57 -03:00
static int debug ;
2005-11-08 21:37:55 -08:00
module_param ( debug , bool , 0644 ) ;
2008-07-31 00:07:23 -07:00
MODULE_PARM_DESC ( debug , " Debugging messages, 0=Off (default), 1=On " ) ;
2005-11-08 21:37:55 -08:00
/* ----------------------------------------------------------------------- */
2008-11-29 12:45:59 -03:00
static int cs53l32a_write ( struct v4l2_subdev * sd , u8 reg , u8 value )
2005-11-08 21:37:55 -08:00
{
2008-11-29 12:45:59 -03:00
struct i2c_client * client = v4l2_get_subdevdata ( sd ) ;
2005-11-08 21:37:55 -08:00
return i2c_smbus_write_byte_data ( client , reg , value ) ;
}
2008-11-29 12:45:59 -03:00
static int cs53l32a_read ( struct v4l2_subdev * sd , u8 reg )
2005-11-08 21:37:55 -08:00
{
2008-11-29 12:45:59 -03:00
struct i2c_client * client = v4l2_get_subdevdata ( sd ) ;
2005-11-08 21:37:55 -08:00
return i2c_smbus_read_byte_data ( client , reg ) ;
}
2009-04-02 11:26:22 -03:00
static int cs53l32a_s_routing ( struct v4l2_subdev * sd ,
u32 input , u32 output , u32 config )
2005-11-08 21:37:55 -08:00
{
2008-11-29 12:45:59 -03:00
/* There are 2 physical inputs, but the second input can be
placed in two modes , the first mode bypasses the PGA ( gain ) ,
the second goes through the PGA . Hence there are three
possible inputs to choose from . */
2009-04-02 11:26:22 -03:00
if ( input > 2 ) {
v4l2_err ( sd , " Invalid input %d. \n " , input ) ;
2005-11-08 21:37:55 -08:00
return - EINVAL ;
}
2009-04-02 11:26:22 -03:00
cs53l32a_write ( sd , 0x01 , 0x01 + ( input < < 4 ) ) ;
2008-11-29 12:45:59 -03:00
return 0 ;
}
static int cs53l32a_g_ctrl ( struct v4l2_subdev * sd , struct v4l2_control * ctrl )
{
if ( ctrl - > id = = V4L2_CID_AUDIO_MUTE ) {
ctrl - > value = ( cs53l32a_read ( sd , 0x03 ) & 0xc0 ) ! = 0 ;
return 0 ;
}
if ( ctrl - > id ! = V4L2_CID_AUDIO_VOLUME )
return - EINVAL ;
ctrl - > value = ( s8 ) cs53l32a_read ( sd , 0x04 ) ;
return 0 ;
}
static int cs53l32a_s_ctrl ( struct v4l2_subdev * sd , struct v4l2_control * ctrl )
{
if ( ctrl - > id = = V4L2_CID_AUDIO_MUTE ) {
cs53l32a_write ( sd , 0x03 , ctrl - > value ? 0xf0 : 0x30 ) ;
return 0 ;
}
if ( ctrl - > id ! = V4L2_CID_AUDIO_VOLUME )
return - EINVAL ;
if ( ctrl - > value > 12 | | ctrl - > value < - 96 )
return - EINVAL ;
cs53l32a_write ( sd , 0x04 , ( u8 ) ctrl - > value ) ;
cs53l32a_write ( sd , 0x05 , ( u8 ) ctrl - > value ) ;
2005-11-08 21:37:55 -08:00
return 0 ;
}
2008-12-30 07:14:19 -03:00
static int cs53l32a_g_chip_ident ( struct v4l2_subdev * sd , struct v4l2_dbg_chip_ident * chip )
2008-11-29 12:45:59 -03:00
{
struct i2c_client * client = v4l2_get_subdevdata ( sd ) ;
return v4l2_chip_ident_i2c_client ( client ,
chip , V4L2_IDENT_CS53l32A , 0 ) ;
}
static int cs53l32a_log_status ( struct v4l2_subdev * sd )
{
u8 v = cs53l32a_read ( sd , 0x01 ) ;
u8 m = cs53l32a_read ( sd , 0x03 ) ;
s8 vol = cs53l32a_read ( sd , 0x04 ) ;
v4l2_info ( sd , " Input: %d%s \n " , ( v > > 4 ) & 3 ,
( m & 0xC0 ) ? " (muted) " : " " ) ;
v4l2_info ( sd , " Volume: %d dB \n " , vol ) ;
return 0 ;
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops cs53l32a_core_ops = {
. log_status = cs53l32a_log_status ,
. g_chip_ident = cs53l32a_g_chip_ident ,
. g_ctrl = cs53l32a_g_ctrl ,
. s_ctrl = cs53l32a_s_ctrl ,
} ;
static const struct v4l2_subdev_audio_ops cs53l32a_audio_ops = {
. s_routing = cs53l32a_s_routing ,
} ;
static const struct v4l2_subdev_ops cs53l32a_ops = {
. core = & cs53l32a_core_ops ,
. audio = & cs53l32a_audio_ops ,
} ;
2005-11-08 21:37:55 -08:00
/* ----------------------------------------------------------------------- */
/* i2c implementation */
/*
* Generic i2c probe
* concerning the addresses : i2c wants 7 bit ( without the r / w bit ) , so ' > > 1 '
*/
2008-04-29 23:11:39 +02:00
static int cs53l32a_probe ( struct i2c_client * client ,
const struct i2c_device_id * id )
2005-11-08 21:37:55 -08:00
{
2008-11-29 12:45:59 -03:00
struct v4l2_subdev * sd ;
2005-11-08 21:37:55 -08:00
int i ;
/* Check if the adapter supports the needed features */
2007-09-13 11:30:38 -03:00
if ( ! i2c_check_functionality ( client - > adapter , I2C_FUNC_SMBUS_BYTE_DATA ) )
2007-09-16 10:47:15 -03:00
return - EIO ;
2005-11-08 21:37:55 -08:00
2008-05-18 20:49:40 +02:00
if ( ! id )
strlcpy ( client - > name , " cs53l32a " , sizeof ( client - > name ) ) ;
2005-11-08 21:37:55 -08:00
2007-11-01 07:54:57 -03:00
v4l_info ( client , " chip found @ 0x%x (%s) \n " ,
client - > addr < < 1 , client - > adapter - > name ) ;
2005-11-08 21:37:55 -08:00
2008-11-29 12:45:59 -03:00
sd = kmalloc ( sizeof ( struct v4l2_subdev ) , GFP_KERNEL ) ;
if ( sd = = NULL )
return - ENOMEM ;
v4l2_i2c_subdev_init ( sd , client , & cs53l32a_ops ) ;
2005-11-08 21:37:55 -08:00
for ( i = 1 ; i < = 7 ; i + + ) {
2008-11-29 12:45:59 -03:00
u8 v = cs53l32a_read ( sd , i ) ;
2005-11-08 21:37:55 -08:00
2008-11-29 12:45:59 -03:00
v4l2_dbg ( 1 , debug , sd , " Read Reg %d %02x \n " , i , v ) ;
2005-11-08 21:37:55 -08:00
}
/* Set cs53l32a internal register for Adaptec 2010/2410 setup */
2008-11-29 12:45:59 -03:00
cs53l32a_write ( sd , 0x01 , ( u8 ) 0x21 ) ;
cs53l32a_write ( sd , 0x02 , ( u8 ) 0x29 ) ;
cs53l32a_write ( sd , 0x03 , ( u8 ) 0x30 ) ;
cs53l32a_write ( sd , 0x04 , ( u8 ) 0x00 ) ;
cs53l32a_write ( sd , 0x05 , ( u8 ) 0x00 ) ;
cs53l32a_write ( sd , 0x06 , ( u8 ) 0x00 ) ;
cs53l32a_write ( sd , 0x07 , ( u8 ) 0x00 ) ;
2005-11-08 21:37:55 -08:00
/* Display results, should be 0x21,0x29,0x30,0x00,0x00,0x00,0x00 */
for ( i = 1 ; i < = 7 ; i + + ) {
2008-11-29 12:45:59 -03:00
u8 v = cs53l32a_read ( sd , i ) ;
2005-11-08 21:37:55 -08:00
2008-11-29 12:45:59 -03:00
v4l2_dbg ( 1 , debug , sd , " Read Reg %d %02x \n " , i , v ) ;
2005-11-08 21:37:55 -08:00
}
return 0 ;
}
2008-11-29 12:45:59 -03:00
static int cs53l32a_remove ( struct i2c_client * client )
{
struct v4l2_subdev * sd = i2c_get_clientdata ( client ) ;
v4l2_device_unregister_subdev ( sd ) ;
kfree ( sd ) ;
return 0 ;
}
2008-05-18 20:49:40 +02:00
static const struct i2c_device_id cs53l32a_id [ ] = {
{ " cs53l32a " , 0 } ,
{ }
} ;
MODULE_DEVICE_TABLE ( i2c , cs53l32a_id ) ;
2007-09-13 11:30:38 -03:00
static struct v4l2_i2c_driver_data v4l2_i2c_data = {
. name = " cs53l32a " ,
2008-11-29 12:45:59 -03:00
. remove = cs53l32a_remove ,
2007-09-13 11:30:38 -03:00
. probe = cs53l32a_probe ,
2008-05-18 20:49:40 +02:00
. id_table = cs53l32a_id ,
2005-11-08 21:37:55 -08:00
} ;