License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
2017-01-22 13:17:17 +01:00
/*
2017-03-24 22:32:34 +01:00
* Faraday Technology FTTMR010 timer driver
2017-01-22 13:17:17 +01:00
* Copyright ( C ) 2017 Linus Walleij < linus . walleij @ linaro . org >
*
* Based on a rewrite of arch / arm / mach - gemini / timer . c :
* Copyright ( C ) 2001 - 2006 Storlink , Corp .
* Copyright ( C ) 2008 - 2009 Paulius Zaleckas < paulius . zaleckas @ teltonika . lt >
*/
# include <linux/interrupt.h>
# include <linux/io.h>
# include <linux/of.h>
# include <linux/of_address.h>
# include <linux/of_irq.h>
# include <linux/clockchips.h>
# include <linux/clocksource.h>
# include <linux/sched_clock.h>
2017-03-24 22:32:35 +01:00
# include <linux/clk.h>
2017-05-18 22:17:01 +02:00
# include <linux/slab.h>
2017-05-18 22:17:02 +02:00
# include <linux/bitops.h>
2017-06-11 23:26:17 +02:00
# include <linux/delay.h>
2017-01-22 13:17:17 +01:00
/*
* Register definitions for the timers
*/
# define TIMER1_COUNT (0x00)
# define TIMER1_LOAD (0x04)
# define TIMER1_MATCH1 (0x08)
# define TIMER1_MATCH2 (0x0c)
# define TIMER2_COUNT (0x10)
# define TIMER2_LOAD (0x14)
# define TIMER2_MATCH1 (0x18)
# define TIMER2_MATCH2 (0x1c)
# define TIMER3_COUNT (0x20)
# define TIMER3_LOAD (0x24)
# define TIMER3_MATCH1 (0x28)
# define TIMER3_MATCH2 (0x2c)
# define TIMER_CR (0x30)
# define TIMER_INTR_STATE (0x34)
# define TIMER_INTR_MASK (0x38)
2017-05-18 22:17:02 +02:00
# define TIMER_1_CR_ENABLE BIT(0)
# define TIMER_1_CR_CLOCK BIT(1)
# define TIMER_1_CR_INT BIT(2)
# define TIMER_2_CR_ENABLE BIT(3)
# define TIMER_2_CR_CLOCK BIT(4)
# define TIMER_2_CR_INT BIT(5)
# define TIMER_3_CR_ENABLE BIT(6)
# define TIMER_3_CR_CLOCK BIT(7)
# define TIMER_3_CR_INT BIT(8)
# define TIMER_1_CR_UPDOWN BIT(9)
# define TIMER_2_CR_UPDOWN BIT(10)
# define TIMER_3_CR_UPDOWN BIT(11)
2017-01-22 13:17:17 +01:00
2017-05-18 22:17:04 +02:00
/*
* The Aspeed AST2400 moves bits around in the control register
* and lacks bits for setting the timer to count upwards .
*/
# define TIMER_1_CR_ASPEED_ENABLE BIT(0)
# define TIMER_1_CR_ASPEED_CLOCK BIT(1)
# define TIMER_1_CR_ASPEED_INT BIT(2)
# define TIMER_2_CR_ASPEED_ENABLE BIT(4)
# define TIMER_2_CR_ASPEED_CLOCK BIT(5)
# define TIMER_2_CR_ASPEED_INT BIT(6)
# define TIMER_3_CR_ASPEED_ENABLE BIT(8)
# define TIMER_3_CR_ASPEED_CLOCK BIT(9)
# define TIMER_3_CR_ASPEED_INT BIT(10)
2017-05-18 22:17:02 +02:00
# define TIMER_1_INT_MATCH1 BIT(0)
# define TIMER_1_INT_MATCH2 BIT(1)
# define TIMER_1_INT_OVERFLOW BIT(2)
# define TIMER_2_INT_MATCH1 BIT(3)
# define TIMER_2_INT_MATCH2 BIT(4)
# define TIMER_2_INT_OVERFLOW BIT(5)
# define TIMER_3_INT_MATCH1 BIT(6)
# define TIMER_3_INT_MATCH2 BIT(7)
# define TIMER_3_INT_OVERFLOW BIT(8)
2017-01-22 13:17:17 +01:00
# define TIMER_INT_ALL_MASK 0x1ff
2017-05-18 22:17:01 +02:00
struct fttmr010 {
void __iomem * base ;
unsigned int tick_rate ;
2017-05-18 22:17:04 +02:00
bool count_down ;
u32 t1_enable_val ;
2017-05-18 22:17:01 +02:00
struct clock_event_device clkevt ;
2017-06-11 23:26:17 +02:00
# ifdef CONFIG_ARM
struct delay_timer delay_timer ;
# endif
2017-05-18 22:17:01 +02:00
} ;
2017-06-11 23:26:17 +02:00
/*
* A local singleton used by sched_clock and delay timer reads , which are
* fast and stateless
*/
2017-05-18 22:17:01 +02:00
static struct fttmr010 * local_fttmr ;
static inline struct fttmr010 * to_fttmr010 ( struct clock_event_device * evt )
{
return container_of ( evt , struct fttmr010 , clkevt ) ;
}
2017-01-22 13:17:17 +01:00
2017-06-13 23:48:13 +02:00
static unsigned long fttmr010_read_current_timer_up ( void )
2017-01-22 13:17:17 +01:00
{
2017-05-18 22:17:03 +02:00
return readl ( local_fttmr - > base + TIMER2_COUNT ) ;
2017-01-22 13:17:17 +01:00
}
2017-06-13 23:48:13 +02:00
static unsigned long fttmr010_read_current_timer_down ( void )
2017-06-11 23:26:16 +02:00
{
return ~ readl ( local_fttmr - > base + TIMER2_COUNT ) ;
}
2017-06-13 23:48:13 +02:00
static u64 notrace fttmr010_read_sched_clock_up ( void )
2017-06-11 23:26:17 +02:00
{
2017-06-13 23:48:13 +02:00
return fttmr010_read_current_timer_up ( ) ;
2017-06-11 23:26:17 +02:00
}
2017-06-13 23:48:13 +02:00
static u64 notrace fttmr010_read_sched_clock_down ( void )
2017-06-11 23:26:17 +02:00
{
2017-06-13 23:48:13 +02:00
return fttmr010_read_current_timer_down ( ) ;
2017-06-11 23:26:17 +02:00
}
2017-03-24 22:32:34 +01:00
static int fttmr010_timer_set_next_event ( unsigned long cycles ,
2017-01-22 13:17:17 +01:00
struct clock_event_device * evt )
{
2017-05-18 22:17:01 +02:00
struct fttmr010 * fttmr010 = to_fttmr010 ( evt ) ;
2017-01-22 13:17:17 +01:00
u32 cr ;
2017-05-18 22:17:04 +02:00
/* Stop */
cr = readl ( fttmr010 - > base + TIMER_CR ) ;
cr & = ~ fttmr010 - > t1_enable_val ;
writel ( cr , fttmr010 - > base + TIMER_CR ) ;
/* Setup the match register forward/backward in time */
2017-05-18 22:17:01 +02:00
cr = readl ( fttmr010 - > base + TIMER1_COUNT ) ;
2017-05-18 22:17:04 +02:00
if ( fttmr010 - > count_down )
cr - = cycles ;
else
cr + = cycles ;
writel ( cr , fttmr010 - > base + TIMER1_MATCH1 ) ;
/* Start */
cr = readl ( fttmr010 - > base + TIMER_CR ) ;
cr | = fttmr010 - > t1_enable_val ;
writel ( cr , fttmr010 - > base + TIMER_CR ) ;
2017-01-22 13:17:17 +01:00
return 0 ;
}
2017-03-24 22:32:34 +01:00
static int fttmr010_timer_shutdown ( struct clock_event_device * evt )
2017-01-22 13:17:17 +01:00
{
2017-05-18 22:17:01 +02:00
struct fttmr010 * fttmr010 = to_fttmr010 ( evt ) ;
u32 cr ;
2017-05-18 22:17:04 +02:00
/* Stop */
2017-05-18 22:17:01 +02:00
cr = readl ( fttmr010 - > base + TIMER_CR ) ;
2017-05-18 22:17:04 +02:00
cr & = ~ fttmr010 - > t1_enable_val ;
2017-05-18 22:17:01 +02:00
writel ( cr , fttmr010 - > base + TIMER_CR ) ;
return 0 ;
}
static int fttmr010_timer_set_oneshot ( struct clock_event_device * evt )
{
struct fttmr010 * fttmr010 = to_fttmr010 ( evt ) ;
2017-01-22 13:17:17 +01:00
u32 cr ;
2017-05-18 22:17:04 +02:00
/* Stop */
2017-05-18 22:17:01 +02:00
cr = readl ( fttmr010 - > base + TIMER_CR ) ;
2017-05-18 22:17:04 +02:00
cr & = ~ fttmr010 - > t1_enable_val ;
2017-05-18 22:17:01 +02:00
writel ( cr , fttmr010 - > base + TIMER_CR ) ;
2017-01-22 13:17:17 +01:00
2017-05-18 22:17:04 +02:00
/* Setup counter start from 0 or ~0 */
2017-05-18 22:17:01 +02:00
writel ( 0 , fttmr010 - > base + TIMER1_COUNT ) ;
2017-05-18 22:17:04 +02:00
if ( fttmr010 - > count_down )
writel ( ~ 0 , fttmr010 - > base + TIMER1_LOAD ) ;
else
writel ( 0 , fttmr010 - > base + TIMER1_LOAD ) ;
2017-01-22 13:17:17 +01:00
2017-05-18 22:17:01 +02:00
/* Enable interrupt */
cr = readl ( fttmr010 - > base + TIMER_INTR_MASK ) ;
2017-01-22 13:17:17 +01:00
cr & = ~ ( TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2 ) ;
cr | = TIMER_1_INT_MATCH1 ;
2017-05-18 22:17:01 +02:00
writel ( cr , fttmr010 - > base + TIMER_INTR_MASK ) ;
2017-01-22 13:17:17 +01:00
return 0 ;
}
2017-03-24 22:32:34 +01:00
static int fttmr010_timer_set_periodic ( struct clock_event_device * evt )
2017-01-22 13:17:17 +01:00
{
2017-05-18 22:17:01 +02:00
struct fttmr010 * fttmr010 = to_fttmr010 ( evt ) ;
u32 period = DIV_ROUND_CLOSEST ( fttmr010 - > tick_rate , HZ ) ;
2017-01-22 13:17:17 +01:00
u32 cr ;
2017-05-18 22:17:04 +02:00
/* Stop */
2017-05-18 22:17:01 +02:00
cr = readl ( fttmr010 - > base + TIMER_CR ) ;
2017-05-18 22:17:04 +02:00
cr & = ~ fttmr010 - > t1_enable_val ;
2017-05-18 22:17:01 +02:00
writel ( cr , fttmr010 - > base + TIMER_CR ) ;
2017-01-22 13:17:17 +01:00
2017-05-18 22:17:04 +02:00
/* Setup timer to fire at 1/HZ intervals. */
if ( fttmr010 - > count_down ) {
writel ( period , fttmr010 - > base + TIMER1_LOAD ) ;
writel ( 0 , fttmr010 - > base + TIMER1_MATCH1 ) ;
} else {
cr = 0xffffffff - ( period - 1 ) ;
writel ( cr , fttmr010 - > base + TIMER1_COUNT ) ;
writel ( cr , fttmr010 - > base + TIMER1_LOAD ) ;
/* Enable interrupt on overflow */
cr = readl ( fttmr010 - > base + TIMER_INTR_MASK ) ;
cr & = ~ ( TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2 ) ;
cr | = TIMER_1_INT_OVERFLOW ;
writel ( cr , fttmr010 - > base + TIMER_INTR_MASK ) ;
}
2017-01-22 13:17:17 +01:00
/* Start the timer */
2017-05-18 22:17:01 +02:00
cr = readl ( fttmr010 - > base + TIMER_CR ) ;
2017-05-18 22:17:04 +02:00
cr | = fttmr010 - > t1_enable_val ;
2017-05-18 22:17:01 +02:00
writel ( cr , fttmr010 - > base + TIMER_CR ) ;
2017-01-22 13:17:17 +01:00
return 0 ;
}
/*
* IRQ handler for the timer
*/
2017-03-24 22:32:34 +01:00
static irqreturn_t fttmr010_timer_interrupt ( int irq , void * dev_id )
2017-01-22 13:17:17 +01:00
{
2017-05-18 22:17:01 +02:00
struct clock_event_device * evt = dev_id ;
2017-01-22 13:17:17 +01:00
evt - > event_handler ( evt ) ;
return IRQ_HANDLED ;
}
2017-05-26 10:38:07 +02:00
static int __init fttmr010_common_init ( struct device_node * np , bool is_aspeed )
2017-01-22 13:17:17 +01:00
{
2017-05-18 22:17:01 +02:00
struct fttmr010 * fttmr010 ;
2017-01-22 13:17:17 +01:00
int irq ;
2017-05-18 22:17:00 +02:00
struct clk * clk ;
int ret ;
2017-05-18 22:17:04 +02:00
u32 val ;
2017-05-18 22:17:00 +02:00
/*
* These implementations require a clock reference .
* FIXME : we currently only support clocking using PCLK
* and using EXTCLK is not supported in the driver .
*/
clk = of_clk_get_by_name ( np , " PCLK " ) ;
if ( IS_ERR ( clk ) ) {
pr_err ( " could not get PCLK \n " ) ;
return PTR_ERR ( clk ) ;
}
ret = clk_prepare_enable ( clk ) ;
if ( ret ) {
pr_err ( " failed to enable PCLK \n " ) ;
return ret ;
}
2017-01-22 13:17:17 +01:00
2017-05-18 22:17:01 +02:00
fttmr010 = kzalloc ( sizeof ( * fttmr010 ) , GFP_KERNEL ) ;
if ( ! fttmr010 ) {
ret = - ENOMEM ;
goto out_disable_clock ;
}
fttmr010 - > tick_rate = clk_get_rate ( clk ) ;
fttmr010 - > base = of_iomap ( np , 0 ) ;
if ( ! fttmr010 - > base ) {
2017-09-25 13:46:39 +05:30
pr_err ( " Can't remap registers \n " ) ;
2017-05-18 22:17:01 +02:00
ret = - ENXIO ;
goto out_free ;
2017-01-22 13:17:17 +01:00
}
/* IRQ for timer 1 */
irq = irq_of_parse_and_map ( np , 0 ) ;
if ( irq < = 0 ) {
2017-09-25 13:46:39 +05:30
pr_err ( " Can't parse IRQ \n " ) ;
2017-05-18 22:17:01 +02:00
ret = - EINVAL ;
goto out_unmap ;
2017-01-22 13:17:17 +01:00
}
2017-05-18 22:17:04 +02:00
/*
* The Aspeed AST2400 moves bits around in the control register ,
* otherwise it works the same .
*/
2017-05-26 10:38:07 +02:00
if ( is_aspeed ) {
2017-05-18 22:17:04 +02:00
fttmr010 - > t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
TIMER_1_CR_ASPEED_INT ;
/* Downward not available */
fttmr010 - > count_down = true ;
} else {
fttmr010 - > t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT ;
}
2017-01-22 13:17:17 +01:00
/*
* Reset the interrupt mask and status
*/
2017-05-18 22:17:01 +02:00
writel ( TIMER_INT_ALL_MASK , fttmr010 - > base + TIMER_INTR_MASK ) ;
writel ( 0 , fttmr010 - > base + TIMER_INTR_STATE ) ;
2017-05-18 22:17:04 +02:00
/*
* Enable timer 1 count up , timer 2 count up , except on Aspeed ,
* where everything just counts down .
*/
2017-05-26 10:38:07 +02:00
if ( is_aspeed )
2017-05-18 22:17:04 +02:00
val = TIMER_2_CR_ASPEED_ENABLE ;
else {
val = TIMER_2_CR_ENABLE ;
if ( ! fttmr010 - > count_down )
val | = TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN ;
}
writel ( val , fttmr010 - > base + TIMER_CR ) ;
2017-01-22 13:17:17 +01:00
/*
* Setup free - running clocksource timer ( interrupts
* disabled . )
*/
2017-05-18 22:17:01 +02:00
local_fttmr = fttmr010 ;
2017-05-18 22:17:03 +02:00
writel ( 0 , fttmr010 - > base + TIMER2_COUNT ) ;
writel ( 0 , fttmr010 - > base + TIMER2_MATCH1 ) ;
writel ( 0 , fttmr010 - > base + TIMER2_MATCH2 ) ;
2017-05-18 22:17:04 +02:00
if ( fttmr010 - > count_down ) {
writel ( ~ 0 , fttmr010 - > base + TIMER2_LOAD ) ;
clocksource_mmio_init ( fttmr010 - > base + TIMER2_COUNT ,
" FTTMR010-TIMER2 " ,
fttmr010 - > tick_rate ,
300 , 32 , clocksource_mmio_readl_down ) ;
2017-06-11 23:26:16 +02:00
sched_clock_register ( fttmr010_read_sched_clock_down , 32 ,
fttmr010 - > tick_rate ) ;
2017-05-18 22:17:04 +02:00
} else {
writel ( 0 , fttmr010 - > base + TIMER2_LOAD ) ;
clocksource_mmio_init ( fttmr010 - > base + TIMER2_COUNT ,
" FTTMR010-TIMER2 " ,
fttmr010 - > tick_rate ,
300 , 32 , clocksource_mmio_readl_up ) ;
2017-06-11 23:26:16 +02:00
sched_clock_register ( fttmr010_read_sched_clock_up , 32 ,
fttmr010 - > tick_rate ) ;
2017-05-18 22:17:04 +02:00
}
2017-01-22 13:17:17 +01:00
/*
2017-05-18 22:17:01 +02:00
* Setup clockevent timer ( interrupt - driven ) on timer 1.
2017-01-22 13:17:17 +01:00
*/
2017-05-18 22:17:01 +02:00
writel ( 0 , fttmr010 - > base + TIMER1_COUNT ) ;
writel ( 0 , fttmr010 - > base + TIMER1_LOAD ) ;
writel ( 0 , fttmr010 - > base + TIMER1_MATCH1 ) ;
writel ( 0 , fttmr010 - > base + TIMER1_MATCH2 ) ;
ret = request_irq ( irq , fttmr010_timer_interrupt , IRQF_TIMER ,
" FTTMR010-TIMER1 " , & fttmr010 - > clkevt ) ;
if ( ret ) {
pr_err ( " FTTMR010-TIMER1 no IRQ \n " ) ;
goto out_unmap ;
}
fttmr010 - > clkevt . name = " FTTMR010-TIMER1 " ;
/* Reasonably fast and accurate clock event */
fttmr010 - > clkevt . rating = 300 ;
fttmr010 - > clkevt . features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT ;
fttmr010 - > clkevt . set_next_event = fttmr010_timer_set_next_event ;
fttmr010 - > clkevt . set_state_shutdown = fttmr010_timer_shutdown ;
fttmr010 - > clkevt . set_state_periodic = fttmr010_timer_set_periodic ;
fttmr010 - > clkevt . set_state_oneshot = fttmr010_timer_set_oneshot ;
fttmr010 - > clkevt . tick_resume = fttmr010_timer_shutdown ;
fttmr010 - > clkevt . cpumask = cpumask_of ( 0 ) ;
fttmr010 - > clkevt . irq = irq ;
clockevents_config_and_register ( & fttmr010 - > clkevt ,
fttmr010 - > tick_rate ,
2017-01-22 13:17:17 +01:00
1 , 0xffffffff ) ;
2017-06-11 23:26:17 +02:00
# ifdef CONFIG_ARM
/* Also use this timer for delays */
if ( fttmr010 - > count_down )
fttmr010 - > delay_timer . read_current_timer =
fttmr010_read_current_timer_down ;
else
fttmr010 - > delay_timer . read_current_timer =
fttmr010_read_current_timer_up ;
fttmr010 - > delay_timer . freq = fttmr010 - > tick_rate ;
register_current_timer_delay ( & fttmr010 - > delay_timer ) ;
# endif
2017-01-22 13:17:17 +01:00
return 0 ;
2017-05-18 22:17:01 +02:00
out_unmap :
iounmap ( fttmr010 - > base ) ;
out_free :
kfree ( fttmr010 ) ;
out_disable_clock :
clk_disable_unprepare ( clk ) ;
return ret ;
2017-01-22 13:17:17 +01:00
}
2017-05-26 10:38:07 +02:00
static __init int aspeed_timer_init ( struct device_node * np )
{
return fttmr010_common_init ( np , true ) ;
}
static __init int fttmr010_timer_init ( struct device_node * np )
{
return fttmr010_common_init ( np , false ) ;
}
2017-05-26 16:56:11 +02:00
TIMER_OF_DECLARE ( fttmr010 , " faraday,fttmr010 " , fttmr010_timer_init ) ;
TIMER_OF_DECLARE ( gemini , " cortina,gemini-timer " , fttmr010_timer_init ) ;
TIMER_OF_DECLARE ( moxart , " moxa,moxart-timer " , fttmr010_timer_init ) ;
TIMER_OF_DECLARE ( ast2400 , " aspeed,ast2400-timer " , aspeed_timer_init ) ;
TIMER_OF_DECLARE ( ast2500 , " aspeed,ast2500-timer " , aspeed_timer_init ) ;