2009-09-25 14:42:12 +00:00
/**
* drivers / net / ks8851_mll . c
* Copyright ( c ) 2009 Micrel Inc .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 675 Mass Ave , Cambridge , MA 0213 9 , USA .
*/
/**
* Supports :
* KS8851 16 bit MLL chip from Micrel Inc .
*/
# include <linux/module.h>
# include <linux/kernel.h>
# include <linux/netdevice.h>
# include <linux/etherdevice.h>
# include <linux/ethtool.h>
# include <linux/cache.h>
# include <linux/crc32.h>
# include <linux/mii.h>
# include <linux/platform_device.h>
# include <linux/delay.h>
# define DRV_NAME "ks8851_mll"
static u8 KS_DEFAULT_MAC_ADDRESS [ ] = { 0x00 , 0x10 , 0xA1 , 0x86 , 0x95 , 0x11 } ;
# define MAX_RECV_FRAMES 32
# define MAX_BUF_SIZE 2048
# define TX_BUF_SIZE 2000
# define RX_BUF_SIZE 2000
# define KS_CCR 0x08
# define CCR_EEPROM (1 << 9)
# define CCR_SPI (1 << 8)
# define CCR_8BIT (1 << 7)
# define CCR_16BIT (1 << 6)
# define CCR_32BIT (1 << 5)
# define CCR_SHARED (1 << 4)
# define CCR_32PIN (1 << 0)
/* MAC address registers */
# define KS_MARL 0x10
# define KS_MARM 0x12
# define KS_MARH 0x14
# define KS_OBCR 0x20
# define OBCR_ODS_16MA (1 << 6)
# define KS_EEPCR 0x22
# define EEPCR_EESA (1 << 4)
# define EEPCR_EESB (1 << 3)
# define EEPCR_EEDO (1 << 2)
# define EEPCR_EESCK (1 << 1)
# define EEPCR_EECS (1 << 0)
# define KS_MBIR 0x24
# define MBIR_TXMBF (1 << 12)
# define MBIR_TXMBFA (1 << 11)
# define MBIR_RXMBF (1 << 4)
# define MBIR_RXMBFA (1 << 3)
# define KS_GRR 0x26
# define GRR_QMU (1 << 1)
# define GRR_GSR (1 << 0)
# define KS_WFCR 0x2A
# define WFCR_MPRXE (1 << 7)
# define WFCR_WF3E (1 << 3)
# define WFCR_WF2E (1 << 2)
# define WFCR_WF1E (1 << 1)
# define WFCR_WF0E (1 << 0)
# define KS_WF0CRC0 0x30
# define KS_WF0CRC1 0x32
# define KS_WF0BM0 0x34
# define KS_WF0BM1 0x36
# define KS_WF0BM2 0x38
# define KS_WF0BM3 0x3A
# define KS_WF1CRC0 0x40
# define KS_WF1CRC1 0x42
# define KS_WF1BM0 0x44
# define KS_WF1BM1 0x46
# define KS_WF1BM2 0x48
# define KS_WF1BM3 0x4A
# define KS_WF2CRC0 0x50
# define KS_WF2CRC1 0x52
# define KS_WF2BM0 0x54
# define KS_WF2BM1 0x56
# define KS_WF2BM2 0x58
# define KS_WF2BM3 0x5A
# define KS_WF3CRC0 0x60
# define KS_WF3CRC1 0x62
# define KS_WF3BM0 0x64
# define KS_WF3BM1 0x66
# define KS_WF3BM2 0x68
# define KS_WF3BM3 0x6A
# define KS_TXCR 0x70
# define TXCR_TCGICMP (1 << 8)
# define TXCR_TCGUDP (1 << 7)
# define TXCR_TCGTCP (1 << 6)
# define TXCR_TCGIP (1 << 5)
# define TXCR_FTXQ (1 << 4)
# define TXCR_TXFCE (1 << 3)
# define TXCR_TXPE (1 << 2)
# define TXCR_TXCRC (1 << 1)
# define TXCR_TXE (1 << 0)
# define KS_TXSR 0x72
# define TXSR_TXLC (1 << 13)
# define TXSR_TXMC (1 << 12)
# define TXSR_TXFID_MASK (0x3f << 0)
# define TXSR_TXFID_SHIFT (0)
# define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
# define KS_RXCR1 0x74
# define RXCR1_FRXQ (1 << 15)
# define RXCR1_RXUDPFCC (1 << 14)
# define RXCR1_RXTCPFCC (1 << 13)
# define RXCR1_RXIPFCC (1 << 12)
# define RXCR1_RXPAFMA (1 << 11)
# define RXCR1_RXFCE (1 << 10)
# define RXCR1_RXEFE (1 << 9)
# define RXCR1_RXMAFMA (1 << 8)
# define RXCR1_RXBE (1 << 7)
# define RXCR1_RXME (1 << 6)
# define RXCR1_RXUE (1 << 5)
# define RXCR1_RXAE (1 << 4)
# define RXCR1_RXINVF (1 << 1)
# define RXCR1_RXE (1 << 0)
# define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
RXCR1_RXMAFMA | RXCR1_RXPAFMA )
# define KS_RXCR2 0x76
# define RXCR2_SRDBL_MASK (0x7 << 5)
# define RXCR2_SRDBL_SHIFT (5)
# define RXCR2_SRDBL_4B (0x0 << 5)
# define RXCR2_SRDBL_8B (0x1 << 5)
# define RXCR2_SRDBL_16B (0x2 << 5)
# define RXCR2_SRDBL_32B (0x3 << 5)
/* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
# define RXCR2_IUFFP (1 << 4)
# define RXCR2_RXIUFCEZ (1 << 3)
# define RXCR2_UDPLFE (1 << 2)
# define RXCR2_RXICMPFCC (1 << 1)
# define RXCR2_RXSAF (1 << 0)
# define KS_TXMIR 0x78
# define KS_RXFHSR 0x7C
# define RXFSHR_RXFV (1 << 15)
# define RXFSHR_RXICMPFCS (1 << 13)
# define RXFSHR_RXIPFCS (1 << 12)
# define RXFSHR_RXTCPFCS (1 << 11)
# define RXFSHR_RXUDPFCS (1 << 10)
# define RXFSHR_RXBF (1 << 7)
# define RXFSHR_RXMF (1 << 6)
# define RXFSHR_RXUF (1 << 5)
# define RXFSHR_RXMR (1 << 4)
# define RXFSHR_RXFT (1 << 3)
# define RXFSHR_RXFTL (1 << 2)
# define RXFSHR_RXRF (1 << 1)
# define RXFSHR_RXCE (1 << 0)
# define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
RXFSHR_RXFTL | RXFSHR_RXMR | \
RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS | \
RXFSHR_RXTCPFCS )
# define KS_RXFHBCR 0x7E
# define RXFHBCR_CNT_MASK 0x0FFF
# define KS_TXQCR 0x80
# define TXQCR_AETFE (1 << 2)
# define TXQCR_TXQMAM (1 << 1)
# define TXQCR_METFE (1 << 0)
# define KS_RXQCR 0x82
# define RXQCR_RXDTTS (1 << 12)
# define RXQCR_RXDBCTS (1 << 11)
# define RXQCR_RXFCTS (1 << 10)
# define RXQCR_RXIPHTOE (1 << 9)
# define RXQCR_RXDTTE (1 << 7)
# define RXQCR_RXDBCTE (1 << 6)
# define RXQCR_RXFCTE (1 << 5)
# define RXQCR_ADRFE (1 << 4)
# define RXQCR_SDA (1 << 3)
# define RXQCR_RRXEF (1 << 0)
# define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
# define KS_TXFDPR 0x84
# define TXFDPR_TXFPAI (1 << 14)
# define TXFDPR_TXFP_MASK (0x7ff << 0)
# define TXFDPR_TXFP_SHIFT (0)
# define KS_RXFDPR 0x86
# define RXFDPR_RXFPAI (1 << 14)
# define KS_RXDTTR 0x8C
# define KS_RXDBCTR 0x8E
# define KS_IER 0x90
# define KS_ISR 0x92
# define IRQ_LCI (1 << 15)
# define IRQ_TXI (1 << 14)
# define IRQ_RXI (1 << 13)
# define IRQ_RXOI (1 << 11)
# define IRQ_TXPSI (1 << 9)
# define IRQ_RXPSI (1 << 8)
# define IRQ_TXSAI (1 << 6)
# define IRQ_RXWFDI (1 << 5)
# define IRQ_RXMPDI (1 << 4)
# define IRQ_LDI (1 << 3)
# define IRQ_EDI (1 << 2)
# define IRQ_SPIBEI (1 << 1)
# define IRQ_DEDI (1 << 0)
# define KS_RXFCTR 0x9C
# define RXFCTR_THRESHOLD_MASK 0x00FF
# define KS_RXFC 0x9D
# define RXFCTR_RXFC_MASK (0xff << 8)
# define RXFCTR_RXFC_SHIFT (8)
# define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
# define RXFCTR_RXFCT_MASK (0xff << 0)
# define RXFCTR_RXFCT_SHIFT (0)
# define KS_TXNTFSR 0x9E
# define KS_MAHTR0 0xA0
# define KS_MAHTR1 0xA2
# define KS_MAHTR2 0xA4
# define KS_MAHTR3 0xA6
# define KS_FCLWR 0xB0
# define KS_FCHWR 0xB2
# define KS_FCOWR 0xB4
# define KS_CIDER 0xC0
# define CIDER_ID 0x8870
# define CIDER_REV_MASK (0x7 << 1)
# define CIDER_REV_SHIFT (1)
# define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
# define KS_CGCR 0xC6
# define KS_IACR 0xC8
# define IACR_RDEN (1 << 12)
# define IACR_TSEL_MASK (0x3 << 10)
# define IACR_TSEL_SHIFT (10)
# define IACR_TSEL_MIB (0x3 << 10)
# define IACR_ADDR_MASK (0x1f << 0)
# define IACR_ADDR_SHIFT (0)
# define KS_IADLR 0xD0
# define KS_IAHDR 0xD2
# define KS_PMECR 0xD4
# define PMECR_PME_DELAY (1 << 14)
# define PMECR_PME_POL (1 << 12)
# define PMECR_WOL_WAKEUP (1 << 11)
# define PMECR_WOL_MAGICPKT (1 << 10)
# define PMECR_WOL_LINKUP (1 << 9)
# define PMECR_WOL_ENERGY (1 << 8)
# define PMECR_AUTO_WAKE_EN (1 << 7)
# define PMECR_WAKEUP_NORMAL (1 << 6)
# define PMECR_WKEVT_MASK (0xf << 2)
# define PMECR_WKEVT_SHIFT (2)
# define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
# define PMECR_WKEVT_ENERGY (0x1 << 2)
# define PMECR_WKEVT_LINK (0x2 << 2)
# define PMECR_WKEVT_MAGICPKT (0x4 << 2)
# define PMECR_WKEVT_FRAME (0x8 << 2)
# define PMECR_PM_MASK (0x3 << 0)
# define PMECR_PM_SHIFT (0)
# define PMECR_PM_NORMAL (0x0 << 0)
# define PMECR_PM_ENERGY (0x1 << 0)
# define PMECR_PM_SOFTDOWN (0x2 << 0)
# define PMECR_PM_POWERSAVE (0x3 << 0)
/* Standard MII PHY data */
# define KS_P1MBCR 0xE4
# define P1MBCR_FORCE_FDX (1 << 8)
# define KS_P1MBSR 0xE6
# define P1MBSR_AN_COMPLETE (1 << 5)
# define P1MBSR_AN_CAPABLE (1 << 3)
# define P1MBSR_LINK_UP (1 << 2)
# define KS_PHY1ILR 0xE8
# define KS_PHY1IHR 0xEA
# define KS_P1ANAR 0xEC
# define KS_P1ANLPR 0xEE
# define KS_P1SCLMD 0xF4
# define P1SCLMD_LEDOFF (1 << 15)
# define P1SCLMD_TXIDS (1 << 14)
# define P1SCLMD_RESTARTAN (1 << 13)
# define P1SCLMD_DISAUTOMDIX (1 << 10)
# define P1SCLMD_FORCEMDIX (1 << 9)
# define P1SCLMD_AUTONEGEN (1 << 7)
# define P1SCLMD_FORCE100 (1 << 6)
# define P1SCLMD_FORCEFDX (1 << 5)
# define P1SCLMD_ADV_FLOW (1 << 4)
# define P1SCLMD_ADV_100BT_FDX (1 << 3)
# define P1SCLMD_ADV_100BT_HDX (1 << 2)
# define P1SCLMD_ADV_10BT_FDX (1 << 1)
# define P1SCLMD_ADV_10BT_HDX (1 << 0)
# define KS_P1CR 0xF6
# define P1CR_HP_MDIX (1 << 15)
# define P1CR_REV_POL (1 << 13)
# define P1CR_OP_100M (1 << 10)
# define P1CR_OP_FDX (1 << 9)
# define P1CR_OP_MDI (1 << 7)
# define P1CR_AN_DONE (1 << 6)
# define P1CR_LINK_GOOD (1 << 5)
# define P1CR_PNTR_FLOW (1 << 4)
# define P1CR_PNTR_100BT_FDX (1 << 3)
# define P1CR_PNTR_100BT_HDX (1 << 2)
# define P1CR_PNTR_10BT_FDX (1 << 1)
# define P1CR_PNTR_10BT_HDX (1 << 0)
/* TX Frame control */
# define TXFR_TXIC (1 << 15)
# define TXFR_TXFID_MASK (0x3f << 0)
# define TXFR_TXFID_SHIFT (0)
# define KS_P1SR 0xF8
# define P1SR_HP_MDIX (1 << 15)
# define P1SR_REV_POL (1 << 13)
# define P1SR_OP_100M (1 << 10)
# define P1SR_OP_FDX (1 << 9)
# define P1SR_OP_MDI (1 << 7)
# define P1SR_AN_DONE (1 << 6)
# define P1SR_LINK_GOOD (1 << 5)
# define P1SR_PNTR_FLOW (1 << 4)
# define P1SR_PNTR_100BT_FDX (1 << 3)
# define P1SR_PNTR_100BT_HDX (1 << 2)
# define P1SR_PNTR_10BT_FDX (1 << 1)
# define P1SR_PNTR_10BT_HDX (1 << 0)
# define ENUM_BUS_NONE 0
# define ENUM_BUS_8BIT 1
# define ENUM_BUS_16BIT 2
# define ENUM_BUS_32BIT 3
# define MAX_MCAST_LST 32
# define HW_MCAST_SIZE 8
# define MAC_ADDR_LEN 6
/**
* union ks_tx_hdr - tx header data
* @ txb : The header as bytes
* @ txw : The header as 16 bit , little - endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes , and to allow 16 bit accesses
* with 16 bit alignment .
*/
union ks_tx_hdr {
u8 txb [ 4 ] ;
__le16 txw [ 2 ] ;
} ;
/**
* struct ks_net - KS8851 driver private data
* @ net_device : The network device we ' re bound to
* @ hw_addr : start address of data register .
* @ hw_addr_cmd : start address of command register .
* @ txh : temporaly buffer to save status / length .
* @ lock : Lock to ensure that the device is not accessed when busy .
* @ pdev : Pointer to platform device .
* @ mii : The MII state information for the mii calls .
* @ frame_head_info : frame header information for multi - pkt rx .
* @ statelock : Lock on this structure for tx list .
* @ msg_enable : The message flags controlling driver output ( see ethtool ) .
* @ frame_cnt : number of frames received .
* @ bus_width : i / o bus width .
* @ irq : irq number assigned to this device .
* @ rc_rxqcr : Cached copy of KS_RXQCR .
* @ rc_txcr : Cached copy of KS_TXCR .
* @ rc_ier : Cached copy of KS_IER .
* @ sharedbus : Multipex ( addr and data bus ) mode indicator .
* @ cmd_reg_cache : command register cached .
* @ cmd_reg_cache_int : command register cached . Used in the irq handler .
* @ promiscuous : promiscuous mode indicator .
* @ all_mcast : mutlicast indicator .
* @ mcast_lst_size : size of multicast list .
* @ mcast_lst : multicast list .
* @ mcast_bits : multicast enabed .
* @ mac_addr : MAC address assigned to this device .
* @ fid : frame id .
* @ extra_byte : number of extra byte prepended rx pkt .
* @ enabled : indicator this device works .
*
* The @ lock ensures that the chip is protected when certain operations are
* in progress . When the read or write packet transfer is in progress , most
* of the chip registers are not accessible until the transfer is finished and
* the DMA has been de - asserted .
*
* The @ statelock is used to protect information in the structure which may
* need to be accessed via several sources , such as the network driver layer
* or one of the work queues .
*
*/
/* Receive multiplex framer header info */
struct type_frame_head {
u16 sts ; /* Frame status */
u16 len ; /* Byte count */
} ;
struct ks_net {
struct net_device * netdev ;
void __iomem * hw_addr ;
void __iomem * hw_addr_cmd ;
union ks_tx_hdr txh ____cacheline_aligned ;
struct mutex lock ; /* spinlock to be interrupt safe */
struct platform_device * pdev ;
struct mii_if_info mii ;
struct type_frame_head * frame_head_info ;
spinlock_t statelock ;
u32 msg_enable ;
u32 frame_cnt ;
int bus_width ;
int irq ;
u16 rc_rxqcr ;
u16 rc_txcr ;
u16 rc_ier ;
u16 sharedbus ;
u16 cmd_reg_cache ;
u16 cmd_reg_cache_int ;
u16 promiscuous ;
u16 all_mcast ;
u16 mcast_lst_size ;
u8 mcast_lst [ MAX_MCAST_LST ] [ MAC_ADDR_LEN ] ;
u8 mcast_bits [ HW_MCAST_SIZE ] ;
u8 mac_addr [ 6 ] ;
u8 fid ;
u8 extra_byte ;
u8 enabled ;
} ;
static int msg_enable ;
# define ks_info(_ks, _msg...) dev_info(&(_ks)->pdev->dev, _msg)
# define ks_warn(_ks, _msg...) dev_warn(&(_ks)->pdev->dev, _msg)
# define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->pdev->dev, _msg)
# define ks_err(_ks, _msg...) dev_err(&(_ks)->pdev->dev, _msg)
# define BE3 0x8000 /* Byte Enable 3 */
# define BE2 0x4000 /* Byte Enable 2 */
# define BE1 0x2000 /* Byte Enable 1 */
# define BE0 0x1000 /* Byte Enable 0 */
/**
* register read / write calls .
*
* All these calls issue transactions to access the chip ' s registers . They
* all require that the necessary lock is held to prevent accesses when the
* chip is busy transfering packet data ( RX / TX FIFO accesses ) .
*/
/**
* ks_rdreg8 - read 8 bit register from device
* @ ks : The chip information
* @ offset : The register address
*
* Read a 8 bit register from the chip , returning the result
*/
static u8 ks_rdreg8 ( struct ks_net * ks , int offset )
{
u16 data ;
u8 shift_bit = offset & 0x03 ;
u8 shift_data = ( offset & 1 ) < < 3 ;
ks - > cmd_reg_cache = ( u16 ) offset | ( u16 ) ( BE0 < < shift_bit ) ;
iowrite16 ( ks - > cmd_reg_cache , ks - > hw_addr_cmd ) ;
data = ioread16 ( ks - > hw_addr ) ;
return ( u8 ) ( data > > shift_data ) ;
}
/**
* ks_rdreg16 - read 16 bit register from device
* @ ks : The chip information
* @ offset : The register address
*
* Read a 16 bit register from the chip , returning the result
*/
static u16 ks_rdreg16 ( struct ks_net * ks , int offset )
{
ks - > cmd_reg_cache = ( u16 ) offset | ( ( BE1 | BE0 ) < < ( offset & 0x02 ) ) ;
iowrite16 ( ks - > cmd_reg_cache , ks - > hw_addr_cmd ) ;
return ioread16 ( ks - > hw_addr ) ;
}
/**
* ks_wrreg8 - write 8 bit register value to chip
* @ ks : The chip information
* @ offset : The register address
* @ value : The value to write
*
*/
static void ks_wrreg8 ( struct ks_net * ks , int offset , u8 value )
{
u8 shift_bit = ( offset & 0x03 ) ;
u16 value_write = ( u16 ) ( value < < ( ( offset & 1 ) < < 3 ) ) ;
ks - > cmd_reg_cache = ( u16 ) offset | ( BE0 < < shift_bit ) ;
iowrite16 ( ks - > cmd_reg_cache , ks - > hw_addr_cmd ) ;
iowrite16 ( value_write , ks - > hw_addr ) ;
}
/**
* ks_wrreg16 - write 16 bit register value to chip
* @ ks : The chip information
* @ offset : The register address
* @ value : The value to write
*
*/
static void ks_wrreg16 ( struct ks_net * ks , int offset , u16 value )
{
ks - > cmd_reg_cache = ( u16 ) offset | ( ( BE1 | BE0 ) < < ( offset & 0x02 ) ) ;
iowrite16 ( ks - > cmd_reg_cache , ks - > hw_addr_cmd ) ;
iowrite16 ( value , ks - > hw_addr ) ;
}
/**
* ks_inblk - read a block of data from QMU . This is called after sudo DMA mode enabled .
* @ ks : The chip state
* @ wptr : buffer address to save data
* @ len : length in byte to read
*
*/
static inline void ks_inblk ( struct ks_net * ks , u16 * wptr , u32 len )
{
len > > = 1 ;
while ( len - - )
* wptr + + = ( u16 ) ioread16 ( ks - > hw_addr ) ;
}
/**
* ks_outblk - write data to QMU . This is called after sudo DMA mode enabled .
* @ ks : The chip information
* @ wptr : buffer address
* @ len : length in byte to write
*
*/
static inline void ks_outblk ( struct ks_net * ks , u16 * wptr , u32 len )
{
len > > = 1 ;
while ( len - - )
iowrite16 ( * wptr + + , ks - > hw_addr ) ;
}
2009-11-19 15:34:30 +00:00
static void ks_disable_int ( struct ks_net * ks )
{
ks_wrreg16 ( ks , KS_IER , 0x0000 ) ;
} /* ks_disable_int */
static void ks_enable_int ( struct ks_net * ks )
{
ks_wrreg16 ( ks , KS_IER , ks - > rc_ier ) ;
} /* ks_enable_int */
2009-09-25 14:42:12 +00:00
/**
* ks_tx_fifo_space - return the available hardware buffer size .
* @ ks : The chip information
*
*/
static inline u16 ks_tx_fifo_space ( struct ks_net * ks )
{
return ks_rdreg16 ( ks , KS_TXMIR ) & 0x1fff ;
}
/**
* ks_save_cmd_reg - save the command register from the cache .
* @ ks : The chip information
*
*/
static inline void ks_save_cmd_reg ( struct ks_net * ks )
{
/*ks8851 MLL has a bug to read back the command register.
* So rely on software to save the content of command register .
*/
ks - > cmd_reg_cache_int = ks - > cmd_reg_cache ;
}
/**
* ks_restore_cmd_reg - restore the command register from the cache and
* write to hardware register .
* @ ks : The chip information
*
*/
static inline void ks_restore_cmd_reg ( struct ks_net * ks )
{
ks - > cmd_reg_cache = ks - > cmd_reg_cache_int ;
iowrite16 ( ks - > cmd_reg_cache , ks - > hw_addr_cmd ) ;
}
/**
* ks_set_powermode - set power mode of the device
* @ ks : The chip information
* @ pwrmode : The power mode value to write to KS_PMECR .
*
* Change the power mode of the chip .
*/
static void ks_set_powermode ( struct ks_net * ks , unsigned pwrmode )
{
unsigned pmecr ;
if ( netif_msg_hw ( ks ) )
ks_dbg ( ks , " setting power mode %d \n " , pwrmode ) ;
ks_rdreg16 ( ks , KS_GRR ) ;
pmecr = ks_rdreg16 ( ks , KS_PMECR ) ;
pmecr & = ~ PMECR_PM_MASK ;
pmecr | = pwrmode ;
ks_wrreg16 ( ks , KS_PMECR , pmecr ) ;
}
/**
* ks_read_config - read chip configuration of bus width .
* @ ks : The chip information
*
*/
static void ks_read_config ( struct ks_net * ks )
{
u16 reg_data = 0 ;
/* Regardless of bus width, 8 bit read should always work.*/
reg_data = ks_rdreg8 ( ks , KS_CCR ) & 0x00FF ;
reg_data | = ks_rdreg8 ( ks , KS_CCR + 1 ) < < 8 ;
/* addr/data bus are multiplexed */
ks - > sharedbus = ( reg_data & CCR_SHARED ) = = CCR_SHARED ;
/* There are garbage data when reading data from QMU,
depending on bus - width .
*/
if ( reg_data & CCR_8BIT ) {
ks - > bus_width = ENUM_BUS_8BIT ;
ks - > extra_byte = 1 ;
} else if ( reg_data & CCR_16BIT ) {
ks - > bus_width = ENUM_BUS_16BIT ;
ks - > extra_byte = 2 ;
} else {
ks - > bus_width = ENUM_BUS_32BIT ;
ks - > extra_byte = 4 ;
}
}
/**
* ks_soft_reset - issue one of the soft reset to the device
* @ ks : The device state .
* @ op : The bit ( s ) to set in the GRR
*
* Issue the relevant soft - reset command to the device ' s GRR register
* specified by @ op .
*
* Note , the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete . Since the datasheet does
* not currently specify the exact sequence , we have chosen something
* that seems to work with our device .
*/
static void ks_soft_reset ( struct ks_net * ks , unsigned op )
{
/* Disable interrupt first */
ks_wrreg16 ( ks , KS_IER , 0x0000 ) ;
ks_wrreg16 ( ks , KS_GRR , op ) ;
mdelay ( 10 ) ; /* wait a short time to effect reset */
ks_wrreg16 ( ks , KS_GRR , 0 ) ;
mdelay ( 1 ) ; /* wait for condition to clear */
}
2009-11-19 15:34:30 +00:00
void ks_enable_qmu ( struct ks_net * ks )
{
u16 w ;
w = ks_rdreg16 ( ks , KS_TXCR ) ;
/* Enables QMU Transmit (TXCR). */
ks_wrreg16 ( ks , KS_TXCR , w | TXCR_TXE ) ;
/*
* RX Frame Count Threshold Enable and Auto - Dequeue RXQ Frame
* Enable
*/
w = ks_rdreg16 ( ks , KS_RXQCR ) ;
ks_wrreg16 ( ks , KS_RXQCR , w | RXQCR_RXFCTE ) ;
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16 ( ks , KS_RXCR1 ) ;
ks_wrreg16 ( ks , KS_RXCR1 , w | RXCR1_RXE ) ;
ks - > enabled = true ;
} /* ks_enable_qmu */
static void ks_disable_qmu ( struct ks_net * ks )
{
u16 w ;
w = ks_rdreg16 ( ks , KS_TXCR ) ;
/* Disables QMU Transmit (TXCR). */
w & = ~ TXCR_TXE ;
ks_wrreg16 ( ks , KS_TXCR , w ) ;
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16 ( ks , KS_RXCR1 ) ;
w & = ~ RXCR1_RXE ;
ks_wrreg16 ( ks , KS_RXCR1 , w ) ;
ks - > enabled = false ;
} /* ks_disable_qmu */
2009-09-25 14:42:12 +00:00
/**
* ks_read_qmu - read 1 pkt data from the QMU .
* @ ks : The chip information
* @ buf : buffer address to save 1 pkt
* @ len : Pkt length
* Here is the sequence to read 1 pkt :
* 1. set sudo DMA mode
* 2. read prepend data
* 3. read pkt data
* 4. reset sudo DMA Mode
*/
static inline void ks_read_qmu ( struct ks_net * ks , u16 * buf , u32 len )
{
u32 r = ks - > extra_byte & 0x1 ;
u32 w = ks - > extra_byte - r ;
/* 1. set sudo DMA mode */
ks_wrreg16 ( ks , KS_RXFDPR , RXFDPR_RXFPAI ) ;
ks_wrreg8 ( ks , KS_RXQCR , ( ks - > rc_rxqcr | RXQCR_SDA ) & 0xff ) ;
/* 2. read prepend data */
/**
* read 4 + extra bytes and discard them .
* extra bytes for dummy , 2 for status , 2 for len
*/
/* use likely(r) for 8 bit access for performance */
if ( unlikely ( r ) )
ioread8 ( ks - > hw_addr ) ;
ks_inblk ( ks , buf , w + 2 + 2 ) ;
/* 3. read pkt data */
ks_inblk ( ks , buf , ALIGN ( len , 4 ) ) ;
/* 4. reset sudo DMA Mode */
ks_wrreg8 ( ks , KS_RXQCR , ks - > rc_rxqcr ) ;
}
/**
* ks_rcv - read multiple pkts data from the QMU .
* @ ks : The chip information
* @ netdev : The network device being opened .
*
* Read all of header information before reading pkt content .
* It is not allowed only port of pkts in QMU after issuing
* interrupt ack .
*/
static void ks_rcv ( struct ks_net * ks , struct net_device * netdev )
{
u32 i ;
struct type_frame_head * frame_hdr = ks - > frame_head_info ;
struct sk_buff * skb ;
ks - > frame_cnt = ks_rdreg16 ( ks , KS_RXFCTR ) > > 8 ;
/* read all header information */
for ( i = 0 ; i < ks - > frame_cnt ; i + + ) {
/* Checking Received packet status */
frame_hdr - > sts = ks_rdreg16 ( ks , KS_RXFHSR ) ;
/* Get packet len from hardware */
frame_hdr - > len = ks_rdreg16 ( ks , KS_RXFHBCR ) ;
frame_hdr + + ;
}
frame_hdr = ks - > frame_head_info ;
while ( ks - > frame_cnt - - ) {
skb = dev_alloc_skb ( frame_hdr - > len + 16 ) ;
if ( likely ( skb & & ( frame_hdr - > sts & RXFSHR_RXFV ) & &
( frame_hdr - > len < RX_BUF_SIZE ) & & frame_hdr - > len ) ) {
skb_reserve ( skb , 2 ) ;
/* read data block including CRC 4 bytes */
2009-11-19 15:34:30 +00:00
ks_read_qmu ( ks , ( u16 * ) skb - > data , frame_hdr - > len ) ;
2009-09-25 14:42:12 +00:00
skb_put ( skb , frame_hdr - > len ) ;
skb - > dev = netdev ;
skb - > protocol = eth_type_trans ( skb , netdev ) ;
netif_rx ( skb ) ;
} else {
printk ( KERN_ERR " %s: err:skb alloc \n " , __func__ ) ;
ks_wrreg16 ( ks , KS_RXQCR , ( ks - > rc_rxqcr | RXQCR_RRXEF ) ) ;
if ( skb )
dev_kfree_skb_irq ( skb ) ;
}
frame_hdr + + ;
}
}
/**
* ks_update_link_status - link status update .
* @ netdev : The network device being opened .
* @ ks : The chip information
*
*/
static void ks_update_link_status ( struct net_device * netdev , struct ks_net * ks )
{
/* check the status of the link */
u32 link_up_status ;
if ( ks_rdreg16 ( ks , KS_P1SR ) & P1SR_LINK_GOOD ) {
netif_carrier_on ( netdev ) ;
link_up_status = true ;
} else {
netif_carrier_off ( netdev ) ;
link_up_status = false ;
}
if ( netif_msg_link ( ks ) )
ks_dbg ( ks , " %s: %s \n " ,
__func__ , link_up_status ? " UP " : " DOWN " ) ;
}
/**
* ks_irq - device interrupt handler
* @ irq : Interrupt number passed from the IRQ hnalder .
* @ pw : The private word passed to register_irq ( ) , our struct ks_net .
*
* This is the handler invoked to find out what happened
*
* Read the interrupt status , work out what needs to be done and then clear
* any of the interrupts that are not needed .
*/
static irqreturn_t ks_irq ( int irq , void * pw )
{
2010-01-27 06:03:16 +00:00
struct net_device * netdev = pw ;
struct ks_net * ks = netdev_priv ( netdev ) ;
2009-09-25 14:42:12 +00:00
u16 status ;
/*this should be the first in IRQ handler */
ks_save_cmd_reg ( ks ) ;
status = ks_rdreg16 ( ks , KS_ISR ) ;
if ( unlikely ( ! status ) ) {
ks_restore_cmd_reg ( ks ) ;
return IRQ_NONE ;
}
ks_wrreg16 ( ks , KS_ISR , status ) ;
if ( likely ( status & IRQ_RXI ) )
ks_rcv ( ks , netdev ) ;
if ( unlikely ( status & IRQ_LCI ) )
ks_update_link_status ( netdev , ks ) ;
if ( unlikely ( status & IRQ_TXI ) )
netif_wake_queue ( netdev ) ;
if ( unlikely ( status & IRQ_LDI ) ) {
u16 pmecr = ks_rdreg16 ( ks , KS_PMECR ) ;
pmecr & = ~ PMECR_WKEVT_MASK ;
ks_wrreg16 ( ks , KS_PMECR , pmecr | PMECR_WKEVT_LINK ) ;
}
/* this should be the last in IRQ handler*/
ks_restore_cmd_reg ( ks ) ;
return IRQ_HANDLED ;
}
/**
* ks_net_open - open network device
* @ netdev : The network device being opened .
*
* Called when the network device is marked active , such as a user executing
* ' ifconfig up ' on the device .
*/
static int ks_net_open ( struct net_device * netdev )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
int err ;
# define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
/* lock the card, even if we may not actually do anything
* else at the moment .
*/
if ( netif_msg_ifup ( ks ) )
ks_dbg ( ks , " %s - entry \n " , __func__ ) ;
/* reset the HW */
2009-11-19 15:34:30 +00:00
err = request_irq ( ks - > irq , ks_irq , KS_INT_FLAGS , DRV_NAME , netdev ) ;
2009-09-25 14:42:12 +00:00
if ( err ) {
printk ( KERN_ERR " Failed to request IRQ: %d: %d \n " ,
ks - > irq , err ) ;
return err ;
}
2009-11-19 15:34:30 +00:00
/* wake up powermode to normal mode */
ks_set_powermode ( ks , PMECR_PM_NORMAL ) ;
mdelay ( 1 ) ; /* wait for normal mode to take effect */
ks_wrreg16 ( ks , KS_ISR , 0xffff ) ;
ks_enable_int ( ks ) ;
ks_enable_qmu ( ks ) ;
netif_start_queue ( ks - > netdev ) ;
2009-09-25 14:42:12 +00:00
if ( netif_msg_ifup ( ks ) )
ks_dbg ( ks , " network device %s up \n " , netdev - > name ) ;
return 0 ;
}
/**
* ks_net_stop - close network device
* @ netdev : The device being closed .
*
* Called to close down a network device which has been active . Cancell any
* work , shutdown the RX and TX process and then place the chip into a low
* power state whilst it is not being used .
*/
static int ks_net_stop ( struct net_device * netdev )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
if ( netif_msg_ifdown ( ks ) )
ks_info ( ks , " %s: shutting down \n " , netdev - > name ) ;
netif_stop_queue ( netdev ) ;
mutex_lock ( & ks - > lock ) ;
/* turn off the IRQs and ack any outstanding */
ks_wrreg16 ( ks , KS_IER , 0x0000 ) ;
ks_wrreg16 ( ks , KS_ISR , 0xffff ) ;
2009-11-19 15:34:30 +00:00
/* shutdown RX/TX QMU */
ks_disable_qmu ( ks ) ;
2009-09-25 14:42:12 +00:00
/* set powermode to soft power down to save power */
ks_set_powermode ( ks , PMECR_PM_SOFTDOWN ) ;
free_irq ( ks - > irq , netdev ) ;
mutex_unlock ( & ks - > lock ) ;
return 0 ;
}
/**
* ks_write_qmu - write 1 pkt data to the QMU .
* @ ks : The chip information
* @ pdata : buffer address to save 1 pkt
* @ len : Pkt length in byte
* Here is the sequence to write 1 pkt :
* 1. set sudo DMA mode
* 2. write status / length
* 3. write pkt data
* 4. reset sudo DMA Mode
* 5. reset sudo DMA mode
* 6. Wait until pkt is out
*/
static void ks_write_qmu ( struct ks_net * ks , u8 * pdata , u16 len )
{
/* start header at txb[0] to align txw entries */
2009-11-19 15:34:30 +00:00
ks - > txh . txw [ 0 ] = 0 ;
2009-09-25 14:42:12 +00:00
ks - > txh . txw [ 1 ] = cpu_to_le16 ( len ) ;
/* 1. set sudo-DMA mode */
ks_wrreg8 ( ks , KS_RXQCR , ( ks - > rc_rxqcr | RXQCR_SDA ) & 0xff ) ;
/* 2. write status/lenth info */
ks_outblk ( ks , ks - > txh . txw , 4 ) ;
/* 3. write pkt data */
ks_outblk ( ks , ( u16 * ) pdata , ALIGN ( len , 4 ) ) ;
/* 4. reset sudo-DMA mode */
ks_wrreg8 ( ks , KS_RXQCR , ks - > rc_rxqcr ) ;
/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
ks_wrreg16 ( ks , KS_TXQCR , TXQCR_METFE ) ;
/* 6. wait until TXQCR_METFE is auto-cleared */
while ( ks_rdreg16 ( ks , KS_TXQCR ) & TXQCR_METFE )
;
}
/**
* ks_start_xmit - transmit packet
* @ skb : The buffer to transmit
* @ netdev : The device used to transmit the packet .
*
* Called by the network layer to transmit the @ skb .
* spin_lock_irqsave is required because tx and rx should be mutual exclusive .
* So while tx is in - progress , prevent IRQ interrupt from happenning .
*/
static int ks_start_xmit ( struct sk_buff * skb , struct net_device * netdev )
{
int retv = NETDEV_TX_OK ;
struct ks_net * ks = netdev_priv ( netdev ) ;
disable_irq ( netdev - > irq ) ;
ks_disable_int ( ks ) ;
spin_lock ( & ks - > statelock ) ;
/* Extra space are required:
* 4 byte for alignment , 4 for status / length , 4 for CRC
*/
if ( likely ( ks_tx_fifo_space ( ks ) > = skb - > len + 12 ) ) {
ks_write_qmu ( ks , skb - > data , skb - > len ) ;
dev_kfree_skb ( skb ) ;
} else
retv = NETDEV_TX_BUSY ;
spin_unlock ( & ks - > statelock ) ;
ks_enable_int ( ks ) ;
enable_irq ( netdev - > irq ) ;
return retv ;
}
/**
* ks_start_rx - ready to serve pkts
* @ ks : The chip information
*
*/
static void ks_start_rx ( struct ks_net * ks )
{
u16 cntl ;
/* Enables QMU Receive (RXCR1). */
cntl = ks_rdreg16 ( ks , KS_RXCR1 ) ;
cntl | = RXCR1_RXE ;
ks_wrreg16 ( ks , KS_RXCR1 , cntl ) ;
} /* ks_start_rx */
/**
* ks_stop_rx - stop to serve pkts
* @ ks : The chip information
*
*/
static void ks_stop_rx ( struct ks_net * ks )
{
u16 cntl ;
/* Disables QMU Receive (RXCR1). */
cntl = ks_rdreg16 ( ks , KS_RXCR1 ) ;
cntl & = ~ RXCR1_RXE ;
ks_wrreg16 ( ks , KS_RXCR1 , cntl ) ;
} /* ks_stop_rx */
static unsigned long const ethernet_polynomial = 0x04c11db7U ;
static unsigned long ether_gen_crc ( int length , u8 * data )
{
long crc = - 1 ;
while ( - - length > = 0 ) {
u8 current_octet = * data + + ;
int bit ;
for ( bit = 0 ; bit < 8 ; bit + + , current_octet > > = 1 ) {
crc = ( crc < < 1 ) ^
( ( crc < 0 ) ^ ( current_octet & 1 ) ?
ethernet_polynomial : 0 ) ;
}
}
return ( unsigned long ) crc ;
} /* ether_gen_crc */
/**
* ks_set_grpaddr - set multicast information
* @ ks : The chip information
*/
static void ks_set_grpaddr ( struct ks_net * ks )
{
u8 i ;
u32 index , position , value ;
memset ( ks - > mcast_bits , 0 , sizeof ( u8 ) * HW_MCAST_SIZE ) ;
for ( i = 0 ; i < ks - > mcast_lst_size ; i + + ) {
position = ( ether_gen_crc ( 6 , ks - > mcast_lst [ i ] ) > > 26 ) & 0x3f ;
index = position > > 3 ;
value = 1 < < ( position & 7 ) ;
ks - > mcast_bits [ index ] | = ( u8 ) value ;
}
for ( i = 0 ; i < HW_MCAST_SIZE ; i + + ) {
if ( i & 1 ) {
ks_wrreg16 ( ks , ( u16 ) ( ( KS_MAHTR0 + i ) & ~ 1 ) ,
( ks - > mcast_bits [ i ] < < 8 ) |
ks - > mcast_bits [ i - 1 ] ) ;
}
}
} /* ks_set_grpaddr */
/*
* ks_clear_mcast - clear multicast information
*
* @ ks : The chip information
* This routine removes all mcast addresses set in the hardware .
*/
static void ks_clear_mcast ( struct ks_net * ks )
{
u16 i , mcast_size ;
for ( i = 0 ; i < HW_MCAST_SIZE ; i + + )
ks - > mcast_bits [ i ] = 0 ;
mcast_size = HW_MCAST_SIZE > > 2 ;
for ( i = 0 ; i < mcast_size ; i + + )
ks_wrreg16 ( ks , KS_MAHTR0 + ( 2 * i ) , 0 ) ;
}
static void ks_set_promis ( struct ks_net * ks , u16 promiscuous_mode )
{
u16 cntl ;
ks - > promiscuous = promiscuous_mode ;
ks_stop_rx ( ks ) ; /* Stop receiving for reconfiguration */
cntl = ks_rdreg16 ( ks , KS_RXCR1 ) ;
cntl & = ~ RXCR1_FILTER_MASK ;
if ( promiscuous_mode )
/* Enable Promiscuous mode */
cntl | = RXCR1_RXAE | RXCR1_RXINVF ;
else
/* Disable Promiscuous mode (default normal mode) */
cntl | = RXCR1_RXPAFMA ;
ks_wrreg16 ( ks , KS_RXCR1 , cntl ) ;
if ( ks - > enabled )
ks_start_rx ( ks ) ;
} /* ks_set_promis */
static void ks_set_mcast ( struct ks_net * ks , u16 mcast )
{
u16 cntl ;
ks - > all_mcast = mcast ;
ks_stop_rx ( ks ) ; /* Stop receiving for reconfiguration */
cntl = ks_rdreg16 ( ks , KS_RXCR1 ) ;
cntl & = ~ RXCR1_FILTER_MASK ;
if ( mcast )
/* Enable "Perfect with Multicast address passed mode" */
cntl | = ( RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA ) ;
else
/**
* Disable " Perfect with Multicast address passed
* mode " (normal mode).
*/
cntl | = RXCR1_RXPAFMA ;
ks_wrreg16 ( ks , KS_RXCR1 , cntl ) ;
if ( ks - > enabled )
ks_start_rx ( ks ) ;
} /* ks_set_mcast */
static void ks_set_rx_mode ( struct net_device * netdev )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
struct dev_mc_list * ptr ;
/* Turn on/off promiscuous mode. */
if ( ( netdev - > flags & IFF_PROMISC ) = = IFF_PROMISC )
ks_set_promis ( ks ,
( u16 ) ( ( netdev - > flags & IFF_PROMISC ) = = IFF_PROMISC ) ) ;
/* Turn on/off all mcast mode. */
else if ( ( netdev - > flags & IFF_ALLMULTI ) = = IFF_ALLMULTI )
ks_set_mcast ( ks ,
( u16 ) ( ( netdev - > flags & IFF_ALLMULTI ) = = IFF_ALLMULTI ) ) ;
else
ks_set_promis ( ks , false ) ;
2010-02-08 04:30:35 +00:00
if ( ( netdev - > flags & IFF_MULTICAST ) & & netdev_mc_count ( netdev ) ) {
if ( netdev_mc_count ( netdev ) < = MAX_MCAST_LST ) {
2009-09-25 14:42:12 +00:00
int i = 0 ;
2010-02-23 09:19:49 +00:00
netdev_for_each_mc_addr ( ptr , netdev ) {
2009-09-25 14:42:12 +00:00
if ( ! ( * ptr - > dmi_addr & 1 ) )
continue ;
if ( i > = MAX_MCAST_LST )
break ;
memcpy ( ks - > mcast_lst [ i + + ] , ptr - > dmi_addr ,
MAC_ADDR_LEN ) ;
}
ks - > mcast_lst_size = ( u8 ) i ;
ks_set_grpaddr ( ks ) ;
} else {
/**
* List too big to support so
* turn on all mcast mode .
*/
ks - > mcast_lst_size = MAX_MCAST_LST ;
ks_set_mcast ( ks , true ) ;
}
} else {
ks - > mcast_lst_size = 0 ;
ks_clear_mcast ( ks ) ;
}
} /* ks_set_rx_mode */
static void ks_set_mac ( struct ks_net * ks , u8 * data )
{
u16 * pw = ( u16 * ) data ;
u16 w , u ;
ks_stop_rx ( ks ) ; /* Stop receiving for reconfiguration */
u = * pw + + ;
w = ( ( u & 0xFF ) < < 8 ) | ( ( u > > 8 ) & 0xFF ) ;
ks_wrreg16 ( ks , KS_MARH , w ) ;
u = * pw + + ;
w = ( ( u & 0xFF ) < < 8 ) | ( ( u > > 8 ) & 0xFF ) ;
ks_wrreg16 ( ks , KS_MARM , w ) ;
u = * pw ;
w = ( ( u & 0xFF ) < < 8 ) | ( ( u > > 8 ) & 0xFF ) ;
ks_wrreg16 ( ks , KS_MARL , w ) ;
memcpy ( ks - > mac_addr , data , 6 ) ;
if ( ks - > enabled )
ks_start_rx ( ks ) ;
}
static int ks_set_mac_address ( struct net_device * netdev , void * paddr )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
struct sockaddr * addr = paddr ;
u8 * da ;
memcpy ( netdev - > dev_addr , addr - > sa_data , netdev - > addr_len ) ;
da = ( u8 * ) netdev - > dev_addr ;
ks_set_mac ( ks , da ) ;
return 0 ;
}
static int ks_net_ioctl ( struct net_device * netdev , struct ifreq * req , int cmd )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
if ( ! netif_running ( netdev ) )
return - EINVAL ;
return generic_mii_ioctl ( & ks - > mii , if_mii ( req ) , cmd , NULL ) ;
}
static const struct net_device_ops ks_netdev_ops = {
. ndo_open = ks_net_open ,
. ndo_stop = ks_net_stop ,
. ndo_do_ioctl = ks_net_ioctl ,
. ndo_start_xmit = ks_start_xmit ,
. ndo_set_mac_address = ks_set_mac_address ,
. ndo_set_rx_mode = ks_set_rx_mode ,
. ndo_change_mtu = eth_change_mtu ,
. ndo_validate_addr = eth_validate_addr ,
} ;
/* ethtool support */
static void ks_get_drvinfo ( struct net_device * netdev ,
struct ethtool_drvinfo * di )
{
strlcpy ( di - > driver , DRV_NAME , sizeof ( di - > driver ) ) ;
strlcpy ( di - > version , " 1.00 " , sizeof ( di - > version ) ) ;
strlcpy ( di - > bus_info , dev_name ( netdev - > dev . parent ) ,
sizeof ( di - > bus_info ) ) ;
}
static u32 ks_get_msglevel ( struct net_device * netdev )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
return ks - > msg_enable ;
}
static void ks_set_msglevel ( struct net_device * netdev , u32 to )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
ks - > msg_enable = to ;
}
static int ks_get_settings ( struct net_device * netdev , struct ethtool_cmd * cmd )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
return mii_ethtool_gset ( & ks - > mii , cmd ) ;
}
static int ks_set_settings ( struct net_device * netdev , struct ethtool_cmd * cmd )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
return mii_ethtool_sset ( & ks - > mii , cmd ) ;
}
static u32 ks_get_link ( struct net_device * netdev )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
return mii_link_ok ( & ks - > mii ) ;
}
static int ks_nway_reset ( struct net_device * netdev )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
return mii_nway_restart ( & ks - > mii ) ;
}
static const struct ethtool_ops ks_ethtool_ops = {
. get_drvinfo = ks_get_drvinfo ,
. get_msglevel = ks_get_msglevel ,
. set_msglevel = ks_set_msglevel ,
. get_settings = ks_get_settings ,
. set_settings = ks_set_settings ,
. get_link = ks_get_link ,
. nway_reset = ks_nway_reset ,
} ;
/* MII interface controls */
/**
* ks_phy_reg - convert MII register into a KS8851 register
* @ reg : MII register number .
*
* Return the KS8851 register number for the corresponding MII PHY register
* if possible . Return zero if the MII register has no direct mapping to the
* KS8851 register set .
*/
static int ks_phy_reg ( int reg )
{
switch ( reg ) {
case MII_BMCR :
return KS_P1MBCR ;
case MII_BMSR :
return KS_P1MBSR ;
case MII_PHYSID1 :
return KS_PHY1ILR ;
case MII_PHYSID2 :
return KS_PHY1IHR ;
case MII_ADVERTISE :
return KS_P1ANAR ;
case MII_LPA :
return KS_P1ANLPR ;
}
return 0x0 ;
}
/**
* ks_phy_read - MII interface PHY register read .
* @ netdev : The network device the PHY is on .
* @ phy_addr : Address of PHY ( ignored as we only have one )
* @ reg : The register to read .
*
* This call reads data from the PHY register specified in @ reg . Since the
* device does not support all the MII registers , the non - existant values
* are always returned as zero .
*
* We return zero for unsupported registers as the MII code does not check
* the value returned for any error status , and simply returns it to the
* caller . The mii - tool that the driver was tested with takes any - ve error
* as real PHY capabilities , thus displaying incorrect data to the user .
*/
static int ks_phy_read ( struct net_device * netdev , int phy_addr , int reg )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
int ksreg ;
int result ;
ksreg = ks_phy_reg ( reg ) ;
if ( ! ksreg )
return 0x0 ; /* no error return allowed, so use zero */
mutex_lock ( & ks - > lock ) ;
result = ks_rdreg16 ( ks , ksreg ) ;
mutex_unlock ( & ks - > lock ) ;
return result ;
}
static void ks_phy_write ( struct net_device * netdev ,
int phy , int reg , int value )
{
struct ks_net * ks = netdev_priv ( netdev ) ;
int ksreg ;
ksreg = ks_phy_reg ( reg ) ;
if ( ksreg ) {
mutex_lock ( & ks - > lock ) ;
ks_wrreg16 ( ks , ksreg , value ) ;
mutex_unlock ( & ks - > lock ) ;
}
}
/**
* ks_read_selftest - read the selftest memory info .
* @ ks : The device state
*
* Read and check the TX / RX memory selftest information .
*/
static int ks_read_selftest ( struct ks_net * ks )
{
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF ;
int ret = 0 ;
unsigned rd ;
rd = ks_rdreg16 ( ks , KS_MBIR ) ;
if ( ( rd & both_done ) ! = both_done ) {
ks_warn ( ks , " Memory selftest not finished \n " ) ;
return 0 ;
}
if ( rd & MBIR_TXMBFA ) {
ks_err ( ks , " TX memory selftest fails \n " ) ;
ret | = 1 ;
}
if ( rd & MBIR_RXMBFA ) {
ks_err ( ks , " RX memory selftest fails \n " ) ;
ret | = 2 ;
}
ks_info ( ks , " the selftest passes \n " ) ;
return ret ;
}
static void ks_setup ( struct ks_net * ks )
{
u16 w ;
/**
* Configure QMU Transmit
*/
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16 ( ks , KS_TXFDPR , TXFDPR_TXFPAI ) ;
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16 ( ks , KS_RXFDPR , RXFDPR_RXFPAI ) ;
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16 ( ks , KS_RXFCTR , 1 & RXFCTR_THRESHOLD_MASK ) ;
/* Setup RxQ Command Control (RXQCR) */
ks - > rc_rxqcr = RXQCR_CMD_CNTL ;
ks_wrreg16 ( ks , KS_RXQCR , ks - > rc_rxqcr ) ;
/**
* set the force mode to half duplex , default is full duplex
* because if the auto - negotiation fails , most switch uses
* half - duplex .
*/
w = ks_rdreg16 ( ks , KS_P1MBCR ) ;
w & = ~ P1MBCR_FORCE_FDX ;
ks_wrreg16 ( ks , KS_P1MBCR , w ) ;
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP ;
ks_wrreg16 ( ks , KS_TXCR , w ) ;
2009-11-19 15:34:30 +00:00
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC ;
2009-09-25 14:42:12 +00:00
if ( ks - > promiscuous ) /* bPromiscuous */
w | = ( RXCR1_RXAE | RXCR1_RXINVF ) ;
else if ( ks - > all_mcast ) /* Multicast address passed mode */
w | = ( RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA ) ;
else /* Normal mode */
w | = RXCR1_RXPAFMA ;
ks_wrreg16 ( ks , KS_RXCR1 , w ) ;
} /*ks_setup */
static void ks_setup_int ( struct ks_net * ks )
{
ks - > rc_ier = 0x00 ;
/* Clear the interrupts status of the hardware. */
ks_wrreg16 ( ks , KS_ISR , 0xffff ) ;
/* Enables the interrupts of the hardware. */
ks - > rc_ier = ( IRQ_LCI | IRQ_TXI | IRQ_RXI ) ;
} /* ks_setup_int */
static int ks_hw_init ( struct ks_net * ks )
{
# define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
ks - > promiscuous = 0 ;
ks - > all_mcast = 0 ;
ks - > mcast_lst_size = 0 ;
ks - > frame_head_info = ( struct type_frame_head * ) \
kmalloc ( MHEADER_SIZE , GFP_KERNEL ) ;
if ( ! ks - > frame_head_info ) {
printk ( KERN_ERR " Error: Fail to allocate frame memory \n " ) ;
return false ;
}
ks_set_mac ( ks , KS_DEFAULT_MAC_ADDRESS ) ;
return true ;
}
static int __devinit ks8851_probe ( struct platform_device * pdev )
{
int err = - ENOMEM ;
struct resource * io_d , * io_c ;
struct net_device * netdev ;
struct ks_net * ks ;
u16 id , data ;
io_d = platform_get_resource ( pdev , IORESOURCE_MEM , 0 ) ;
io_c = platform_get_resource ( pdev , IORESOURCE_MEM , 1 ) ;
if ( ! request_mem_region ( io_d - > start , resource_size ( io_d ) , DRV_NAME ) )
goto err_mem_region ;
if ( ! request_mem_region ( io_c - > start , resource_size ( io_c ) , DRV_NAME ) )
goto err_mem_region1 ;
netdev = alloc_etherdev ( sizeof ( struct ks_net ) ) ;
if ( ! netdev )
goto err_alloc_etherdev ;
SET_NETDEV_DEV ( netdev , & pdev - > dev ) ;
ks = netdev_priv ( netdev ) ;
ks - > netdev = netdev ;
ks - > hw_addr = ioremap ( io_d - > start , resource_size ( io_d ) ) ;
if ( ! ks - > hw_addr )
goto err_ioremap ;
ks - > hw_addr_cmd = ioremap ( io_c - > start , resource_size ( io_c ) ) ;
if ( ! ks - > hw_addr_cmd )
goto err_ioremap1 ;
ks - > irq = platform_get_irq ( pdev , 0 ) ;
if ( ks - > irq < 0 ) {
err = ks - > irq ;
goto err_get_irq ;
}
ks - > pdev = pdev ;
mutex_init ( & ks - > lock ) ;
spin_lock_init ( & ks - > statelock ) ;
netdev - > netdev_ops = & ks_netdev_ops ;
netdev - > ethtool_ops = & ks_ethtool_ops ;
/* setup mii state */
ks - > mii . dev = netdev ;
ks - > mii . phy_id = 1 ,
ks - > mii . phy_id_mask = 1 ;
ks - > mii . reg_num_mask = 0xf ;
ks - > mii . mdio_read = ks_phy_read ;
ks - > mii . mdio_write = ks_phy_write ;
ks_info ( ks , " message enable is %d \n " , msg_enable ) ;
/* set the default message enable */
ks - > msg_enable = netif_msg_init ( msg_enable , ( NETIF_MSG_DRV |
NETIF_MSG_PROBE |
NETIF_MSG_LINK ) ) ;
ks_read_config ( ks ) ;
/* simple check for a valid chip being connected to the bus */
if ( ( ks_rdreg16 ( ks , KS_CIDER ) & ~ CIDER_REV_MASK ) ! = CIDER_ID ) {
ks_err ( ks , " failed to read device ID \n " ) ;
err = - ENODEV ;
goto err_register ;
}
if ( ks_read_selftest ( ks ) ) {
ks_err ( ks , " failed to read device ID \n " ) ;
err = - ENODEV ;
goto err_register ;
}
err = register_netdev ( netdev ) ;
if ( err )
goto err_register ;
platform_set_drvdata ( pdev , netdev ) ;
ks_soft_reset ( ks , GRR_GSR ) ;
ks_hw_init ( ks ) ;
2009-11-19 15:34:30 +00:00
ks_disable_qmu ( ks ) ;
2009-09-25 14:42:12 +00:00
ks_setup ( ks ) ;
ks_setup_int ( ks ) ;
memcpy ( netdev - > dev_addr , ks - > mac_addr , 6 ) ;
data = ks_rdreg16 ( ks , KS_OBCR ) ;
ks_wrreg16 ( ks , KS_OBCR , data | OBCR_ODS_16MA ) ;
/**
* If you want to use the default MAC addr ,
* comment out the 2 functions below .
*/
random_ether_addr ( netdev - > dev_addr ) ;
ks_set_mac ( ks , netdev - > dev_addr ) ;
id = ks_rdreg16 ( ks , KS_CIDER ) ;
printk ( KERN_INFO DRV_NAME
" Found chip, family: 0x%x, id: 0x%x, rev: 0x%x \n " ,
( id > > 8 ) & 0xff , ( id > > 4 ) & 0xf , ( id > > 1 ) & 0x7 ) ;
return 0 ;
err_register :
err_get_irq :
iounmap ( ks - > hw_addr_cmd ) ;
err_ioremap1 :
iounmap ( ks - > hw_addr ) ;
err_ioremap :
free_netdev ( netdev ) ;
err_alloc_etherdev :
release_mem_region ( io_c - > start , resource_size ( io_c ) ) ;
err_mem_region1 :
release_mem_region ( io_d - > start , resource_size ( io_d ) ) ;
err_mem_region :
return err ;
}
static int __devexit ks8851_remove ( struct platform_device * pdev )
{
struct net_device * netdev = platform_get_drvdata ( pdev ) ;
struct ks_net * ks = netdev_priv ( netdev ) ;
struct resource * iomem = platform_get_resource ( pdev , IORESOURCE_MEM , 0 ) ;
2009-11-19 15:34:30 +00:00
kfree ( ks - > frame_head_info ) ;
2009-09-25 14:42:12 +00:00
unregister_netdev ( netdev ) ;
iounmap ( ks - > hw_addr ) ;
free_netdev ( netdev ) ;
release_mem_region ( iomem - > start , resource_size ( iomem ) ) ;
platform_set_drvdata ( pdev , NULL ) ;
return 0 ;
}
static struct platform_driver ks8851_platform_driver = {
. driver = {
. name = DRV_NAME ,
. owner = THIS_MODULE ,
} ,
. probe = ks8851_probe ,
. remove = __devexit_p ( ks8851_remove ) ,
} ;
static int __init ks8851_init ( void )
{
return platform_driver_register ( & ks8851_platform_driver ) ;
}
static void __exit ks8851_exit ( void )
{
platform_driver_unregister ( & ks8851_platform_driver ) ;
}
module_init ( ks8851_init ) ;
module_exit ( ks8851_exit ) ;
MODULE_DESCRIPTION ( " KS8851 MLL Network driver " ) ;
MODULE_AUTHOR ( " David Choi <david.choi@micrel.com> " ) ;
MODULE_LICENSE ( " GPL " ) ;
module_param_named ( message , msg_enable , int , 0 ) ;
MODULE_PARM_DESC ( message , " Message verbosity level (0=none, 31=all) " ) ;