2020-04-28 01:01:49 +03:00
.. SPDX-License-Identifier: GPL-2.0
=========
IP Sysctl
=========
/proc/sys/net/ipv4/* Variables
==============================
2005-04-17 02:20:36 +04:00
ip_forward - BOOLEAN
2020-04-28 01:01:49 +03:00
- 0 - disabled (default)
- not 0 - enabled
2005-04-17 02:20:36 +04:00
Forward Packets between interfaces.
This variable is special, its change resets all configuration
parameters to their default state (RFC1122 for hosts, RFC1812
for routers)
ip_default_ttl - INTEGER
2010-12-13 23:50:49 +03:00
Default value of TTL field (Time To Live) for outgoing (but not
forwarded) IP packets. Should be between 1 and 255 inclusive.
Default: 64 (as recommended by RFC1700)
2005-04-17 02:20:36 +04:00
2013-12-14 08:13:45 +04:00
ip_no_pmtu_disc - INTEGER
Disable Path MTU Discovery. If enabled in mode 1 and a
2013-12-14 07:42:13 +04:00
fragmentation-required ICMP is received, the PMTU to this
2021-12-30 06:28:56 +03:00
destination will be set to the smallest of the old MTU to
this destination and min_pmtu (see below). You will need
2013-12-14 07:42:13 +04:00
to raise min_pmtu to the smallest interface MTU on your system
manually if you want to avoid locally generated fragments.
2013-12-14 08:13:45 +04:00
In mode 2 incoming Path MTU Discovery messages will be
discarded. Outgoing frames are handled the same as in mode 1,
implicitly setting IP_PMTUDISC_DONT on every created socket.
2018-06-04 13:07:37 +03:00
Mode 3 is a hardened pmtu discover mode. The kernel will only
2014-01-09 13:01:17 +04:00
accept fragmentation-needed errors if the underlying protocol
can verify them besides a plain socket lookup. Current
protocols for which pmtu events will be honored are TCP, SCTP
and DCCP as they verify e.g. the sequence number or the
association. This mode should not be enabled globally but is
only intended to secure e.g. name servers in namespaces where
TCP path mtu must still work but path MTU information of other
protocols should be discarded. If enabled globally this mode
could break other protocols.
Possible values: 0-3
2020-04-28 01:01:49 +03:00
2013-12-14 07:42:13 +04:00
Default: FALSE
2005-04-17 02:20:36 +04:00
min_pmtu - INTEGER
2023-01-30 02:10:48 +03:00
default 552 - minimum Path MTU. Unless this is changed manually,
2021-12-30 06:28:56 +03:00
each cached pmtu will never be lower than this setting.
2005-04-17 02:20:36 +04:00
2014-01-09 13:01:15 +04:00
ip_forward_use_pmtu - BOOLEAN
By default we don't trust protocol path MTUs while forwarding
because they could be easily forged and can lead to unwanted
fragmentation by the router.
You only need to enable this if you have user-space software
which tries to discover path mtus by itself and depends on the
kernel honoring this information. This is normally not the
case.
2020-04-28 01:01:49 +03:00
2014-01-09 13:01:15 +04:00
Default: 0 (disabled)
2020-04-28 01:01:49 +03:00
2014-01-09 13:01:15 +04:00
Possible values:
2020-04-28 01:01:49 +03:00
- 0 - disabled
- 1 - enabled
2014-01-09 13:01:15 +04:00
2014-11-04 14:02:49 +03:00
fwmark_reflect - BOOLEAN
Controls the fwmark of kernel-generated IPv4 reply packets that are not
associated with a socket for example, TCP RSTs or ICMP echo replies).
If unset, these packets have a fwmark of zero. If set, they have the
fwmark of the packet they are replying to.
2020-04-28 01:01:49 +03:00
2014-11-04 14:02:49 +03:00
Default: 0
2016-04-07 17:21:00 +03:00
fib_multipath_use_neigh - BOOLEAN
Use status of existing neighbor entry when determining nexthop for
multipath routes. If disabled, neighbor information is not used and
packets could be directed to a failed nexthop. Only valid for kernels
built with CONFIG_IP_ROUTE_MULTIPATH enabled.
2020-04-28 01:01:49 +03:00
2016-04-07 17:21:00 +03:00
Default: 0 (disabled)
2020-04-28 01:01:49 +03:00
2016-04-07 17:21:00 +03:00
Possible values:
2020-04-28 01:01:49 +03:00
- 0 - disabled
- 1 - enabled
2016-04-07 17:21:00 +03:00
2017-03-16 16:28:00 +03:00
fib_multipath_hash_policy - INTEGER
Controls which hash policy to use for multipath routes. Only valid
for kernels built with CONFIG_IP_ROUTE_MULTIPATH enabled.
2020-04-28 01:01:49 +03:00
2017-03-16 16:28:00 +03:00
Default: 0 (Layer 3)
2020-04-28 01:01:49 +03:00
2017-03-16 16:28:00 +03:00
Possible values:
2020-04-28 01:01:49 +03:00
- 0 - Layer 3
- 1 - Layer 4
- 2 - Layer 3 or inner Layer 3 if present
2021-05-17 21:15:19 +03:00
- 3 - Custom multipath hash. Fields used for multipath hash calculation
are determined by fib_multipath_hash_fields sysctl
2017-03-16 16:28:00 +03:00
2021-05-17 21:15:18 +03:00
fib_multipath_hash_fields - UNSIGNED INTEGER
When fib_multipath_hash_policy is set to 3 (custom multipath hash), the
fields used for multipath hash calculation are determined by this
sysctl.
This value is a bitmask which enables various fields for multipath hash
calculation.
Possible fields are:
====== ============================
0x0001 Source IP address
0x0002 Destination IP address
0x0004 IP protocol
0x0008 Unused (Flow Label)
0x0010 Source port
0x0020 Destination port
0x0040 Inner source IP address
0x0080 Inner destination IP address
0x0100 Inner IP protocol
0x0200 Inner Flow Label
0x0400 Inner source port
0x0800 Inner destination port
====== ============================
Default: 0x0007 (source IP, destination IP and IP protocol)
2019-03-20 19:18:59 +03:00
fib_sync_mem - UNSIGNED INTEGER
Amount of dirty memory from fib entries that can be backlogged before
synchronize_rcu is forced.
2020-04-28 01:01:49 +03:00
Default: 512kB Minimum: 64kB Maximum: 64MB
2019-03-20 19:18:59 +03:00
2018-08-01 01:36:03 +03:00
ip_forward_update_priority - INTEGER
Whether to update SKB priority from "TOS" field in IPv4 header after it
is forwarded. The new SKB priority is mapped from TOS field value
according to an rt_tos2priority table (see e.g. man tc-prio).
2020-04-28 01:01:49 +03:00
2018-08-01 01:36:03 +03:00
Default: 1 (Update priority.)
2020-04-28 01:01:49 +03:00
2018-08-01 01:36:03 +03:00
Possible values:
2020-04-28 01:01:49 +03:00
- 0 - Do not update priority.
- 1 - Update priority.
2018-08-01 01:36:03 +03:00
2010-11-08 12:13:48 +03:00
route/max_size - INTEGER
Maximum number of routes allowed in the kernel. Increase
this when using large numbers of interfaces and/or routes.
2020-04-28 01:01:49 +03:00
2015-01-08 02:45:56 +03:00
From linux kernel 3.6 onwards, this is deprecated for ipv4
as route cache is no longer used.
2010-11-08 12:13:48 +03:00
2023-01-21 02:23:31 +03:00
From linux kernel 6.3 onwards, this is deprecated for ipv6
as garbage collection manages cached route entries.
2013-01-22 09:20:05 +04:00
neigh/default/gc_thresh1 - INTEGER
Minimum number of entries to keep. Garbage collector will not
purge entries if there are fewer than this number.
2020-04-28 01:01:49 +03:00
2013-03-15 02:49:47 +04:00
Default: 128
2013-01-22 09:20:05 +04:00
2014-08-26 02:05:30 +04:00
neigh/default/gc_thresh2 - INTEGER
Threshold when garbage collector becomes more aggressive about
purging entries. Entries older than 5 seconds will be cleared
when over this number.
2020-04-28 01:01:49 +03:00
2014-08-26 02:05:30 +04:00
Default: 512
2010-11-08 12:13:48 +03:00
neigh/default/gc_thresh3 - INTEGER
neighbor: Improve garbage collection
The existing garbage collection algorithm has a number of problems:
1. The gc algorithm will not evict PERMANENT entries as those entries
are managed by userspace, yet the existing algorithm walks the entire
hash table which means it always considers PERMANENT entries when
looking for entries to evict. In some use cases (e.g., EVPN) there
can be tens of thousands of PERMANENT entries leading to wasted
CPU cycles when gc kicks in. As an example, with 32k permanent
entries, neigh_alloc has been observed taking more than 4 msec per
invocation.
2. Currently, when the number of neighbor entries hits gc_thresh2 and
the last flush for the table was more than 5 seconds ago gc kicks in
walks the entire hash table evicting *all* entries not in PERMANENT
or REACHABLE state and not marked as externally learned. There is no
discriminator on when the neigh entry was created or if it just moved
from REACHABLE to another NUD_VALID state (e.g., NUD_STALE).
It is possible for entries to be created or for established neighbor
entries to be moved to STALE (e.g., an external node sends an ARP
request) right before the 5 second window lapses:
-----|---------x|----------|-----
t-5 t t+5
If that happens those entries are evicted during gc causing unnecessary
thrashing on neighbor entries and userspace caches trying to track them.
Further, this contradicts the description of gc_thresh2 which says
"Entries older than 5 seconds will be cleared".
One workaround is to make gc_thresh2 == gc_thresh3 but that negates the
whole point of having separate thresholds.
3. Clearing *all* neigh non-PERMANENT/REACHABLE/externally learned entries
when gc_thresh2 is exceeded is over kill and contributes to trashing
especially during startup.
This patch addresses these problems as follows:
1. Use of a separate list_head to track entries that can be garbage
collected along with a separate counter. PERMANENT entries are not
added to this list.
The gc_thresh parameters are only compared to the new counter, not the
total entries in the table. The forced_gc function is updated to only
walk this new gc_list looking for entries to evict.
2. Entries are added to the list head at the tail and removed from the
front.
3. Entries are only evicted if they were last updated more than 5 seconds
ago, adhering to the original intent of gc_thresh2.
4. Forced gc is stopped once the number of gc_entries drops below
gc_thresh2.
5. Since gc checks do not apply to PERMANENT entries, gc levels are skipped
when allocating a new neighbor for a PERMANENT entry. By extension this
means there are no explicit limits on the number of PERMANENT entries
that can be created, but this is no different than FIB entries or FDB
entries.
Signed-off-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-07 23:24:57 +03:00
Maximum number of non-PERMANENT neighbor entries allowed. Increase
this when using large numbers of interfaces and when communicating
2010-11-08 12:13:48 +03:00
with large numbers of directly-connected peers.
2020-04-28 01:01:49 +03:00
2012-12-04 22:50:35 +04:00
Default: 1024
2010-11-08 12:13:48 +03:00
neigh: new unresolved queue limits
Le mercredi 09 novembre 2011 à 16:21 -0500, David Miller a écrit :
> From: David Miller <davem@davemloft.net>
> Date: Wed, 09 Nov 2011 16:16:44 -0500 (EST)
>
> > From: Eric Dumazet <eric.dumazet@gmail.com>
> > Date: Wed, 09 Nov 2011 12:14:09 +0100
> >
> >> unres_qlen is the number of frames we are able to queue per unresolved
> >> neighbour. Its default value (3) was never changed and is responsible
> >> for strange drops, especially if IP fragments are used, or multiple
> >> sessions start in parallel. Even a single tcp flow can hit this limit.
> > ...
> >
> > Ok, I've applied this, let's see what happens :-)
>
> Early answer, build fails.
>
> Please test build this patch with DECNET enabled and resubmit. The
> decnet neigh layer still refers to the removed ->queue_len member.
>
> Thanks.
Ouch, this was fixed on one machine yesterday, but not the other one I
used this morning, sorry.
[PATCH V5 net-next] neigh: new unresolved queue limits
unres_qlen is the number of frames we are able to queue per unresolved
neighbour. Its default value (3) was never changed and is responsible
for strange drops, especially if IP fragments are used, or multiple
sessions start in parallel. Even a single tcp flow can hit this limit.
$ arp -d 192.168.20.108 ; ping -c 2 -s 8000 192.168.20.108
PING 192.168.20.108 (192.168.20.108) 8000(8028) bytes of data.
8008 bytes from 192.168.20.108: icmp_seq=2 ttl=64 time=0.322 ms
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-09 16:07:14 +04:00
neigh/default/unres_qlen_bytes - INTEGER
The maximum number of bytes which may be used by packets
queued for each unresolved address by other network layers.
(added in linux 3.3)
2020-04-28 01:01:49 +03:00
2013-01-03 11:50:29 +04:00
Setting negative value is meaningless and will return error.
2020-04-28 01:01:49 +03:00
2017-08-30 01:16:01 +03:00
Default: SK_WMEM_MAX, (same as net.core.wmem_default).
2020-04-28 01:01:49 +03:00
2017-08-30 01:16:01 +03:00
Exact value depends on architecture and kernel options,
but should be enough to allow queuing 256 packets
of medium size.
neigh: new unresolved queue limits
Le mercredi 09 novembre 2011 à 16:21 -0500, David Miller a écrit :
> From: David Miller <davem@davemloft.net>
> Date: Wed, 09 Nov 2011 16:16:44 -0500 (EST)
>
> > From: Eric Dumazet <eric.dumazet@gmail.com>
> > Date: Wed, 09 Nov 2011 12:14:09 +0100
> >
> >> unres_qlen is the number of frames we are able to queue per unresolved
> >> neighbour. Its default value (3) was never changed and is responsible
> >> for strange drops, especially if IP fragments are used, or multiple
> >> sessions start in parallel. Even a single tcp flow can hit this limit.
> > ...
> >
> > Ok, I've applied this, let's see what happens :-)
>
> Early answer, build fails.
>
> Please test build this patch with DECNET enabled and resubmit. The
> decnet neigh layer still refers to the removed ->queue_len member.
>
> Thanks.
Ouch, this was fixed on one machine yesterday, but not the other one I
used this morning, sorry.
[PATCH V5 net-next] neigh: new unresolved queue limits
unres_qlen is the number of frames we are able to queue per unresolved
neighbour. Its default value (3) was never changed and is responsible
for strange drops, especially if IP fragments are used, or multiple
sessions start in parallel. Even a single tcp flow can hit this limit.
$ arp -d 192.168.20.108 ; ping -c 2 -s 8000 192.168.20.108
PING 192.168.20.108 (192.168.20.108) 8000(8028) bytes of data.
8008 bytes from 192.168.20.108: icmp_seq=2 ttl=64 time=0.322 ms
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-09 16:07:14 +04:00
neigh/default/unres_qlen - INTEGER
The maximum number of packets which may be queued for each
unresolved address by other network layers.
2020-04-28 01:01:49 +03:00
neigh: new unresolved queue limits
Le mercredi 09 novembre 2011 à 16:21 -0500, David Miller a écrit :
> From: David Miller <davem@davemloft.net>
> Date: Wed, 09 Nov 2011 16:16:44 -0500 (EST)
>
> > From: Eric Dumazet <eric.dumazet@gmail.com>
> > Date: Wed, 09 Nov 2011 12:14:09 +0100
> >
> >> unres_qlen is the number of frames we are able to queue per unresolved
> >> neighbour. Its default value (3) was never changed and is responsible
> >> for strange drops, especially if IP fragments are used, or multiple
> >> sessions start in parallel. Even a single tcp flow can hit this limit.
> > ...
> >
> > Ok, I've applied this, let's see what happens :-)
>
> Early answer, build fails.
>
> Please test build this patch with DECNET enabled and resubmit. The
> decnet neigh layer still refers to the removed ->queue_len member.
>
> Thanks.
Ouch, this was fixed on one machine yesterday, but not the other one I
used this morning, sorry.
[PATCH V5 net-next] neigh: new unresolved queue limits
unres_qlen is the number of frames we are able to queue per unresolved
neighbour. Its default value (3) was never changed and is responsible
for strange drops, especially if IP fragments are used, or multiple
sessions start in parallel. Even a single tcp flow can hit this limit.
$ arp -d 192.168.20.108 ; ping -c 2 -s 8000 192.168.20.108
PING 192.168.20.108 (192.168.20.108) 8000(8028) bytes of data.
8008 bytes from 192.168.20.108: icmp_seq=2 ttl=64 time=0.322 ms
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-09 16:07:14 +04:00
(deprecated in linux 3.3) : use unres_qlen_bytes instead.
2020-04-28 01:01:49 +03:00
2012-12-04 22:50:35 +04:00
Prior to linux 3.3, the default value is 3 which may cause
2012-12-06 20:27:51 +04:00
unexpected packet loss. The current default value is calculated
2012-12-04 22:50:35 +04:00
according to default value of unres_qlen_bytes and true size of
packet.
2020-04-28 01:01:49 +03:00
2017-08-30 01:16:01 +03:00
Default: 101
neigh: new unresolved queue limits
Le mercredi 09 novembre 2011 à 16:21 -0500, David Miller a écrit :
> From: David Miller <davem@davemloft.net>
> Date: Wed, 09 Nov 2011 16:16:44 -0500 (EST)
>
> > From: Eric Dumazet <eric.dumazet@gmail.com>
> > Date: Wed, 09 Nov 2011 12:14:09 +0100
> >
> >> unres_qlen is the number of frames we are able to queue per unresolved
> >> neighbour. Its default value (3) was never changed and is responsible
> >> for strange drops, especially if IP fragments are used, or multiple
> >> sessions start in parallel. Even a single tcp flow can hit this limit.
> > ...
> >
> > Ok, I've applied this, let's see what happens :-)
>
> Early answer, build fails.
>
> Please test build this patch with DECNET enabled and resubmit. The
> decnet neigh layer still refers to the removed ->queue_len member.
>
> Thanks.
Ouch, this was fixed on one machine yesterday, but not the other one I
used this morning, sorry.
[PATCH V5 net-next] neigh: new unresolved queue limits
unres_qlen is the number of frames we are able to queue per unresolved
neighbour. Its default value (3) was never changed and is responsible
for strange drops, especially if IP fragments are used, or multiple
sessions start in parallel. Even a single tcp flow can hit this limit.
$ arp -d 192.168.20.108 ; ping -c 2 -s 8000 192.168.20.108
PING 192.168.20.108 (192.168.20.108) 8000(8028) bytes of data.
8008 bytes from 192.168.20.108: icmp_seq=2 ttl=64 time=0.322 ms
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-09 16:07:14 +04:00
2022-06-29 11:48:32 +03:00
neigh/default/interval_probe_time_ms - INTEGER
The probe interval for neighbor entries with NTF_MANAGED flag,
the min value is 1.
Default: 5000
2005-04-17 02:20:36 +04:00
mtu_expires - INTEGER
Time, in seconds, that cached PMTU information is kept.
min_adv_mss - INTEGER
The advertised MSS depends on the first hop route MTU, but will
never be lower than this setting.
2021-02-01 22:47:52 +03:00
fib_notify_on_flag_change - INTEGER
Whether to emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/
2021-02-07 11:22:51 +03:00
RTM_F_TRAP/RTM_F_OFFLOAD_FAILED flags are changed.
2021-02-01 22:47:52 +03:00
After installing a route to the kernel, user space receives an
acknowledgment, which means the route was installed in the kernel,
but not necessarily in hardware.
It is also possible for a route already installed in hardware to change
its action and therefore its flags. For example, a host route that is
trapping packets can be "promoted" to perform decapsulation following
the installation of an IPinIP/VXLAN tunnel.
The notifications will indicate to user-space the state of the route.
Default: 0 (Do not emit notifications.)
Possible values:
- 0 - Do not emit notifications.
- 1 - Emit notifications.
2021-02-07 11:22:51 +03:00
- 2 - Emit notifications only for RTM_F_OFFLOAD_FAILED flag change.
2021-02-01 22:47:52 +03:00
2005-04-17 02:20:36 +04:00
IP Fragmentation:
2018-03-31 22:58:53 +03:00
ipfrag_high_thresh - LONG INTEGER
inet: frags: use rhashtables for reassembly units
Some applications still rely on IP fragmentation, and to be fair linux
reassembly unit is not working under any serious load.
It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!)
A work queue is supposed to garbage collect items when host is under memory
pressure, and doing a hash rebuild, changing seed used in hash computations.
This work queue blocks softirqs for up to 25 ms when doing a hash rebuild,
occurring every 5 seconds if host is under fire.
Then there is the problem of sharing this hash table for all netns.
It is time to switch to rhashtables, and allocate one of them per netns
to speedup netns dismantle, since this is a critical metric these days.
Lookup is now using RCU. A followup patch will even remove
the refcount hold/release left from prior implementation and save
a couple of atomic operations.
Before this patch, 16 cpus (16 RX queue NIC) could not handle more
than 1 Mpps frags DDOS.
After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB
of storage for the fragments (exact number depends on frags being evicted
after timeout)
$ grep FRAG /proc/net/sockstat
FRAG: inuse 1966916 memory 2140004608
A followup patch will change the limits for 64bit arches.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Florian Westphal <fw@strlen.de>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Alexander Aring <alex.aring@gmail.com>
Cc: Stefan Schmidt <stefan@osg.samsung.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 22:58:49 +03:00
Maximum memory used to reassemble IP fragments.
2009-02-23 07:39:04 +03:00
2018-03-31 22:58:53 +03:00
ipfrag_low_thresh - LONG INTEGER
inet: frags: use rhashtables for reassembly units
Some applications still rely on IP fragmentation, and to be fair linux
reassembly unit is not working under any serious load.
It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!)
A work queue is supposed to garbage collect items when host is under memory
pressure, and doing a hash rebuild, changing seed used in hash computations.
This work queue blocks softirqs for up to 25 ms when doing a hash rebuild,
occurring every 5 seconds if host is under fire.
Then there is the problem of sharing this hash table for all netns.
It is time to switch to rhashtables, and allocate one of them per netns
to speedup netns dismantle, since this is a critical metric these days.
Lookup is now using RCU. A followup patch will even remove
the refcount hold/release left from prior implementation and save
a couple of atomic operations.
Before this patch, 16 cpus (16 RX queue NIC) could not handle more
than 1 Mpps frags DDOS.
After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB
of storage for the fragments (exact number depends on frags being evicted
after timeout)
$ grep FRAG /proc/net/sockstat
FRAG: inuse 1966916 memory 2140004608
A followup patch will change the limits for 64bit arches.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Florian Westphal <fw@strlen.de>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Alexander Aring <alex.aring@gmail.com>
Cc: Stefan Schmidt <stefan@osg.samsung.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 22:58:49 +03:00
(Obsolete since linux-4.17)
2014-07-24 18:50:32 +04:00
Maximum memory used to reassemble IP fragments before the kernel
begins to remove incomplete fragment queues to free up resources.
The kernel still accepts new fragments for defragmentation.
2005-04-17 02:20:36 +04:00
ipfrag_time - INTEGER
2009-02-23 07:39:04 +03:00
Time in seconds to keep an IP fragment in memory.
2005-04-17 02:20:36 +04:00
2005-12-14 10:14:27 +03:00
ipfrag_max_dist - INTEGER
2009-02-23 07:39:04 +03:00
ipfrag_max_dist is a non-negative integer value which defines the
maximum "disorder" which is allowed among fragments which share a
common IP source address. Note that reordering of packets is
not unusual, but if a large number of fragments arrive from a source
IP address while a particular fragment queue remains incomplete, it
probably indicates that one or more fragments belonging to that queue
have been lost. When ipfrag_max_dist is positive, an additional check
is done on fragments before they are added to a reassembly queue - if
ipfrag_max_dist (or more) fragments have arrived from a particular IP
address between additions to any IP fragment queue using that source
address, it's presumed that one or more fragments in the queue are
lost. The existing fragment queue will be dropped, and a new one
2005-12-14 10:14:27 +03:00
started. An ipfrag_max_dist value of zero disables this check.
Using a very small value, e.g. 1 or 2, for ipfrag_max_dist can
result in unnecessarily dropping fragment queues when normal
2009-02-23 07:39:04 +03:00
reordering of packets occurs, which could lead to poor application
performance. Using a very large value, e.g. 50000, increases the
likelihood of incorrectly reassembling IP fragments that originate
2005-12-14 10:14:27 +03:00
from different IP datagrams, which could result in data corruption.
Default: 64
2022-04-13 17:00:00 +03:00
bc_forwarding - INTEGER
bc_forwarding enables the feature described in rfc1812#section-5.3.5.2
and rfc2644. It allows the router to forward directed broadcast.
To enable this feature, the 'all' entry and the input interface entry
should be set to 1.
Default: 0
2020-04-28 01:01:49 +03:00
INET peer storage
=================
2005-04-17 02:20:36 +04:00
inet_peer_threshold - INTEGER
2009-02-23 07:39:04 +03:00
The approximate size of the storage. Starting from this threshold
2005-04-17 02:20:36 +04:00
entries will be thrown aggressively. This threshold also determines
entries' time-to-live and time intervals between garbage collection
passes. More entries, less time-to-live, less GC interval.
inet_peer_minttl - INTEGER
Minimum time-to-live of entries. Should be enough to cover fragment
time-to-live on the reassembling side. This minimum time-to-live is
guaranteed if the pool size is less than inet_peer_threshold.
2008-07-02 04:22:48 +04:00
Measured in seconds.
2005-04-17 02:20:36 +04:00
inet_peer_maxttl - INTEGER
Maximum time-to-live of entries. Unused entries will expire after
this period of time if there is no memory pressure on the pool (i.e.
when the number of entries in the pool is very small).
2008-07-02 04:22:48 +04:00
Measured in seconds.
2005-04-17 02:20:36 +04:00
2020-04-28 01:01:49 +03:00
TCP variables
=============
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
somaxconn - INTEGER
Limit of socket listen() backlog, known in userspace as SOMAXCONN.
2019-10-30 19:36:20 +03:00
Defaults to 4096. (Was 128 before linux-5.4)
See also tcp_max_syn_backlog for additional tuning for TCP sockets.
2006-11-10 03:37:26 +03:00
tcp_abort_on_overflow - BOOLEAN
If listening service is too slow to accept new connections,
reset them. Default state is FALSE. It means that if overflow
occurred due to a burst, connection will recover. Enable this
option _only_ if you are really sure that listening daemon
cannot be tuned to accept connections faster. Enabling this
option can harm clients of your server.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_adv_win_scale - INTEGER
tcp: get rid of sysctl_tcp_adv_win_scale
With modern NIC drivers shifting to full page allocations per
received frame, we face the following issue:
TCP has one per-netns sysctl used to tweak how to translate
a memory use into an expected payload (RWIN), in RX path.
tcp_win_from_space() implementation is limited to few cases.
For hosts dealing with various MSS, we either under estimate
or over estimate the RWIN we send to the remote peers.
For instance with the default sysctl_tcp_adv_win_scale value,
we expect to store 50% of payload per allocated chunk of memory.
For the typical use of MTU=1500 traffic, and order-0 pages allocations
by NIC drivers, we are sending too big RWIN, leading to potential
tcp collapse operations, which are extremely expensive and source
of latency spikes.
This patch makes sysctl_tcp_adv_win_scale obsolete, and instead
uses a per socket scaling factor, so that we can precisely
adjust the RWIN based on effective skb->len/skb->truesize ratio.
This patch alone can double TCP receive performance when receivers
are too slow to drain their receive queue, or by allowing
a bigger RWIN when MSS is close to PAGE_SIZE.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Link: https://lore.kernel.org/r/20230717152917.751987-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-07-17 18:29:17 +03:00
Obsolete since linux-6.6
2006-11-10 03:37:26 +03:00
Count buffering overhead as bytes/2^tcp_adv_win_scale
(if tcp_adv_win_scale > 0) or bytes-bytes/2^(-tcp_adv_win_scale),
if it is <= 0.
2020-04-28 01:01:49 +03:00
2010-11-22 15:54:21 +03:00
Possible values are [-31, 31], inclusive.
2020-04-28 01:01:49 +03:00
2012-05-02 06:28:41 +04:00
Default: 1
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_allowed_congestion_control - STRING
Show/set the congestion control choices available to non-privileged
processes. The list is a subset of those listed in
tcp_available_congestion_control.
2020-04-28 01:01:49 +03:00
2006-11-10 03:37:26 +03:00
Default is "reno" and the default setting (tcp_congestion_control).
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_app_win - INTEGER
Reserve max(window/2^tcp_app_win, mss) of window for application
buffer. Value 0 is special, it means that nothing is reserved.
2020-04-28 01:01:49 +03:00
2023-04-06 09:34:50 +03:00
Possible values are [0, 31], inclusive.
2006-11-10 03:37:26 +03:00
Default: 31
2005-04-17 02:20:36 +04:00
tcp: auto corking
With the introduction of TCP Small Queues, TSO auto sizing, and TCP
pacing, we can implement Automatic Corking in the kernel, to help
applications doing small write()/sendmsg() to TCP sockets.
Idea is to change tcp_push() to check if the current skb payload is
under skb optimal size (a multiple of MSS bytes)
If under 'size_goal', and at least one packet is still in Qdisc or
NIC TX queues, set the TCP Small Queue Throttled bit, so that the push
will be delayed up to TX completion time.
This delay might allow the application to coalesce more bytes
in the skb in following write()/sendmsg()/sendfile() system calls.
The exact duration of the delay is depending on the dynamics
of the system, and might be zero if no packet for this flow
is actually held in Qdisc or NIC TX ring.
Using FQ/pacing is a way to increase the probability of
autocorking being triggered.
Add a new sysctl (/proc/sys/net/ipv4/tcp_autocorking) to control
this feature and default it to 1 (enabled)
Add a new SNMP counter : nstat -a | grep TcpExtTCPAutoCorking
This counter is incremented every time we detected skb was under used
and its flush was deferred.
Tested:
Interesting effects when using line buffered commands under ssh.
Excellent performance results in term of cpu usage and total throughput.
lpq83:~# echo 1 >/proc/sys/net/ipv4/tcp_autocorking
lpq83:~# perf stat ./super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128
9410.39
Performance counter stats for './super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128':
35209.439626 task-clock # 2.901 CPUs utilized
2,294 context-switches # 0.065 K/sec
101 CPU-migrations # 0.003 K/sec
4,079 page-faults # 0.116 K/sec
97,923,241,298 cycles # 2.781 GHz [83.31%]
51,832,908,236 stalled-cycles-frontend # 52.93% frontend cycles idle [83.30%]
25,697,986,603 stalled-cycles-backend # 26.24% backend cycles idle [66.70%]
102,225,978,536 instructions # 1.04 insns per cycle
# 0.51 stalled cycles per insn [83.38%]
18,657,696,819 branches # 529.906 M/sec [83.29%]
91,679,646 branch-misses # 0.49% of all branches [83.40%]
12.136204899 seconds time elapsed
lpq83:~# echo 0 >/proc/sys/net/ipv4/tcp_autocorking
lpq83:~# perf stat ./super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128
6624.89
Performance counter stats for './super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128':
40045.864494 task-clock # 3.301 CPUs utilized
171 context-switches # 0.004 K/sec
53 CPU-migrations # 0.001 K/sec
4,080 page-faults # 0.102 K/sec
111,340,458,645 cycles # 2.780 GHz [83.34%]
61,778,039,277 stalled-cycles-frontend # 55.49% frontend cycles idle [83.31%]
29,295,522,759 stalled-cycles-backend # 26.31% backend cycles idle [66.67%]
108,654,349,355 instructions # 0.98 insns per cycle
# 0.57 stalled cycles per insn [83.34%]
19,552,170,748 branches # 488.244 M/sec [83.34%]
157,875,417 branch-misses # 0.81% of all branches [83.34%]
12.130267788 seconds time elapsed
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 10:36:05 +04:00
tcp_autocorking - BOOLEAN
Enable TCP auto corking :
When applications do consecutive small write()/sendmsg() system calls,
we try to coalesce these small writes as much as possible, to lower
total amount of sent packets. This is done if at least one prior
packet for the flow is waiting in Qdisc queues or device transmit
queue. Applications can still use TCP_CORK for optimal behavior
when they know how/when to uncork their sockets.
2020-04-28 01:01:49 +03:00
tcp: auto corking
With the introduction of TCP Small Queues, TSO auto sizing, and TCP
pacing, we can implement Automatic Corking in the kernel, to help
applications doing small write()/sendmsg() to TCP sockets.
Idea is to change tcp_push() to check if the current skb payload is
under skb optimal size (a multiple of MSS bytes)
If under 'size_goal', and at least one packet is still in Qdisc or
NIC TX queues, set the TCP Small Queue Throttled bit, so that the push
will be delayed up to TX completion time.
This delay might allow the application to coalesce more bytes
in the skb in following write()/sendmsg()/sendfile() system calls.
The exact duration of the delay is depending on the dynamics
of the system, and might be zero if no packet for this flow
is actually held in Qdisc or NIC TX ring.
Using FQ/pacing is a way to increase the probability of
autocorking being triggered.
Add a new sysctl (/proc/sys/net/ipv4/tcp_autocorking) to control
this feature and default it to 1 (enabled)
Add a new SNMP counter : nstat -a | grep TcpExtTCPAutoCorking
This counter is incremented every time we detected skb was under used
and its flush was deferred.
Tested:
Interesting effects when using line buffered commands under ssh.
Excellent performance results in term of cpu usage and total throughput.
lpq83:~# echo 1 >/proc/sys/net/ipv4/tcp_autocorking
lpq83:~# perf stat ./super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128
9410.39
Performance counter stats for './super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128':
35209.439626 task-clock # 2.901 CPUs utilized
2,294 context-switches # 0.065 K/sec
101 CPU-migrations # 0.003 K/sec
4,079 page-faults # 0.116 K/sec
97,923,241,298 cycles # 2.781 GHz [83.31%]
51,832,908,236 stalled-cycles-frontend # 52.93% frontend cycles idle [83.30%]
25,697,986,603 stalled-cycles-backend # 26.24% backend cycles idle [66.70%]
102,225,978,536 instructions # 1.04 insns per cycle
# 0.51 stalled cycles per insn [83.38%]
18,657,696,819 branches # 529.906 M/sec [83.29%]
91,679,646 branch-misses # 0.49% of all branches [83.40%]
12.136204899 seconds time elapsed
lpq83:~# echo 0 >/proc/sys/net/ipv4/tcp_autocorking
lpq83:~# perf stat ./super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128
6624.89
Performance counter stats for './super_netperf 4 -t TCP_STREAM -H lpq84 -- -m 128':
40045.864494 task-clock # 3.301 CPUs utilized
171 context-switches # 0.004 K/sec
53 CPU-migrations # 0.001 K/sec
4,080 page-faults # 0.102 K/sec
111,340,458,645 cycles # 2.780 GHz [83.34%]
61,778,039,277 stalled-cycles-frontend # 55.49% frontend cycles idle [83.31%]
29,295,522,759 stalled-cycles-backend # 26.31% backend cycles idle [66.67%]
108,654,349,355 instructions # 0.98 insns per cycle
# 0.57 stalled cycles per insn [83.34%]
19,552,170,748 branches # 488.244 M/sec [83.34%]
157,875,417 branch-misses # 0.81% of all branches [83.34%]
12.130267788 seconds time elapsed
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 10:36:05 +04:00
Default : 1
2006-11-10 03:37:26 +03:00
tcp_available_congestion_control - STRING
Shows the available congestion control choices that are registered.
More congestion control algorithms may be available as modules,
but not loaded.
2005-04-17 02:20:36 +04:00
2007-02-27 21:03:56 +03:00
tcp_base_mss - INTEGER
2008-07-11 03:50:26 +04:00
The initial value of search_low to be used by the packetization layer
Path MTU discovery (MTU probing). If MTU probing is enabled,
this is the initial MSS used by the connection.
2007-02-27 21:03:56 +03:00
2019-08-08 02:52:29 +03:00
tcp_mtu_probe_floor - INTEGER
If MTU probing is enabled this caps the minimum MSS used for search_low
for the connection.
Default : 48
2019-06-06 19:15:31 +03:00
tcp_min_snd_mss - INTEGER
TCP SYN and SYNACK messages usually advertise an ADVMSS option,
as described in RFC 1122 and RFC 6691.
2020-04-28 01:01:49 +03:00
2019-06-06 19:15:31 +03:00
If this ADVMSS option is smaller than tcp_min_snd_mss,
it is silently capped to tcp_min_snd_mss.
Default : 48 (at least 8 bytes of payload per segment)
2006-11-10 03:37:26 +03:00
tcp_congestion_control - STRING
Set the congestion control algorithm to be used for new
connections. The algorithm "reno" is always available, but
additional choices may be available based on kernel configuration.
Default is set as part of kernel configuration.
2011-11-30 05:02:41 +04:00
For passive connections, the listener congestion control choice
is inherited.
2020-04-28 01:01:49 +03:00
2011-11-30 05:02:41 +04:00
[see setsockopt(listenfd, SOL_TCP, TCP_CONGESTION, "name" ...) ]
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_dsack - BOOLEAN
Allows TCP to send "duplicate" SACKs.
2005-04-17 02:20:36 +04:00
2012-05-02 17:30:03 +04:00
tcp_early_retrans - INTEGER
2017-01-13 09:11:39 +03:00
Tail loss probe (TLP) converts RTOs occurring due to tail
losses into fast recovery (draft-ietf-tcpm-rack). Note that
TLP requires RACK to function properly (see tcp_recovery below)
2020-04-28 01:01:49 +03:00
2012-05-02 17:30:03 +04:00
Possible values:
2020-04-28 01:01:49 +03:00
- 0 disables TLP
- 3 or 4 enables TLP
tcp: Tail loss probe (TLP)
This patch series implement the Tail loss probe (TLP) algorithm described
in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The
first patch implements the basic algorithm.
TLP's goal is to reduce tail latency of short transactions. It achieves
this by converting retransmission timeouts (RTOs) occuring due
to tail losses (losses at end of transactions) into fast recovery.
TLP transmits one packet in two round-trips when a connection is in
Open state and isn't receiving any ACKs. The transmitted packet, aka
loss probe, can be either new or a retransmission. When there is tail
loss, the ACK from a loss probe triggers FACK/early-retransmit based
fast recovery, thus avoiding a costly RTO. In the absence of loss,
there is no change in the connection state.
PTO stands for probe timeout. It is a timer event indicating
that an ACK is overdue and triggers a loss probe packet. The PTO value
is set to max(2*SRTT, 10ms) and is adjusted to account for delayed
ACK timer when there is only one oustanding packet.
TLP Algorithm
On transmission of new data in Open state:
-> packets_out > 1: schedule PTO in max(2*SRTT, 10ms).
-> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms)
-> PTO = min(PTO, RTO)
Conditions for scheduling PTO:
-> Connection is in Open state.
-> Connection is either cwnd limited or no new data to send.
-> Number of probes per tail loss episode is limited to one.
-> Connection is SACK enabled.
When PTO fires:
new_segment_exists:
-> transmit new segment.
-> packets_out++. cwnd remains same.
no_new_packet:
-> retransmit the last segment.
Its ACK triggers FACK or early retransmit based recovery.
ACK path:
-> rearm RTO at start of ACK processing.
-> reschedule PTO if need be.
In addition, the patch includes a small variation to the Early Retransmit
(ER) algorithm, such that ER and TLP together can in principle recover any
N-degree of tail loss through fast recovery. TLP is controlled by the same
sysctl as ER, tcp_early_retrans sysctl.
tcp_early_retrans==0; disables TLP and ER.
==1; enables RFC5827 ER.
==2; delayed ER.
==3; TLP and delayed ER. [DEFAULT]
==4; TLP only.
The TLP patch series have been extensively tested on Google Web servers.
It is most effective for short Web trasactions, where it reduced RTOs by 15%
and improved HTTP response time (average by 6%, 99th percentile by 10%).
The transmitted probes account for <0.5% of the overall transmissions.
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 14:00:43 +04:00
Default: 3
2012-05-02 17:30:03 +04:00
2011-02-03 02:39:58 +03:00
tcp_ecn - INTEGER
2012-11-28 13:53:10 +04:00
Control use of Explicit Congestion Notification (ECN) by TCP.
ECN is used only when both ends of the TCP connection indicate
support for it. This feature is useful in avoiding losses due
to congestion by allowing supporting routers to signal
congestion before having to drop packets.
2020-04-28 01:01:49 +03:00
2009-05-04 22:07:36 +04:00
Possible values are:
2020-04-28 01:01:49 +03:00
= =====================================================
0 Disable ECN. Neither initiate nor accept ECN.
1 Enable ECN when requested by incoming connections and
also request ECN on outgoing connection attempts.
2 Enable ECN when requested by incoming connections
but do not request ECN on outgoing connections.
= =====================================================
2009-05-04 22:07:36 +04:00
Default: 2
2006-11-10 03:37:26 +03:00
tcp: add rfc3168, section 6.1.1.1. fallback
This work as a follow-up of commit f7b3bec6f516 ("net: allow setting ecn
via routing table") and adds RFC3168 section 6.1.1.1. fallback for outgoing
ECN connections. In other words, this work adds a retry with a non-ECN
setup SYN packet, as suggested from the RFC on the first timeout:
[...] A host that receives no reply to an ECN-setup SYN within the
normal SYN retransmission timeout interval MAY resend the SYN and
any subsequent SYN retransmissions with CWR and ECE cleared. [...]
Schematic client-side view when assuming the server is in tcp_ecn=2 mode,
that is, Linux default since 2009 via commit 255cac91c3c9 ("tcp: extend
ECN sysctl to allow server-side only ECN"):
1) Normal ECN-capable path:
SYN ECE CWR ----->
<----- SYN ACK ECE
ACK ----->
2) Path with broken middlebox, when client has fallback:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ----->
<----- SYN ACK
ACK ----->
In case we would not have the fallback implemented, the middlebox drop
point would basically end up as:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
In any case, it's rather a smaller percentage of sites where there would
occur such additional setup latency: it was found in end of 2014 that ~56%
of IPv4 and 65% of IPv6 servers of Alexa 1 million list would negotiate
ECN (aka tcp_ecn=2 default), 0.42% of these webservers will fail to connect
when trying to negotiate with ECN (tcp_ecn=1) due to timeouts, which the
fallback would mitigate with a slight latency trade-off. Recent related
paper on this topic:
Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth,
Gorry Fairhurst, and Richard Scheffenegger:
"Enabling Internet-Wide Deployment of Explicit Congestion Notification."
Proc. PAM 2015, New York.
http://ecn.ethz.ch/ecn-pam15.pdf
Thus, when net.ipv4.tcp_ecn=1 is being set, the patch will perform RFC3168,
section 6.1.1.1. fallback on timeout. For users explicitly not wanting this
which can be in DC use case, we add a net.ipv4.tcp_ecn_fallback knob that
allows for disabling the fallback.
tp->ecn_flags are not being cleared in tcp_ecn_clear_syn() on output, but
rather we let tcp_ecn_rcv_synack() take that over on input path in case a
SYN ACK ECE was delayed. Thus a spurious SYN retransmission will not prevent
ECN being negotiated eventually in that case.
Reference: https://www.ietf.org/proceedings/92/slides/slides-92-iccrg-1.pdf
Reference: https://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch>
Signed-off-by: Brian Trammell <trammell@tik.ee.ethz.ch>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Dave That <dave.taht@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19 22:04:22 +03:00
tcp_ecn_fallback - BOOLEAN
If the kernel detects that ECN connection misbehaves, enable fall
back to non-ECN. Currently, this knob implements the fallback
from RFC3168, section 6.1.1.1., but we reserve that in future,
additional detection mechanisms could be implemented under this
knob. The value is not used, if tcp_ecn or per route (or congestion
control) ECN settings are disabled.
2020-04-28 01:01:49 +03:00
tcp: add rfc3168, section 6.1.1.1. fallback
This work as a follow-up of commit f7b3bec6f516 ("net: allow setting ecn
via routing table") and adds RFC3168 section 6.1.1.1. fallback for outgoing
ECN connections. In other words, this work adds a retry with a non-ECN
setup SYN packet, as suggested from the RFC on the first timeout:
[...] A host that receives no reply to an ECN-setup SYN within the
normal SYN retransmission timeout interval MAY resend the SYN and
any subsequent SYN retransmissions with CWR and ECE cleared. [...]
Schematic client-side view when assuming the server is in tcp_ecn=2 mode,
that is, Linux default since 2009 via commit 255cac91c3c9 ("tcp: extend
ECN sysctl to allow server-side only ECN"):
1) Normal ECN-capable path:
SYN ECE CWR ----->
<----- SYN ACK ECE
ACK ----->
2) Path with broken middlebox, when client has fallback:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ----->
<----- SYN ACK
ACK ----->
In case we would not have the fallback implemented, the middlebox drop
point would basically end up as:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
In any case, it's rather a smaller percentage of sites where there would
occur such additional setup latency: it was found in end of 2014 that ~56%
of IPv4 and 65% of IPv6 servers of Alexa 1 million list would negotiate
ECN (aka tcp_ecn=2 default), 0.42% of these webservers will fail to connect
when trying to negotiate with ECN (tcp_ecn=1) due to timeouts, which the
fallback would mitigate with a slight latency trade-off. Recent related
paper on this topic:
Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth,
Gorry Fairhurst, and Richard Scheffenegger:
"Enabling Internet-Wide Deployment of Explicit Congestion Notification."
Proc. PAM 2015, New York.
http://ecn.ethz.ch/ecn-pam15.pdf
Thus, when net.ipv4.tcp_ecn=1 is being set, the patch will perform RFC3168,
section 6.1.1.1. fallback on timeout. For users explicitly not wanting this
which can be in DC use case, we add a net.ipv4.tcp_ecn_fallback knob that
allows for disabling the fallback.
tp->ecn_flags are not being cleared in tcp_ecn_clear_syn() on output, but
rather we let tcp_ecn_rcv_synack() take that over on input path in case a
SYN ACK ECE was delayed. Thus a spurious SYN retransmission will not prevent
ECN being negotiated eventually in that case.
Reference: https://www.ietf.org/proceedings/92/slides/slides-92-iccrg-1.pdf
Reference: https://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch>
Signed-off-by: Brian Trammell <trammell@tik.ee.ethz.ch>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Dave That <dave.taht@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19 22:04:22 +03:00
Default: 1 (fallback enabled)
2006-11-10 03:37:26 +03:00
tcp_fack - BOOLEAN
2017-11-09 00:01:26 +03:00
This is a legacy option, it has no effect anymore.
2005-04-17 02:20:36 +04:00
tcp_fin_timeout - INTEGER
2012-12-10 15:33:00 +04:00
The length of time an orphaned (no longer referenced by any
application) connection will remain in the FIN_WAIT_2 state
before it is aborted at the local end. While a perfectly
valid "receive only" state for an un-orphaned connection, an
orphaned connection in FIN_WAIT_2 state could otherwise wait
forever for the remote to close its end of the connection.
2020-04-28 01:01:49 +03:00
2012-12-10 15:33:00 +04:00
Cf. tcp_max_orphans
2020-04-28 01:01:49 +03:00
2012-12-10 15:33:00 +04:00
Default: 60 seconds
2005-04-17 02:20:36 +04:00
2007-02-27 21:10:55 +03:00
tcp_frto - INTEGER
2013-03-20 17:33:00 +04:00
Enables Forward RTO-Recovery (F-RTO) defined in RFC5682.
2007-09-20 22:35:26 +04:00
F-RTO is an enhanced recovery algorithm for TCP retransmission
2013-03-20 17:33:00 +04:00
timeouts. It is particularly beneficial in networks where the
RTT fluctuates (e.g., wireless). F-RTO is sender-side only
modification. It does not require any support from the peer.
By default it's enabled with a non-zero value. 0 disables F-RTO.
2005-04-17 02:20:36 +04:00
2018-10-29 03:30:29 +03:00
tcp_fwmark_accept - BOOLEAN
If set, incoming connections to listening sockets that do not have a
socket mark will set the mark of the accepting socket to the fwmark of
the incoming SYN packet. This will cause all packets on that connection
(starting from the first SYNACK) to be sent with that fwmark. The
listening socket's mark is unchanged. Listening sockets that already
have a fwmark set via setsockopt(SOL_SOCKET, SO_MARK, ...) are
unaffected.
Default: 0
tcp: helpers to mitigate ACK loops by rate-limiting out-of-window dupacks
Helpers for mitigating ACK loops by rate-limiting dupacks sent in
response to incoming out-of-window packets.
This patch includes:
- rate-limiting logic
- sysctl to control how often we allow dupacks to out-of-window packets
- SNMP counter for cases where we rate-limited our dupack sending
The rate-limiting logic in this patch decides to not send dupacks in
response to out-of-window segments if (a) they are SYNs or pure ACKs
and (b) the remote endpoint is sending them faster than the configured
rate limit.
We rate-limit our responses rather than blocking them entirely or
resetting the connection, because legitimate connections can rely on
dupacks in response to some out-of-window segments. For example, zero
window probes are typically sent with a sequence number that is below
the current window, and ZWPs thus expect to thus elicit a dupack in
response.
We allow dupacks in response to TCP segments with data, because these
may be spurious retransmissions for which the remote endpoint wants to
receive DSACKs. This is safe because segments with data can't
realistically be part of ACK loops, which by their nature consist of
each side sending pure/data-less ACKs to each other.
The dupack interval is controlled by a new sysctl knob,
tcp_invalid_ratelimit, given in milliseconds, in case an administrator
needs to dial this upward in the face of a high-rate DoS attack. The
name and units are chosen to be analogous to the existing analogous
knob for ICMP, icmp_ratelimit.
The default value for tcp_invalid_ratelimit is 500ms, which allows at
most one such dupack per 500ms. This is chosen to be 2x faster than
the 1-second minimum RTO interval allowed by RFC 6298 (section 2, rule
2.4). We allow the extra 2x factor because network delay variations
can cause packets sent at 1 second intervals to be compressed and
arrive much closer.
Reported-by: Avery Fay <avery@mixpanel.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-07 00:04:38 +03:00
tcp_invalid_ratelimit - INTEGER
Limit the maximal rate for sending duplicate acknowledgments
in response to incoming TCP packets that are for an existing
connection but that are invalid due to any of these reasons:
(a) out-of-window sequence number,
(b) out-of-window acknowledgment number, or
(c) PAWS (Protection Against Wrapped Sequence numbers) check failure
This can help mitigate simple "ack loop" DoS attacks, wherein
a buggy or malicious middlebox or man-in-the-middle can
rewrite TCP header fields in manner that causes each endpoint
to think that the other is sending invalid TCP segments, thus
causing each side to send an unterminating stream of duplicate
acknowledgments for invalid segments.
Using 0 disables rate-limiting of dupacks in response to
invalid segments; otherwise this value specifies the minimal
space between sending such dupacks, in milliseconds.
Default: 500 (milliseconds).
2006-11-10 03:37:26 +03:00
tcp_keepalive_time - INTEGER
How often TCP sends out keepalive messages when keepalive is enabled.
Default: 2hours.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_keepalive_probes - INTEGER
How many keepalive probes TCP sends out, until it decides that the
connection is broken. Default value: 9.
tcp_keepalive_intvl - INTEGER
How frequently the probes are send out. Multiplied by
tcp_keepalive_probes it is time to kill not responding connection,
after probes started. Default value: 75sec i.e. connection
will be aborted after ~11 minutes of retries.
2015-12-17 00:20:44 +03:00
tcp_l3mdev_accept - BOOLEAN
Enables child sockets to inherit the L3 master device index.
Enabling this option allows a "global" listen socket to work
across L3 master domains (e.g., VRFs) with connected sockets
derived from the listen socket to be bound to the L3 domain in
which the packets originated. Only valid when the kernel was
compiled with CONFIG_NET_L3_MASTER_DEV.
2020-04-28 01:01:49 +03:00
Default: 0 (disabled)
2015-12-17 00:20:44 +03:00
2006-11-10 03:37:26 +03:00
tcp_low_latency - BOOLEAN
2017-07-30 04:57:20 +03:00
This is a legacy option, it has no effect anymore.
2005-04-17 02:20:36 +04:00
tcp_max_orphans - INTEGER
Maximal number of TCP sockets not attached to any user file handle,
held by system. If this number is exceeded orphaned connections are
reset immediately and warning is printed. This limit exists
only to prevent simple DoS attacks, you _must_ not rely on this
or lower the limit artificially, but rather increase it
(probably, after increasing installed memory),
if network conditions require more than default value,
and tune network services to linger and kill such states
more aggressively. Let me to remind again: each orphan eats
up to ~64K of unswappable memory.
tcp_max_syn_backlog - INTEGER
2019-10-30 20:05:46 +03:00
Maximal number of remembered connection requests (SYN_RECV),
which have not received an acknowledgment from connecting client.
2020-04-28 01:01:49 +03:00
2019-10-30 20:05:46 +03:00
This is a per-listener limit.
2020-04-28 01:01:49 +03:00
2011-12-06 01:39:41 +04:00
The minimal value is 128 for low memory machines, and it will
increase in proportion to the memory of machine.
2020-04-28 01:01:49 +03:00
2011-12-06 01:39:41 +04:00
If server suffers from overload, try increasing this number.
2020-04-28 01:01:49 +03:00
2019-10-30 20:05:46 +03:00
Remember to also check /proc/sys/net/core/somaxconn
A SYN_RECV request socket consumes about 304 bytes of memory.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_max_tw_buckets - INTEGER
Maximal number of timewait sockets held by system simultaneously.
If this number is exceeded time-wait socket is immediately destroyed
and warning is printed. This limit exists only to prevent
simple DoS attacks, you _must_ not lower the limit artificially,
but rather increase it (probably, after increasing installed memory),
if network conditions require more than default value.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_mem - vector of 3 INTEGERs: min, pressure, max
min: below this number of pages TCP is not bothered about its
memory appetite.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
pressure: when amount of memory allocated by TCP exceeds this number
of pages, TCP moderates its memory consumption and enters memory
pressure mode, which is exited when memory consumption falls
under "min".
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
max: number of pages allowed for queueing by all TCP sockets.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
Defaults are calculated at boot time from amount of available
memory.
2005-04-17 02:20:36 +04:00
2015-10-17 07:57:42 +03:00
tcp_min_rtt_wlen - INTEGER
The window length of the windowed min filter to track the minimum RTT.
A shorter window lets a flow more quickly pick up new (higher)
minimum RTT when it is moved to a longer path (e.g., due to traffic
engineering). A longer window makes the filter more resistant to RTT
inflations such as transient congestion. The unit is seconds.
2020-04-28 01:01:49 +03:00
2019-04-16 04:47:24 +03:00
Possible values: 0 - 86400 (1 day)
2020-04-28 01:01:49 +03:00
2015-10-17 07:57:42 +03:00
Default: 300
2007-02-27 21:03:56 +03:00
tcp_moderate_rcvbuf - BOOLEAN
2008-07-11 03:50:26 +04:00
If set, TCP performs receive buffer auto-tuning, attempting to
2007-02-27 21:03:56 +03:00
automatically size the buffer (no greater than tcp_rmem[2]) to
match the size required by the path for full throughput. Enabled by
default.
tcp_mtu_probing - INTEGER
Controls TCP Packetization-Layer Path MTU Discovery. Takes three
values:
2020-04-28 01:01:49 +03:00
- 0 - Disabled
- 1 - Disabled by default, enabled when an ICMP black hole detected
- 2 - Always enabled, use initial MSS of tcp_base_mss.
2007-02-27 21:03:56 +03:00
2018-09-26 07:59:28 +03:00
tcp_probe_interval - UNSIGNED INTEGER
2015-03-06 06:18:25 +03:00
Controls how often to start TCP Packetization-Layer Path MTU
Discovery reprobe. The default is reprobing every 10 minutes as
per RFC4821.
tcp_probe_threshold - INTEGER
Controls when TCP Packetization-Layer Path MTU Discovery probing
will stop in respect to the width of search range in bytes. Default
is 8 bytes.
2007-02-27 21:03:56 +03:00
tcp_no_metrics_save - BOOLEAN
By default, TCP saves various connection metrics in the route cache
when the connection closes, so that connections established in the
near future can use these to set initial conditions. Usually, this
increases overall performance, but may sometimes cause performance
2007-10-20 03:30:25 +04:00
degradation. If set, TCP will not cache metrics on closing
2007-02-27 21:03:56 +03:00
connections.
2019-12-09 22:19:59 +03:00
tcp_no_ssthresh_metrics_save - BOOLEAN
Controls whether TCP saves ssthresh metrics in the route cache.
2020-04-28 01:01:49 +03:00
2019-12-09 22:19:59 +03:00
Default is 1, which disables ssthresh metrics.
2006-11-10 03:37:26 +03:00
tcp_orphan_retries - INTEGER
2009-09-01 14:24:04 +04:00
This value influences the timeout of a locally closed TCP connection,
when RTO retransmissions remain unacknowledged.
See tcp_retries2 for more details.
2011-07-08 20:31:31 +04:00
The default value is 8.
2020-04-28 01:01:49 +03:00
2009-09-01 14:24:04 +04:00
If your machine is a loaded WEB server,
2006-11-10 03:37:26 +03:00
you should think about lowering this value, such sockets
may consume significant resources. Cf. tcp_max_orphans.
2005-04-17 02:20:36 +04:00
2015-10-17 07:57:47 +03:00
tcp_recovery - INTEGER
This value is a bitmap to enable various experimental loss recovery
features.
2020-04-28 01:01:49 +03:00
========= =============================================================
RACK: 0x1 enables the RACK loss detection for fast detection of lost
retransmissions and tail drops. It also subsumes and disables
RFC6675 recovery for SACK connections.
RACK: 0x2 makes RACK's reordering window static (min_rtt/4).
RACK: 0x4 disables RACK's DUPACK threshold heuristic
========= =============================================================
2015-10-17 07:57:47 +03:00
Default: 0x1
2022-07-27 14:18:21 +03:00
tcp_reflect_tos - BOOLEAN
For listening sockets, reuse the DSCP value of the initial SYN message
for outgoing packets. This allows to have both directions of a TCP
stream to use the same DSCP value, assuming DSCP remains unchanged for
the lifetime of the connection.
This options affects both IPv4 and IPv6.
Default: 0 (disabled)
2005-04-17 02:20:36 +04:00
tcp_reordering - INTEGER
2014-10-28 07:45:24 +03:00
Initial reordering level of packets in a TCP stream.
TCP stack can then dynamically adjust flow reordering level
between this initial value and tcp_max_reordering
2020-04-28 01:01:49 +03:00
2009-02-23 07:39:04 +03:00
Default: 3
2005-04-17 02:20:36 +04:00
2014-10-28 07:45:24 +03:00
tcp_max_reordering - INTEGER
Maximal reordering level of packets in a TCP stream.
300 is a fairly conservative value, but you might increase it
if paths are using per packet load balancing (like bonding rr mode)
2020-04-28 01:01:49 +03:00
2014-10-28 07:45:24 +03:00
Default: 300
2005-04-17 02:20:36 +04:00
tcp_retrans_collapse - BOOLEAN
Bug-to-bug compatibility with some broken printers.
On retransmit try to send bigger packets to work around bugs in
certain TCP stacks.
2006-11-10 03:37:26 +03:00
tcp_retries1 - INTEGER
2009-09-01 14:24:04 +04:00
This value influences the time, after which TCP decides, that
something is wrong due to unacknowledged RTO retransmissions,
and reports this suspicion to the network layer.
See tcp_retries2 for more details.
RFC 1122 recommends at least 3 retransmissions, which is the
default.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_retries2 - INTEGER
2009-09-01 14:24:04 +04:00
This value influences the timeout of an alive TCP connection,
when RTO retransmissions remain unacknowledged.
Given a value of N, a hypothetical TCP connection following
exponential backoff with an initial RTO of TCP_RTO_MIN would
retransmit N times before killing the connection at the (N+1)th RTO.
The default value of 15 yields a hypothetical timeout of 924.6
seconds and is a lower bound for the effective timeout.
TCP will effectively time out at the first RTO which exceeds the
hypothetical timeout.
RFC 1122 recommends at least 100 seconds for the timeout,
which corresponds to a value of at least 8.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_rfc1337 - BOOLEAN
If set, the TCP stack behaves conforming to RFC1337. If unset,
we are not conforming to RFC, but prevent TCP TIME_WAIT
assassination.
2020-04-28 01:01:49 +03:00
2006-11-10 03:37:26 +03:00
Default: 0
2005-04-17 02:20:36 +04:00
tcp_rmem - vector of 3 INTEGERs: min, default, max
min: Minimal size of receive buffer used by TCP sockets.
It is guaranteed to each TCP socket, even under moderate memory
pressure.
2020-04-28 01:01:49 +03:00
2018-02-05 05:07:10 +03:00
Default: 4K
2005-04-17 02:20:36 +04:00
2008-07-11 03:47:41 +04:00
default: initial size of receive buffer used by TCP sockets.
2005-04-17 02:20:36 +04:00
This value overrides net.core.rmem_default used by other protocols.
2021-02-10 20:13:33 +03:00
Default: 131072 bytes.
This value results in initial window of 65535.
2005-04-17 02:20:36 +04:00
max: maximal size of receive buffer allowed for automatically
selected receiver buffers for TCP socket. This value does not override
2008-07-11 03:47:41 +04:00
net.core.rmem_max. Calling setsockopt() with SO_RCVBUF disables
automatic tuning of that socket's receive buffer size, in which
case this value is ignored.
2021-02-10 20:13:33 +03:00
Default: between 131072 and 6MB, depending on RAM size.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_sack - BOOLEAN
Enable select acknowledgments (SACKS).
2005-04-17 02:20:36 +04:00
2018-05-18 00:47:28 +03:00
tcp_comp_sack_delay_ns - LONG INTEGER
TCP tries to reduce number of SACK sent, using a timer
based on 5% of SRTT, capped by this sysctl, in nano seconds.
The default is 1ms, based on TSO autosizing period.
Default : 1,000,000 ns (1 ms)
2020-04-30 20:35:43 +03:00
tcp_comp_sack_slack_ns - LONG INTEGER
This sysctl control the slack used when arming the
timer used by SACK compression. This gives extra time
for small RTT flows, and reduces system overhead by allowing
opportunistic reduction of timer interrupts.
Default : 100,000 ns (100 us)
2018-05-18 00:47:29 +03:00
tcp_comp_sack_nr - INTEGER
2019-05-21 06:41:15 +03:00
Max number of SACK that can be compressed.
2018-05-18 00:47:29 +03:00
Using 0 disables SACK compression.
2019-05-21 06:41:15 +03:00
Default : 44
2018-05-18 00:47:29 +03:00
2006-11-10 03:37:26 +03:00
tcp_slow_start_after_idle - BOOLEAN
If set, provide RFC2861 behavior and time out the congestion
window after an idle period. An idle period is defined at
the current RTO. If unset, the congestion window will not
be timed out after an idle period.
2020-04-28 01:01:49 +03:00
2006-11-10 03:37:26 +03:00
Default: 1
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_stdurg - BOOLEAN
2008-07-11 03:50:26 +04:00
Use the Host requirements interpretation of the TCP urgent pointer field.
2006-11-10 03:37:26 +03:00
Most hosts use the older BSD interpretation, so if you turn this on
Linux might not communicate correctly with them.
2020-04-28 01:01:49 +03:00
2006-11-10 03:37:26 +03:00
Default: FALSE
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
tcp_synack_retries - INTEGER
Number of times SYNACKs for a passive TCP connection attempt will
be retransmitted. Should not be higher than 255. Default value
2012-08-31 06:48:31 +04:00
is 5, which corresponds to 31seconds till the last retransmission
with the current initial RTO of 1second. With this the final timeout
for a passive TCP connection will happen after 63seconds.
2005-04-17 02:20:36 +04:00
2020-01-03 03:07:38 +03:00
tcp_syncookies - INTEGER
2013-06-21 11:18:32 +04:00
Only valid when the kernel was compiled with CONFIG_SYN_COOKIES
2006-11-10 03:37:26 +03:00
Send out syncookies when the syn backlog queue of a socket
2008-07-11 03:50:26 +04:00
overflows. This is to prevent against the common 'SYN flood attack'
2013-06-21 11:18:32 +04:00
Default: 1
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
Note, that syncookies is fallback facility.
It MUST NOT be used to help highly loaded servers to stand
2008-07-11 03:50:26 +04:00
against legal connection rate. If you see SYN flood warnings
2006-11-10 03:37:26 +03:00
in your logs, but investigation shows that they occur
because of overload with legal connections, you should tune
another parameters until this warning disappear.
See: tcp_max_syn_backlog, tcp_synack_retries, tcp_abort_on_overflow.
2005-04-17 02:20:36 +04:00
2006-11-10 03:37:26 +03:00
syncookies seriously violate TCP protocol, do not allow
to use TCP extensions, can result in serious degradation
of some services (f.e. SMTP relaying), visible not by you,
but your clients and relays, contacting you. While you see
2008-07-11 03:50:26 +04:00
SYN flood warnings in logs not being really flooded, your server
2006-11-10 03:37:26 +03:00
is seriously misconfigured.
2005-04-17 02:20:36 +04:00
2013-07-26 19:43:23 +04:00
If you want to test which effects syncookies have to your
network connections you can set this knob to 2 to enable
unconditionally generation of syncookies.
2021-06-12 15:32:14 +03:00
tcp_migrate_req - BOOLEAN
The incoming connection is tied to a specific listening socket when
the initial SYN packet is received during the three-way handshake.
When a listener is closed, in-flight request sockets during the
handshake and established sockets in the accept queue are aborted.
If the listener has SO_REUSEPORT enabled, other listeners on the
same port should have been able to accept such connections. This
option makes it possible to migrate such child sockets to another
listener after close() or shutdown().
The BPF_SK_REUSEPORT_SELECT_OR_MIGRATE type of eBPF program should
usually be used to define the policy to pick an alive listener.
Otherwise, the kernel will randomly pick an alive listener only if
this option is enabled.
Note that migration between listeners with different settings may
crash applications. Let's say migration happens from listener A to
B, and only B has TCP_SAVE_SYN enabled. B cannot read SYN data from
the requests migrated from A. To avoid such a situation, cancel
migration by returning SK_DROP in the type of eBPF program, or
disable this option.
Default: 0
2012-07-19 10:43:09 +04:00
tcp_fastopen - INTEGER
2016-08-23 03:17:54 +03:00
Enable TCP Fast Open (RFC7413) to send and accept data in the opening
SYN packet.
2012-08-31 16:29:11 +04:00
2016-08-23 03:17:54 +03:00
The client support is enabled by flag 0x1 (on by default). The client
then must use sendmsg() or sendto() with the MSG_FASTOPEN flag,
rather than connect() to send data in SYN.
2012-07-19 10:43:09 +04:00
2016-08-23 03:17:54 +03:00
The server support is enabled by flag 0x2 (off by default). Then
either enable for all listeners with another flag (0x400) or
enable individual listeners via TCP_FASTOPEN socket option with
the option value being the length of the syn-data backlog.
2012-07-19 10:43:09 +04:00
2016-08-23 03:17:54 +03:00
The values (bitmap) are
2020-04-28 01:01:49 +03:00
===== ======== ======================================================
0x1 (client) enables sending data in the opening SYN on the client.
0x2 (server) enables the server support, i.e., allowing data in
2016-08-23 03:17:54 +03:00
a SYN packet to be accepted and passed to the
application before 3-way handshake finishes.
2020-04-28 01:01:49 +03:00
0x4 (client) send data in the opening SYN regardless of cookie
2016-08-23 03:17:54 +03:00
availability and without a cookie option.
2020-04-28 01:01:49 +03:00
0x200 (server) accept data-in-SYN w/o any cookie option present.
0x400 (server) enable all listeners to support Fast Open by
2016-08-23 03:17:54 +03:00
default without explicit TCP_FASTOPEN socket option.
2020-04-28 01:01:49 +03:00
===== ======== ======================================================
2016-08-23 03:17:54 +03:00
Default: 0x1
2012-08-31 16:29:11 +04:00
2020-07-04 01:41:13 +03:00
Note that additional client or server features are only
2016-08-23 03:17:54 +03:00
effective if the basic support (0x1 and 0x2) are enabled respectively.
2012-08-31 16:29:11 +04:00
net/tcp_fastopen: Disable active side TFO in certain scenarios
Middlebox firewall issues can potentially cause server's data being
blackholed after a successful 3WHS using TFO. Following are the related
reports from Apple:
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
Slide 31 identifies an issue where the client ACK to the server's data
sent during a TFO'd handshake is dropped.
C ---> syn-data ---> S
C <--- syn/ack ----- S
C (accept & write)
C <---- data ------- S
C ----- ACK -> X S
[retry and timeout]
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-13.pdf
Slide 5 shows a similar situation that the server's data gets dropped
after 3WHS.
C ---- syn-data ---> S
C <--- syn/ack ----- S
C ---- ack --------> S
S (accept & write)
C? X <- data ------ S
[retry and timeout]
This is the worst failure b/c the client can not detect such behavior to
mitigate the situation (such as disabling TFO). Failing to proceed, the
application (e.g., SSL library) may simply timeout and retry with TFO
again, and the process repeats indefinitely.
The proposed solution is to disable active TFO globally under the
following circumstances:
1. client side TFO socket detects out of order FIN
2. client side TFO socket receives out of order RST
We disable active side TFO globally for 1hr at first. Then if it
happens again, we disable it for 2h, then 4h, 8h, ...
And we reset the timeout to 1hr if a client side TFO sockets not opened
on loopback has successfully received data segs from server.
And we examine this condition during close().
The rational behind it is that when such firewall issue happens,
application running on the client should eventually close the socket as
it is not able to get the data it is expecting. Or application running
on the server should close the socket as it is not able to receive any
response from client.
In both cases, out of order FIN or RST will get received on the client
given that the firewall will not block them as no data are in those
frames.
And we want to disable active TFO globally as it helps if the middle box
is very close to the client and most of the connections are likely to
fail.
Also, add a debug sysctl:
tcp_fastopen_blackhole_detect_timeout_sec:
the initial timeout to use when firewall blackhole issue happens.
This can be set and read.
When setting it to 0, it means to disable the active disable logic.
Signed-off-by: Wei Wang <weiwan@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-21 00:45:46 +03:00
tcp_fastopen_blackhole_timeout_sec - INTEGER
Initial time period in second to disable Fastopen on active TCP sockets
when a TFO firewall blackhole issue happens.
This time period will grow exponentially when more blackhole issues
get detected right after Fastopen is re-enabled and will reset to
initial value when the blackhole issue goes away.
2017-12-13 00:10:40 +03:00
0 to disable the blackhole detection.
2020-04-28 01:01:49 +03:00
2021-07-21 20:27:38 +03:00
By default, it is set to 0 (feature is disabled).
net/tcp_fastopen: Disable active side TFO in certain scenarios
Middlebox firewall issues can potentially cause server's data being
blackholed after a successful 3WHS using TFO. Following are the related
reports from Apple:
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
Slide 31 identifies an issue where the client ACK to the server's data
sent during a TFO'd handshake is dropped.
C ---> syn-data ---> S
C <--- syn/ack ----- S
C (accept & write)
C <---- data ------- S
C ----- ACK -> X S
[retry and timeout]
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-13.pdf
Slide 5 shows a similar situation that the server's data gets dropped
after 3WHS.
C ---- syn-data ---> S
C <--- syn/ack ----- S
C ---- ack --------> S
S (accept & write)
C? X <- data ------ S
[retry and timeout]
This is the worst failure b/c the client can not detect such behavior to
mitigate the situation (such as disabling TFO). Failing to proceed, the
application (e.g., SSL library) may simply timeout and retry with TFO
again, and the process repeats indefinitely.
The proposed solution is to disable active TFO globally under the
following circumstances:
1. client side TFO socket detects out of order FIN
2. client side TFO socket receives out of order RST
We disable active side TFO globally for 1hr at first. Then if it
happens again, we disable it for 2h, then 4h, 8h, ...
And we reset the timeout to 1hr if a client side TFO sockets not opened
on loopback has successfully received data segs from server.
And we examine this condition during close().
The rational behind it is that when such firewall issue happens,
application running on the client should eventually close the socket as
it is not able to get the data it is expecting. Or application running
on the server should close the socket as it is not able to receive any
response from client.
In both cases, out of order FIN or RST will get received on the client
given that the firewall will not block them as no data are in those
frames.
And we want to disable active TFO globally as it helps if the middle box
is very close to the client and most of the connections are likely to
fail.
Also, add a debug sysctl:
tcp_fastopen_blackhole_detect_timeout_sec:
the initial timeout to use when firewall blackhole issue happens.
This can be set and read.
When setting it to 0, it means to disable the active disable logic.
Signed-off-by: Wei Wang <weiwan@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-21 00:45:46 +03:00
2019-05-29 19:34:00 +03:00
tcp_fastopen_key - list of comma separated 32-digit hexadecimal INTEGERs
The list consists of a primary key and an optional backup key. The
primary key is used for both creating and validating cookies, while the
optional backup key is only used for validating cookies. The purpose of
the backup key is to maximize TFO validation when keys are rotated.
A randomly chosen primary key may be configured by the kernel if
the tcp_fastopen sysctl is set to 0x400 (see above), or if the
TCP_FASTOPEN setsockopt() optname is set and a key has not been
previously configured via sysctl. If keys are configured via
setsockopt() by using the TCP_FASTOPEN_KEY optname, then those
per-socket keys will be used instead of any keys that are specified via
sysctl.
A key is specified as 4 8-digit hexadecimal integers which are separated
by a '-' as: xxxxxxxx-xxxxxxxx-xxxxxxxx-xxxxxxxx. Leading zeros may be
omitted. A primary and a backup key may be specified by separating them
by a comma. If only one key is specified, it becomes the primary key and
any previously configured backup keys are removed.
2006-11-10 03:37:26 +03:00
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
2016-01-20 11:12:33 +03:00
will be retransmitted. Should not be higher than 127. Default value
tcp: make the first N SYN RTO backoffs linear
Currently the SYN RTO schedule follows an exponential backoff
scheme, which can be unnecessarily conservative in cases where
there are link failures. In such cases, it's better to
aggressively try to retransmit packets, so it takes routers
less time to find a repath with a working link.
We chose a default value for this sysctl of 4, to follow
the macOS and IOS backoff scheme of 1,1,1,1,1,2,4,8, ...
MacOS and IOS have used this backoff schedule for over
a decade, since before this 2009 IETF presentation
discussed the behavior:
https://www.ietf.org/proceedings/75/slides/tcpm-1.pdf
This commit makes the SYN RTO schedule start with a number of
linear backoffs given by the following sysctl:
* tcp_syn_linear_timeouts
This changes the SYN RTO scheme to be: init_rto_val for
tcp_syn_linear_timeouts, exp backoff starting at init_rto_val
For example if init_rto_val = 1 and tcp_syn_linear_timeouts = 2, our
backoff scheme would be: 1, 1, 1, 2, 4, 8, 16, ...
Signed-off-by: David Morley <morleyd@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Tested-by: David Morley <morleyd@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230509180558.2541885-1-morleyd.kernel@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-05-09 21:05:58 +03:00
is 6, which corresponds to 67seconds (with tcp_syn_linear_timeouts = 4)
till the last retransmission with the current initial RTO of 1second.
With this the final timeout for an active TCP connection attempt
will happen after 131seconds.
2006-11-10 03:37:26 +03:00
2016-12-01 13:32:07 +03:00
tcp_timestamps - INTEGER
2020-04-28 01:01:49 +03:00
Enable timestamps as defined in RFC1323.
- 0: Disabled.
- 1: Enable timestamps as defined in RFC1323 and use random offset for
each connection rather than only using the current time.
- 2: Like 1, but without random offsets.
2016-12-01 13:32:07 +03:00
Default: 1
2005-04-17 02:20:36 +04:00
tcp: TSO packets automatic sizing
After hearing many people over past years complaining against TSO being
bursty or even buggy, we are proud to present automatic sizing of TSO
packets.
One part of the problem is that tcp_tso_should_defer() uses an heuristic
relying on upcoming ACKS instead of a timer, but more generally, having
big TSO packets makes little sense for low rates, as it tends to create
micro bursts on the network, and general consensus is to reduce the
buffering amount.
This patch introduces a per socket sk_pacing_rate, that approximates
the current sending rate, and allows us to size the TSO packets so
that we try to send one packet every ms.
This field could be set by other transports.
Patch has no impact for high speed flows, where having large TSO packets
makes sense to reach line rate.
For other flows, this helps better packet scheduling and ACK clocking.
This patch increases performance of TCP flows in lossy environments.
A new sysctl (tcp_min_tso_segs) is added, to specify the
minimal size of a TSO packet (default being 2).
A follow-up patch will provide a new packet scheduler (FQ), using
sk_pacing_rate as an input to perform optional per flow pacing.
This explains why we chose to set sk_pacing_rate to twice the current
rate, allowing 'slow start' ramp up.
sk_pacing_rate = 2 * cwnd * mss / srtt
v2: Neal Cardwell reported a suspect deferring of last two segments on
initial write of 10 MSS, I had to change tcp_tso_should_defer() to take
into account tp->xmit_size_goal_segs
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Van Jacobson <vanj@google.com>
Cc: Tom Herbert <therbert@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 16:46:32 +04:00
tcp_min_tso_segs - INTEGER
Minimal number of segments per TSO frame.
2020-04-28 01:01:49 +03:00
tcp: TSO packets automatic sizing
After hearing many people over past years complaining against TSO being
bursty or even buggy, we are proud to present automatic sizing of TSO
packets.
One part of the problem is that tcp_tso_should_defer() uses an heuristic
relying on upcoming ACKS instead of a timer, but more generally, having
big TSO packets makes little sense for low rates, as it tends to create
micro bursts on the network, and general consensus is to reduce the
buffering amount.
This patch introduces a per socket sk_pacing_rate, that approximates
the current sending rate, and allows us to size the TSO packets so
that we try to send one packet every ms.
This field could be set by other transports.
Patch has no impact for high speed flows, where having large TSO packets
makes sense to reach line rate.
For other flows, this helps better packet scheduling and ACK clocking.
This patch increases performance of TCP flows in lossy environments.
A new sysctl (tcp_min_tso_segs) is added, to specify the
minimal size of a TSO packet (default being 2).
A follow-up patch will provide a new packet scheduler (FQ), using
sk_pacing_rate as an input to perform optional per flow pacing.
This explains why we chose to set sk_pacing_rate to twice the current
rate, allowing 'slow start' ramp up.
sk_pacing_rate = 2 * cwnd * mss / srtt
v2: Neal Cardwell reported a suspect deferring of last two segments on
initial write of 10 MSS, I had to change tcp_tso_should_defer() to take
into account tp->xmit_size_goal_segs
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Van Jacobson <vanj@google.com>
Cc: Tom Herbert <therbert@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 16:46:32 +04:00
Since linux-3.12, TCP does an automatic sizing of TSO frames,
depending on flow rate, instead of filling 64Kbytes packets.
For specific usages, it's possible to force TCP to build big
TSO frames. Note that TCP stack might split too big TSO packets
if available window is too small.
2020-04-28 01:01:49 +03:00
tcp: TSO packets automatic sizing
After hearing many people over past years complaining against TSO being
bursty or even buggy, we are proud to present automatic sizing of TSO
packets.
One part of the problem is that tcp_tso_should_defer() uses an heuristic
relying on upcoming ACKS instead of a timer, but more generally, having
big TSO packets makes little sense for low rates, as it tends to create
micro bursts on the network, and general consensus is to reduce the
buffering amount.
This patch introduces a per socket sk_pacing_rate, that approximates
the current sending rate, and allows us to size the TSO packets so
that we try to send one packet every ms.
This field could be set by other transports.
Patch has no impact for high speed flows, where having large TSO packets
makes sense to reach line rate.
For other flows, this helps better packet scheduling and ACK clocking.
This patch increases performance of TCP flows in lossy environments.
A new sysctl (tcp_min_tso_segs) is added, to specify the
minimal size of a TSO packet (default being 2).
A follow-up patch will provide a new packet scheduler (FQ), using
sk_pacing_rate as an input to perform optional per flow pacing.
This explains why we chose to set sk_pacing_rate to twice the current
rate, allowing 'slow start' ramp up.
sk_pacing_rate = 2 * cwnd * mss / srtt
v2: Neal Cardwell reported a suspect deferring of last two segments on
initial write of 10 MSS, I had to change tcp_tso_should_defer() to take
into account tp->xmit_size_goal_segs
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Van Jacobson <vanj@google.com>
Cc: Tom Herbert <therbert@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 16:46:32 +04:00
Default: 2
tcp: adjust TSO packet sizes based on min_rtt
Back when tcp_tso_autosize() and TCP pacing were introduced,
our focus was really to reduce burst sizes for long distance
flows.
The simple heuristic of using sk_pacing_rate/1024 has worked
well, but can lead to too small packets for hosts in the same
rack/cluster, when thousands of flows compete for the bottleneck.
Neal Cardwell had the idea of making the TSO burst size
a function of both sk_pacing_rate and tcp_min_rtt()
Indeed, for local flows, sending bigger bursts is better
to reduce cpu costs, as occasional losses can be repaired
quite fast.
This patch is based on Neal Cardwell implementation
done more than two years ago.
bbr is adjusting max_pacing_rate based on measured bandwidth,
while cubic would over estimate max_pacing_rate.
/proc/sys/net/ipv4/tcp_tso_rtt_log can be used to tune or disable
this new feature, in logarithmic steps.
Tested:
100Gbit NIC, two hosts in the same rack, 4K MTU.
600 flows rate-limited to 20000000 bytes per second.
Before patch: (TSO sizes would be limited to 20000000/1024/4096 -> 4 segments per TSO)
~# echo 0 >/proc/sys/net/ipv4/tcp_tso_rtt_log
~# nstat -n;perf stat ./super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000;nstat|egrep "TcpInSegs|TcpOutSegs|TcpRetransSegs|Delivered"
96005
Performance counter stats for './super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000':
65,945.29 msec task-clock # 2.845 CPUs utilized
1,314,632 context-switches # 19935.279 M/sec
5,292 cpu-migrations # 80.249 M/sec
940,641 page-faults # 14264.023 M/sec
201,117,030,926 cycles # 3049769.216 GHz (83.45%)
17,699,435,405 stalled-cycles-frontend # 8.80% frontend cycles idle (83.48%)
136,584,015,071 stalled-cycles-backend # 67.91% backend cycles idle (83.44%)
53,809,530,436 instructions # 0.27 insn per cycle
# 2.54 stalled cycles per insn (83.36%)
9,062,315,523 branches # 137422329.563 M/sec (83.22%)
153,008,621 branch-misses # 1.69% of all branches (83.32%)
23.182970846 seconds time elapsed
TcpInSegs 15648792 0.0
TcpOutSegs 58659110 0.0 # Average of 3.7 4K segments per TSO packet
TcpExtTCPDelivered 58654791 0.0
TcpExtTCPDeliveredCE 19 0.0
After patch:
~# echo 9 >/proc/sys/net/ipv4/tcp_tso_rtt_log
~# nstat -n;perf stat ./super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000;nstat|egrep "TcpInSegs|TcpOutSegs|TcpRetransSegs|Delivered"
96046
Performance counter stats for './super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000':
48,982.58 msec task-clock # 2.104 CPUs utilized
186,014 context-switches # 3797.599 M/sec
3,109 cpu-migrations # 63.472 M/sec
941,180 page-faults # 19214.814 M/sec
153,459,763,868 cycles # 3132982.807 GHz (83.56%)
12,069,861,356 stalled-cycles-frontend # 7.87% frontend cycles idle (83.32%)
120,485,917,953 stalled-cycles-backend # 78.51% backend cycles idle (83.24%)
36,803,672,106 instructions # 0.24 insn per cycle
# 3.27 stalled cycles per insn (83.18%)
5,947,266,275 branches # 121417383.427 M/sec (83.64%)
87,984,616 branch-misses # 1.48% of all branches (83.43%)
23.281200256 seconds time elapsed
TcpInSegs 1434706 0.0
TcpOutSegs 58883378 0.0 # Average of 41 4K segments per TSO packet
TcpExtTCPDelivered 58878971 0.0
TcpExtTCPDeliveredCE 9664 0.0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20220309015757.2532973-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-09 04:57:57 +03:00
tcp_tso_rtt_log - INTEGER
Adjustment of TSO packet sizes based on min_rtt
Starting from linux-5.18, TCP autosizing can be tweaked
for flows having small RTT.
Old autosizing was splitting the pacing budget to send 1024 TSO
per second.
tso_packet_size = sk->sk_pacing_rate / 1024;
With the new mechanism, we increase this TSO sizing using:
distance = min_rtt_usec / (2^tcp_tso_rtt_log)
tso_packet_size += gso_max_size >> distance;
This means that flows between very close hosts can use bigger
TSO packets, reducing their cpu costs.
If you want to use the old autosizing, set this sysctl to 0.
Default: 9 (2^9 = 512 usec)
2015-08-22 03:38:02 +03:00
tcp_pacing_ss_ratio - INTEGER
sk->sk_pacing_rate is set by TCP stack using a ratio applied
to current rate. (current_rate = cwnd * mss / srtt)
If TCP is in slow start, tcp_pacing_ss_ratio is applied
to let TCP probe for bigger speeds, assuming cwnd can be
doubled every other RTT.
2020-04-28 01:01:49 +03:00
2015-08-22 03:38:02 +03:00
Default: 200
tcp_pacing_ca_ratio - INTEGER
sk->sk_pacing_rate is set by TCP stack using a ratio applied
to current rate. (current_rate = cwnd * mss / srtt)
If TCP is in congestion avoidance phase, tcp_pacing_ca_ratio
is applied to conservatively probe for bigger throughput.
2020-04-28 01:01:49 +03:00
2015-08-22 03:38:02 +03:00
Default: 120
tcp: make the first N SYN RTO backoffs linear
Currently the SYN RTO schedule follows an exponential backoff
scheme, which can be unnecessarily conservative in cases where
there are link failures. In such cases, it's better to
aggressively try to retransmit packets, so it takes routers
less time to find a repath with a working link.
We chose a default value for this sysctl of 4, to follow
the macOS and IOS backoff scheme of 1,1,1,1,1,2,4,8, ...
MacOS and IOS have used this backoff schedule for over
a decade, since before this 2009 IETF presentation
discussed the behavior:
https://www.ietf.org/proceedings/75/slides/tcpm-1.pdf
This commit makes the SYN RTO schedule start with a number of
linear backoffs given by the following sysctl:
* tcp_syn_linear_timeouts
This changes the SYN RTO scheme to be: init_rto_val for
tcp_syn_linear_timeouts, exp backoff starting at init_rto_val
For example if init_rto_val = 1 and tcp_syn_linear_timeouts = 2, our
backoff scheme would be: 1, 1, 1, 2, 4, 8, 16, ...
Signed-off-by: David Morley <morleyd@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Tested-by: David Morley <morleyd@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230509180558.2541885-1-morleyd.kernel@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-05-09 21:05:58 +03:00
tcp_syn_linear_timeouts - INTEGER
The number of times for an active TCP connection to retransmit SYNs with
a linear backoff timeout before defaulting to an exponential backoff
timeout. This has no effect on SYNACK at the passive TCP side.
With an initial RTO of 1 and tcp_syn_linear_timeouts = 4 we would
expect SYN RTOs to be: 1, 1, 1, 1, 1, 2, 4, ... (4 linear timeouts,
and the first exponential backoff using 2^0 * initial_RTO).
Default: 4
2005-04-17 02:20:36 +04:00
tcp_tso_win_divisor - INTEGER
2006-11-10 03:37:26 +03:00
This allows control over what percentage of the congestion window
can be consumed by a single TSO frame.
The setting of this parameter is a choice between burstiness and
building larger TSO frames.
2020-04-28 01:01:49 +03:00
2006-11-10 03:37:26 +03:00
Default: 3
2005-04-17 02:20:36 +04:00
2018-06-03 20:41:17 +03:00
tcp_tw_reuse - INTEGER
Enable reuse of TIME-WAIT sockets for new connections when it is
safe from protocol viewpoint.
2020-04-28 01:01:49 +03:00
- 0 - disable
- 1 - global enable
- 2 - enable for loopback traffic only
2006-11-10 03:37:26 +03:00
It should not be changed without advice/request of technical
experts.
2020-04-28 01:01:49 +03:00
2018-06-03 20:41:17 +03:00
Default: 2
2006-11-10 03:35:15 +03:00
2006-11-10 03:37:26 +03:00
tcp_window_scaling - BOOLEAN
Enable window scaling as defined in RFC1323.
2006-11-10 03:32:06 +03:00
tcp: enforce receive buffer memory limits by allowing the tcp window to shrink
Under certain circumstances, the tcp receive buffer memory limit
set by autotuning (sk_rcvbuf) is increased due to incoming data
packets as a result of the window not closing when it should be.
This can result in the receive buffer growing all the way up to
tcp_rmem[2], even for tcp sessions with a low BDP.
To reproduce: Connect a TCP session with the receiver doing
nothing and the sender sending small packets (an infinite loop
of socket send() with 4 bytes of payload with a sleep of 1 ms
in between each send()). This will cause the tcp receive buffer
to grow all the way up to tcp_rmem[2].
As a result, a host can have individual tcp sessions with receive
buffers of size tcp_rmem[2], and the host itself can reach tcp_mem
limits, causing the host to go into tcp memory pressure mode.
The fundamental issue is the relationship between the granularity
of the window scaling factor and the number of byte ACKed back
to the sender. This problem has previously been identified in
RFC 7323, appendix F [1].
The Linux kernel currently adheres to never shrinking the window.
In addition to the overallocation of memory mentioned above, the
current behavior is functionally incorrect, because once tcp_rmem[2]
is reached when no remediations remain (i.e. tcp collapse fails to
free up any more memory and there are no packets to prune from the
out-of-order queue), the receiver will drop in-window packets
resulting in retransmissions and an eventual timeout of the tcp
session. A receive buffer full condition should instead result
in a zero window and an indefinite wait.
In practice, this problem is largely hidden for most flows. It
is not applicable to mice flows. Elephant flows can send data
fast enough to "overrun" the sk_rcvbuf limit (in a single ACK),
triggering a zero window.
But this problem does show up for other types of flows. Examples
are websockets and other type of flows that send small amounts of
data spaced apart slightly in time. In these cases, we directly
encounter the problem described in [1].
RFC 7323, section 2.4 [2], says there are instances when a retracted
window can be offered, and that TCP implementations MUST ensure
that they handle a shrinking window, as specified in RFC 1122,
section 4.2.2.16 [3]. All prior RFCs on the topic of tcp window
management have made clear that sender must accept a shrunk window
from the receiver, including RFC 793 [4] and RFC 1323 [5].
This patch implements the functionality to shrink the tcp window
when necessary to keep the right edge within the memory limit by
autotuning (sk_rcvbuf). This new functionality is enabled with
the new sysctl: net.ipv4.tcp_shrink_window
Additional information can be found at:
https://blog.cloudflare.com/unbounded-memory-usage-by-tcp-for-receive-buffers-and-how-we-fixed-it/
[1] https://www.rfc-editor.org/rfc/rfc7323#appendix-F
[2] https://www.rfc-editor.org/rfc/rfc7323#section-2.4
[3] https://www.rfc-editor.org/rfc/rfc1122#page-91
[4] https://www.rfc-editor.org/rfc/rfc793
[5] https://www.rfc-editor.org/rfc/rfc1323
Signed-off-by: Mike Freemon <mfreemon@cloudflare.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-12 06:05:24 +03:00
tcp_shrink_window - BOOLEAN
This changes how the TCP receive window is calculated.
RFC 7323, section 2.4, says there are instances when a retracted
window can be offered, and that TCP implementations MUST ensure
that they handle a shrinking window, as specified in RFC 1122.
- 0 - Disabled. The window is never shrunk.
- 1 - Enabled. The window is shrunk when necessary to remain within
the memory limit set by autotuning (sk_rcvbuf).
This only occurs if a non-zero receive window
scaling factor is also in effect.
Default: 0
2006-11-10 03:37:26 +03:00
tcp_wmem - vector of 3 INTEGERs: min, default, max
2008-07-11 03:47:41 +04:00
min: Amount of memory reserved for send buffers for TCP sockets.
2006-11-10 03:37:26 +03:00
Each TCP socket has rights to use it due to fact of its birth.
2020-04-28 01:01:49 +03:00
2018-02-05 05:07:10 +03:00
Default: 4K
2005-06-23 23:22:36 +04:00
2008-07-11 03:47:41 +04:00
default: initial size of send buffer used by TCP sockets. This
value overrides net.core.wmem_default used by other protocols.
2020-04-28 01:01:49 +03:00
2008-07-11 03:47:41 +04:00
It is usually lower than net.core.wmem_default.
2020-04-28 01:01:49 +03:00
2006-11-10 03:37:26 +03:00
Default: 16K
2008-07-11 03:47:41 +04:00
max: Maximal amount of memory allowed for automatically tuned
send buffers for TCP sockets. This value does not override
net.core.wmem_max. Calling setsockopt() with SO_SNDBUF disables
automatic tuning of that socket's send buffer size, in which case
this value is ignored.
2020-04-28 01:01:49 +03:00
2008-07-11 03:47:41 +04:00
Default: between 64K and 4MB, depending on RAM size.
2005-04-17 02:20:36 +04:00
tcp: TCP_NOTSENT_LOWAT socket option
Idea of this patch is to add optional limitation of number of
unsent bytes in TCP sockets, to reduce usage of kernel memory.
TCP receiver might announce a big window, and TCP sender autotuning
might allow a large amount of bytes in write queue, but this has little
performance impact if a large part of this buffering is wasted :
Write queue needs to be large only to deal with large BDP, not
necessarily to cope with scheduling delays (incoming ACKS make room
for the application to queue more bytes)
For most workloads, using a value of 128 KB or less is OK to give
applications enough time to react to POLLOUT events in time
(or being awaken in a blocking sendmsg())
This patch adds two ways to set the limit :
1) Per socket option TCP_NOTSENT_LOWAT
2) A sysctl (/proc/sys/net/ipv4/tcp_notsent_lowat) for sockets
not using TCP_NOTSENT_LOWAT socket option (or setting a zero value)
Default value being UINT_MAX (0xFFFFFFFF), meaning this has no effect.
This changes poll()/select()/epoll() to report POLLOUT
only if number of unsent bytes is below tp->nosent_lowat
Note this might increase number of sendmsg()/sendfile() calls
when using non blocking sockets,
and increase number of context switches for blocking sockets.
Note this is not related to SO_SNDLOWAT (as SO_SNDLOWAT is
defined as :
Specify the minimum number of bytes in the buffer until
the socket layer will pass the data to the protocol)
Tested:
netperf sessions, and watching /proc/net/protocols "memory" column for TCP
With 200 concurrent netperf -t TCP_STREAM sessions, amount of kernel memory
used by TCP buffers shrinks by ~55 % (20567 pages instead of 45458)
lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat
lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols
TCPv6 1880 2 45458 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y
TCP 1696 508 45458 no 208 yes kernel y y y y y y y y y y y y y n y y y y y
lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat
lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols
TCPv6 1880 2 20567 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y
TCP 1696 508 20567 no 208 yes kernel y y y y y y y y y y y y y n y y y y y
Using 128KB has no bad effect on the throughput or cpu usage
of a single flow, although there is an increase of context switches.
A bonus is that we hold socket lock for a shorter amount
of time and should improve latencies of ACK processing.
lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat
lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3
OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf.
Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service
Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand
Size Size Size (sec) Util Util Util Util Demand Demand Units
Final Final % Method % Method
1651584 6291456 16384 20.00 17447.90 10^6bits/s 3.13 S -1.00 U 0.353 -1.000 usec/KB
Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3':
412,514 context-switches
200.034645535 seconds time elapsed
lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat
lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3
OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf.
Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service
Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand
Size Size Size (sec) Util Util Util Util Demand Demand Units
Final Final % Method % Method
1593240 6291456 16384 20.00 17321.16 10^6bits/s 3.35 S -1.00 U 0.381 -1.000 usec/KB
Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3':
2,675,818 context-switches
200.029651391 seconds time elapsed
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-By: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-23 07:27:07 +04:00
tcp_notsent_lowat - UNSIGNED INTEGER
A TCP socket can control the amount of unsent bytes in its write queue,
thanks to TCP_NOTSENT_LOWAT socket option. poll()/select()/epoll()
reports POLLOUT events if the amount of unsent bytes is below a per
socket value, and if the write queue is not full. sendmsg() will
also not add new buffers if the limit is hit.
This global variable controls the amount of unsent data for
sockets not using TCP_NOTSENT_LOWAT. For these sockets, a change
to the global variable has immediate effect.
Default: UINT_MAX (0xFFFFFFFF)
2006-03-21 09:40:29 +03:00
tcp_workaround_signed_windows - BOOLEAN
If set, assume no receipt of a window scaling option means the
remote TCP is broken and treats the window as a signed quantity.
If unset, assume the remote TCP is not broken even if we do
not receive a window scaling option from them.
2020-04-28 01:01:49 +03:00
2006-03-21 09:40:29 +03:00
Default: 0
2010-02-18 05:47:01 +03:00
tcp_thin_linear_timeouts - BOOLEAN
Enable dynamic triggering of linear timeouts for thin streams.
If set, a check is performed upon retransmission by timeout to
determine if the stream is thin (less than 4 packets in flight).
As long as the stream is found to be thin, up to 6 linear
timeouts may be performed before exponential backoff mode is
initiated. This improves retransmission latency for
non-aggressive thin streams, often found to be time-dependent.
For more information on thin streams, see
2020-04-30 19:04:29 +03:00
Documentation/networking/tcp-thin.rst
2020-04-28 01:01:49 +03:00
2010-02-18 05:47:01 +03:00
Default: 0
tcp: TCP Small Queues
This introduce TSQ (TCP Small Queues)
TSQ goal is to reduce number of TCP packets in xmit queues (qdisc &
device queues), to reduce RTT and cwnd bias, part of the bufferbloat
problem.
sk->sk_wmem_alloc not allowed to grow above a given limit,
allowing no more than ~128KB [1] per tcp socket in qdisc/dev layers at a
given time.
TSO packets are sized/capped to half the limit, so that we have two
TSO packets in flight, allowing better bandwidth use.
As a side effect, setting the limit to 40000 automatically reduces the
standard gso max limit (65536) to 40000/2 : It can help to reduce
latencies of high prio packets, having smaller TSO packets.
This means we divert sock_wfree() to a tcp_wfree() handler, to
queue/send following frames when skb_orphan() [2] is called for the
already queued skbs.
Results on my dev machines (tg3/ixgbe nics) are really impressive,
using standard pfifo_fast, and with or without TSO/GSO.
Without reduction of nominal bandwidth, we have reduction of buffering
per bulk sender :
< 1ms on Gbit (instead of 50ms with TSO)
< 8ms on 100Mbit (instead of 132 ms)
I no longer have 4 MBytes backlogged in qdisc by a single netperf
session, and both side socket autotuning no longer use 4 Mbytes.
As skb destructor cannot restart xmit itself ( as qdisc lock might be
taken at this point ), we delegate the work to a tasklet. We use one
tasklest per cpu for performance reasons.
If tasklet finds a socket owned by the user, it sets TSQ_OWNED flag.
This flag is tested in a new protocol method called from release_sock(),
to eventually send new segments.
[1] New /proc/sys/net/ipv4/tcp_limit_output_bytes tunable
[2] skb_orphan() is usually called at TX completion time,
but some drivers call it in their start_xmit() handler.
These drivers should at least use BQL, or else a single TCP
session can still fill the whole NIC TX ring, since TSQ will
have no effect.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Dave Taht <dave.taht@bufferbloat.net>
Cc: Tom Herbert <therbert@google.com>
Cc: Matt Mathis <mattmathis@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-11 09:50:31 +04:00
tcp_limit_output_bytes - INTEGER
Controls TCP Small Queue limit per tcp socket.
TCP bulk sender tends to increase packets in flight until it
gets losses notifications. With SNDBUF autotuning, this can
2018-06-27 16:34:26 +03:00
result in a large amount of packets queued on the local machine
(e.g.: qdiscs, CPU backlog, or device) hurting latency of other
flows, for typical pfifo_fast qdiscs. tcp_limit_output_bytes
limits the number of bytes on qdisc or device to reduce artificial
RTT/cwnd and reduce bufferbloat.
2020-04-28 01:01:49 +03:00
2018-11-11 18:34:28 +03:00
Default: 1048576 (16 * 65536)
tcp: TCP Small Queues
This introduce TSQ (TCP Small Queues)
TSQ goal is to reduce number of TCP packets in xmit queues (qdisc &
device queues), to reduce RTT and cwnd bias, part of the bufferbloat
problem.
sk->sk_wmem_alloc not allowed to grow above a given limit,
allowing no more than ~128KB [1] per tcp socket in qdisc/dev layers at a
given time.
TSO packets are sized/capped to half the limit, so that we have two
TSO packets in flight, allowing better bandwidth use.
As a side effect, setting the limit to 40000 automatically reduces the
standard gso max limit (65536) to 40000/2 : It can help to reduce
latencies of high prio packets, having smaller TSO packets.
This means we divert sock_wfree() to a tcp_wfree() handler, to
queue/send following frames when skb_orphan() [2] is called for the
already queued skbs.
Results on my dev machines (tg3/ixgbe nics) are really impressive,
using standard pfifo_fast, and with or without TSO/GSO.
Without reduction of nominal bandwidth, we have reduction of buffering
per bulk sender :
< 1ms on Gbit (instead of 50ms with TSO)
< 8ms on 100Mbit (instead of 132 ms)
I no longer have 4 MBytes backlogged in qdisc by a single netperf
session, and both side socket autotuning no longer use 4 Mbytes.
As skb destructor cannot restart xmit itself ( as qdisc lock might be
taken at this point ), we delegate the work to a tasklet. We use one
tasklest per cpu for performance reasons.
If tasklet finds a socket owned by the user, it sets TSQ_OWNED flag.
This flag is tested in a new protocol method called from release_sock(),
to eventually send new segments.
[1] New /proc/sys/net/ipv4/tcp_limit_output_bytes tunable
[2] skb_orphan() is usually called at TX completion time,
but some drivers call it in their start_xmit() handler.
These drivers should at least use BQL, or else a single TCP
session can still fill the whole NIC TX ring, since TSQ will
have no effect.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Dave Taht <dave.taht@bufferbloat.net>
Cc: Tom Herbert <therbert@google.com>
Cc: Matt Mathis <mattmathis@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-11 09:50:31 +04:00
2012-07-17 12:13:05 +04:00
tcp_challenge_ack_limit - INTEGER
Limits number of Challenge ACK sent per second, as recommended
in RFC 5961 (Improving TCP's Robustness to Blind In-Window Attacks)
2022-08-30 21:56:56 +03:00
Note that this per netns rate limit can allow some side channel
attacks and probably should not be enabled.
TCP stack implements per TCP socket limits anyway.
Default: INT_MAX (unlimited)
2012-07-17 12:13:05 +04:00
tcp: Introduce optional per-netns ehash.
The more sockets we have in the hash table, the longer we spend looking
up the socket. While running a number of small workloads on the same
host, they penalise each other and cause performance degradation.
The root cause might be a single workload that consumes much more
resources than the others. It often happens on a cloud service where
different workloads share the same computing resource.
On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash
entries), after running iperf3 in different netns, creating 24Mi sockets
without data transfer in the root netns causes about 10% performance
regression for the iperf3's connection.
thash_entries sockets length Gbps
524288 1 1 50.7
24Mi 48 45.1
It is basically related to the length of the list of each hash bucket.
For testing purposes to see how performance drops along the length,
I set 131072 (1Mi / 8) to thash_entries, and here's the result.
thash_entries sockets length Gbps
131072 1 1 50.7
1Mi 8 49.9
2Mi 16 48.9
4Mi 32 47.3
8Mi 64 44.6
16Mi 128 40.6
24Mi 192 36.3
32Mi 256 32.5
40Mi 320 27.0
48Mi 384 25.0
To resolve the socket lookup degradation, we introduce an optional
per-netns hash table for TCP, but it's just ehash, and we still share
the global bhash, bhash2 and lhash2.
With a smaller ehash, we can look up non-listener sockets faster and
isolate such noisy neighbours. In addition, we can reduce lock contention.
We can control the ehash size by a new sysctl knob. However, depending
on workloads, it will require very sensitive tuning, so we disable the
feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover,
we can fall back to using the global ehash in case we fail to allocate
enough memory for a new ehash. The maximum size is 16Mi, which is large
enough that even if we have 48Mi sockets, the average list length is 3,
and regression would be less than 1%.
We can check the current ehash size by another read-only sysctl knob,
net.ipv4.tcp_ehash_entries. A negative value means the netns shares
the global ehash (per-netns ehash is disabled or failed to allocate
memory).
# dmesg | cut -d ' ' -f 5- | grep "established hash"
TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage)
# sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries
# sysctl net.ipv4.tcp_child_ehash_entries
net.ipv4.tcp_child_ehash_entries = 0 # disabled by default
# ip netns add test1
# ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = -524288 # share the global ehash
# sysctl -w net.ipv4.tcp_child_ehash_entries=100
net.ipv4.tcp_child_ehash_entries = 100
# ip netns add test2
# ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets
When more than two processes in the same netns create per-netns ehash
concurrently with different sizes, we need to guarantee the size in
one of the following ways:
1) Share the global ehash and create per-netns ehash
First, unshare() with tcp_child_ehash_entries==0. It creates dedicated
netns sysctl knobs where we can safely change tcp_child_ehash_entries
and clone()/unshare() to create a per-netns ehash.
2) Control write on sysctl by BPF
We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on
sysctl knobs.
Note that the global ehash allocated at the boot time is spread over
available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate
pages for each per-netns ehash depending on the current process's NUMA
policy. By default, the allocation is done in the local node only, so
the per-netns hash table could fully reside on a random node. Thus,
depending on the NUMA policy the netns is created with and the CPU the
current thread is running on, we could see some performance differences
for highly optimised networking applications.
Note also that the default values of two sysctl knobs depend on the ehash
size and should be tuned carefully:
tcp_max_tw_buckets : tcp_child_ehash_entries / 2
tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128)
As a bonus, we can dismantle netns faster. Currently, while destroying
netns, we call inet_twsk_purge(), which walks through the global ehash.
It can be potentially big because it can have many sockets other than
TIME_WAIT in all netns. Splitting ehash changes that situation, where
it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets
in each netns.
With regard to this, we do not free the per-netns ehash in inet_twsk_kill()
to avoid UAF while iterating the per-netns ehash in inet_twsk_purge().
Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to
keep it protocol-family-independent.
In the future, we could optimise ehash lookup/iteration further by removing
netns comparison for the per-netns ehash.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-08 04:10:22 +03:00
tcp_ehash_entries - INTEGER
Show the number of hash buckets for TCP sockets in the current
networking namespace.
A negative value means the networking namespace does not own its
hash buckets and shares the initial networking namespace's one.
tcp_child_ehash_entries - INTEGER
Control the number of hash buckets for TCP sockets in the child
networking namespace, which must be set before clone() or unshare().
If the value is not 0, the kernel uses a value rounded up to 2^n
as the actual hash bucket size. 0 is a special value, meaning
the child networking namespace will share the initial networking
namespace's hash buckets.
Note that the child will use the global one in case the kernel
fails to allocate enough memory. In addition, the global hash
buckets are spread over available NUMA nodes, but the allocation
of the child hash table depends on the current process's NUMA
policy, which could result in performance differences.
Note also that the default value of tcp_max_tw_buckets and
tcp_max_syn_backlog depend on the hash bucket size.
Possible values: 0, 2^n (n: 0 - 24 (16Mi))
Default: 0
2022-10-26 16:51:11 +03:00
tcp_plb_enabled - BOOLEAN
If set and the underlying congestion control (e.g. DCTCP) supports
and enables PLB feature, TCP PLB (Protective Load Balancing) is
enabled. PLB is described in the following paper:
https://doi.org/10.1145/3544216.3544226. Based on PLB parameters,
upon sensing sustained congestion, TCP triggers a change in
flow label field for outgoing IPv6 packets. A change in flow label
field potentially changes the path of outgoing packets for switches
that use ECMP/WCMP for routing.
PLB changes socket txhash which results in a change in IPv6 Flow Label
field, and currently no-op for IPv4 headers. It is possible
to apply PLB for IPv4 with other network header fields (e.g. TCP
or IPv4 options) or using encapsulation where outer header is used
by switches to determine next hop. In either case, further host
and switch side changes will be needed.
When set, PLB assumes that congestion signal (e.g. ECN) is made
available and used by congestion control module to estimate a
congestion measure (e.g. ce_ratio). PLB needs a congestion measure to
make repathing decisions.
Default: FALSE
tcp_plb_idle_rehash_rounds - INTEGER
Number of consecutive congested rounds (RTT) seen after which
a rehash can be performed, given there are no packets in flight.
This is referred to as M in PLB paper:
https://doi.org/10.1145/3544216.3544226.
Possible Values: 0 - 31
Default: 3
tcp_plb_rehash_rounds - INTEGER
Number of consecutive congested rounds (RTT) seen after which
a forced rehash can be performed. Be careful when setting this
parameter, as a small value increases the risk of retransmissions.
This is referred to as N in PLB paper:
https://doi.org/10.1145/3544216.3544226.
Possible Values: 0 - 31
Default: 12
tcp_plb_suspend_rto_sec - INTEGER
Time, in seconds, to suspend PLB in event of an RTO. In order to avoid
having PLB repath onto a connectivity "black hole", after an RTO a TCP
connection suspends PLB repathing for a random duration between 1x and
2x of this parameter. Randomness is added to avoid concurrent rehashing
of multiple TCP connections. This should be set corresponding to the
amount of time it takes to repair a failed link.
Possible Values: 0 - 255
Default: 60
tcp_plb_cong_thresh - INTEGER
Fraction of packets marked with congestion over a round (RTT) to
tag that round as congested. This is referred to as K in the PLB paper:
https://doi.org/10.1145/3544216.3544226.
The 0-1 fraction range is mapped to 0-256 range to avoid floating
point operations. For example, 128 means that if at least 50% of
the packets in a round were marked as congested then the round
will be tagged as congested.
Setting threshold to 0 means that PLB repaths every RTT regardless
of congestion. This is not intended behavior for PLB and should be
used only for experimentation purpose.
Possible Values: 0 - 256
Default: 128
2020-04-28 01:01:49 +03:00
UDP variables
=============
2007-12-31 11:29:24 +03:00
2017-01-26 21:02:24 +03:00
udp_l3mdev_accept - BOOLEAN
Enabling this option allows a "global" bound socket to work
across L3 master domains (e.g., VRFs) with packets capable of
being received regardless of the L3 domain in which they
originated. Only valid when the kernel was compiled with
CONFIG_NET_L3_MASTER_DEV.
2020-04-28 01:01:49 +03:00
Default: 0 (disabled)
2017-01-26 21:02:24 +03:00
2007-12-31 11:29:24 +03:00
udp_mem - vector of 3 INTEGERs: min, pressure, max
Number of pages allowed for queueing by all UDP sockets.
2021-11-05 10:35:41 +03:00
min: Number of pages allowed for queueing by all UDP sockets.
2007-12-31 11:29:24 +03:00
pressure: This value was introduced to follow format of tcp_mem.
2021-11-05 10:35:41 +03:00
max: This value was introduced to follow format of tcp_mem.
2007-12-31 11:29:24 +03:00
Default is calculated at boot time from amount of available memory.
udp_rmem_min - INTEGER
Minimal size of receive buffer used by UDP sockets in moderation.
Each UDP socket is able to use the size for receiving data, even if
total pages of UDP sockets exceed udp_mem pressure. The unit is byte.
2020-04-28 01:01:49 +03:00
2018-03-14 07:57:17 +03:00
Default: 4K
2007-12-31 11:29:24 +03:00
udp_wmem_min - INTEGER
2022-07-18 20:56:59 +03:00
UDP does not have tx memory accounting and this tunable has no effect.
2007-12-31 11:29:24 +03:00
udp: Introduce optional per-netns hash table.
The maximum hash table size is 64K due to the nature of the protocol. [0]
It's smaller than TCP, and fewer sockets can cause a performance drop.
On an EC2 c5.24xlarge instance (192 GiB memory), after running iperf3 in
different netns, creating 32Mi sockets without data transfer in the root
netns causes regression for the iperf3's connection.
uhash_entries sockets length Gbps
64K 1 1 5.69
1Mi 16 5.27
2Mi 32 4.90
4Mi 64 4.09
8Mi 128 2.96
16Mi 256 2.06
32Mi 512 1.12
The per-netns hash table breaks the lengthy lists into shorter ones. It is
useful on a multi-tenant system with thousands of netns. With smaller hash
tables, we can look up sockets faster, isolate noisy neighbours, and reduce
lock contention.
The max size of the per-netns table is 64K as well. This is because the
possible hash range by udp_hashfn() always fits in 64K within the same
netns and we cannot make full use of the whole buckets larger than 64K.
/* 0 < num < 64K -> X < hash < X + 64K */
(num + net_hash_mix(net)) & mask;
Also, the min size is 128. We use a bitmap to search for an available
port in udp_lib_get_port(). To keep the bitmap on the stack and not
fire the CONFIG_FRAME_WARN error at build time, we round up the table
size to 128.
The sysctl usage is the same with TCP:
$ dmesg | cut -d ' ' -f 6- | grep "UDP hash"
UDP hash table entries: 65536 (order: 9, 2097152 bytes, vmalloc)
# sysctl net.ipv4.udp_hash_entries
net.ipv4.udp_hash_entries = 65536 # can be changed by uhash_entries
# sysctl net.ipv4.udp_child_hash_entries
net.ipv4.udp_child_hash_entries = 0 # disabled by default
# ip netns add test1
# ip netns exec test1 sysctl net.ipv4.udp_hash_entries
net.ipv4.udp_hash_entries = -65536 # share the global table
# sysctl -w net.ipv4.udp_child_hash_entries=100
net.ipv4.udp_child_hash_entries = 100
# ip netns add test2
# ip netns exec test2 sysctl net.ipv4.udp_hash_entries
net.ipv4.udp_hash_entries = 128 # own a per-netns table with 2^n buckets
We could optimise the hash table lookup/iteration further by removing
the netns comparison for the per-netns one in the future. Also, we
could optimise the sparse udp_hslot layout by putting it in udp_table.
[0]: https://lore.kernel.org/netdev/4ACC2815.7010101@gmail.com/
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-11-15 00:57:57 +03:00
udp_hash_entries - INTEGER
Show the number of hash buckets for UDP sockets in the current
networking namespace.
A negative value means the networking namespace does not own its
hash buckets and shares the initial networking namespace's one.
udp_child_ehash_entries - INTEGER
Control the number of hash buckets for UDP sockets in the child
networking namespace, which must be set before clone() or unshare().
If the value is not 0, the kernel uses a value rounded up to 2^n
as the actual hash bucket size. 0 is a special value, meaning
the child networking namespace will share the initial networking
namespace's hash buckets.
Note that the child will use the global one in case the kernel
fails to allocate enough memory. In addition, the global hash
buckets are spread over available NUMA nodes, but the allocation
of the child hash table depends on the current process's NUMA
policy, which could result in performance differences.
Possible values: 0, 2^n (n: 7 (128) - 16 (64K))
Default: 0
2020-04-28 01:01:49 +03:00
RAW variables
=============
2018-11-07 18:36:05 +03:00
raw_l3mdev_accept - BOOLEAN
Enabling this option allows a "global" bound socket to work
across L3 master domains (e.g., VRFs) with packets capable of
being received regardless of the L3 domain in which they
originated. Only valid when the kernel was compiled with
CONFIG_NET_L3_MASTER_DEV.
2020-04-28 01:01:49 +03:00
2018-11-07 18:36:05 +03:00
Default: 1 (enabled)
2020-04-28 01:01:49 +03:00
CIPSOv4 Variables
=================
2006-08-04 03:45:49 +04:00
cipso_cache_enable - BOOLEAN
If set, enable additions to and lookups from the CIPSO label mapping
cache. If unset, additions are ignored and lookups always result in a
miss. However, regardless of the setting the cache is still
invalidated when required when means you can safely toggle this on and
off and the cache will always be "safe".
2020-04-28 01:01:49 +03:00
2006-08-04 03:45:49 +04:00
Default: 1
cipso_cache_bucket_size - INTEGER
The CIPSO label cache consists of a fixed size hash table with each
hash bucket containing a number of cache entries. This variable limits
2022-07-07 02:40:01 +03:00
the number of entries in each hash bucket; the larger the value is, the
2006-08-04 03:45:49 +04:00
more CIPSO label mappings that can be cached. When the number of
entries in a given hash bucket reaches this limit adding new entries
causes the oldest entry in the bucket to be removed to make room.
2020-04-28 01:01:49 +03:00
2006-08-04 03:45:49 +04:00
Default: 10
cipso_rbm_optfmt - BOOLEAN
Enable the "Optimized Tag 1 Format" as defined in section 3.4.2.6 of
the CIPSO draft specification (see Documentation/netlabel for details).
This means that when set the CIPSO tag will be padded with empty
categories in order to make the packet data 32-bit aligned.
2020-04-28 01:01:49 +03:00
2006-08-04 03:45:49 +04:00
Default: 0
cipso_rbm_structvalid - BOOLEAN
If set, do a very strict check of the CIPSO option when
ip_options_compile() is called. If unset, relax the checks done during
ip_options_compile(). Either way is "safe" as errors are caught else
where in the CIPSO processing code but setting this to 0 (False) should
result in less work (i.e. it should be faster) but could cause problems
with other implementations that require strict checking.
2020-04-28 01:01:49 +03:00
2006-08-04 03:45:49 +04:00
Default: 0
2020-04-28 01:01:49 +03:00
IP Variables
============
2005-04-17 02:20:36 +04:00
ip_local_port_range - 2 INTEGERS
Defines the local port range that is used by TCP and UDP to
2009-02-23 07:39:04 +03:00
choose the local port. The first number is the first, the
tcp/dccp: try to not exhaust ip_local_port_range in connect()
A long standing problem on busy servers is the tiny available TCP port
range (/proc/sys/net/ipv4/ip_local_port_range) and the default
sequential allocation of source ports in connect() system call.
If a host is having a lot of active TCP sessions, chances are
very high that all ports are in use by at least one flow,
and subsequent bind(0) attempts fail, or have to scan a big portion of
space to find a slot.
In this patch, I changed the starting point in __inet_hash_connect()
so that we try to favor even [1] ports, leaving odd ports for bind()
users.
We still perform a sequential search, so there is no guarantee, but
if connect() targets are very different, end result is we leave
more ports available to bind(), and we spread them all over the range,
lowering time for both connect() and bind() to find a slot.
This strategy only works well if /proc/sys/net/ipv4/ip_local_port_range
is even, ie if start/end values have different parity.
Therefore, default /proc/sys/net/ipv4/ip_local_port_range was changed to
32768 - 60999 (instead of 32768 - 61000)
There is no change on security aspects here, only some poor hashing
schemes could be eventually impacted by this change.
[1] : The odd/even property depends on ip_local_port_range values parity
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-25 00:49:35 +03:00
second the last local port number.
2019-11-26 01:48:00 +03:00
If possible, it is better these numbers have different parity
(one even and one odd value).
Must be greater than or equal to ip_unprivileged_port_start.
tcp/dccp: try to not exhaust ip_local_port_range in connect()
A long standing problem on busy servers is the tiny available TCP port
range (/proc/sys/net/ipv4/ip_local_port_range) and the default
sequential allocation of source ports in connect() system call.
If a host is having a lot of active TCP sessions, chances are
very high that all ports are in use by at least one flow,
and subsequent bind(0) attempts fail, or have to scan a big portion of
space to find a slot.
In this patch, I changed the starting point in __inet_hash_connect()
so that we try to favor even [1] ports, leaving odd ports for bind()
users.
We still perform a sequential search, so there is no guarantee, but
if connect() targets are very different, end result is we leave
more ports available to bind(), and we spread them all over the range,
lowering time for both connect() and bind() to find a slot.
This strategy only works well if /proc/sys/net/ipv4/ip_local_port_range
is even, ie if start/end values have different parity.
Therefore, default /proc/sys/net/ipv4/ip_local_port_range was changed to
32768 - 60999 (instead of 32768 - 61000)
There is no change on security aspects here, only some poor hashing
schemes could be eventually impacted by this change.
[1] : The odd/even property depends on ip_local_port_range values parity
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-25 00:49:35 +03:00
The default values are 32768 and 60999 respectively.
2005-04-17 02:20:36 +04:00
2010-05-05 04:27:06 +04:00
ip_local_reserved_ports - list of comma separated ranges
Specify the ports which are reserved for known third-party
applications. These ports will not be used by automatic port
assignments (e.g. when calling connect() or bind() with port
number 0). Explicit port allocation behavior is unchanged.
The format used for both input and output is a comma separated
list of ranges (e.g. "1,2-4,10-10" for ports 1, 2, 3, 4 and
10). Writing to the file will clear all previously reserved
ports and update the current list with the one given in the
input.
Note that ip_local_port_range and ip_local_reserved_ports
settings are independent and both are considered by the kernel
when determining which ports are available for automatic port
assignments.
You can reserve ports which are not in the current
2020-04-28 01:01:49 +03:00
ip_local_port_range, e.g.::
2010-05-05 04:27:06 +04:00
2020-04-28 01:01:49 +03:00
$ cat /proc/sys/net/ipv4/ip_local_port_range
32000 60999
$ cat /proc/sys/net/ipv4/ip_local_reserved_ports
8080,9148
2010-05-05 04:27:06 +04:00
although this is redundant. However such a setting is useful
if later the port range is changed to a value that will
2021-04-01 18:57:05 +03:00
include the reserved ports. Also keep in mind, that overlapping
of these ranges may affect probability of selecting ephemeral
ports which are right after block of reserved ports.
2010-05-05 04:27:06 +04:00
Default: Empty
2017-01-21 04:49:11 +03:00
ip_unprivileged_port_start - INTEGER
This is a per-namespace sysctl. It defines the first
unprivileged port in the network namespace. Privileged ports
require root or CAP_NET_BIND_SERVICE in order to bind to them.
2019-11-26 01:48:00 +03:00
To disable all privileged ports, set this to 0. They must not
overlap with the ip_local_port_range.
2017-01-21 04:49:11 +03:00
Default: 1024
2005-04-17 02:20:36 +04:00
ip_nonlocal_bind - BOOLEAN
If set, allows processes to bind() to non-local IP addresses,
which can be quite useful - but may break some applications.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 0
tcp: bind(0) remove the SO_REUSEADDR restriction when ephemeral ports are exhausted.
Commit aacd9289af8b82f5fb01bcdd53d0e3406d1333c7 ("tcp: bind() use stronger
condition for bind_conflict") introduced a restriction to forbid to bind
SO_REUSEADDR enabled sockets to the same (addr, port) tuple in order to
assign ports dispersedly so that we can connect to the same remote host.
The change results in accelerating port depletion so that we fail to bind
sockets to the same local port even if we want to connect to the different
remote hosts.
You can reproduce this issue by following instructions below.
1. # sysctl -w net.ipv4.ip_local_port_range="32768 32768"
2. set SO_REUSEADDR to two sockets.
3. bind two sockets to (localhost, 0) and the latter fails.
Therefore, when ephemeral ports are exhausted, bind(0) should fallback to
the legacy behaviour to enable the SO_REUSEADDR option and make it possible
to connect to different remote (addr, port) tuples.
This patch allows us to bind SO_REUSEADDR enabled sockets to the same
(addr, port) only when net.ipv4.ip_autobind_reuse is set 1 and all
ephemeral ports are exhausted. This also allows connect() and listen() to
share ports in the following way and may break some applications. So the
ip_autobind_reuse is 0 by default and disables the feature.
1. setsockopt(sk1, SO_REUSEADDR)
2. setsockopt(sk2, SO_REUSEADDR)
3. bind(sk1, saddr, 0)
4. bind(sk2, saddr, 0)
5. connect(sk1, daddr)
6. listen(sk2)
If it is set 1, we can fully utilize the 4-tuples, but we should use
IP_BIND_ADDRESS_NO_PORT for bind()+connect() as possible.
The notable thing is that if all sockets bound to the same port have
both SO_REUSEADDR and SO_REUSEPORT enabled, we can bind sockets to an
ephemeral port and also do listen().
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-10 11:05:25 +03:00
ip_autobind_reuse - BOOLEAN
By default, bind() does not select the ports automatically even if
the new socket and all sockets bound to the port have SO_REUSEADDR.
ip_autobind_reuse allows bind() to reuse the port and this is useful
when you use bind()+connect(), but may break some applications.
The preferred solution is to use IP_BIND_ADDRESS_NO_PORT and this
option should only be set by experts.
Default: 0
2022-07-12 03:15:32 +03:00
ip_dynaddr - INTEGER
2005-04-17 02:20:36 +04:00
If set non-zero, enables support for dynamic addresses.
If set to a non-zero value larger than 1, a kernel log
message will be printed when dynamic address rewriting
occurs.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 0
2013-06-11 14:54:39 +04:00
ip_early_demux - BOOLEAN
Optimize input packet processing down to one demux for
certain kinds of local sockets. Currently we only do this
2017-03-23 22:34:16 +03:00
for established TCP and connected UDP sockets.
2013-06-11 14:54:39 +04:00
It may add an additional cost for pure routing workloads that
reduces overall throughput, in such case you should disable it.
2020-04-28 01:01:49 +03:00
2013-06-11 14:54:39 +04:00
Default: 1
2020-04-21 23:34:48 +03:00
ping_group_range - 2 INTEGERS
Restrict ICMP_PROTO datagram sockets to users in the group range.
The default is "1 0", meaning, that nobody (not even root) may
create ping sockets. Setting it to "100 100" would grant permissions
2023-06-01 06:13:05 +03:00
to the single group. "0 4294967294" would enable it for the world, "100
4294967294" would enable it for the users, but not daemons.
2020-04-21 23:34:48 +03:00
2017-03-23 22:34:16 +03:00
tcp_early_demux - BOOLEAN
Enable early demux for established TCP sockets.
2020-04-28 01:01:49 +03:00
2017-03-23 22:34:16 +03:00
Default: 1
udp_early_demux - BOOLEAN
Enable early demux for connected UDP sockets. Disable this if
your system could experience more unconnected load.
2020-04-28 01:01:49 +03:00
2017-03-23 22:34:16 +03:00
Default: 1
2005-04-17 02:20:36 +04:00
icmp_echo_ignore_all - BOOLEAN
2005-10-04 03:07:30 +04:00
If set non-zero, then the kernel will ignore all ICMP ECHO
requests sent to it.
2020-04-28 01:01:49 +03:00
2005-10-04 03:07:30 +04:00
Default: 0
2021-03-30 04:45:29 +03:00
icmp_echo_enable_probe - BOOLEAN
If set to one, then the kernel will respond to RFC 8335 PROBE
requests sent to it.
Default: 0
2005-04-17 02:20:36 +04:00
icmp_echo_ignore_broadcasts - BOOLEAN
2005-10-04 03:07:30 +04:00
If set non-zero, then the kernel will ignore all ICMP ECHO and
TIMESTAMP requests sent to it via broadcast/multicast.
2020-04-28 01:01:49 +03:00
2005-10-04 03:07:30 +04:00
Default: 1
2005-04-17 02:20:36 +04:00
icmp_ratelimit - INTEGER
Limit the maximal rates for sending ICMP packets whose type matches
icmp_ratemask (see below) to specific targets.
2008-07-02 06:29:07 +04:00
0 to disable any limiting,
otherwise the minimal space between responses in milliseconds.
2014-09-19 18:38:40 +04:00
Note that another sysctl, icmp_msgs_per_sec limits the number
of ICMP packets sent on all targets.
2020-04-28 01:01:49 +03:00
2008-07-02 06:29:07 +04:00
Default: 1000
2005-04-17 02:20:36 +04:00
2014-09-19 18:38:40 +04:00
icmp_msgs_per_sec - INTEGER
Limit maximal number of ICMP packets sent per second from this host.
Only messages whose type matches icmp_ratemask (see below) are
2020-10-15 21:42:00 +03:00
controlled by this limit. For security reasons, the precise count
of messages per second is randomized.
2020-04-28 01:01:49 +03:00
2008-07-02 06:29:07 +04:00
Default: 1000
2005-04-17 02:20:36 +04:00
2014-09-19 18:38:40 +04:00
icmp_msgs_burst - INTEGER
icmp_msgs_per_sec controls number of ICMP packets sent per second,
while icmp_msgs_burst controls the burst size of these packets.
2020-10-15 21:42:00 +03:00
For security reasons, the precise burst size is randomized.
2020-04-28 01:01:49 +03:00
2014-09-19 18:38:40 +04:00
Default: 50
2005-04-17 02:20:36 +04:00
icmp_ratemask - INTEGER
Mask made of ICMP types for which rates are being limited.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Significant bits: IHGFEDCBA9876543210
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default mask: 0000001100000011000 (6168)
Bit definitions (see include/linux/icmp.h):
2020-04-28 01:01:49 +03:00
= =========================
2005-04-17 02:20:36 +04:00
0 Echo Reply
2020-04-28 01:01:49 +03:00
3 Destination Unreachable [1]_
4 Source Quench [1]_
2005-04-17 02:20:36 +04:00
5 Redirect
8 Echo Request
2020-04-28 01:01:49 +03:00
B Time Exceeded [1]_
C Parameter Problem [1]_
2005-04-17 02:20:36 +04:00
D Timestamp Request
E Timestamp Reply
F Info Request
G Info Reply
H Address Mask Request
I Address Mask Reply
2020-04-28 01:01:49 +03:00
= =========================
2005-04-17 02:20:36 +04:00
2020-04-28 01:01:49 +03:00
.. [1] These are rate limited by default (see default mask above)
2005-04-17 02:20:36 +04:00
icmp_ignore_bogus_error_responses - BOOLEAN
Some routers violate RFC1122 by sending bogus responses to broadcast
frames. Such violations are normally logged via a kernel warning.
If this is set to TRUE, the kernel will not give such warnings, which
will avoid log file clutter.
2020-04-28 01:01:49 +03:00
2013-06-08 00:16:19 +04:00
Default: 1
2005-04-17 02:20:36 +04:00
2006-02-03 04:02:25 +03:00
icmp_errors_use_inbound_ifaddr - BOOLEAN
2015-10-14 15:25:53 +03:00
If zero, icmp error messages are sent with the primary address of
the exiting interface.
2009-02-23 07:39:04 +03:00
2006-02-03 04:02:25 +03:00
If non-zero, the message will be sent with the primary address of
the interface that received the packet that caused the icmp error.
2021-01-30 22:05:18 +03:00
This is the behaviour many network administrators will expect from
2006-02-03 04:02:25 +03:00
a router. And it can make debugging complicated network layouts
2009-02-23 07:39:04 +03:00
much easier.
2006-02-03 04:02:25 +03:00
Note that if no primary address exists for the interface selected,
then the primary address of the first non-loopback interface that
2006-10-04 00:54:15 +04:00
has one will be used regardless of this setting.
2006-02-03 04:02:25 +03:00
Default: 0
2005-04-17 02:20:36 +04:00
igmp_max_memberships - INTEGER
Change the maximum number of multicast groups we can subscribe to.
Default: 20
2010-11-15 08:41:31 +03:00
Theoretical maximum value is bounded by having to send a membership
report in a single datagram (i.e. the report can't span multiple
datagrams, or risk confusing the switch and leaving groups you don't
intend to).
2005-04-17 02:20:36 +04:00
2010-11-15 08:41:31 +03:00
The number of supported groups 'M' is bounded by the number of group
report entries you can fit into a single datagram of 65535 bytes.
M = 65536-sizeof (ip header)/(sizeof(Group record))
Group records are variable length, with a minimum of 12 bytes.
So net.ipv4.igmp_max_memberships should not be set higher than:
(65536-24) / 12 = 5459
The value 5459 assumes no IP header options, so in practice
this number may be lower.
2016-03-21 23:21:40 +03:00
igmp_max_msf - INTEGER
Maximum number of addresses allowed in the source filter list for a
multicast group.
2020-04-28 01:01:49 +03:00
2016-03-21 23:21:40 +03:00
Default: 10
2014-09-02 17:49:26 +04:00
igmp_qrv - INTEGER
2016-03-21 23:21:40 +03:00
Controls the IGMP query robustness variable (see RFC2236 8.1).
2020-04-28 01:01:49 +03:00
2016-03-21 23:21:40 +03:00
Default: 2 (as specified by RFC2236 8.1)
2020-04-28 01:01:49 +03:00
2016-03-21 23:21:40 +03:00
Minimum: 1 (as specified by RFC6636 4.5)
2014-09-02 17:49:26 +04:00
2016-11-07 09:51:23 +03:00
force_igmp_version - INTEGER
2020-04-28 01:01:49 +03:00
- 0 - (default) No enforcement of a IGMP version, IGMPv1/v2 fallback
allowed. Will back to IGMPv3 mode again if all IGMPv1/v2 Querier
Present timer expires.
- 1 - Enforce to use IGMP version 1. Will also reply IGMPv1 report if
receive IGMPv2/v3 query.
- 2 - Enforce to use IGMP version 2. Will fallback to IGMPv1 if receive
IGMPv1 query message. Will reply report if receive IGMPv3 query.
- 3 - Enforce to use IGMP version 3. The same react with default 0.
.. note::
2016-11-07 09:51:23 +03:00
2020-04-28 01:01:49 +03:00
this is not the same with force_mld_version because IGMPv3 RFC3376
Security Considerations does not have clear description that we could
ignore other version messages completely as MLDv2 RFC3810. So make
this value as default 0 is recommended.
2016-11-07 09:51:23 +03:00
2020-04-28 01:01:49 +03:00
`` conf/interface/* ``
changes special settings per interface (where
interface" is the name of your network interface)
2016-03-21 23:21:39 +03:00
2020-04-28 01:01:49 +03:00
`` conf/all/* ``
is special, changes the settings for all interfaces
2016-03-21 23:21:39 +03:00
2005-04-17 02:20:36 +04:00
log_martians - BOOLEAN
Log packets with impossible addresses to kernel log.
log_martians for the interface will be enabled if at least one of
conf/{all,interface}/log_martians is set to TRUE,
it will be disabled otherwise
accept_redirects - BOOLEAN
Accept ICMP redirect messages.
accept_redirects for the interface will be enabled if:
2020-04-28 01:01:49 +03:00
2009-02-23 07:39:04 +03:00
- both conf/{all,interface}/accept_redirects are TRUE in the case
forwarding for the interface is enabled
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
or
2020-04-28 01:01:49 +03:00
2009-02-23 07:39:04 +03:00
- at least one of conf/{all,interface}/accept_redirects is TRUE in the
case forwarding for the interface is disabled
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
accept_redirects for the interface will be disabled otherwise
2020-04-28 01:01:49 +03:00
default:
- TRUE (host)
- FALSE (router)
2005-04-17 02:20:36 +04:00
forwarding - BOOLEAN
2017-03-10 15:24:57 +03:00
Enable IP forwarding on this interface. This controls whether packets
received _on_ this interface can be forwarded.
2005-04-17 02:20:36 +04:00
mc_forwarding - BOOLEAN
Do multicast routing. The kernel needs to be compiled with CONFIG_MROUTE
and a multicast routing daemon is required.
2009-02-23 07:39:04 +03:00
conf/all/mc_forwarding must also be set to TRUE to enable multicast
routing for the interface
2005-04-17 02:20:36 +04:00
medium_id - INTEGER
Integer value used to differentiate the devices by the medium they
are attached to. Two devices can have different id values when
the broadcast packets are received only on one of them.
The default value 0 means that the device is the only interface
to its medium, value of -1 means that medium is not known.
2009-02-23 07:39:04 +03:00
2005-04-17 02:20:36 +04:00
Currently, it is used to change the proxy_arp behavior:
the proxy_arp feature is enabled for packets forwarded between
two devices attached to different media.
proxy_arp - BOOLEAN
Do proxy arp.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
proxy_arp for the interface will be enabled if at least one of
conf/{all,interface}/proxy_arp is set to TRUE,
it will be disabled otherwise
2010-01-05 08:50:47 +03:00
proxy_arp_pvlan - BOOLEAN
Private VLAN proxy arp.
2020-04-28 01:01:49 +03:00
2010-01-05 08:50:47 +03:00
Basically allow proxy arp replies back to the same interface
(from which the ARP request/solicitation was received).
This is done to support (ethernet) switch features, like RFC
3069, where the individual ports are NOT allowed to
communicate with each other, but they are allowed to talk to
the upstream router. As described in RFC 3069, it is possible
to allow these hosts to communicate through the upstream
router by proxy_arp'ing. Don't need to be used together with
proxy_arp.
This technology is known by different names:
2020-04-28 01:01:49 +03:00
2010-01-05 08:50:47 +03:00
In RFC 3069 it is called VLAN Aggregation.
Cisco and Allied Telesyn call it Private VLAN.
Hewlett-Packard call it Source-Port filtering or port-isolation.
Ericsson call it MAC-Forced Forwarding (RFC Draft).
2023-01-30 20:14:28 +03:00
proxy_delay - INTEGER
Delay proxy response.
Delay response to a neighbor solicitation when proxy_arp
or proxy_ndp is enabled. A random value between [0, proxy_delay)
will be chosen, setting to zero means reply with no delay.
Value in jiffies. Defaults to 80.
2005-04-17 02:20:36 +04:00
shared_media - BOOLEAN
Send(router) or accept(host) RFC1620 shared media redirects.
2016-05-26 19:28:05 +03:00
Overrides secure_redirects.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
shared_media for the interface will be enabled if at least one of
conf/{all,interface}/shared_media is set to TRUE,
it will be disabled otherwise
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
default TRUE
secure_redirects - BOOLEAN
2016-05-26 19:28:05 +03:00
Accept ICMP redirect messages only to gateways listed in the
interface's current gateway list. Even if disabled, RFC1122 redirect
rules still apply.
2020-04-28 01:01:49 +03:00
2016-05-26 19:28:05 +03:00
Overridden by shared_media.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
secure_redirects for the interface will be enabled if at least one of
conf/{all,interface}/secure_redirects is set to TRUE,
it will be disabled otherwise
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
default TRUE
send_redirects - BOOLEAN
Send redirects, if router.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
send_redirects for the interface will be enabled if at least one of
conf/{all,interface}/send_redirects is set to TRUE,
it will be disabled otherwise
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: TRUE
bootp_relay - BOOLEAN
Accept packets with source address 0.b.c.d destined
not to this host as local ones. It is supposed, that
BOOTP relay daemon will catch and forward such packets.
conf/all/bootp_relay must also be set to TRUE to enable BOOTP relay
for the interface
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
default FALSE
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Not Implemented Yet.
accept_source_route - BOOLEAN
Accept packets with SRR option.
conf/all/accept_source_route must also be set to TRUE to accept packets
with SRR option on the interface
2020-04-28 01:01:49 +03:00
default
- TRUE (router)
- FALSE (host)
2005-04-17 02:20:36 +04:00
2009-12-03 04:25:58 +03:00
accept_local - BOOLEAN
2014-09-10 20:20:23 +04:00
Accept packets with local source addresses. In combination with
suitable routing, this can be used to direct packets between two
local interfaces over the wire and have them accepted properly.
2009-12-03 04:25:58 +03:00
default FALSE
2012-06-12 04:44:01 +04:00
route_localnet - BOOLEAN
Do not consider loopback addresses as martian source or destination
while routing. This enables the use of 127/8 for local routing purposes.
2020-04-28 01:01:49 +03:00
2012-06-12 04:44:01 +04:00
default FALSE
2009-02-20 11:25:36 +03:00
rp_filter - INTEGER
2020-04-28 01:01:49 +03:00
- 0 - No source validation.
- 1 - Strict mode as defined in RFC3704 Strict Reverse Path
Each incoming packet is tested against the FIB and if the interface
is not the best reverse path the packet check will fail.
By default failed packets are discarded.
- 2 - Loose mode as defined in RFC3704 Loose Reverse Path
Each incoming packet's source address is also tested against the FIB
and if the source address is not reachable via any interface
the packet check will fail.
2009-02-20 11:25:36 +03:00
2009-02-23 07:39:04 +03:00
Current recommended practice in RFC3704 is to enable strict mode
2009-02-23 07:37:55 +03:00
to prevent IP spoofing from DDos attacks. If using asymmetric routing
2009-02-23 07:39:04 +03:00
or other complicated routing, then loose mode is recommended.
2009-02-20 11:25:36 +03:00
2009-12-03 02:39:04 +03:00
The max value from conf/{all,interface}/rp_filter is used
when doing source validation on the {interface}.
2005-04-17 02:20:36 +04:00
Default value is 0. Note that some distributions enable it
in startup scripts.
2021-02-09 04:37:01 +03:00
src_valid_mark - BOOLEAN
- 0 - The fwmark of the packet is not included in reverse path
route lookup. This allows for asymmetric routing configurations
utilizing the fwmark in only one direction, e.g., transparent
proxying.
- 1 - The fwmark of the packet is included in reverse path route
lookup. This permits rp_filter to function when the fwmark is
used for routing traffic in both directions.
This setting also affects the utilization of fmwark when
performing source address selection for ICMP replies, or
determining addresses stored for the IPOPT_TS_TSANDADDR and
IPOPT_RR IP options.
The max value from conf/{all,interface}/src_valid_mark is used.
Default value is 0.
2005-04-17 02:20:36 +04:00
arp_filter - BOOLEAN
2020-04-28 01:01:49 +03:00
- 1 - Allows you to have multiple network interfaces on the same
subnet, and have the ARPs for each interface be answered
based on whether or not the kernel would route a packet from
the ARP'd IP out that interface (therefore you must use source
based routing for this to work). In other words it allows control
of which cards (usually 1) will respond to an arp request.
- 0 - (default) The kernel can respond to arp requests with addresses
from other interfaces. This may seem wrong but it usually makes
sense, because it increases the chance of successful communication.
IP addresses are owned by the complete host on Linux, not by
particular interfaces. Only for more complex setups like load-
balancing, does this behaviour cause problems.
2005-04-17 02:20:36 +04:00
arp_filter for the interface will be enabled if at least one of
conf/{all,interface}/arp_filter is set to TRUE,
it will be disabled otherwise
arp_announce - INTEGER
Define different restriction levels for announcing the local
source IP address from IP packets in ARP requests sent on
interface:
2020-04-28 01:01:49 +03:00
- 0 - (default) Use any local address, configured on any interface
- 1 - Try to avoid local addresses that are not in the target's
subnet for this interface. This mode is useful when target
hosts reachable via this interface require the source IP
address in ARP requests to be part of their logical network
configured on the receiving interface. When we generate the
request we will check all our subnets that include the
target IP and will preserve the source address if it is from
such subnet. If there is no such subnet we select source
address according to the rules for level 2.
- 2 - Always use the best local address for this target.
In this mode we ignore the source address in the IP packet
and try to select local address that we prefer for talks with
the target host. Such local address is selected by looking
for primary IP addresses on all our subnets on the outgoing
interface that include the target IP address. If no suitable
local address is found we select the first local address
we have on the outgoing interface or on all other interfaces,
with the hope we will receive reply for our request and
even sometimes no matter the source IP address we announce.
2005-04-17 02:20:36 +04:00
The max value from conf/{all,interface}/arp_announce is used.
Increasing the restriction level gives more chance for
receiving answer from the resolved target while decreasing
the level announces more valid sender's information.
arp_ignore - INTEGER
Define different modes for sending replies in response to
received ARP requests that resolve local target IP addresses:
2020-04-28 01:01:49 +03:00
- 0 - (default): reply for any local target IP address, configured
on any interface
- 1 - reply only if the target IP address is local address
configured on the incoming interface
- 2 - reply only if the target IP address is local address
configured on the incoming interface and both with the
sender's IP address are part from same subnet on this interface
- 3 - do not reply for local addresses configured with scope host,
only resolutions for global and link addresses are replied
- 4-7 - reserved
- 8 - do not reply for all local addresses
2005-04-17 02:20:36 +04:00
The max value from conf/{all,interface}/arp_ignore is used
when ARP request is received on the {interface}
2009-02-01 12:04:33 +03:00
arp_notify - BOOLEAN
Define mode for notification of address and device changes.
2020-04-28 01:01:49 +03:00
== ==========================================================
0 (default): do nothing
1 Generate gratuitous arp requests when device is brought up
or hardware address changes.
== ==========================================================
2009-02-01 12:04:33 +03:00
2022-07-14 02:40:47 +03:00
arp_accept - INTEGER
Define behavior for accepting gratuitous ARP (garp) frames from devices
that are not already present in the ARP table:
2020-04-28 01:01:49 +03:00
- 0 - don't create new entries in the ARP table
- 1 - create new entries in the ARP table
2022-07-14 02:40:47 +03:00
- 2 - create new entries only if the source IP address is in the same
subnet as an address configured on the interface that received the
garp message.
2010-01-18 15:58:44 +03:00
Both replies and requests type gratuitous arp will trigger the
ARP table to be updated, if this setting is on.
If the ARP table already contains the IP address of the
gratuitous arp frame, the arp table will be updated regardless
if this setting is on or off.
net: arp: introduce arp_evict_nocarrier sysctl parameter
This change introduces a new sysctl parameter, arp_evict_nocarrier.
When set (default) the ARP cache will be cleared on a NOCARRIER event.
This new option has been defaulted to '1' which maintains existing
behavior.
Clearing the ARP cache on NOCARRIER is relatively new, introduced by:
commit 859bd2ef1fc1110a8031b967ee656c53a6260a76
Author: David Ahern <dsahern@gmail.com>
Date: Thu Oct 11 20:33:49 2018 -0700
net: Evict neighbor entries on carrier down
The reason for this changes is to prevent the ARP cache from being
cleared when a wireless device roams. Specifically for wireless roams
the ARP cache should not be cleared because the underlying network has not
changed. Clearing the ARP cache in this case can introduce significant
delays sending out packets after a roam.
A user reported such a situation here:
https://lore.kernel.org/linux-wireless/CACsRnHWa47zpx3D1oDq9JYnZWniS8yBwW1h0WAVZ6vrbwL_S0w@mail.gmail.com/
After some investigation it was found that the kernel was holding onto
packets until ARP finished which resulted in this 1 second delay. It
was also found that the first ARP who-has was never responded to,
which is actually what caues the delay. This change is more or less
working around this behavior, but again, there is no reason to clear
the cache on a roam anyways.
As for the unanswered who-has, we know the packet made it OTA since
it was seen while monitoring. Why it never received a response is
unknown. In any case, since this is a problem on the AP side of things
all that can be done is to work around it until it is solved.
Some background on testing/reproducing the packet delay:
Hardware:
- 2 access points configured for Fast BSS Transition (Though I don't
see why regular reassociation wouldn't have the same behavior)
- Wireless station running IWD as supplicant
- A device on network able to respond to pings (I used one of the APs)
Procedure:
- Connect to first AP
- Ping once to establish an ARP entry
- Start a tcpdump
- Roam to second AP
- Wait for operstate UP event, and note the timestamp
- Start pinging
Results:
Below is the tcpdump after UP. It was recorded the interface went UP at
10:42:01.432875.
10:42:01.461871 ARP, Request who-has 192.168.254.1 tell 192.168.254.71, length 28
10:42:02.497976 ARP, Request who-has 192.168.254.1 tell 192.168.254.71, length 28
10:42:02.507162 ARP, Reply 192.168.254.1 is-at ac:86:74:55:b0:20, length 46
10:42:02.507185 IP 192.168.254.71 > 192.168.254.1: ICMP echo request, id 52792, seq 1, length 64
10:42:02.507205 IP 192.168.254.71 > 192.168.254.1: ICMP echo request, id 52792, seq 2, length 64
10:42:02.507212 IP 192.168.254.71 > 192.168.254.1: ICMP echo request, id 52792, seq 3, length 64
10:42:02.507219 IP 192.168.254.71 > 192.168.254.1: ICMP echo request, id 52792, seq 4, length 64
10:42:02.507225 IP 192.168.254.71 > 192.168.254.1: ICMP echo request, id 52792, seq 5, length 64
10:42:02.507232 IP 192.168.254.71 > 192.168.254.1: ICMP echo request, id 52792, seq 6, length 64
10:42:02.515373 IP 192.168.254.1 > 192.168.254.71: ICMP echo reply, id 52792, seq 1, length 64
10:42:02.521399 IP 192.168.254.1 > 192.168.254.71: ICMP echo reply, id 52792, seq 2, length 64
10:42:02.521612 IP 192.168.254.1 > 192.168.254.71: ICMP echo reply, id 52792, seq 3, length 64
10:42:02.521941 IP 192.168.254.1 > 192.168.254.71: ICMP echo reply, id 52792, seq 4, length 64
10:42:02.522419 IP 192.168.254.1 > 192.168.254.71: ICMP echo reply, id 52792, seq 5, length 64
10:42:02.523085 IP 192.168.254.1 > 192.168.254.71: ICMP echo reply, id 52792, seq 6, length 64
You can see the first ARP who-has went out very quickly after UP, but
was never responded to. Nearly a second later the kernel retries and
gets a response. Only then do the ping packets go out. If an ARP entry
is manually added prior to UP (after the cache is cleared) it is seen
that the first ping is never responded to, so its not only an issue with
ARP but with data packets in general.
As mentioned prior, the wireless interface was also monitored to verify
the ping/ARP packet made it OTA which was observed to be true.
Signed-off-by: James Prestwood <prestwoj@gmail.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-01 20:36:28 +03:00
arp_evict_nocarrier - BOOLEAN
Clears the ARP cache on NOCARRIER events. This option is important for
wireless devices where the ARP cache should not be cleared when roaming
between access points on the same network. In most cases this should
remain as the default (1).
- 1 - (default): Clear the ARP cache on NOCARRIER events
- 0 - Do not clear ARP cache on NOCARRIER events
2015-03-19 16:42:04 +03:00
mcast_solicit - INTEGER
The maximum number of multicast probes in INCOMPLETE state,
when the associated hardware address is unknown. Defaults
to 3.
ucast_solicit - INTEGER
The maximum number of unicast probes in PROBE state, when
the hardware address is being reconfirmed. Defaults to 3.
2006-03-21 09:40:03 +03:00
2005-04-17 02:20:36 +04:00
app_solicit - INTEGER
The maximum number of probes to send to the user space ARP daemon
via netlink before dropping back to multicast probes (see
2015-03-19 16:42:04 +03:00
mcast_resolicit). Defaults to 0.
mcast_resolicit - INTEGER
The maximum number of multicast probes after unicast and
app probes in PROBE state. Defaults to 0.
2005-04-17 02:20:36 +04:00
disable_policy - BOOLEAN
Disable IPSEC policy (SPD) for this interface
disable_xfrm - BOOLEAN
Disable IPSEC encryption on this interface, whatever the policy
2013-08-14 03:03:46 +04:00
igmpv2_unsolicited_report_interval - INTEGER
The interval in milliseconds in which the next unsolicited
IGMPv1 or IGMPv2 report retransmit will take place.
2020-04-28 01:01:49 +03:00
2013-08-14 03:03:46 +04:00
Default: 10000 (10 seconds)
2005-04-17 02:20:36 +04:00
2013-08-14 03:03:46 +04:00
igmpv3_unsolicited_report_interval - INTEGER
The interval in milliseconds in which the next unsolicited
IGMPv3 report retransmit will take place.
2020-04-28 01:01:49 +03:00
2013-08-14 03:03:46 +04:00
Default: 1000 (1 seconds)
2005-04-17 02:20:36 +04:00
2020-11-07 22:35:13 +03:00
ignore_routes_with_linkdown - BOOLEAN
Ignore routes whose link is down when performing a FIB lookup.
2014-01-28 08:26:42 +04:00
promote_secondaries - BOOLEAN
When a primary IP address is removed from this interface
promote a corresponding secondary IP address instead of
removing all the corresponding secondary IP addresses.
2016-02-04 15:31:17 +03:00
drop_unicast_in_l2_multicast - BOOLEAN
Drop any unicast IP packets that are received in link-layer
multicast (or broadcast) frames.
2020-04-28 01:01:49 +03:00
2016-02-04 15:31:17 +03:00
This behavior (for multicast) is actually a SHOULD in RFC
1122, but is disabled by default for compatibility reasons.
2020-04-28 01:01:49 +03:00
2016-02-04 15:31:17 +03:00
Default: off (0)
2016-02-04 15:31:18 +03:00
drop_gratuitous_arp - BOOLEAN
Drop all gratuitous ARP frames, for example if there's a known
good ARP proxy on the network and such frames need not be used
(or in the case of 802.11, must not be used to prevent attacks.)
2020-04-28 01:01:49 +03:00
2016-02-04 15:31:18 +03:00
Default: off (0)
2014-01-28 08:26:42 +04:00
2005-04-17 02:20:36 +04:00
tag - INTEGER
Allows you to write a number, which can be used as required.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default value is 0.
2015-08-11 23:35:01 +03:00
xfrm4_gc_thresh - INTEGER
2019-04-09 18:16:59 +03:00
(Obsolete since linux-4.14)
2015-08-11 23:35:01 +03:00
The threshold at which we will start garbage collecting for IPv4
destination cache entries. At twice this value the system will
2017-07-17 14:57:20 +03:00
refuse new allocations.
2015-08-11 23:35:01 +03:00
2015-08-31 13:30:38 +03:00
igmp_link_local_mcast_reports - BOOLEAN
Enable IGMP reports for link local multicast groups in the
224.0.0.X range.
2020-04-28 01:01:49 +03:00
2015-08-31 13:30:38 +03:00
Default TRUE
2005-04-17 02:20:36 +04:00
Alexey Kuznetsov.
kuznet@ms2.inr.ac.ru
Updated by:
2020-04-28 01:01:49 +03:00
- Andi Kleen
ak@muc.de
- Nicolas Delon
delon.nicolas@wanadoo.fr
2005-04-17 02:20:36 +04:00
2020-04-28 01:01:49 +03:00
/proc/sys/net/ipv6/* Variables
==============================
2005-04-17 02:20:36 +04:00
IPv6 has no global variables such as tcp_*. tcp_* settings under ipv4/ also
apply to IPv6 [XXX?].
bindv6only - BOOLEAN
Default value for IPV6_V6ONLY socket option,
2009-02-23 07:39:04 +03:00
which restricts use of the IPv6 socket to IPv6 communication
2005-04-17 02:20:36 +04:00
only.
2020-04-28 01:01:49 +03:00
- TRUE: disable IPv4-mapped address feature
- FALSE: enable IPv4-mapped address feature
2005-04-17 02:20:36 +04:00
2011-08-22 22:28:57 +04:00
Default: FALSE (as specified in RFC3493)
2005-04-17 02:20:36 +04:00
2014-01-17 20:15:05 +04:00
flowlabel_consistency - BOOLEAN
Protect the consistency (and unicity) of flow label.
You have to disable it to use IPV6_FL_F_REFLECT flag on the
flow label manager.
2020-04-28 01:01:49 +03:00
- TRUE: enabled
- FALSE: disabled
2014-01-17 20:15:05 +04:00
Default: TRUE
2015-08-01 02:52:12 +03:00
auto_flowlabels - INTEGER
Automatically generate flow labels based on a flow hash of the
packet. This allows intermediate devices, such as routers, to
identify packet flows for mechanisms like Equal Cost Multipath
2014-07-02 08:33:10 +04:00
Routing (see RFC 6438).
2020-04-28 01:01:49 +03:00
= ===========================================================
0 automatic flow labels are completely disabled
1 automatic flow labels are enabled by default, they can be
2015-08-01 02:52:12 +03:00
disabled on a per socket basis using the IPV6_AUTOFLOWLABEL
socket option
2020-04-28 01:01:49 +03:00
2 automatic flow labels are allowed, they may be enabled on a
2015-08-01 02:52:12 +03:00
per socket basis using the IPV6_AUTOFLOWLABEL socket option
2020-04-28 01:01:49 +03:00
3 automatic flow labels are enabled and enforced, they cannot
2015-08-01 02:52:12 +03:00
be disabled by the socket option
2020-04-28 01:01:49 +03:00
= ===========================================================
2015-08-01 02:52:14 +03:00
Default: 1
2014-07-02 08:33:10 +04:00
ipv6: Flow label state ranges
This patch divides the IPv6 flow label space into two ranges:
0-7ffff is reserved for flow label manager, 80000-fffff will be
used for creating auto flow labels (per RFC6438). This only affects how
labels are set on transmit, it does not affect receive. This range split
can be disbaled by systcl.
Background:
IPv6 flow labels have been an unmitigated disappointment thus far
in the lifetime of IPv6. Support in HW devices to use them for ECMP
is lacking, and OSes don't turn them on by default. If we had these
we could get much better hashing in IPv6 networks without resorting
to DPI, possibly eliminating some of the motivations to to define new
encaps in UDP just for getting ECMP.
Unfortunately, the initial specfications of IPv6 did not clarify
how they are to be used. There has always been a vague concept that
these can be used for ECMP, flow hashing, etc. and we do now have a
good standard how to this in RFC6438. The problem is that flow labels
can be either stateful or stateless (as in RFC6438), and we are
presented with the possibility that a stateless label may collide
with a stateful one. Attempts to split the flow label space were
rejected in IETF. When we added support in Linux for RFC6438, we
could not turn on flow labels by default due to this conflict.
This patch splits the flow label space and should give us
a path to enabling auto flow labels by default for all IPv6 packets.
This is an API change so we need to consider compatibility with
existing deployment. The stateful range is chosen to be the lower
values in hopes that most uses would have chosen small numbers.
Once we resolve the stateless/stateful issue, we can proceed to
look at enabling RFC6438 flow labels by default (starting with
scaled testing).
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-30 01:33:21 +03:00
flowlabel_state_ranges - BOOLEAN
Split the flow label number space into two ranges. 0-0x7FFFF is
reserved for the IPv6 flow manager facility, 0x80000-0xFFFFF
is reserved for stateless flow labels as described in RFC6437.
2020-04-28 01:01:49 +03:00
- TRUE: enabled
- FALSE: disabled
ipv6: Flow label state ranges
This patch divides the IPv6 flow label space into two ranges:
0-7ffff is reserved for flow label manager, 80000-fffff will be
used for creating auto flow labels (per RFC6438). This only affects how
labels are set on transmit, it does not affect receive. This range split
can be disbaled by systcl.
Background:
IPv6 flow labels have been an unmitigated disappointment thus far
in the lifetime of IPv6. Support in HW devices to use them for ECMP
is lacking, and OSes don't turn them on by default. If we had these
we could get much better hashing in IPv6 networks without resorting
to DPI, possibly eliminating some of the motivations to to define new
encaps in UDP just for getting ECMP.
Unfortunately, the initial specfications of IPv6 did not clarify
how they are to be used. There has always been a vague concept that
these can be used for ECMP, flow hashing, etc. and we do now have a
good standard how to this in RFC6438. The problem is that flow labels
can be either stateful or stateless (as in RFC6438), and we are
presented with the possibility that a stateless label may collide
with a stateful one. Attempts to split the flow label space were
rejected in IETF. When we added support in Linux for RFC6438, we
could not turn on flow labels by default due to this conflict.
This patch splits the flow label space and should give us
a path to enabling auto flow labels by default for all IPv6 packets.
This is an API change so we need to consider compatibility with
existing deployment. The stateful range is chosen to be the lower
values in hopes that most uses would have chosen small numbers.
Once we resolve the stateless/stateful issue, we can proceed to
look at enabling RFC6438 flow labels by default (starting with
scaled testing).
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-30 01:33:21 +03:00
Default: true
2019-06-05 17:55:09 +03:00
flowlabel_reflect - INTEGER
Control flow label reflection. Needed for Path MTU
2017-08-23 10:55:41 +03:00
Discovery to work with Equal Cost Multipath Routing in anycast
environments. See RFC 7690 and:
https://tools.ietf.org/html/draft-wang-6man-flow-label-reflection-01
2019-06-05 17:55:09 +03:00
2019-07-01 16:39:36 +03:00
This is a bitmask.
2019-06-05 17:55:09 +03:00
2020-04-28 01:01:49 +03:00
- 1: enabled for established flows
Note that this prevents automatic flowlabel changes, as done
in "tcp: change IPv6 flow-label upon receiving spurious retransmission"
and "tcp: Change txhash on every SYN and RTO retransmit"
2019-06-05 17:55:09 +03:00
2020-04-28 01:01:49 +03:00
- 2: enabled for TCP RESET packets (no active listener)
If set, a RST packet sent in response to a SYN packet on a closed
port will reflect the incoming flow label.
2019-06-05 17:55:09 +03:00
2020-04-28 01:01:49 +03:00
- 4: enabled for ICMPv6 echo reply messages.
2019-07-01 16:39:36 +03:00
2019-06-05 17:55:09 +03:00
Default: 0
2017-08-23 10:55:41 +03:00
2018-03-02 19:32:18 +03:00
fib_multipath_hash_policy - INTEGER
Controls which hash policy to use for multipath routes.
2020-04-28 01:01:49 +03:00
2018-03-02 19:32:18 +03:00
Default: 0 (Layer 3)
2020-04-28 01:01:49 +03:00
2018-03-02 19:32:18 +03:00
Possible values:
2020-04-28 01:01:49 +03:00
- 0 - Layer 3 (source and destination addresses plus flow label)
- 1 - Layer 4 (standard 5-tuple)
- 2 - Layer 3 or inner Layer 3 if present
2021-05-17 21:15:23 +03:00
- 3 - Custom multipath hash. Fields used for multipath hash calculation
are determined by fib_multipath_hash_fields sysctl
2018-03-02 19:32:18 +03:00
2021-05-17 21:15:22 +03:00
fib_multipath_hash_fields - UNSIGNED INTEGER
When fib_multipath_hash_policy is set to 3 (custom multipath hash), the
fields used for multipath hash calculation are determined by this
sysctl.
This value is a bitmask which enables various fields for multipath hash
calculation.
Possible fields are:
====== ============================
0x0001 Source IP address
0x0002 Destination IP address
0x0004 IP protocol
0x0008 Flow Label
0x0010 Source port
0x0020 Destination port
0x0040 Inner source IP address
0x0080 Inner destination IP address
0x0100 Inner IP protocol
0x0200 Inner Flow Label
0x0400 Inner source port
0x0800 Inner destination port
====== ============================
Default: 0x0007 (source IP, destination IP and IP protocol)
2014-01-07 17:57:27 +04:00
anycast_src_echo_reply - BOOLEAN
Controls the use of anycast addresses as source addresses for ICMPv6
echo reply
2020-04-28 01:01:49 +03:00
- TRUE: enabled
- FALSE: disabled
2014-01-07 17:57:27 +04:00
Default: FALSE
2015-03-24 01:36:06 +03:00
idgen_delay - INTEGER
Controls the delay in seconds after which time to retry
privacy stable address generation if a DAD conflict is
detected.
2020-04-28 01:01:49 +03:00
2015-03-24 01:36:06 +03:00
Default: 1 (as specified in RFC7217)
idgen_retries - INTEGER
Controls the number of retries to generate a stable privacy
address if a DAD conflict is detected.
2020-04-28 01:01:49 +03:00
2015-03-24 01:36:06 +03:00
Default: 3 (as specified in RFC7217)
2014-09-02 17:49:25 +04:00
mld_qrv - INTEGER
Controls the MLD query robustness variable (see RFC3810 9.1).
2020-04-28 01:01:49 +03:00
2014-09-02 17:49:25 +04:00
Default: 2 (as specified by RFC3810 9.1)
2020-04-28 01:01:49 +03:00
2014-09-02 17:49:25 +04:00
Minimum: 1 (as specified by RFC6636 4.5)
2018-04-18 23:03:06 +03:00
max_dst_opts_number - INTEGER
2017-10-31 00:16:00 +03:00
Maximum number of non-padding TLVs allowed in a Destination
options extension header. If this value is less than zero
then unknown options are disallowed and the number of known
TLVs allowed is the absolute value of this number.
2020-04-28 01:01:49 +03:00
2017-10-31 00:16:00 +03:00
Default: 8
2018-04-18 23:03:06 +03:00
max_hbh_opts_number - INTEGER
2017-10-31 00:16:00 +03:00
Maximum number of non-padding TLVs allowed in a Hop-by-Hop
options extension header. If this value is less than zero
then unknown options are disallowed and the number of known
TLVs allowed is the absolute value of this number.
2020-04-28 01:01:49 +03:00
2017-10-31 00:16:00 +03:00
Default: 8
2018-04-18 23:03:06 +03:00
max_dst_opts_length - INTEGER
2017-10-31 00:16:00 +03:00
Maximum length allowed for a Destination options extension
header.
2020-04-28 01:01:49 +03:00
2017-10-31 00:16:00 +03:00
Default: INT_MAX (unlimited)
2018-04-18 23:03:06 +03:00
max_hbh_length - INTEGER
2017-10-31 00:16:00 +03:00
Maximum length allowed for a Hop-by-Hop options extension
header.
2020-04-28 01:01:49 +03:00
2017-10-31 00:16:00 +03:00
Default: INT_MAX (unlimited)
2018-10-12 06:17:21 +03:00
skip_notify_on_dev_down - BOOLEAN
Controls whether an RTM_DELROUTE message is generated for routes
removed when a device is taken down or deleted. IPv4 does not
generate this message; IPv6 does by default. Setting this sysctl
to true skips the message, making IPv4 and IPv6 on par in relying
on userspace caches to track link events and evict routes.
2020-04-28 01:01:49 +03:00
2018-10-12 06:17:21 +03:00
Default: false (generate message)
2020-04-27 23:56:46 +03:00
nexthop_compat_mode - BOOLEAN
New nexthop API provides a means for managing nexthops independent of
2023-01-30 02:10:48 +03:00
prefixes. Backwards compatibility with old route format is enabled by
2020-04-27 23:56:46 +03:00
default which means route dumps and notifications contain the new
nexthop attribute but also the full, expanded nexthop definition.
Further, updates or deletes of a nexthop configuration generate route
notifications for each fib entry using the nexthop. Once a system
understands the new API, this sysctl can be disabled to achieve full
performance benefits of the new API by disabling the nexthop expansion
and extraneous notifications.
Default: true (backward compat mode)
2021-02-01 22:47:55 +03:00
fib_notify_on_flag_change - INTEGER
Whether to emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/
2021-02-07 11:22:53 +03:00
RTM_F_TRAP/RTM_F_OFFLOAD_FAILED flags are changed.
2021-02-01 22:47:55 +03:00
After installing a route to the kernel, user space receives an
acknowledgment, which means the route was installed in the kernel,
but not necessarily in hardware.
It is also possible for a route already installed in hardware to change
its action and therefore its flags. For example, a host route that is
trapping packets can be "promoted" to perform decapsulation following
the installation of an IPinIP/VXLAN tunnel.
The notifications will indicate to user-space the state of the route.
Default: 0 (Do not emit notifications.)
Possible values:
- 0 - Do not emit notifications.
- 1 - Emit notifications.
2021-02-07 11:22:53 +03:00
- 2 - Emit notifications only for RTM_F_OFFLOAD_FAILED flag change.
2021-02-01 22:47:55 +03:00
2021-07-20 22:43:00 +03:00
ioam6_id - INTEGER
Define the IOAM id of this node. Uses only 24 bits out of 32 in total.
Min: 0
Max: 0xFFFFFF
Default: 0xFFFFFF
ioam6_id_wide - LONG INTEGER
Define the wide IOAM id of this node. Uses only 56 bits out of 64 in
total. Can be different from ioam6_id.
Min: 0
Max: 0xFFFFFFFFFFFFFF
Default: 0xFFFFFFFFFFFFFF
2005-04-17 02:20:36 +04:00
IPv6 Fragmentation:
ip6frag_high_thresh - INTEGER
2009-02-23 07:39:04 +03:00
Maximum memory used to reassemble IPv6 fragments. When
2005-04-17 02:20:36 +04:00
ip6frag_high_thresh bytes of memory is allocated for this purpose,
the fragment handler will toss packets until ip6frag_low_thresh
is reached.
2009-02-23 07:39:04 +03:00
2005-04-17 02:20:36 +04:00
ip6frag_low_thresh - INTEGER
2009-02-23 07:39:04 +03:00
See ip6frag_high_thresh
2005-04-17 02:20:36 +04:00
ip6frag_time - INTEGER
Time in seconds to keep an IPv6 fragment in memory.
2020-04-28 01:01:49 +03:00
`` conf/default/* `` :
2005-04-17 02:20:36 +04:00
Change the interface-specific default settings.
2021-01-21 18:02:44 +03:00
These settings would be used during creating new interfaces.
2005-04-17 02:20:36 +04:00
2020-04-28 01:01:49 +03:00
`` conf/all/* `` :
2009-02-23 07:39:04 +03:00
Change all the interface-specific settings.
2005-04-17 02:20:36 +04:00
[XXX: Other special features than forwarding?]
2021-01-21 18:02:44 +03:00
conf/all/disable_ipv6 - BOOLEAN
Changing this value is same as changing `` conf/default/disable_ipv6 ``
setting and also all per-interface `` disable_ipv6 `` settings to the same
value.
Reading this value does not have any particular meaning. It does not say
whether IPv6 support is enabled or disabled. Returned value can be 1
also in the case when some interface has `` disable_ipv6 `` set to 0 and
has configured IPv6 addresses.
2005-04-17 02:20:36 +04:00
conf/all/forwarding - BOOLEAN
2009-02-23 07:39:04 +03:00
Enable global IPv6 forwarding between all interfaces.
2005-04-17 02:20:36 +04:00
2009-02-23 07:39:04 +03:00
IPv4 and IPv6 work differently here; e.g. netfilter must be used
2005-04-17 02:20:36 +04:00
to control which interfaces may forward packets and which not.
2009-02-23 07:39:04 +03:00
This also sets all interfaces' Host/Router setting
2005-04-17 02:20:36 +04:00
'forwarding' to the specified value. See below for details.
This referred to as global forwarding.
2006-09-23 01:43:49 +04:00
proxy_ndp - BOOLEAN
Do proxy ndp.
2014-11-04 14:02:49 +03:00
fwmark_reflect - BOOLEAN
Controls the fwmark of kernel-generated IPv6 reply packets that are not
associated with a socket for example, TCP RSTs or ICMPv6 echo replies).
If unset, these packets have a fwmark of zero. If set, they have the
fwmark of the packet they are replying to.
2020-04-28 01:01:49 +03:00
2014-11-04 14:02:49 +03:00
Default: 0
2020-04-28 01:01:49 +03:00
`` conf/interface/* `` :
2005-04-17 02:20:36 +04:00
Change special settings per interface.
2009-02-23 07:39:04 +03:00
The functional behaviour for certain settings is different
2005-04-17 02:20:36 +04:00
depending on whether local forwarding is enabled or not.
2011-09-28 23:51:54 +04:00
accept_ra - INTEGER
2005-04-17 02:20:36 +04:00
Accept Router Advertisements; autoconfigure using them.
2009-02-23 07:39:04 +03:00
ipv6: Send ICMPv6 RSes only when RAs are accepted
This patch improves the logic determining when to send ICMPv6 Router
Solicitations, so that they are 1) always sent when the kernel is
accepting Router Advertisements, and 2) never sent when the kernel is
not accepting RAs. In other words, the operational setting of the
"accept_ra" sysctl is used.
The change also makes the special "Hybrid Router" forwarding mode
("forwarding" sysctl set to 2) operate exactly the same as the standard
Router mode (forwarding=1). The only difference between the two was
that RSes was being sent in the Hybrid Router mode only. The sysctl
documentation describing the special Hybrid Router mode has therefore
been removed.
Rationale for the change:
Currently, the value of forwarding sysctl is the only thing determining
whether or not to send RSes. If it has the value 0 or 2, they are sent,
otherwise they are not. This leads to inconsistent behaviour in the
following cases:
* accept_ra=0, forwarding=0
* accept_ra=0, forwarding=2
* accept_ra=1, forwarding=2
* accept_ra=2, forwarding=1
In the first three cases, the kernel will send RSes, even though it will
not accept any RAs received in reply. In the last case, it will not send
any RSes, even though it will accept and process any RAs received. (Most
routers will send unsolicited RAs periodically, so suppressing RSes in
the last case will merely delay auto-configuration, not prevent it.)
Also, it is my opinion that having the forwarding sysctl control RS
sending behaviour (completely independent of whether RAs are being
accepted or not) is simply not what most users would intuitively expect
to be the case.
Signed-off-by: Tore Anderson <tore@fud.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-29 03:47:33 +04:00
It also determines whether or not to transmit Router
Solicitations. If and only if the functional setting is to
accept Router Advertisements, Router Solicitations will be
transmitted.
2010-09-03 09:47:30 +04:00
Possible values are:
2020-04-28 01:01:49 +03:00
== ===========================================================
0 Do not accept Router Advertisements.
1 Accept Router Advertisements if forwarding is disabled.
2 Overrule forwarding behaviour. Accept Router Advertisements
even if forwarding is enabled.
== ===========================================================
Functional default:
- enabled if local forwarding is disabled.
- disabled if local forwarding is enabled.
2005-04-17 02:20:36 +04:00
2006-03-21 03:55:08 +03:00
accept_ra_defrtr - BOOLEAN
Learn default router in Router Advertisement.
2020-04-28 01:01:49 +03:00
Functional default:
- enabled if accept_ra is enabled.
- disabled if accept_ra is disabled.
2006-03-21 03:55:08 +03:00
net: allow user to set metric on default route learned via Router Advertisement
For IPv4, default route is learned via DHCPv4 and user is allowed to change
metric using config etc/network/interfaces. But for IPv6, default route can
be learned via RA, for which, currently a fixed metric value 1024 is used.
Ideally, user should be able to configure metric on default route for IPv6
similar to IPv4. This patch adds sysctl for the same.
Logs:
For IPv4:
Config in etc/network/interfaces:
auto eth0
iface eth0 inet dhcp
metric 4261413864
IPv4 Kernel Route Table:
$ ip route list
default via 172.21.47.1 dev eth0 metric 4261413864
FRR Table, if a static route is configured:
[In real scenario, it is useful to prefer BGP learned default route over DHCPv4 default route.]
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, P - PIM, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
> - selected route, * - FIB route
S>* 0.0.0.0/0 [20/0] is directly connected, eth0, 00:00:03
K 0.0.0.0/0 [254/1000] via 172.21.47.1, eth0, 6d08h51m
i.e. User can prefer Default Router learned via Routing Protocol in IPv4.
Similar behavior is not possible for IPv6, without this fix.
After fix [for IPv6]:
sudo sysctl -w net.ipv6.conf.eth0.net.ipv6.conf.eth0.ra_defrtr_metric=1996489705
IP monitor: [When IPv6 RA is received]
default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 pref high
Kernel IPv6 routing table
$ ip -6 route list
default via fe80::be16:65ff:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 21sec hoplimit 64 pref high
FRR Table, if a static route is configured:
[In real scenario, it is useful to prefer BGP learned default route over IPv6 RA default route.]
Codes: K - kernel route, C - connected, S - static, R - RIPng,
O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
> - selected route, * - FIB route
S>* ::/0 [20/0] is directly connected, eth0, 00:00:06
K ::/0 [119/1001] via fe80::xx16:xxxx:feb3:ce8e, eth0, 6d07h43m
If the metric is changed later, the effect will be seen only when next IPv6
RA is received, because the default route must be fully controlled by RA msg.
Below metric is changed from 1996489705 to 1996489704.
$ sudo sysctl -w net.ipv6.conf.eth0.ra_defrtr_metric=1996489704
net.ipv6.conf.eth0.ra_defrtr_metric = 1996489704
IP monitor:
[On next IPv6 RA msg, Kernel deletes prev route and installs new route with updated metric]
Deleted default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 3sec hoplimit 64 pref high
default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489704 pref high
Signed-off-by: Praveen Chaudhary <pchaudhary@linkedin.com>
Signed-off-by: Zhenggen Xu <zxu@linkedin.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/r/20210125214430.24079-1-pchaudhary@linkedin.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-26 00:44:30 +03:00
ra_defrtr_metric - UNSIGNED INTEGER
Route metric for default route learned in Router Advertisement. This value
will be assigned as metric for the default route learned via IPv6 Router
Advertisement. Takes affect only if accept_ra_defrtr is enabled.
Possible values:
1 to 0xFFFFFFFF
Default: IP6_RT_PRIO_USER i.e. 1024.
2014-06-26 01:44:53 +04:00
accept_ra_from_local - BOOLEAN
Accept RA with source-address that is found on local machine
2020-04-28 01:01:49 +03:00
if the RA is otherwise proper and able to be accepted.
Default is to NOT accept these as it may be an un-intended
network loop.
2014-06-26 01:44:53 +04:00
Functional default:
2020-04-28 01:01:49 +03:00
- enabled if accept_ra_from_local is enabled
on a specific interface.
- disabled if accept_ra_from_local is disabled
on a specific interface.
2014-06-26 01:44:53 +04:00
2015-07-30 09:28:42 +03:00
accept_ra_min_hop_limit - INTEGER
Minimum hop limit Information in Router Advertisement.
Hop limit Information in Router Advertisement less than this
variable shall be ignored.
Default: 1
2023-07-27 02:07:01 +03:00
accept_ra_min_lft - INTEGER
Minimum acceptable lifetime value in Router Advertisement.
2023-07-19 17:52:13 +03:00
2023-07-27 02:07:01 +03:00
RA sections with a lifetime less than this value shall be
ignored. Zero lifetimes stay unaffected.
2023-07-19 17:52:13 +03:00
Default: 0
2006-03-21 03:55:26 +03:00
accept_ra_pinfo - BOOLEAN
2006-10-04 00:50:39 +04:00
Learn Prefix Information in Router Advertisement.
2006-03-21 03:55:26 +03:00
2020-04-28 01:01:49 +03:00
Functional default:
- enabled if accept_ra is enabled.
- disabled if accept_ra is disabled.
2006-03-21 03:55:26 +03:00
2017-03-22 12:19:04 +03:00
accept_ra_rt_info_min_plen - INTEGER
Minimum prefix length of Route Information in RA.
Route Information w/ prefix smaller than this variable shall
be ignored.
2020-04-28 01:01:49 +03:00
Functional default:
* 0 if accept_ra_rtr_pref is enabled.
* -1 if accept_ra_rtr_pref is disabled.
2017-03-22 12:19:04 +03:00
2006-03-21 04:07:03 +03:00
accept_ra_rt_info_max_plen - INTEGER
Maximum prefix length of Route Information in RA.
2017-03-22 12:19:04 +03:00
Route Information w/ prefix larger than this variable shall
be ignored.
2006-03-21 04:07:03 +03:00
2020-04-28 01:01:49 +03:00
Functional default:
* 0 if accept_ra_rtr_pref is enabled.
* -1 if accept_ra_rtr_pref is disabled.
2006-03-21 04:07:03 +03:00
2006-03-21 04:05:30 +03:00
accept_ra_rtr_pref - BOOLEAN
Accept Router Preference in RA.
2020-04-28 01:01:49 +03:00
Functional default:
- enabled if accept_ra is enabled.
- disabled if accept_ra is disabled.
2006-03-21 04:05:30 +03:00
2015-01-20 20:06:05 +03:00
accept_ra_mtu - BOOLEAN
Apply the MTU value specified in RA option 5 (RFC4861). If
disabled, the MTU specified in the RA will be ignored.
2020-04-28 01:01:49 +03:00
Functional default:
- enabled if accept_ra is enabled.
- disabled if accept_ra is disabled.
2015-01-20 20:06:05 +03:00
2005-04-17 02:20:36 +04:00
accept_redirects - BOOLEAN
Accept Redirects.
2020-04-28 01:01:49 +03:00
Functional default:
- enabled if local forwarding is disabled.
- disabled if local forwarding is enabled.
2005-04-17 02:20:36 +04:00
2007-04-25 01:58:30 +04:00
accept_source_route - INTEGER
Accept source routing (routing extension header).
2020-04-28 01:01:49 +03:00
- >= 0: Accept only routing header type 2.
- < 0: Do not accept routing header.
2007-04-25 01:58:30 +04:00
Default: 0
2005-04-17 02:20:36 +04:00
autoconf - BOOLEAN
2009-02-23 07:39:04 +03:00
Autoconfigure addresses using Prefix Information in Router
2005-04-17 02:20:36 +04:00
Advertisements.
2020-04-28 01:01:49 +03:00
Functional default:
- enabled if accept_ra_pinfo is enabled.
- disabled if accept_ra_pinfo is disabled.
2005-04-17 02:20:36 +04:00
dad_transmits - INTEGER
The amount of Duplicate Address Detection probes to send.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 1
2009-02-23 07:39:04 +03:00
2011-09-28 23:51:54 +04:00
forwarding - INTEGER
2009-02-23 07:39:04 +03:00
Configure interface-specific Host/Router behaviour.
2005-04-17 02:20:36 +04:00
2020-04-28 01:01:49 +03:00
.. note::
It is recommended to have the same setting on all
interfaces; mixed router/host scenarios are rather uncommon.
2005-04-17 02:20:36 +04:00
2010-09-03 09:47:30 +04:00
Possible values are:
2020-04-28 01:01:49 +03:00
- 0 Forwarding disabled
- 1 Forwarding enabled
**FALSE (0)** :
2005-04-17 02:20:36 +04:00
By default, Host behaviour is assumed. This means:
1. IsRouter flag is not set in Neighbour Advertisements.
ipv6: Send ICMPv6 RSes only when RAs are accepted
This patch improves the logic determining when to send ICMPv6 Router
Solicitations, so that they are 1) always sent when the kernel is
accepting Router Advertisements, and 2) never sent when the kernel is
not accepting RAs. In other words, the operational setting of the
"accept_ra" sysctl is used.
The change also makes the special "Hybrid Router" forwarding mode
("forwarding" sysctl set to 2) operate exactly the same as the standard
Router mode (forwarding=1). The only difference between the two was
that RSes was being sent in the Hybrid Router mode only. The sysctl
documentation describing the special Hybrid Router mode has therefore
been removed.
Rationale for the change:
Currently, the value of forwarding sysctl is the only thing determining
whether or not to send RSes. If it has the value 0 or 2, they are sent,
otherwise they are not. This leads to inconsistent behaviour in the
following cases:
* accept_ra=0, forwarding=0
* accept_ra=0, forwarding=2
* accept_ra=1, forwarding=2
* accept_ra=2, forwarding=1
In the first three cases, the kernel will send RSes, even though it will
not accept any RAs received in reply. In the last case, it will not send
any RSes, even though it will accept and process any RAs received. (Most
routers will send unsolicited RAs periodically, so suppressing RSes in
the last case will merely delay auto-configuration, not prevent it.)
Also, it is my opinion that having the forwarding sysctl control RS
sending behaviour (completely independent of whether RAs are being
accepted or not) is simply not what most users would intuitively expect
to be the case.
Signed-off-by: Tore Anderson <tore@fud.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-29 03:47:33 +04:00
2. If accept_ra is TRUE (default), transmit Router
Solicitations.
2009-02-23 07:39:04 +03:00
3. If accept_ra is TRUE (default), accept Router
2005-04-17 02:20:36 +04:00
Advertisements (and do autoconfiguration).
4. If accept_redirects is TRUE (default), accept Redirects.
2020-04-28 01:01:49 +03:00
**TRUE (1)** :
2005-04-17 02:20:36 +04:00
2009-02-23 07:39:04 +03:00
If local forwarding is enabled, Router behaviour is assumed.
2005-04-17 02:20:36 +04:00
This means exactly the reverse from the above:
1. IsRouter flag is set in Neighbour Advertisements.
ipv6: Send ICMPv6 RSes only when RAs are accepted
This patch improves the logic determining when to send ICMPv6 Router
Solicitations, so that they are 1) always sent when the kernel is
accepting Router Advertisements, and 2) never sent when the kernel is
not accepting RAs. In other words, the operational setting of the
"accept_ra" sysctl is used.
The change also makes the special "Hybrid Router" forwarding mode
("forwarding" sysctl set to 2) operate exactly the same as the standard
Router mode (forwarding=1). The only difference between the two was
that RSes was being sent in the Hybrid Router mode only. The sysctl
documentation describing the special Hybrid Router mode has therefore
been removed.
Rationale for the change:
Currently, the value of forwarding sysctl is the only thing determining
whether or not to send RSes. If it has the value 0 or 2, they are sent,
otherwise they are not. This leads to inconsistent behaviour in the
following cases:
* accept_ra=0, forwarding=0
* accept_ra=0, forwarding=2
* accept_ra=1, forwarding=2
* accept_ra=2, forwarding=1
In the first three cases, the kernel will send RSes, even though it will
not accept any RAs received in reply. In the last case, it will not send
any RSes, even though it will accept and process any RAs received. (Most
routers will send unsolicited RAs periodically, so suppressing RSes in
the last case will merely delay auto-configuration, not prevent it.)
Also, it is my opinion that having the forwarding sysctl control RS
sending behaviour (completely independent of whether RAs are being
accepted or not) is simply not what most users would intuitively expect
to be the case.
Signed-off-by: Tore Anderson <tore@fud.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-29 03:47:33 +04:00
2. Router Solicitations are not sent unless accept_ra is 2.
2010-09-03 09:47:30 +04:00
3. Router Advertisements are ignored unless accept_ra is 2.
2005-04-17 02:20:36 +04:00
4. Redirects are ignored.
2010-09-03 09:47:30 +04:00
Default: 0 (disabled) if global forwarding is disabled (default),
2020-04-28 01:01:49 +03:00
otherwise 1 (enabled).
2005-04-17 02:20:36 +04:00
hop_limit - INTEGER
Default Hop Limit to set.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 64
mtu - INTEGER
Default Maximum Transfer Unit
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 1280 (IPv6 required minimum)
2015-07-09 02:58:22 +03:00
ip_nonlocal_bind - BOOLEAN
If set, allows processes to bind() to non-local IPv6 addresses,
which can be quite useful - but may break some applications.
2020-04-28 01:01:49 +03:00
2015-07-09 02:58:22 +03:00
Default: 0
2006-03-21 04:05:47 +03:00
router_probe_interval - INTEGER
Minimum interval (in seconds) between Router Probing described
in RFC4191.
Default: 60
2005-04-17 02:20:36 +04:00
router_solicitation_delay - INTEGER
Number of seconds to wait after interface is brought up
before sending Router Solicitations.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 1
router_solicitation_interval - INTEGER
Number of seconds to wait between Router Solicitations.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 4
router_solicitations - INTEGER
2009-02-23 07:39:04 +03:00
Number of Router Solicitations to send until assuming no
2005-04-17 02:20:36 +04:00
routers are present.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 3
2015-07-22 10:38:25 +03:00
use_oif_addrs_only - BOOLEAN
When enabled, the candidate source addresses for destinations
routed via this interface are restricted to the set of addresses
configured on this interface (vis. RFC 6724, section 4).
Default: false
2005-04-17 02:20:36 +04:00
use_tempaddr - INTEGER
Preference for Privacy Extensions (RFC3041).
2020-04-28 01:01:49 +03:00
* <= 0 : disable Privacy Extensions
* == 1 : enable Privacy Extensions, but prefer public
addresses over temporary addresses.
* > 1 : enable Privacy Extensions and prefer temporary
addresses over public addresses.
Default:
* 0 (for most devices)
* -1 (for point-to-point devices and loopback devices)
2005-04-17 02:20:36 +04:00
temp_valid_lft - INTEGER
valid lifetime (in seconds) for temporary addresses.
2020-04-28 01:01:49 +03:00
2020-05-01 06:51:47 +03:00
Default: 172800 (2 days)
2005-04-17 02:20:36 +04:00
temp_prefered_lft - INTEGER
Preferred lifetime (in seconds) for temporary addresses.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 86400 (1 day)
net: ipv6: Make address flushing on ifdown optional
Currently, all ipv6 addresses are flushed when the interface is configured
down, including global, static addresses:
$ ip -6 addr show dev eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
inet6 2100:1::2/120 scope global
valid_lft forever preferred_lft forever
inet6 fe80::e0:f9ff:fe79:34bd/64 scope link
valid_lft forever preferred_lft forever
$ ip link set dev eth1 down
$ ip -6 addr show dev eth1
<< nothing; all addresses have been flushed>>
Add a new sysctl to make this behavior optional. The new setting defaults to
flush all addresses to maintain backwards compatibility. When the set global
addresses with no expire times are not flushed on an admin down. The sysctl
is per-interface or system-wide for all interfaces
$ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1
or
$ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
Will keep addresses on eth1 on an admin down.
$ ip -6 addr show dev eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
inet6 2100:1::2/120 scope global
valid_lft forever preferred_lft forever
inet6 fe80::e0:f9ff:fe79:34bd/64 scope link
valid_lft forever preferred_lft forever
$ ip link set dev eth1 down
$ ip -6 addr show dev eth1
3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000
inet6 2100:1::2/120 scope global tentative
valid_lft forever preferred_lft forever
inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative
valid_lft forever preferred_lft forever
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 20:25:37 +03:00
keep_addr_on_down - INTEGER
Keep all IPv6 addresses on an interface down event. If set static
global addresses with no expiration time are not flushed.
2020-04-28 01:01:49 +03:00
* >0 : enabled
* 0 : system default
* <0 : disabled
net: ipv6: Make address flushing on ifdown optional
Currently, all ipv6 addresses are flushed when the interface is configured
down, including global, static addresses:
$ ip -6 addr show dev eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
inet6 2100:1::2/120 scope global
valid_lft forever preferred_lft forever
inet6 fe80::e0:f9ff:fe79:34bd/64 scope link
valid_lft forever preferred_lft forever
$ ip link set dev eth1 down
$ ip -6 addr show dev eth1
<< nothing; all addresses have been flushed>>
Add a new sysctl to make this behavior optional. The new setting defaults to
flush all addresses to maintain backwards compatibility. When the set global
addresses with no expire times are not flushed on an admin down. The sysctl
is per-interface or system-wide for all interfaces
$ sysctl -w net.ipv6.conf.eth1.keep_addr_on_down=1
or
$ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
Will keep addresses on eth1 on an admin down.
$ ip -6 addr show dev eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
inet6 2100:1::2/120 scope global
valid_lft forever preferred_lft forever
inet6 fe80::e0:f9ff:fe79:34bd/64 scope link
valid_lft forever preferred_lft forever
$ ip link set dev eth1 down
$ ip -6 addr show dev eth1
3: eth1: <BROADCAST,MULTICAST> mtu 1500 state DOWN qlen 1000
inet6 2100:1::2/120 scope global tentative
valid_lft forever preferred_lft forever
inet6 fe80::e0:f9ff:fe79:34bd/64 scope link tentative
valid_lft forever preferred_lft forever
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-24 20:25:37 +03:00
Default: 0 (addresses are removed)
2005-04-17 02:20:36 +04:00
max_desync_factor - INTEGER
Maximum value for DESYNC_FACTOR, which is a random value
2009-02-23 07:39:04 +03:00
that ensures that clients don't synchronize with each
2005-04-17 02:20:36 +04:00
other and generate new addresses at exactly the same time.
value is in seconds.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 600
2009-02-23 07:39:04 +03:00
2005-04-17 02:20:36 +04:00
regen_max_retry - INTEGER
Number of attempts before give up attempting to generate
valid temporary addresses.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 5
max_addresses - INTEGER
2010-02-22 15:27:21 +03:00
Maximum number of autoconfigured addresses per interface. Setting
to zero disables the limitation. It is not recommended to set this
value too large (or to zero) because it would be an easy way to
crash the kernel by allowing too many addresses to be created.
2020-04-28 01:01:49 +03:00
2005-04-17 02:20:36 +04:00
Default: 16
2008-06-28 09:17:11 +04:00
disable_ipv6 - BOOLEAN
2009-03-19 04:22:48 +03:00
Disable IPv6 operation. If accept_dad is set to 2, this value
will be dynamically set to TRUE if DAD fails for the link-local
address.
2020-04-28 01:01:49 +03:00
2008-06-28 09:17:11 +04:00
Default: FALSE (enable IPv6 operation)
2009-06-01 14:07:33 +04:00
When this value is changed from 1 to 0 (IPv6 is being enabled),
it will dynamically create a link-local address on the given
interface and start Duplicate Address Detection, if necessary.
When this value is changed from 0 to 1 (IPv6 is being disabled),
2018-03-29 12:02:25 +03:00
it will dynamically delete all addresses and routes on the given
interface. From now on it will not possible to add addresses/routes
to the selected interface.
2009-06-01 14:07:33 +04:00
2008-06-28 09:18:38 +04:00
accept_dad - INTEGER
Whether to accept DAD (Duplicate Address Detection).
2020-04-28 01:01:49 +03:00
== ==============================================================
0 Disable DAD
1 Enable DAD (default)
2 Enable DAD, and disable IPv6 operation if MAC-based duplicate
link-local address has been found.
== ==============================================================
2008-06-28 09:18:38 +04:00
ipv6: fix net.ipv6.conf.all interface DAD handlers
Currently, writing into
net.ipv6.conf.all.{accept_dad,use_optimistic,optimistic_dad} has no effect.
Fix handling of these flags by:
- using the maximum of global and per-interface values for the
accept_dad flag. That is, if at least one of the two values is
non-zero, enable DAD on the interface. If at least one value is
set to 2, enable DAD and disable IPv6 operation on the interface if
MAC-based link-local address was found
- using the logical OR of global and per-interface values for the
optimistic_dad flag. If at least one of them is set to one, optimistic
duplicate address detection (RFC 4429) is enabled on the interface
- using the logical OR of global and per-interface values for the
use_optimistic flag. If at least one of them is set to one,
optimistic addresses won't be marked as deprecated during source address
selection on the interface.
While at it, as we're modifying the prototype for ipv6_use_optimistic_addr(),
drop inline, and let the compiler decide.
Fixes: 7fd2561e4ebd ("net: ipv6: Add a sysctl to make optimistic addresses useful candidates")
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-12 18:46:37 +03:00
DAD operation and mode on a given interface will be selected according
to the maximum value of conf/{all,interface}/accept_dad.
2009-10-02 15:39:15 +04:00
force_tllao - BOOLEAN
Enable sending the target link-layer address option even when
responding to a unicast neighbor solicitation.
2020-04-28 01:01:49 +03:00
2009-10-02 15:39:15 +04:00
Default: FALSE
Quoting from RFC 2461, section 4.4, Target link-layer address:
"The option MUST be included for multicast solicitations in order to
avoid infinite Neighbor Solicitation "recursion" when the peer node
does not have a cache entry to return a Neighbor Advertisements
message. When responding to unicast solicitations, the option can be
omitted since the sender of the solicitation has the correct link-
layer address; otherwise it would not have be able to send the unicast
solicitation in the first place. However, including the link-layer
address in this case adds little overhead and eliminates a potential
race condition where the sender deletes the cached link-layer address
prior to receiving a response to a previous solicitation."
2013-01-01 04:35:31 +04:00
ndisc_notify - BOOLEAN
Define mode for notification of address and device changes.
2020-04-28 01:01:49 +03:00
* 0 - (default): do nothing
* 1 - Generate unsolicited neighbour advertisements when device is brought
up or hardware address changes.
2013-01-01 04:35:31 +04:00
net: ipv6: sysctl to specify IPv6 ND traffic class
Add a per-device sysctl to specify the default traffic class to use for
kernel originated IPv6 Neighbour Discovery packets.
Currently this includes:
- Router Solicitation (ICMPv6 type 133)
ndisc_send_rs() -> ndisc_send_skb() -> ip6_nd_hdr()
- Neighbour Solicitation (ICMPv6 type 135)
ndisc_send_ns() -> ndisc_send_skb() -> ip6_nd_hdr()
- Neighbour Advertisement (ICMPv6 type 136)
ndisc_send_na() -> ndisc_send_skb() -> ip6_nd_hdr()
- Redirect (ICMPv6 type 137)
ndisc_send_redirect() -> ndisc_send_skb() -> ip6_nd_hdr()
and if the kernel ever gets around to generating RA's,
it would presumably also include:
- Router Advertisement (ICMPv6 type 134)
(radvd daemon could pick up on the kernel setting and use it)
Interface drivers may examine the Traffic Class value and translate
the DiffServ Code Point into a link-layer appropriate traffic
prioritization scheme. An example of mapping IETF DSCP values to
IEEE 802.11 User Priority values can be found here:
https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11
The expected primary use case is to properly prioritize ND over wifi.
Testing:
jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
0
jzem22:~# echo -1 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
-bash: echo: write error: Invalid argument
jzem22:~# echo 256 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
-bash: echo: write error: Invalid argument
jzem22:~# echo 0 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# echo 255 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
255
jzem22:~# echo 34 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
34
jzem22:~# echo $[0xDC] > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# tcpdump -v -i eth0 icmp6 and src host jzem22.pgc and dst host fe80::1
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
IP6 (class 0xdc, hlim 255, next-header ICMPv6 (58) payload length: 24)
jzem22.pgc > fe80::1: [icmp6 sum ok] ICMP6, neighbor advertisement,
length 24, tgt is jzem22.pgc, Flags [solicited]
(based on original change written by Erik Kline, with minor changes)
v2: fix 'suspicious rcu_dereference_check() usage'
by explicitly grabbing the rcu_read_lock.
Cc: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Erik Kline <ek@google.com>
Signed-off-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-08 08:52:09 +03:00
ndisc_tclass - INTEGER
The IPv6 Traffic Class to use by default when sending IPv6 Neighbor
Discovery (Router Solicitation, Router Advertisement, Neighbor
Solicitation, Neighbor Advertisement, Redirect) messages.
These 8 bits can be interpreted as 6 high order bits holding the DSCP
value and 2 low order bits representing ECN (which you probably want
to leave cleared).
2020-04-28 01:01:49 +03:00
* 0 - (default)
net: ipv6: sysctl to specify IPv6 ND traffic class
Add a per-device sysctl to specify the default traffic class to use for
kernel originated IPv6 Neighbour Discovery packets.
Currently this includes:
- Router Solicitation (ICMPv6 type 133)
ndisc_send_rs() -> ndisc_send_skb() -> ip6_nd_hdr()
- Neighbour Solicitation (ICMPv6 type 135)
ndisc_send_ns() -> ndisc_send_skb() -> ip6_nd_hdr()
- Neighbour Advertisement (ICMPv6 type 136)
ndisc_send_na() -> ndisc_send_skb() -> ip6_nd_hdr()
- Redirect (ICMPv6 type 137)
ndisc_send_redirect() -> ndisc_send_skb() -> ip6_nd_hdr()
and if the kernel ever gets around to generating RA's,
it would presumably also include:
- Router Advertisement (ICMPv6 type 134)
(radvd daemon could pick up on the kernel setting and use it)
Interface drivers may examine the Traffic Class value and translate
the DiffServ Code Point into a link-layer appropriate traffic
prioritization scheme. An example of mapping IETF DSCP values to
IEEE 802.11 User Priority values can be found here:
https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11
The expected primary use case is to properly prioritize ND over wifi.
Testing:
jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
0
jzem22:~# echo -1 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
-bash: echo: write error: Invalid argument
jzem22:~# echo 256 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
-bash: echo: write error: Invalid argument
jzem22:~# echo 0 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# echo 255 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
255
jzem22:~# echo 34 > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# cat /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
34
jzem22:~# echo $[0xDC] > /proc/sys/net/ipv6/conf/eth0/ndisc_tclass
jzem22:~# tcpdump -v -i eth0 icmp6 and src host jzem22.pgc and dst host fe80::1
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
IP6 (class 0xdc, hlim 255, next-header ICMPv6 (58) payload length: 24)
jzem22.pgc > fe80::1: [icmp6 sum ok] ICMP6, neighbor advertisement,
length 24, tgt is jzem22.pgc, Flags [solicited]
(based on original change written by Erik Kline, with minor changes)
v2: fix 'suspicious rcu_dereference_check() usage'
by explicitly grabbing the rcu_read_lock.
Cc: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Erik Kline <ek@google.com>
Signed-off-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-08 08:52:09 +03:00
2021-11-01 20:36:29 +03:00
ndisc_evict_nocarrier - BOOLEAN
Clears the neighbor discovery table on NOCARRIER events. This option is
important for wireless devices where the neighbor discovery cache should
not be cleared when roaming between access points on the same network.
In most cases this should remain as the default (1).
- 1 - (default): Clear neighbor discover cache on NOCARRIER events.
- 0 - Do not clear neighbor discovery cache on NOCARRIER events.
2013-08-14 03:03:46 +04:00
mldv1_unsolicited_report_interval - INTEGER
The interval in milliseconds in which the next unsolicited
MLDv1 report retransmit will take place.
2020-04-28 01:01:49 +03:00
2013-08-14 03:03:46 +04:00
Default: 10000 (10 seconds)
mldv2_unsolicited_report_interval - INTEGER
The interval in milliseconds in which the next unsolicited
MLDv2 report retransmit will take place.
2020-04-28 01:01:49 +03:00
2013-08-14 03:03:46 +04:00
Default: 1000 (1 second)
2013-09-04 02:19:44 +04:00
force_mld_version - INTEGER
2020-04-28 01:01:49 +03:00
* 0 - (default) No enforcement of a MLD version, MLDv1 fallback allowed
* 1 - Enforce to use MLD version 1
* 2 - Enforce to use MLD version 2
2013-09-04 02:19:44 +04:00
2013-08-27 03:36:51 +04:00
suppress_frag_ndisc - INTEGER
Control RFC 6980 (Security Implications of IPv6 Fragmentation
with IPv6 Neighbor Discovery) behavior:
2020-04-28 01:01:49 +03:00
* 1 - (default) discard fragmented neighbor discovery packets
* 0 - allow fragmented neighbor discovery packets
2013-08-27 03:36:51 +04:00
net: ipv6: Add a sysctl to make optimistic addresses useful candidates
Add a sysctl that causes an interface's optimistic addresses
to be considered equivalent to other non-deprecated addresses
for source address selection purposes. Preferred addresses
will still take precedence over optimistic addresses, subject
to other ranking in the source address selection algorithm.
This is useful where different interfaces are connected to
different networks from different ISPs (e.g., a cell network
and a home wifi network).
The current behaviour complies with RFC 3484/6724, and it
makes sense if the host has only one interface, or has
multiple interfaces on the same network (same or cooperating
administrative domain(s), but not in the multiple distinct
networks case.
For example, if a mobile device has an IPv6 address on an LTE
network and then connects to IPv6-enabled wifi, while the wifi
IPv6 address is undergoing DAD, IPv6 connections will try use
the wifi default route with the LTE IPv6 address, and will get
stuck until they time out.
Also, because optimistic nodes can receive frames, issue
an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC
flag appropriately set). A second RTM_NEWADDR is sent if DAD
completes (the address flags have changed), otherwise an
RTM_DELADDR is sent.
Also: add an entry in ip-sysctl.txt for optimistic_dad.
Signed-off-by: Erik Kline <ek@google.com>
Acked-by: Lorenzo Colitti <lorenzo@google.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 12:11:14 +03:00
optimistic_dad - BOOLEAN
Whether to perform Optimistic Duplicate Address Detection (RFC 4429).
2020-04-28 01:01:49 +03:00
* 0: disabled (default)
* 1: enabled
ipv6: fix net.ipv6.conf.all interface DAD handlers
Currently, writing into
net.ipv6.conf.all.{accept_dad,use_optimistic,optimistic_dad} has no effect.
Fix handling of these flags by:
- using the maximum of global and per-interface values for the
accept_dad flag. That is, if at least one of the two values is
non-zero, enable DAD on the interface. If at least one value is
set to 2, enable DAD and disable IPv6 operation on the interface if
MAC-based link-local address was found
- using the logical OR of global and per-interface values for the
optimistic_dad flag. If at least one of them is set to one, optimistic
duplicate address detection (RFC 4429) is enabled on the interface
- using the logical OR of global and per-interface values for the
use_optimistic flag. If at least one of them is set to one,
optimistic addresses won't be marked as deprecated during source address
selection on the interface.
While at it, as we're modifying the prototype for ipv6_use_optimistic_addr(),
drop inline, and let the compiler decide.
Fixes: 7fd2561e4ebd ("net: ipv6: Add a sysctl to make optimistic addresses useful candidates")
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-12 18:46:37 +03:00
Optimistic Duplicate Address Detection for the interface will be enabled
if at least one of conf/{all,interface}/optimistic_dad is set to 1,
it will be disabled otherwise.
net: ipv6: Add a sysctl to make optimistic addresses useful candidates
Add a sysctl that causes an interface's optimistic addresses
to be considered equivalent to other non-deprecated addresses
for source address selection purposes. Preferred addresses
will still take precedence over optimistic addresses, subject
to other ranking in the source address selection algorithm.
This is useful where different interfaces are connected to
different networks from different ISPs (e.g., a cell network
and a home wifi network).
The current behaviour complies with RFC 3484/6724, and it
makes sense if the host has only one interface, or has
multiple interfaces on the same network (same or cooperating
administrative domain(s), but not in the multiple distinct
networks case.
For example, if a mobile device has an IPv6 address on an LTE
network and then connects to IPv6-enabled wifi, while the wifi
IPv6 address is undergoing DAD, IPv6 connections will try use
the wifi default route with the LTE IPv6 address, and will get
stuck until they time out.
Also, because optimistic nodes can receive frames, issue
an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC
flag appropriately set). A second RTM_NEWADDR is sent if DAD
completes (the address flags have changed), otherwise an
RTM_DELADDR is sent.
Also: add an entry in ip-sysctl.txt for optimistic_dad.
Signed-off-by: Erik Kline <ek@google.com>
Acked-by: Lorenzo Colitti <lorenzo@google.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 12:11:14 +03:00
use_optimistic - BOOLEAN
If enabled, do not classify optimistic addresses as deprecated during
source address selection. Preferred addresses will still be chosen
before optimistic addresses, subject to other ranking in the source
address selection algorithm.
2020-04-28 01:01:49 +03:00
* 0: disabled (default)
* 1: enabled
ipv6: fix net.ipv6.conf.all interface DAD handlers
Currently, writing into
net.ipv6.conf.all.{accept_dad,use_optimistic,optimistic_dad} has no effect.
Fix handling of these flags by:
- using the maximum of global and per-interface values for the
accept_dad flag. That is, if at least one of the two values is
non-zero, enable DAD on the interface. If at least one value is
set to 2, enable DAD and disable IPv6 operation on the interface if
MAC-based link-local address was found
- using the logical OR of global and per-interface values for the
optimistic_dad flag. If at least one of them is set to one, optimistic
duplicate address detection (RFC 4429) is enabled on the interface
- using the logical OR of global and per-interface values for the
use_optimistic flag. If at least one of them is set to one,
optimistic addresses won't be marked as deprecated during source address
selection on the interface.
While at it, as we're modifying the prototype for ipv6_use_optimistic_addr(),
drop inline, and let the compiler decide.
Fixes: 7fd2561e4ebd ("net: ipv6: Add a sysctl to make optimistic addresses useful candidates")
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-12 18:46:37 +03:00
This will be enabled if at least one of
conf/{all,interface}/use_optimistic is set to 1, disabled otherwise.
net: ipv6: Add a sysctl to make optimistic addresses useful candidates
Add a sysctl that causes an interface's optimistic addresses
to be considered equivalent to other non-deprecated addresses
for source address selection purposes. Preferred addresses
will still take precedence over optimistic addresses, subject
to other ranking in the source address selection algorithm.
This is useful where different interfaces are connected to
different networks from different ISPs (e.g., a cell network
and a home wifi network).
The current behaviour complies with RFC 3484/6724, and it
makes sense if the host has only one interface, or has
multiple interfaces on the same network (same or cooperating
administrative domain(s), but not in the multiple distinct
networks case.
For example, if a mobile device has an IPv6 address on an LTE
network and then connects to IPv6-enabled wifi, while the wifi
IPv6 address is undergoing DAD, IPv6 connections will try use
the wifi default route with the LTE IPv6 address, and will get
stuck until they time out.
Also, because optimistic nodes can receive frames, issue
an RTM_NEWADDR as soon as DAD starts (with the IFA_F_OPTIMSTIC
flag appropriately set). A second RTM_NEWADDR is sent if DAD
completes (the address flags have changed), otherwise an
RTM_DELADDR is sent.
Also: add an entry in ip-sysctl.txt for optimistic_dad.
Signed-off-by: Erik Kline <ek@google.com>
Acked-by: Lorenzo Colitti <lorenzo@google.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28 12:11:14 +03:00
2015-03-24 01:36:06 +03:00
stable_secret - IPv6 address
This IPv6 address will be used as a secret to generate IPv6
addresses for link-local addresses and autoconfigured
ones. All addresses generated after setting this secret will
be stable privacy ones by default. This can be changed via the
addrgenmode ip-link. conf/default/stable_secret is used as the
secret for the namespace, the interface specific ones can
overwrite that. Writes to conf/all/stable_secret are refused.
It is recommended to generate this secret during installation
of a system and keep it stable after that.
By default the stable secret is unset.
2018-07-09 13:25:18 +03:00
addr_gen_mode - INTEGER
Defines how link-local and autoconf addresses are generated.
2020-04-28 01:01:49 +03:00
= =================================================================
0 generate address based on EUI64 (default)
1 do no generate a link-local address, use EUI64 for addresses
generated from autoconf
2 generate stable privacy addresses, using the secret from
2018-07-09 13:25:18 +03:00
stable_secret (RFC7217)
2020-04-28 01:01:49 +03:00
3 generate stable privacy addresses, using a random secret if unset
= =================================================================
2018-07-09 13:25:18 +03:00
2016-02-04 15:31:19 +03:00
drop_unicast_in_l2_multicast - BOOLEAN
Drop any unicast IPv6 packets that are received in link-layer
multicast (or broadcast) frames.
By default this is turned off.
2016-02-04 15:31:20 +03:00
drop_unsolicited_na - BOOLEAN
Drop all unsolicited neighbor advertisements, for example if there's
a known good NA proxy on the network and such frames need not be used
(or in the case of 802.11, must not be used to prevent attacks.)
By default this is turned off.
2022-07-14 02:40:48 +03:00
accept_untracked_na - INTEGER
Define behavior for accepting neighbor advertisements from devices that
are absent in the neighbor cache:
- 0 - (default) Do not accept unsolicited and untracked neighbor
advertisements.
- 1 - Add a new neighbor cache entry in STALE state for routers on
receiving a neighbor advertisement (either solicited or unsolicited)
with target link-layer address option specified if no neighbor entry
is already present for the advertised IPv6 address. Without this knob,
NAs received for untracked addresses (absent in neighbor cache) are
silently ignored.
This is as per router-side behavior documented in RFC9131.
This has lower precedence than drop_unsolicited_na.
This will optimize the return path for the initial off-link
communication that is initiated by a directly connected host, by
ensuring that the first-hop router which turns on this setting doesn't
have to buffer the initial return packets to do neighbor-solicitation.
The prerequisite is that the host is configured to send unsolicited
neighbor advertisements on interface bringup. This setting should be
used in conjunction with the ndisc_notify setting on the host to
satisfy this prerequisite.
- 2 - Extend option (1) to add a new neighbor cache entry only if the
source IP address is in the same subnet as an address configured on
the interface that received the neighbor advertisement.
2022-04-15 11:34:02 +03:00
2016-12-03 01:00:08 +03:00
enhanced_dad - BOOLEAN
Include a nonce option in the IPv6 neighbor solicitation messages used for
duplicate address detection per RFC7527. A received DAD NS will only signal
a duplicate address if the nonce is different. This avoids any false
detection of duplicates due to loopback of the NS messages that we send.
The nonce option will be sent on an interface unless both of
conf/{all,interface}/enhanced_dad are set to FALSE.
2020-04-28 01:01:49 +03:00
2016-12-03 01:00:08 +03:00
Default: TRUE
2020-04-28 01:01:49 +03:00
`` icmp/* `` :
===========
2005-04-17 02:20:36 +04:00
ratelimit - INTEGER
2019-04-17 23:35:49 +03:00
Limit the maximal rates for sending ICMPv6 messages.
2020-04-28 01:01:49 +03:00
2008-07-02 06:29:07 +04:00
0 to disable any limiting,
otherwise the minimal space between responses in milliseconds.
2020-04-28 01:01:49 +03:00
2008-07-02 06:29:07 +04:00
Default: 1000
2005-04-17 02:20:36 +04:00
2019-04-17 23:35:49 +03:00
ratemask - list of comma separated ranges
For ICMPv6 message types matching the ranges in the ratemask, limit
the sending of the message according to ratelimit parameter.
The format used for both input and output is a comma separated
list of ranges (e.g. "0-127,129" for ICMPv6 message type 0 to 127 and
129). Writing to the file will clear all previous ranges of ICMPv6
message types and update the current list with the input.
Refer to: https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
for numerical values of ICMPv6 message types, e.g. echo request is 128
and echo reply is 129.
Default: 0-1,3-127 (rate limit ICMPv6 errors except Packet Too Big)
2018-08-10 18:48:15 +03:00
echo_ignore_all - BOOLEAN
If set non-zero, then the kernel will ignore all ICMP ECHO
requests sent to it over the IPv6 protocol.
2020-04-28 01:01:49 +03:00
2018-08-10 18:48:15 +03:00
Default: 0
2019-03-19 19:37:12 +03:00
echo_ignore_multicast - BOOLEAN
If set non-zero, then the kernel will ignore all ICMP ECHO
requests sent to it over the IPv6 protocol via multicast.
2020-04-28 01:01:49 +03:00
2019-03-19 19:37:12 +03:00
Default: 0
2019-03-20 17:29:27 +03:00
echo_ignore_anycast - BOOLEAN
If set non-zero, then the kernel will ignore all ICMP ECHO
requests sent to it over the IPv6 protocol destined to anycast address.
2020-04-28 01:01:49 +03:00
2019-03-20 17:29:27 +03:00
Default: 0
2023-04-19 04:32:38 +03:00
error_anycast_as_unicast - BOOLEAN
If set to 1, then the kernel will respond with ICMP Errors
resulting from requests sent to it over the IPv6 protocol destined
to anycast address essentially treating anycast as unicast.
Default: 0
2015-08-11 23:35:01 +03:00
xfrm6_gc_thresh - INTEGER
2019-04-09 18:16:59 +03:00
(Obsolete since linux-4.14)
2015-08-11 23:35:01 +03:00
The threshold at which we will start garbage collecting for IPv6
destination cache entries. At twice this value the system will
2017-07-17 14:57:20 +03:00
refuse new allocations.
2015-08-11 23:35:01 +03:00
2005-04-17 02:20:36 +04:00
IPv6 Update by:
Pekka Savola <pekkas@netcore.fi>
YOSHIFUJI Hideaki / USAGI Project <yoshfuji@linux-ipv6.org>
/proc/sys/net/bridge/* Variables:
2020-04-28 01:01:49 +03:00
=================================
2005-04-17 02:20:36 +04:00
bridge-nf-call-arptables - BOOLEAN
2020-04-28 01:01:49 +03:00
- 1 : pass bridged ARP traffic to arptables' FORWARD chain.
- 0 : disable this.
2005-04-17 02:20:36 +04:00
Default: 1
bridge-nf-call-iptables - BOOLEAN
2020-04-28 01:01:49 +03:00
- 1 : pass bridged IPv4 traffic to iptables' chains.
- 0 : disable this.
2005-04-17 02:20:36 +04:00
Default: 1
bridge-nf-call-ip6tables - BOOLEAN
2020-04-28 01:01:49 +03:00
- 1 : pass bridged IPv6 traffic to ip6tables' chains.
- 0 : disable this.
2005-04-17 02:20:36 +04:00
Default: 1
bridge-nf-filter-vlan-tagged - BOOLEAN
2020-04-28 01:01:49 +03:00
- 1 : pass bridged vlan-tagged ARP/IP/IPv6 traffic to {arp,ip,ip6}tables.
- 0 : disable this.
2012-05-08 21:36:44 +04:00
Default: 0
2007-04-13 09:14:23 +04:00
bridge-nf-filter-pppoe-tagged - BOOLEAN
2020-04-28 01:01:49 +03:00
- 1 : pass bridged pppoe-tagged IP/IPv6 traffic to {ip,ip6}tables.
- 0 : disable this.
2012-05-08 21:36:44 +04:00
Default: 0
2005-04-17 02:20:36 +04:00
2012-05-08 21:36:44 +04:00
bridge-nf-pass-vlan-input-dev - BOOLEAN
2020-04-28 01:01:49 +03:00
- 1: if bridge-nf-filter-vlan-tagged is enabled, try to find a vlan
interface on the bridge and set the netfilter input device to the
vlan. This allows use of e.g. "iptables -i br0.1" and makes the
REDIRECT target work with vlan-on-top-of-bridge interfaces. When no
matching vlan interface is found, or this switch is off, the input
device is set to the bridge interface.
- 0: disable bridge netfilter vlan interface lookup.
2012-05-08 21:36:44 +04:00
Default: 0
2005-04-17 02:20:36 +04:00
2020-04-28 01:01:49 +03:00
`` proc/sys/net/sctp/* `` Variables:
==================================
2008-07-09 03:43:29 +04:00
addip_enable - BOOLEAN
Enable or disable extension of Dynamic Address Reconfiguration
(ADD-IP) functionality specified in RFC5061. This extension provides
the ability to dynamically add and remove new addresses for the SCTP
associations.
1: Enable extension.
0: Disable extension.
Default: 0
2015-12-16 08:55:04 +03:00
pf_enable - INTEGER
Enable or disable pf (pf is short for potentially failed) state. A value
of pf_retrans > path_max_retrans also disables pf state. That is, one of
both pf_enable and pf_retrans > path_max_retrans can disable pf state.
Since pf_retrans and path_max_retrans can be changed by userspace
application, sometimes user expects to disable pf state by the value of
pf_retrans > path_max_retrans, but occasionally the value of pf_retrans
or path_max_retrans is changed by the user application, this pf state is
enabled. As such, it is necessary to add this to dynamically enable
and disable pf state. See:
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-sctp-failover for
details.
1: Enable pf.
0: Disable pf.
Default: 1
sctp: add pf_expose per netns and sock and asoc
As said in rfc7829, section 3, point 12:
The SCTP stack SHOULD expose the PF state of its destination
addresses to the ULP as well as provide the means to notify the
ULP of state transitions of its destination addresses from
active to PF, and vice versa. However, it is recommended that
an SCTP stack implementing SCTP-PF also allows for the ULP to be
kept ignorant of the PF state of its destinations and the
associated state transitions, thus allowing for retention of the
simpler state transition model of [RFC4960] in the ULP.
Not only does it allow to expose the PF state to ULP, but also
allow to ignore sctp-pf to ULP.
So this patch is to add pf_expose per netns, sock and asoc. And in
sctp_assoc_control_transport(), ulp_notify will be set to false if
asoc->expose is not 'enabled' in next patch.
It also allows a user to change pf_expose per netns by sysctl, and
pf_expose per sock and asoc will be initialized with it.
Note that pf_expose also works for SCTP_GET_PEER_ADDR_INFO sockopt,
to not allow a user to query the state of a sctp-pf peer address
when pf_expose is 'disabled', as said in section 7.3.
v1->v2:
- Fix a build warning noticed by Nathan Chancellor.
v2->v3:
- set pf_expose to UNUSED by default to keep compatible with old
applications.
v3->v4:
- add a new entry for pf_expose on ip-sysctl.txt, as Marcelo suggested.
- change this patch to 1/5, and move sctp_assoc_control_transport
change into 2/5, as Marcelo suggested.
- use SCTP_PF_EXPOSE_UNSET instead of SCTP_PF_EXPOSE_UNUSED, and
set SCTP_PF_EXPOSE_UNSET to 0 in enum, as Marcelo suggested.
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-08 08:20:32 +03:00
pf_expose - INTEGER
Unset or enable/disable pf (pf is short for potentially failed) state
exposure. Applications can control the exposure of the PF path state
in the SCTP_PEER_ADDR_CHANGE event and the SCTP_GET_PEER_ADDR_INFO
sockopt. When it's unset, no SCTP_PEER_ADDR_CHANGE event with
SCTP_ADDR_PF state will be sent and a SCTP_PF-state transport info
can be got via SCTP_GET_PEER_ADDR_INFO sockopt; When it's enabled,
a SCTP_PEER_ADDR_CHANGE event will be sent for a transport becoming
SCTP_PF state and a SCTP_PF-state transport info can be got via
2023-01-30 02:10:48 +03:00
SCTP_GET_PEER_ADDR_INFO sockopt; When it's disabled, no
sctp: add pf_expose per netns and sock and asoc
As said in rfc7829, section 3, point 12:
The SCTP stack SHOULD expose the PF state of its destination
addresses to the ULP as well as provide the means to notify the
ULP of state transitions of its destination addresses from
active to PF, and vice versa. However, it is recommended that
an SCTP stack implementing SCTP-PF also allows for the ULP to be
kept ignorant of the PF state of its destinations and the
associated state transitions, thus allowing for retention of the
simpler state transition model of [RFC4960] in the ULP.
Not only does it allow to expose the PF state to ULP, but also
allow to ignore sctp-pf to ULP.
So this patch is to add pf_expose per netns, sock and asoc. And in
sctp_assoc_control_transport(), ulp_notify will be set to false if
asoc->expose is not 'enabled' in next patch.
It also allows a user to change pf_expose per netns by sysctl, and
pf_expose per sock and asoc will be initialized with it.
Note that pf_expose also works for SCTP_GET_PEER_ADDR_INFO sockopt,
to not allow a user to query the state of a sctp-pf peer address
when pf_expose is 'disabled', as said in section 7.3.
v1->v2:
- Fix a build warning noticed by Nathan Chancellor.
v2->v3:
- set pf_expose to UNUSED by default to keep compatible with old
applications.
v3->v4:
- add a new entry for pf_expose on ip-sysctl.txt, as Marcelo suggested.
- change this patch to 1/5, and move sctp_assoc_control_transport
change into 2/5, as Marcelo suggested.
- use SCTP_PF_EXPOSE_UNSET instead of SCTP_PF_EXPOSE_UNUSED, and
set SCTP_PF_EXPOSE_UNSET to 0 in enum, as Marcelo suggested.
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-08 08:20:32 +03:00
SCTP_PEER_ADDR_CHANGE event will be sent and it returns -EACCES when
trying to get a SCTP_PF-state transport info via SCTP_GET_PEER_ADDR_INFO
sockopt.
0: Unset pf state exposure, Compatible with old applications.
1: Disable pf state exposure.
2: Enable pf state exposure.
Default: 0
2008-07-09 03:43:29 +04:00
addip_noauth_enable - BOOLEAN
Dynamic Address Reconfiguration (ADD-IP) requires the use of
authentication to protect the operations of adding or removing new
addresses. This requirement is mandated so that unauthorized hosts
would not be able to hijack associations. However, older
implementations may not have implemented this requirement while
allowing the ADD-IP extension. For reasons of interoperability,
we provide this variable to control the enforcement of the
authentication requirement.
2020-04-28 01:01:49 +03:00
== ===============================================================
1 Allow ADD-IP extension to be used without authentication. This
2008-07-09 03:43:29 +04:00
should only be set in a closed environment for interoperability
with older implementations.
2020-04-28 01:01:49 +03:00
0 Enforce the authentication requirement
== ===============================================================
2008-07-09 03:43:29 +04:00
Default: 0
auth_enable - BOOLEAN
Enable or disable Authenticated Chunks extension. This extension
provides the ability to send and receive authenticated chunks and is
required for secure operation of Dynamic Address Reconfiguration
(ADD-IP) extension.
2020-04-28 01:01:49 +03:00
- 1: Enable this extension.
- 0: Disable this extension.
2008-07-09 03:43:29 +04:00
Default: 0
prsctp_enable - BOOLEAN
Enable or disable the Partial Reliability extension (RFC3758) which
is used to notify peers that a given DATA should no longer be expected.
2020-04-28 01:01:49 +03:00
- 1: Enable extension
- 0: Disable
2008-07-09 03:43:29 +04:00
Default: 1
max_burst - INTEGER
The limit of the number of new packets that can be initially sent. It
controls how bursty the generated traffic can be.
Default: 4
association_max_retrans - INTEGER
Set the maximum number for retransmissions that an association can
attempt deciding that the remote end is unreachable. If this value
is exceeded, the association is terminated.
Default: 10
max_init_retransmits - INTEGER
The maximum number of retransmissions of INIT and COOKIE-ECHO chunks
that an association will attempt before declaring the destination
unreachable and terminating.
Default: 8
path_max_retrans - INTEGER
The maximum number of retransmissions that will be attempted on a given
path. Once this threshold is exceeded, the path is considered
unreachable, and new traffic will use a different path when the
association is multihomed.
Default: 5
2012-07-21 11:56:07 +04:00
pf_retrans - INTEGER
The number of retransmissions that will be attempted on a given path
before traffic is redirected to an alternate transport (should one
exist). Note this is distinct from path_max_retrans, as a path that
passes the pf_retrans threshold can still be used. Its only
deprioritized when a transmission path is selected by the stack. This
setting is primarily used to enable fast failover mechanisms without
having to reduce path_max_retrans to a very low value. See:
http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
for details. Note also that a value of pf_retrans > path_max_retrans
2015-12-16 08:55:04 +03:00
disables this feature. Since both pf_retrans and path_max_retrans can
be changed by userspace application, a variable pf_enable is used to
disable pf state.
2012-07-21 11:56:07 +04:00
Default: 0
2019-11-08 08:20:35 +03:00
ps_retrans - INTEGER
Primary.Switchover.Max.Retrans (PSMR), it's a tunable parameter coming
from section-5 "Primary Path Switchover" in rfc7829. The primary path
will be changed to another active path when the path error counter on
the old primary path exceeds PSMR, so that "the SCTP sender is allowed
to continue data transmission on a new working path even when the old
primary destination address becomes active again". Note this feature
is disabled by initializing 'ps_retrans' per netns as 0xffff by default,
and its value can't be less than 'pf_retrans' when changing by sysctl.
Default: 0xffff
2008-07-09 03:43:29 +04:00
rto_initial - INTEGER
The initial round trip timeout value in milliseconds that will be used
in calculating round trip times. This is the initial time interval
for retransmissions.
Default: 3000
2005-04-17 02:20:36 +04:00
2008-07-09 03:43:29 +04:00
rto_max - INTEGER
The maximum value (in milliseconds) of the round trip timeout. This
is the largest time interval that can elapse between retransmissions.
Default: 60000
rto_min - INTEGER
The minimum value (in milliseconds) of the round trip timeout. This
is the smallest time interval the can elapse between retransmissions.
Default: 1000
hb_interval - INTEGER
The interval (in milliseconds) between HEARTBEAT chunks. These chunks
are sent at the specified interval on idle paths to probe the state of
a given path between 2 associations.
Default: 30000
sack_timeout - INTEGER
The amount of time (in milliseconds) that the implementation will wait
to send a SACK.
Default: 200
valid_cookie_life - INTEGER
The default lifetime of the SCTP cookie (in milliseconds). The cookie
is used during association establishment.
Default: 60000
cookie_preserve_enable - BOOLEAN
Enable or disable the ability to extend the lifetime of the SCTP cookie
that is used during the establishment phase of SCTP association
2020-04-28 01:01:49 +03:00
- 1: Enable cookie lifetime extension.
- 0: Disable
2008-07-09 03:43:29 +04:00
Default: 1
2012-10-24 13:20:03 +04:00
cookie_hmac_alg - STRING
Select the hmac algorithm used when generating the cookie value sent by
a listening sctp socket to a connecting client in the INIT-ACK chunk.
Valid values are:
2020-04-28 01:01:49 +03:00
2012-10-24 13:20:03 +04:00
* md5
* sha1
* none
2020-04-28 01:01:49 +03:00
2012-10-24 13:20:03 +04:00
Ability to assign md5 or sha1 as the selected alg is predicated on the
2013-01-03 11:50:29 +04:00
configuration of those algorithms at build time (CONFIG_CRYPTO_MD5 and
2012-10-24 13:20:03 +04:00
CONFIG_CRYPTO_SHA1).
Default: Dependent on configuration. MD5 if available, else SHA1 if
available, else none.
2008-07-09 03:43:29 +04:00
rcvbuf_policy - INTEGER
Determines if the receive buffer is attributed to the socket or to
association. SCTP supports the capability to create multiple
associations on a single socket. When using this capability, it is
possible that a single stalled association that's buffering a lot
of data may block other associations from delivering their data by
consuming all of the receive buffer space. To work around this,
the rcvbuf_policy could be set to attribute the receiver buffer space
to each association instead of the socket. This prevents the described
blocking.
2020-04-28 01:01:49 +03:00
- 1: rcvbuf space is per association
- 0: rcvbuf space is per socket
2008-07-09 03:43:29 +04:00
Default: 0
sndbuf_policy - INTEGER
Similar to rcvbuf_policy above, this applies to send buffer space.
2020-04-28 01:01:49 +03:00
- 1: Send buffer is tracked per association
- 0: Send buffer is tracked per socket.
2008-07-09 03:43:29 +04:00
Default: 0
sctp_mem - vector of 3 INTEGERs: min, pressure, max
Number of pages allowed for queueing by all SCTP sockets.
min: Below this number of pages SCTP is not bothered about its
memory appetite. When amount of memory allocated by SCTP exceeds
this number, SCTP starts to moderate memory usage.
pressure: This value was introduced to follow format of tcp_mem.
max: Number of pages allowed for queueing by all SCTP sockets.
Default is calculated at boot time from amount of available memory.
sctp_rmem - vector of 3 INTEGERs: min, default, max
2011-06-20 02:08:10 +04:00
Only the first value ("min") is used, "default" and "max" are
ignored.
min: Minimal size of receive buffer used by SCTP socket.
It is guaranteed to each SCTP socket (but not association) even
under moderate memory pressure.
2018-03-14 07:57:17 +03:00
Default: 4K
2008-07-09 03:43:29 +04:00
sctp_wmem - vector of 3 INTEGERs: min, default, max
2022-07-21 17:35:46 +03:00
Only the first value ("min") is used, "default" and "max" are
ignored.
min: Minimum size of send buffer that can be used by SCTP sockets.
It is guaranteed to each SCTP socket (but not association) even
under moderate memory pressure.
Default: 4K
2008-07-09 03:43:29 +04:00
2009-09-03 15:55:47 +04:00
addr_scope_policy - INTEGER
Control IPv4 address scoping - draft-stewart-tsvwg-sctp-ipv4-00
2020-04-28 01:01:49 +03:00
- 0 - Disable IPv4 address scoping
- 1 - Enable IPv4 address scoping
- 2 - Follow draft but allow IPv4 private addresses
- 3 - Follow draft but allow IPv4 link local addresses
2009-09-03 15:55:47 +04:00
Default: 1
2020-10-29 10:05:10 +03:00
udp_port - INTEGER
The listening port for the local UDP tunneling sock. Normally it's
using the IANA-assigned UDP port number 9899 (sctp-tunneling).
This UDP sock is used for processing the incoming UDP-encapsulated
SCTP packets (from RFC6951), and shared by all applications in the
same net namespace. This UDP sock will be closed when the value is
set to 0.
The value will also be used to set the src port of the UDP header
for the outgoing UDP-encapsulated SCTP packets. For the dest port,
please refer to 'encap_port' below.
Default: 0
2020-10-29 10:05:01 +03:00
encap_port - INTEGER
The default remote UDP encapsulation port.
This value is used to set the dest port of the UDP header for the
outgoing UDP-encapsulated SCTP packets by default. Users can also
change the value for each sock/asoc/transport by using setsockopt.
For further information, please refer to RFC6951.
Note that when connecting to a remote server, the client should set
this to the port that the UDP tunneling sock on the peer server is
listening to and the local UDP tunneling sock on the client also
must be started. On the server, it would get the encap_port from
the incoming packet's source port.
Default: 0
2021-06-22 21:04:48 +03:00
plpmtud_probe_interval - INTEGER
2021-06-24 18:48:09 +03:00
The time interval (in milliseconds) for the PLPMTUD probe timer,
which is configured to expire after this period to receive an
acknowledgment to a probe packet. This is also the time interval
between the probes for the current pmtu when the probe search
is done.
PLPMTUD will be disabled when 0 is set, and other values for it
must be >= 5000.
2021-06-22 21:04:48 +03:00
Default: 0
2022-06-09 18:17:13 +03:00
reconf_enable - BOOLEAN
Enable or disable extension of Stream Reconfiguration functionality
specified in RFC6525. This extension provides the ability to "reset"
a stream, and it includes the Parameters of "Outgoing/Incoming SSN
Reset", "SSN/TSN Reset" and "Add Outgoing/Incoming Streams".
- 1: Enable extension.
- 0: Disable extension.
Default: 0
2022-06-09 18:17:14 +03:00
intl_enable - BOOLEAN
Enable or disable extension of User Message Interleaving functionality
specified in RFC8260. This extension allows the interleaving of user
messages sent on different streams. With this feature enabled, I-DATA
chunk will replace DATA chunk to carry user messages if also supported
by the peer. Note that to use this feature, one needs to set this option
to 1 and also needs to set socket options SCTP_FRAGMENT_INTERLEAVE to 2
and SCTP_INTERLEAVING_SUPPORTED to 1.
- 1: Enable extension.
- 0: Disable extension.
Default: 0
2022-06-09 18:17:15 +03:00
ecn_enable - BOOLEAN
Control use of Explicit Congestion Notification (ECN) by SCTP.
Like in TCP, ECN is used only when both ends of the SCTP connection
indicate support for it. This feature is useful in avoiding losses
due to congestion by allowing supporting routers to signal congestion
before having to drop packets.
1: Enable ecn.
0: Disable ecn.
Default: 1
2022-11-16 23:01:21 +03:00
l3mdev_accept - BOOLEAN
Enabling this option allows a "global" bound socket to work
across L3 master domains (e.g., VRFs) with packets capable of
being received regardless of the L3 domain in which they
originated. Only valid when the kernel was compiled with
CONFIG_NET_L3_MASTER_DEV.
Default: 1 (enabled)
2005-04-17 02:20:36 +04:00
2020-04-28 01:01:49 +03:00
`` /proc/sys/net/core/* ``
========================
2019-04-22 22:48:00 +03:00
Please see: Documentation/admin-guide/sysctl/net.rst for descriptions of these entries.
2009-05-15 02:49:36 +04:00
2008-07-11 03:50:26 +04:00
2020-04-28 01:01:49 +03:00
`` /proc/sys/net/unix/* ``
========================
2009-05-15 02:49:36 +04:00
max_dgram_qlen - INTEGER
The maximum length of dgram socket receive queue
Default: 10