2005-11-11 13:15:21 +03:00
/*
* linux / arch / ppc64 / kernel / vdso . c
*
* Copyright ( C ) 2004 Benjamin Herrenschmidt , IBM Corp .
* < benh @ kernel . crashing . org >
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation ; either version
* 2 of the License , or ( at your option ) any later version .
*/
# include <linux/config.h>
# include <linux/module.h>
# include <linux/errno.h>
# include <linux/sched.h>
# include <linux/kernel.h>
# include <linux/mm.h>
# include <linux/smp.h>
# include <linux/smp_lock.h>
# include <linux/stddef.h>
# include <linux/unistd.h>
# include <linux/slab.h>
# include <linux/user.h>
# include <linux/elf.h>
# include <linux/security.h>
# include <linux/bootmem.h>
# include <asm/pgtable.h>
# include <asm/system.h>
# include <asm/processor.h>
# include <asm/mmu.h>
# include <asm/mmu_context.h>
# include <asm/lmb.h>
# include <asm/machdep.h>
# include <asm/cputable.h>
# include <asm/sections.h>
# include <asm/vdso.h>
# include <asm/vdso_datapage.h>
# undef DEBUG
# ifdef DEBUG
# define DBG(fmt...) printk(fmt)
# else
# define DBG(fmt...)
# endif
/* Max supported size for symbol names */
# define MAX_SYMNAME 64
extern char vdso32_start , vdso32_end ;
static void * vdso32_kbase = & vdso32_start ;
unsigned int vdso32_pages ;
unsigned long vdso32_sigtramp ;
unsigned long vdso32_rt_sigtramp ;
# ifdef CONFIG_PPC64
extern char vdso64_start , vdso64_end ;
static void * vdso64_kbase = & vdso64_start ;
unsigned int vdso64_pages ;
unsigned long vdso64_rt_sigtramp ;
# endif /* CONFIG_PPC64 */
/*
* The vdso data page ( aka . systemcfg for old ppc64 fans ) is here .
* Once the early boot kernel code no longer needs to muck around
* with it , it will become dynamically allocated
*/
static union {
struct vdso_data data ;
u8 page [ PAGE_SIZE ] ;
} vdso_data_store __attribute__ ( ( __section__ ( " .data.page_aligned " ) ) ) ;
struct vdso_data * vdso_data = & vdso_data_store . data ;
/* Format of the patch table */
struct vdso_patch_def
{
unsigned long ftr_mask , ftr_value ;
const char * gen_name ;
const char * fix_name ;
} ;
/* Table of functions to patch based on the CPU type/revision
*
* Currently , we only change sync_dicache to do nothing on processors
* with a coherent icache
*/
static struct vdso_patch_def vdso_patches [ ] = {
{
CPU_FTR_COHERENT_ICACHE , CPU_FTR_COHERENT_ICACHE ,
" __kernel_sync_dicache " , " __kernel_sync_dicache_p5 "
} ,
{
CPU_FTR_USE_TB , 0 ,
" __kernel_gettimeofday " , NULL
} ,
} ;
/*
* Some infos carried around for each of them during parsing at
* boot time .
*/
struct lib32_elfinfo
{
Elf32_Ehdr * hdr ; /* ptr to ELF */
Elf32_Sym * dynsym ; /* ptr to .dynsym section */
unsigned long dynsymsize ; /* size of .dynsym section */
char * dynstr ; /* ptr to .dynstr section */
unsigned long text ; /* offset of .text section in .so */
} ;
struct lib64_elfinfo
{
Elf64_Ehdr * hdr ;
Elf64_Sym * dynsym ;
unsigned long dynsymsize ;
char * dynstr ;
unsigned long text ;
} ;
# ifdef __DEBUG
static void dump_one_vdso_page ( struct page * pg , struct page * upg )
{
printk ( " kpg: %p (c:%d,f:%08lx) " , __va ( page_to_pfn ( pg ) < < PAGE_SHIFT ) ,
page_count ( pg ) ,
pg - > flags ) ;
if ( upg /* && pg != upg*/ ) {
printk ( " upg: %p (c:%d,f:%08lx) " , __va ( page_to_pfn ( upg )
< < PAGE_SHIFT ) ,
page_count ( upg ) ,
upg - > flags ) ;
}
printk ( " \n " ) ;
}
static void dump_vdso_pages ( struct vm_area_struct * vma )
{
int i ;
if ( ! vma | | test_thread_flag ( TIF_32BIT ) ) {
printk ( " vDSO32 @ %016lx: \n " , ( unsigned long ) vdso32_kbase ) ;
for ( i = 0 ; i < vdso32_pages ; i + + ) {
struct page * pg = virt_to_page ( vdso32_kbase +
i * PAGE_SIZE ) ;
struct page * upg = ( vma & & vma - > vm_mm ) ?
follow_page ( vma - > vm_mm , vma - > vm_start +
i * PAGE_SIZE , 0 )
: NULL ;
dump_one_vdso_page ( pg , upg ) ;
}
}
if ( ! vma | | ! test_thread_flag ( TIF_32BIT ) ) {
printk ( " vDSO64 @ %016lx: \n " , ( unsigned long ) vdso64_kbase ) ;
for ( i = 0 ; i < vdso64_pages ; i + + ) {
struct page * pg = virt_to_page ( vdso64_kbase +
i * PAGE_SIZE ) ;
struct page * upg = ( vma & & vma - > vm_mm ) ?
follow_page ( vma - > vm_mm , vma - > vm_start +
i * PAGE_SIZE , 0 )
: NULL ;
dump_one_vdso_page ( pg , upg ) ;
}
}
}
# endif /* DEBUG */
/*
* Keep a dummy vma_close for now , it will prevent VMA merging .
*/
static void vdso_vma_close ( struct vm_area_struct * vma )
{
}
/*
* Our nopage ( ) function , maps in the actual vDSO kernel pages , they will
* be mapped read - only by do_no_page ( ) , and eventually COW ' ed , either
* right away for an initial write access , or by do_wp_page ( ) .
*/
static struct page * vdso_vma_nopage ( struct vm_area_struct * vma ,
unsigned long address , int * type )
{
unsigned long offset = address - vma - > vm_start ;
struct page * pg ;
# ifdef CONFIG_PPC64
void * vbase = test_thread_flag ( TIF_32BIT ) ?
vdso32_kbase : vdso64_kbase ;
# else
void * vbase = vdso32_kbase ;
# endif
DBG ( " vdso_vma_nopage(current: %s, address: %016lx, off: %lx) \n " ,
current - > comm , address , offset ) ;
if ( address < vma - > vm_start | | address > vma - > vm_end )
return NOPAGE_SIGBUS ;
/*
* Last page is systemcfg .
*/
if ( ( vma - > vm_end - address ) < = PAGE_SIZE )
pg = virt_to_page ( vdso_data ) ;
else
pg = virt_to_page ( vbase + offset ) ;
get_page ( pg ) ;
DBG ( " ->page count: %d \n " , page_count ( pg ) ) ;
return pg ;
}
static struct vm_operations_struct vdso_vmops = {
. close = vdso_vma_close ,
. nopage = vdso_vma_nopage ,
} ;
/*
* This is called from binfmt_elf , we create the special vma for the
* vDSO and insert it into the mm struct tree
*/
int arch_setup_additional_pages ( struct linux_binprm * bprm ,
int executable_stack )
{
struct mm_struct * mm = current - > mm ;
struct vm_area_struct * vma ;
unsigned long vdso_pages ;
unsigned long vdso_base ;
# ifdef CONFIG_PPC64
if ( test_thread_flag ( TIF_32BIT ) ) {
vdso_pages = vdso32_pages ;
vdso_base = VDSO32_MBASE ;
} else {
vdso_pages = vdso64_pages ;
vdso_base = VDSO64_MBASE ;
}
# else
vdso_pages = vdso32_pages ;
vdso_base = VDSO32_MBASE ;
# endif
current - > thread . vdso_base = 0 ;
/* vDSO has a problem and was disabled, just don't "enable" it for the
* process
*/
if ( vdso_pages = = 0 )
return 0 ;
vma = kmem_cache_alloc ( vm_area_cachep , SLAB_KERNEL ) ;
if ( vma = = NULL )
return - ENOMEM ;
memset ( vma , 0 , sizeof ( * vma ) ) ;
/* Add a page to the vdso size for the data page */
vdso_pages + + ;
/*
* pick a base address for the vDSO in process space . We try to put it
* at vdso_base which is the " natural " base for it , but we might fail
* and end up putting it elsewhere .
*/
vdso_base = get_unmapped_area ( NULL , vdso_base ,
vdso_pages < < PAGE_SHIFT , 0 , 0 ) ;
if ( vdso_base & ~ PAGE_MASK ) {
kmem_cache_free ( vm_area_cachep , vma ) ;
return ( int ) vdso_base ;
}
current - > thread . vdso_base = vdso_base ;
vma - > vm_mm = mm ;
vma - > vm_start = current - > thread . vdso_base ;
vma - > vm_end = vma - > vm_start + ( vdso_pages < < PAGE_SHIFT ) ;
/*
* our vma flags don ' t have VM_WRITE so by default , the process isn ' t
* allowed to write those pages .
* gdb can break that with ptrace interface , and thus trigger COW on
* those pages but it ' s then your responsibility to never do that on
* the " data " page of the vDSO or you ' ll stop getting kernel updates
* and your nice userland gettimeofday will be totally dead .
* It ' s fine to use that for setting breakpoints in the vDSO code
* pages though
*/
[PATCH] unpaged: VM_UNPAGED
Although we tend to associate VM_RESERVED with remap_pfn_range, quite a few
drivers set VM_RESERVED on areas which are then populated by nopage. The
PageReserved removal in 2.6.15-rc1 changed VM_RESERVED not to free pages in
zap_pte_range, without changing those drivers not to set it: so their pages
just leak away.
Let's not change miscellaneous drivers now: introduce VM_UNPAGED at the core,
to flag the special areas where the ptes may have no struct page, or if they
have then it's not to be touched. Replace most instances of VM_RESERVED in
core mm by VM_UNPAGED. Force it on in remap_pfn_range, and the sparc and
sparc64 io_remap_pfn_range.
Revert addition of VM_RESERVED to powerpc vdso, it's not needed there. Is it
needed anywhere? It still governs the mm->reserved_vm statistic, and special
vmas not to be merged, and areas not to be core dumped; but could probably be
eliminated later (the drivers are probably specifying it because in 2.4 it
kept swapout off the vma, but in 2.6 we work from the LRU, which these pages
don't get on).
Use the VM_SHM slot for VM_UNPAGED, and define VM_SHM to 0: it serves no
purpose whatsoever, and should be removed from drivers when we clean up.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: William Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-22 08:32:15 +03:00
vma - > vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC ;
2005-11-11 13:15:21 +03:00
vma - > vm_flags | = mm - > def_flags ;
vma - > vm_page_prot = protection_map [ vma - > vm_flags & 0x7 ] ;
vma - > vm_ops = & vdso_vmops ;
down_write ( & mm - > mmap_sem ) ;
if ( insert_vm_struct ( mm , vma ) ) {
up_write ( & mm - > mmap_sem ) ;
kmem_cache_free ( vm_area_cachep , vma ) ;
return - ENOMEM ;
}
mm - > total_vm + = ( vma - > vm_end - vma - > vm_start ) > > PAGE_SHIFT ;
up_write ( & mm - > mmap_sem ) ;
return 0 ;
}
static void * __init find_section32 ( Elf32_Ehdr * ehdr , const char * secname ,
unsigned long * size )
{
Elf32_Shdr * sechdrs ;
unsigned int i ;
char * secnames ;
/* Grab section headers and strings so we can tell who is who */
sechdrs = ( void * ) ehdr + ehdr - > e_shoff ;
secnames = ( void * ) ehdr + sechdrs [ ehdr - > e_shstrndx ] . sh_offset ;
/* Find the section they want */
for ( i = 1 ; i < ehdr - > e_shnum ; i + + ) {
if ( strcmp ( secnames + sechdrs [ i ] . sh_name , secname ) = = 0 ) {
if ( size )
* size = sechdrs [ i ] . sh_size ;
return ( void * ) ehdr + sechdrs [ i ] . sh_offset ;
}
}
* size = 0 ;
return NULL ;
}
static Elf32_Sym * __init find_symbol32 ( struct lib32_elfinfo * lib ,
const char * symname )
{
unsigned int i ;
char name [ MAX_SYMNAME ] , * c ;
for ( i = 0 ; i < ( lib - > dynsymsize / sizeof ( Elf32_Sym ) ) ; i + + ) {
if ( lib - > dynsym [ i ] . st_name = = 0 )
continue ;
strlcpy ( name , lib - > dynstr + lib - > dynsym [ i ] . st_name ,
MAX_SYMNAME ) ;
c = strchr ( name , ' @ ' ) ;
if ( c )
* c = 0 ;
if ( strcmp ( symname , name ) = = 0 )
return & lib - > dynsym [ i ] ;
}
return NULL ;
}
/* Note that we assume the section is .text and the symbol is relative to
* the library base
*/
static unsigned long __init find_function32 ( struct lib32_elfinfo * lib ,
const char * symname )
{
Elf32_Sym * sym = find_symbol32 ( lib , symname ) ;
if ( sym = = NULL ) {
printk ( KERN_WARNING " vDSO32: function %s not found ! \n " ,
symname ) ;
return 0 ;
}
return sym - > st_value - VDSO32_LBASE ;
}
static int vdso_do_func_patch32 ( struct lib32_elfinfo * v32 ,
struct lib64_elfinfo * v64 ,
const char * orig , const char * fix )
{
Elf32_Sym * sym32_gen , * sym32_fix ;
sym32_gen = find_symbol32 ( v32 , orig ) ;
if ( sym32_gen = = NULL ) {
printk ( KERN_ERR " vDSO32: Can't find symbol %s ! \n " , orig ) ;
return - 1 ;
}
if ( fix = = NULL ) {
sym32_gen - > st_name = 0 ;
return 0 ;
}
sym32_fix = find_symbol32 ( v32 , fix ) ;
if ( sym32_fix = = NULL ) {
printk ( KERN_ERR " vDSO32: Can't find symbol %s ! \n " , fix ) ;
return - 1 ;
}
sym32_gen - > st_value = sym32_fix - > st_value ;
sym32_gen - > st_size = sym32_fix - > st_size ;
sym32_gen - > st_info = sym32_fix - > st_info ;
sym32_gen - > st_other = sym32_fix - > st_other ;
sym32_gen - > st_shndx = sym32_fix - > st_shndx ;
return 0 ;
}
# ifdef CONFIG_PPC64
static void * __init find_section64 ( Elf64_Ehdr * ehdr , const char * secname ,
unsigned long * size )
{
Elf64_Shdr * sechdrs ;
unsigned int i ;
char * secnames ;
/* Grab section headers and strings so we can tell who is who */
sechdrs = ( void * ) ehdr + ehdr - > e_shoff ;
secnames = ( void * ) ehdr + sechdrs [ ehdr - > e_shstrndx ] . sh_offset ;
/* Find the section they want */
for ( i = 1 ; i < ehdr - > e_shnum ; i + + ) {
if ( strcmp ( secnames + sechdrs [ i ] . sh_name , secname ) = = 0 ) {
if ( size )
* size = sechdrs [ i ] . sh_size ;
return ( void * ) ehdr + sechdrs [ i ] . sh_offset ;
}
}
if ( size )
* size = 0 ;
return NULL ;
}
static Elf64_Sym * __init find_symbol64 ( struct lib64_elfinfo * lib ,
const char * symname )
{
unsigned int i ;
char name [ MAX_SYMNAME ] , * c ;
for ( i = 0 ; i < ( lib - > dynsymsize / sizeof ( Elf64_Sym ) ) ; i + + ) {
if ( lib - > dynsym [ i ] . st_name = = 0 )
continue ;
strlcpy ( name , lib - > dynstr + lib - > dynsym [ i ] . st_name ,
MAX_SYMNAME ) ;
c = strchr ( name , ' @ ' ) ;
if ( c )
* c = 0 ;
if ( strcmp ( symname , name ) = = 0 )
return & lib - > dynsym [ i ] ;
}
return NULL ;
}
/* Note that we assume the section is .text and the symbol is relative to
* the library base
*/
static unsigned long __init find_function64 ( struct lib64_elfinfo * lib ,
const char * symname )
{
Elf64_Sym * sym = find_symbol64 ( lib , symname ) ;
if ( sym = = NULL ) {
printk ( KERN_WARNING " vDSO64: function %s not found ! \n " ,
symname ) ;
return 0 ;
}
# ifdef VDS64_HAS_DESCRIPTORS
return * ( ( u64 * ) ( vdso64_kbase + sym - > st_value - VDSO64_LBASE ) ) -
VDSO64_LBASE ;
# else
return sym - > st_value - VDSO64_LBASE ;
# endif
}
static int vdso_do_func_patch64 ( struct lib32_elfinfo * v32 ,
struct lib64_elfinfo * v64 ,
const char * orig , const char * fix )
{
Elf64_Sym * sym64_gen , * sym64_fix ;
sym64_gen = find_symbol64 ( v64 , orig ) ;
if ( sym64_gen = = NULL ) {
printk ( KERN_ERR " vDSO64: Can't find symbol %s ! \n " , orig ) ;
return - 1 ;
}
if ( fix = = NULL ) {
sym64_gen - > st_name = 0 ;
return 0 ;
}
sym64_fix = find_symbol64 ( v64 , fix ) ;
if ( sym64_fix = = NULL ) {
printk ( KERN_ERR " vDSO64: Can't find symbol %s ! \n " , fix ) ;
return - 1 ;
}
sym64_gen - > st_value = sym64_fix - > st_value ;
sym64_gen - > st_size = sym64_fix - > st_size ;
sym64_gen - > st_info = sym64_fix - > st_info ;
sym64_gen - > st_other = sym64_fix - > st_other ;
sym64_gen - > st_shndx = sym64_fix - > st_shndx ;
return 0 ;
}
# endif /* CONFIG_PPC64 */
static __init int vdso_do_find_sections ( struct lib32_elfinfo * v32 ,
struct lib64_elfinfo * v64 )
{
void * sect ;
/*
* Locate symbol tables & text section
*/
v32 - > dynsym = find_section32 ( v32 - > hdr , " .dynsym " , & v32 - > dynsymsize ) ;
v32 - > dynstr = find_section32 ( v32 - > hdr , " .dynstr " , NULL ) ;
if ( v32 - > dynsym = = NULL | | v32 - > dynstr = = NULL ) {
printk ( KERN_ERR " vDSO32: required symbol section not found \n " ) ;
return - 1 ;
}
sect = find_section32 ( v32 - > hdr , " .text " , NULL ) ;
if ( sect = = NULL ) {
printk ( KERN_ERR " vDSO32: the .text section was not found \n " ) ;
return - 1 ;
}
v32 - > text = sect - vdso32_kbase ;
# ifdef CONFIG_PPC64
v64 - > dynsym = find_section64 ( v64 - > hdr , " .dynsym " , & v64 - > dynsymsize ) ;
v64 - > dynstr = find_section64 ( v64 - > hdr , " .dynstr " , NULL ) ;
if ( v64 - > dynsym = = NULL | | v64 - > dynstr = = NULL ) {
printk ( KERN_ERR " vDSO64: required symbol section not found \n " ) ;
return - 1 ;
}
sect = find_section64 ( v64 - > hdr , " .text " , NULL ) ;
if ( sect = = NULL ) {
printk ( KERN_ERR " vDSO64: the .text section was not found \n " ) ;
return - 1 ;
}
v64 - > text = sect - vdso64_kbase ;
# endif /* CONFIG_PPC64 */
return 0 ;
}
static __init void vdso_setup_trampolines ( struct lib32_elfinfo * v32 ,
struct lib64_elfinfo * v64 )
{
/*
* Find signal trampolines
*/
# ifdef CONFIG_PPC64
vdso64_rt_sigtramp = find_function64 ( v64 , " __kernel_sigtramp_rt64 " ) ;
# endif
vdso32_sigtramp = find_function32 ( v32 , " __kernel_sigtramp32 " ) ;
vdso32_rt_sigtramp = find_function32 ( v32 , " __kernel_sigtramp_rt32 " ) ;
}
static __init int vdso_fixup_datapage ( struct lib32_elfinfo * v32 ,
struct lib64_elfinfo * v64 )
{
Elf32_Sym * sym32 ;
# ifdef CONFIG_PPC64
Elf64_Sym * sym64 ;
sym64 = find_symbol64 ( v64 , " __kernel_datapage_offset " ) ;
if ( sym64 = = NULL ) {
printk ( KERN_ERR " vDSO64: Can't find symbol "
" __kernel_datapage_offset ! \n " ) ;
return - 1 ;
}
* ( ( int * ) ( vdso64_kbase + sym64 - > st_value - VDSO64_LBASE ) ) =
( vdso64_pages < < PAGE_SHIFT ) -
( sym64 - > st_value - VDSO64_LBASE ) ;
# endif /* CONFIG_PPC64 */
sym32 = find_symbol32 ( v32 , " __kernel_datapage_offset " ) ;
if ( sym32 = = NULL ) {
printk ( KERN_ERR " vDSO32: Can't find symbol "
" __kernel_datapage_offset ! \n " ) ;
return - 1 ;
}
* ( ( int * ) ( vdso32_kbase + ( sym32 - > st_value - VDSO32_LBASE ) ) ) =
( vdso32_pages < < PAGE_SHIFT ) -
( sym32 - > st_value - VDSO32_LBASE ) ;
return 0 ;
}
static __init int vdso_fixup_alt_funcs ( struct lib32_elfinfo * v32 ,
struct lib64_elfinfo * v64 )
{
int i ;
for ( i = 0 ; i < ARRAY_SIZE ( vdso_patches ) ; i + + ) {
struct vdso_patch_def * patch = & vdso_patches [ i ] ;
int match = ( cur_cpu_spec - > cpu_features & patch - > ftr_mask )
= = patch - > ftr_value ;
if ( ! match )
continue ;
DBG ( " replacing %s with %s... \n " , patch - > gen_name ,
patch - > fix_name ? " NONE " : patch - > fix_name ) ;
/*
* Patch the 32 bits and 64 bits symbols . Note that we do not
* patch the " . " symbol on 64 bits .
* It would be easy to do , but doesn ' t seem to be necessary ,
* patching the OPD symbol is enough .
*/
vdso_do_func_patch32 ( v32 , v64 , patch - > gen_name ,
patch - > fix_name ) ;
# ifdef CONFIG_PPC64
vdso_do_func_patch64 ( v32 , v64 , patch - > gen_name ,
patch - > fix_name ) ;
# endif /* CONFIG_PPC64 */
}
return 0 ;
}
static __init int vdso_setup ( void )
{
struct lib32_elfinfo v32 ;
struct lib64_elfinfo v64 ;
v32 . hdr = vdso32_kbase ;
# ifdef CONFIG_PPC64
v64 . hdr = vdso64_kbase ;
# endif
if ( vdso_do_find_sections ( & v32 , & v64 ) )
return - 1 ;
if ( vdso_fixup_datapage ( & v32 , & v64 ) )
return - 1 ;
if ( vdso_fixup_alt_funcs ( & v32 , & v64 ) )
return - 1 ;
vdso_setup_trampolines ( & v32 , & v64 ) ;
return 0 ;
}
/*
* Called from setup_arch to initialize the bitmap of available
* syscalls in the systemcfg page
*/
static void __init vdso_setup_syscall_map ( void )
{
unsigned int i ;
extern unsigned long * sys_call_table ;
extern unsigned long sys_ni_syscall ;
for ( i = 0 ; i < __NR_syscalls ; i + + ) {
# ifdef CONFIG_PPC64
if ( sys_call_table [ i * 2 ] ! = sys_ni_syscall )
vdso_data - > syscall_map_64 [ i > > 5 ] | =
0x80000000UL > > ( i & 0x1f ) ;
if ( sys_call_table [ i * 2 + 1 ] ! = sys_ni_syscall )
vdso_data - > syscall_map_32 [ i > > 5 ] | =
0x80000000UL > > ( i & 0x1f ) ;
# else /* CONFIG_PPC64 */
if ( sys_call_table [ i ] ! = sys_ni_syscall )
vdso_data - > syscall_map_32 [ i > > 5 ] | =
0x80000000UL > > ( i & 0x1f ) ;
# endif /* CONFIG_PPC64 */
}
}
void __init vdso_init ( void )
{
int i ;
# ifdef CONFIG_PPC64
/*
* Fill up the " systemcfg " stuff for backward compatiblity
*/
strcpy ( vdso_data - > eye_catcher , " SYSTEMCFG:PPC64 " ) ;
vdso_data - > version . major = SYSTEMCFG_MAJOR ;
vdso_data - > version . minor = SYSTEMCFG_MINOR ;
vdso_data - > processor = mfspr ( SPRN_PVR ) ;
vdso_data - > platform = _machine ;
vdso_data - > physicalMemorySize = lmb_phys_mem_size ( ) ;
vdso_data - > dcache_size = ppc64_caches . dsize ;
vdso_data - > dcache_line_size = ppc64_caches . dline_size ;
vdso_data - > icache_size = ppc64_caches . isize ;
vdso_data - > icache_line_size = ppc64_caches . iline_size ;
/*
* Calculate the size of the 64 bits vDSO
*/
vdso64_pages = ( & vdso64_end - & vdso64_start ) > > PAGE_SHIFT ;
DBG ( " vdso64_kbase: %p, 0x%x pages \n " , vdso64_kbase , vdso64_pages ) ;
# endif /* CONFIG_PPC64 */
/*
* Calculate the size of the 32 bits vDSO
*/
vdso32_pages = ( & vdso32_end - & vdso32_start ) > > PAGE_SHIFT ;
DBG ( " vdso32_kbase: %p, 0x%x pages \n " , vdso32_kbase , vdso32_pages ) ;
/*
* Setup the syscall map in the vDOS
*/
vdso_setup_syscall_map ( ) ;
/*
* Initialize the vDSO images in memory , that is do necessary
* fixups of vDSO symbols , locate trampolines , etc . . .
*/
if ( vdso_setup ( ) ) {
printk ( KERN_ERR " vDSO setup failure, not enabled ! \n " ) ;
vdso32_pages = 0 ;
# ifdef CONFIG_PPC64
vdso64_pages = 0 ;
# endif
return ;
}
/* Make sure pages are in the correct state */
for ( i = 0 ; i < vdso32_pages ; i + + ) {
struct page * pg = virt_to_page ( vdso32_kbase + i * PAGE_SIZE ) ;
ClearPageReserved ( pg ) ;
get_page ( pg ) ;
}
# ifdef CONFIG_PPC64
for ( i = 0 ; i < vdso64_pages ; i + + ) {
struct page * pg = virt_to_page ( vdso64_kbase + i * PAGE_SIZE ) ;
ClearPageReserved ( pg ) ;
get_page ( pg ) ;
}
# endif /* CONFIG_PPC64 */
get_page ( virt_to_page ( vdso_data ) ) ;
}
int in_gate_area_no_task ( unsigned long addr )
{
return 0 ;
}
int in_gate_area ( struct task_struct * task , unsigned long addr )
{
return 0 ;
}
struct vm_area_struct * get_gate_vma ( struct task_struct * tsk )
{
return NULL ;
}