2019-05-29 17:18:08 +03:00
// SPDX-License-Identifier: GPL-2.0-only
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
/*
* SBSA ( Server Base System Architecture ) Generic Watchdog driver
*
* Copyright ( c ) 2015 , Linaro Ltd .
* Author : Fu Wei < fu . wei @ linaro . org >
* Suravee Suthikulpanit < Suravee . Suthikulpanit @ amd . com >
* Al Stone < al . stone @ linaro . org >
* Timur Tabi < timur @ codeaurora . org >
*
* ARM SBSA Generic Watchdog has two stage timeouts :
* the first signal ( WS0 ) is for alerting the system by interrupt ,
* the second one ( WS1 ) is a real hardware reset .
* More details about the hardware specification of this device :
* ARM DEN0029B - Server Base System Architecture ( SBSA )
*
* This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
* or a two stages watchdog , it ' s set up by the module parameter " action " .
* In the single stage mode , when the timeout is reached , your system
* will be reset by WS1 . The first signal ( WS0 ) is ignored .
* In the two stages mode , when the timeout is reached , the first signal ( WS0 )
* will trigger panic . If the system is getting into trouble and cannot be reset
* by panic or restart properly by the kdump kernel ( if supported ) , then the
* second stage ( as long as the first stage ) will be reached , system will be
* reset by WS1 . This function can help administrator to backup the system
* context info by panic console output or kdump .
*
* SBSA GWDT :
* if action is 1 ( the two stages mode ) :
* | - - - - - - - - WOR - - - - - - - WS0 - - - - - - - - WOR - - - - - - - WS1
* | - - - - timeout - - - - - ( panic ) - - - - timeout - - - - - reset
*
* if action is 0 ( the single stage mode ) :
* | - - - - - - WOR - - - - - WS0 ( ignored ) - - - - - WOR - - - - - - WS1
* | - - - - - - - - - - - - - - timeout - - - - - - - - - - - - - - - - - - - reset
*
* Note : Since this watchdog timer has two stages , and each stage is determined
* by WOR , in the single stage mode , the timeout is ( WOR * 2 ) ; in the two
* stages mode , the timeout is WOR . The maximum timeout in the two stages mode
* is half of that in the single stage mode .
*/
# include <linux/io.h>
2018-02-28 13:52:20 +03:00
# include <linux/io-64-nonatomic-lo-hi.h>
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
# include <linux/interrupt.h>
# include <linux/module.h>
# include <linux/moduleparam.h>
# include <linux/of.h>
# include <linux/of_device.h>
# include <linux/platform_device.h>
# include <linux/uaccess.h>
# include <linux/watchdog.h>
# include <asm/arch_timer.h>
# define DRV_NAME "sbsa-gwdt"
# define WATCHDOG_NAME "SBSA Generic Watchdog"
/* SBSA Generic Watchdog register definitions */
/* refresh frame */
# define SBSA_GWDT_WRR 0x000
/* control frame */
# define SBSA_GWDT_WCS 0x000
# define SBSA_GWDT_WOR 0x008
# define SBSA_GWDT_WCV 0x010
/* refresh/control frame */
# define SBSA_GWDT_W_IIDR 0xfcc
# define SBSA_GWDT_IDR 0xfd0
/* Watchdog Control and Status Register */
# define SBSA_GWDT_WCS_EN BIT(0)
# define SBSA_GWDT_WCS_WS0 BIT(1)
# define SBSA_GWDT_WCS_WS1 BIT(2)
2021-05-17 15:10:08 +03:00
# define SBSA_GWDT_VERSION_MASK 0xF
# define SBSA_GWDT_VERSION_SHIFT 16
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
/**
* struct sbsa_gwdt - Internal representation of the SBSA GWDT
* @ wdd : kernel watchdog_device structure
* @ clk : store the System Counter clock frequency , in Hz .
2021-05-17 15:10:08 +03:00
* @ version : store the architecture version
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
* @ refresh_base : Virtual address of the watchdog refresh frame
* @ control_base : Virtual address of the watchdog control frame
*/
struct sbsa_gwdt {
struct watchdog_device wdd ;
u32 clk ;
2021-05-17 15:10:08 +03:00
int version ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
void __iomem * refresh_base ;
void __iomem * control_base ;
} ;
# define DEFAULT_TIMEOUT 10 /* seconds */
static unsigned int timeout ;
module_param ( timeout , uint , 0 ) ;
MODULE_PARM_DESC ( timeout ,
" Watchdog timeout in seconds. (>=0, default= "
__MODULE_STRING ( DEFAULT_TIMEOUT ) " ) " ) ;
/*
* action refers to action taken when watchdog gets WS0
* 0 = skip
* 1 = panic
* defaults to skip ( 0 )
*/
static int action ;
module_param ( action , int , 0 ) ;
MODULE_PARM_DESC ( action , " after watchdog gets WS0 interrupt, do: "
" 0 = skip(*) 1 = panic " ) ;
static bool nowayout = WATCHDOG_NOWAYOUT ;
module_param ( nowayout , bool , S_IRUGO ) ;
MODULE_PARM_DESC ( nowayout ,
" Watchdog cannot be stopped once started (default= "
__MODULE_STRING ( WATCHDOG_NOWAYOUT ) " ) " ) ;
2021-05-17 15:10:08 +03:00
/*
* Arm Base System Architecture 1.0 introduces watchdog v1 which
* increases the length watchdog offset register to 48 bits .
* - For version 0 : WOR is 32 bits ;
* - For version 1 : WOR is 48 bits which comprises the register
* offset 0x8 and 0xC , and the bits [ 63 : 48 ] are reserved which are
* Read - As - Zero and Writes - Ignored .
*/
static u64 sbsa_gwdt_reg_read ( struct sbsa_gwdt * gwdt )
{
if ( gwdt - > version = = 0 )
return readl ( gwdt - > control_base + SBSA_GWDT_WOR ) ;
else
2021-09-03 14:21:01 +03:00
return lo_hi_readq ( gwdt - > control_base + SBSA_GWDT_WOR ) ;
2021-05-17 15:10:08 +03:00
}
static void sbsa_gwdt_reg_write ( u64 val , struct sbsa_gwdt * gwdt )
{
if ( gwdt - > version = = 0 )
writel ( ( u32 ) val , gwdt - > control_base + SBSA_GWDT_WOR ) ;
else
2021-09-03 14:21:01 +03:00
lo_hi_writeq ( val , gwdt - > control_base + SBSA_GWDT_WOR ) ;
2021-05-17 15:10:08 +03:00
}
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
/*
* watchdog operation functions
*/
static int sbsa_gwdt_set_timeout ( struct watchdog_device * wdd ,
unsigned int timeout )
{
struct sbsa_gwdt * gwdt = watchdog_get_drvdata ( wdd ) ;
wdd - > timeout = timeout ;
if ( action )
2021-05-17 15:10:08 +03:00
sbsa_gwdt_reg_write ( gwdt - > clk * timeout , gwdt ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
else
/*
* In the single stage mode , The first signal ( WS0 ) is ignored ,
* the timeout is ( WOR * 2 ) , so the WOR should be configured
* to half value of timeout .
*/
2021-05-17 15:10:08 +03:00
sbsa_gwdt_reg_write ( gwdt - > clk / 2 * timeout , gwdt ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
return 0 ;
}
static unsigned int sbsa_gwdt_get_timeleft ( struct watchdog_device * wdd )
{
struct sbsa_gwdt * gwdt = watchdog_get_drvdata ( wdd ) ;
u64 timeleft = 0 ;
/*
* In the single stage mode , if WS0 is deasserted
* ( watchdog is in the first stage ) ,
* timeleft = WOR + ( WCV - system counter )
*/
if ( ! action & &
! ( readl ( gwdt - > control_base + SBSA_GWDT_WCS ) & SBSA_GWDT_WCS_WS0 ) )
2021-05-17 15:10:08 +03:00
timeleft + = sbsa_gwdt_reg_read ( gwdt ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
2018-02-28 13:52:20 +03:00
timeleft + = lo_hi_readq ( gwdt - > control_base + SBSA_GWDT_WCV ) -
2019-04-08 18:49:02 +03:00
arch_timer_read_counter ( ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
do_div ( timeleft , gwdt - > clk ) ;
return timeleft ;
}
static int sbsa_gwdt_keepalive ( struct watchdog_device * wdd )
{
struct sbsa_gwdt * gwdt = watchdog_get_drvdata ( wdd ) ;
/*
* Writing WRR for an explicit watchdog refresh .
* You can write anyting ( like 0 ) .
*/
writel ( 0 , gwdt - > refresh_base + SBSA_GWDT_WRR ) ;
return 0 ;
}
2021-05-17 15:10:08 +03:00
static void sbsa_gwdt_get_version ( struct watchdog_device * wdd )
{
struct sbsa_gwdt * gwdt = watchdog_get_drvdata ( wdd ) ;
int ver ;
ver = readl ( gwdt - > control_base + SBSA_GWDT_W_IIDR ) ;
ver = ( ver > > SBSA_GWDT_VERSION_SHIFT ) & SBSA_GWDT_VERSION_MASK ;
gwdt - > version = ver ;
}
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
static int sbsa_gwdt_start ( struct watchdog_device * wdd )
{
struct sbsa_gwdt * gwdt = watchdog_get_drvdata ( wdd ) ;
/* writing WCS will cause an explicit watchdog refresh */
writel ( SBSA_GWDT_WCS_EN , gwdt - > control_base + SBSA_GWDT_WCS ) ;
return 0 ;
}
static int sbsa_gwdt_stop ( struct watchdog_device * wdd )
{
struct sbsa_gwdt * gwdt = watchdog_get_drvdata ( wdd ) ;
/* Simply write 0 to WCS to clean WCS_EN bit */
writel ( 0 , gwdt - > control_base + SBSA_GWDT_WCS ) ;
return 0 ;
}
static irqreturn_t sbsa_gwdt_interrupt ( int irq , void * dev_id )
{
panic ( WATCHDOG_NAME " timeout " ) ;
return IRQ_HANDLED ;
}
2016-12-26 20:05:11 +03:00
static const struct watchdog_info sbsa_gwdt_info = {
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
. identity = WATCHDOG_NAME ,
. options = WDIOF_SETTIMEOUT |
WDIOF_KEEPALIVEPING |
WDIOF_MAGICCLOSE |
WDIOF_CARDRESET ,
} ;
2017-01-28 10:41:17 +03:00
static const struct watchdog_ops sbsa_gwdt_ops = {
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
. owner = THIS_MODULE ,
. start = sbsa_gwdt_start ,
. stop = sbsa_gwdt_stop ,
. ping = sbsa_gwdt_keepalive ,
. set_timeout = sbsa_gwdt_set_timeout ,
. get_timeleft = sbsa_gwdt_get_timeleft ,
} ;
static int sbsa_gwdt_probe ( struct platform_device * pdev )
{
void __iomem * rf_base , * cf_base ;
struct device * dev = & pdev - > dev ;
struct watchdog_device * wdd ;
struct sbsa_gwdt * gwdt ;
int ret , irq ;
u32 status ;
gwdt = devm_kzalloc ( dev , sizeof ( * gwdt ) , GFP_KERNEL ) ;
if ( ! gwdt )
return - ENOMEM ;
platform_set_drvdata ( pdev , gwdt ) ;
watchdog: Convert to use devm_platform_ioremap_resource
Use devm_platform_ioremap_resource to reduce source code size,
improve readability, and reduce the likelyhood of bugs.
The conversion was done automatically with coccinelle using the
following semantic patch.
@r@
identifier res, pdev;
expression a;
expression index;
expression e;
@@
<+...
- res = platform_get_resource(pdev, IORESOURCE_MEM, index);
- a = devm_ioremap_resource(e, res);
+ a = devm_platform_ioremap_resource(pdev, index);
...+>
@depends on r@
identifier r.res;
@@
- struct resource *res;
... when != res
@@
identifier res, pdev;
expression index;
expression a;
@@
- struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, index);
- a = devm_ioremap_resource(&pdev->dev, res);
+ a = devm_platform_ioremap_resource(pdev, index);
Cc: Joel Stanley <joel@jms.id.au>
Cc: Nicolas Ferre <nicolas.ferre@microchip.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Baruch Siach <baruch@tkos.co.il>
Cc: Keguang Zhang <keguang.zhang@gmail.com>
Cc: Vladimir Zapolskiy <vz@mleia.com>
Cc: Kevin Hilman <khilman@baylibre.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Avi Fishman <avifishman70@gmail.com>
Cc: Nancy Yuen <yuenn@google.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Sylvain Lemieux <slemieux.tyco@gmail.com>
Cc: Kukjin Kim <kgene@kernel.org>
Cc: Barry Song <baohua@kernel.org>
Cc: Orson Zhai <orsonzhai@gmail.com>
Cc: Patrice Chotard <patrice.chotard@st.com>
Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Cc: Maxime Ripard <maxime.ripard@bootlin.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Marc Gonzalez <marc.w.gonzalez@free.fr>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Acked-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Maxime Ripard <maxime.ripard@bootlin.com>
Acked-by: Michal Simek <michal.simek@xilinx.com> (cadence/xilinx wdts)
Acked-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Patrice Chotard <patrice.chotard@st.com>
Acked-by: Vladimir Zapolskiy <vz@mleia.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@linux-watchdog.org>
2019-04-02 22:01:53 +03:00
cf_base = devm_platform_ioremap_resource ( pdev , 0 ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
if ( IS_ERR ( cf_base ) )
return PTR_ERR ( cf_base ) ;
watchdog: Convert to use devm_platform_ioremap_resource
Use devm_platform_ioremap_resource to reduce source code size,
improve readability, and reduce the likelyhood of bugs.
The conversion was done automatically with coccinelle using the
following semantic patch.
@r@
identifier res, pdev;
expression a;
expression index;
expression e;
@@
<+...
- res = platform_get_resource(pdev, IORESOURCE_MEM, index);
- a = devm_ioremap_resource(e, res);
+ a = devm_platform_ioremap_resource(pdev, index);
...+>
@depends on r@
identifier r.res;
@@
- struct resource *res;
... when != res
@@
identifier res, pdev;
expression index;
expression a;
@@
- struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, index);
- a = devm_ioremap_resource(&pdev->dev, res);
+ a = devm_platform_ioremap_resource(pdev, index);
Cc: Joel Stanley <joel@jms.id.au>
Cc: Nicolas Ferre <nicolas.ferre@microchip.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Baruch Siach <baruch@tkos.co.il>
Cc: Keguang Zhang <keguang.zhang@gmail.com>
Cc: Vladimir Zapolskiy <vz@mleia.com>
Cc: Kevin Hilman <khilman@baylibre.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Avi Fishman <avifishman70@gmail.com>
Cc: Nancy Yuen <yuenn@google.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Sylvain Lemieux <slemieux.tyco@gmail.com>
Cc: Kukjin Kim <kgene@kernel.org>
Cc: Barry Song <baohua@kernel.org>
Cc: Orson Zhai <orsonzhai@gmail.com>
Cc: Patrice Chotard <patrice.chotard@st.com>
Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Cc: Maxime Ripard <maxime.ripard@bootlin.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Marc Gonzalez <marc.w.gonzalez@free.fr>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Acked-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Maxime Ripard <maxime.ripard@bootlin.com>
Acked-by: Michal Simek <michal.simek@xilinx.com> (cadence/xilinx wdts)
Acked-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Patrice Chotard <patrice.chotard@st.com>
Acked-by: Vladimir Zapolskiy <vz@mleia.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@linux-watchdog.org>
2019-04-02 22:01:53 +03:00
rf_base = devm_platform_ioremap_resource ( pdev , 1 ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
if ( IS_ERR ( rf_base ) )
return PTR_ERR ( rf_base ) ;
/*
* Get the frequency of system counter from the cp15 interface of ARM
* Generic timer . We don ' t need to check it , because if it returns " 0 " ,
* system would panic in very early stage .
*/
gwdt - > clk = arch_timer_get_cntfrq ( ) ;
gwdt - > refresh_base = rf_base ;
gwdt - > control_base = cf_base ;
wdd = & gwdt - > wdd ;
wdd - > parent = dev ;
wdd - > info = & sbsa_gwdt_info ;
wdd - > ops = & sbsa_gwdt_ops ;
wdd - > min_timeout = 1 ;
wdd - > timeout = DEFAULT_TIMEOUT ;
watchdog_set_drvdata ( wdd , gwdt ) ;
watchdog_set_nowayout ( wdd , nowayout ) ;
2021-05-17 15:10:08 +03:00
sbsa_gwdt_get_version ( wdd ) ;
if ( gwdt - > version = = 0 )
wdd - > max_hw_heartbeat_ms = U32_MAX / gwdt - > clk * 1000 ;
else
wdd - > max_hw_heartbeat_ms = GENMASK_ULL ( 47 , 0 ) / gwdt - > clk * 1000 ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
status = readl ( cf_base + SBSA_GWDT_WCS ) ;
if ( status & SBSA_GWDT_WCS_WS1 ) {
dev_warn ( dev , " System reset by WDT. \n " ) ;
wdd - > bootstatus | = WDIOF_CARDRESET ;
}
2016-05-31 09:08:10 +03:00
if ( status & SBSA_GWDT_WCS_EN )
set_bit ( WDOG_HW_RUNNING , & wdd - > status ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
if ( action ) {
irq = platform_get_irq ( pdev , 0 ) ;
if ( irq < 0 ) {
action = 0 ;
dev_warn ( dev , " unable to get ws0 interrupt. \n " ) ;
} else {
/*
* In case there is a pending ws0 interrupt , just ping
* the watchdog before registering the interrupt routine
*/
writel ( 0 , rf_base + SBSA_GWDT_WRR ) ;
if ( devm_request_irq ( dev , irq , sbsa_gwdt_interrupt , 0 ,
pdev - > name , gwdt ) ) {
action = 0 ;
dev_warn ( dev , " unable to request IRQ %d. \n " ,
irq ) ;
}
}
if ( ! action )
dev_warn ( dev , " falling back to single stage mode. \n " ) ;
}
/*
* In the single stage mode , The first signal ( WS0 ) is ignored ,
* the timeout is ( WOR * 2 ) , so the maximum timeout should be doubled .
*/
if ( ! action )
2016-05-31 09:08:09 +03:00
wdd - > max_hw_heartbeat_ms * = 2 ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
watchdog_init_timeout ( wdd , timeout , dev ) ;
/*
* Update timeout to WOR .
* Because of the explicit watchdog refresh mechanism ,
* it ' s also a ping , if watchdog is enabled .
*/
sbsa_gwdt_set_timeout ( wdd , wdd - > timeout ) ;
2019-04-10 19:27:52 +03:00
watchdog_stop_on_reboot ( wdd ) ;
ret = devm_watchdog_register_device ( dev , wdd ) ;
Watchdog: introduce ARM SBSA watchdog driver
According to Server Base System Architecture (SBSA) specification,
the SBSA Generic Watchdog has two stage timeouts: the first signal (WS0)
is for alerting the system by interrupt, the second one (WS1) is a real
hardware reset.
More details about the hardware specification of this device:
ARM DEN0029B - Server Base System Architecture (SBSA)
This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog
or a two stages watchdog, it's set up by the module parameter "action".
In the single stage mode, when the timeout is reached, your system
will be reset by WS1. The first signal (WS0) is ignored.
In the two stages mode, when the timeout is reached, the first signal (WS0)
will trigger panic. If the system is getting into trouble and cannot be reset
by panic or restart properly by the kdump kernel(if supported), then the
second stage (as long as the first stage) will be reached, system will be
reset by WS1. This function can help administrator to backup the system
context info by panic console output or kdump.
This driver bases on linux kernel watchdog framework, so it can get
timeout from module parameter and FDT at the driver init stage.
Signed-off-by: Fu Wei <fu.wei@linaro.org>
Reviewed-by: Graeme Gregory <graeme.gregory@linaro.org>
Tested-by: Pratyush Anand <panand@redhat.com>
Acked-by: Timur Tabi <timur@codeaurora.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2016-02-29 11:46:50 +03:00
if ( ret )
return ret ;
dev_info ( dev , " Initialized with %ds timeout @ %u Hz, action=%d.%s \n " ,
wdd - > timeout , gwdt - > clk , action ,
status & SBSA_GWDT_WCS_EN ? " [enabled] " : " " ) ;
return 0 ;
}
/* Disable watchdog if it is active during suspend */
static int __maybe_unused sbsa_gwdt_suspend ( struct device * dev )
{
struct sbsa_gwdt * gwdt = dev_get_drvdata ( dev ) ;
if ( watchdog_active ( & gwdt - > wdd ) )
sbsa_gwdt_stop ( & gwdt - > wdd ) ;
return 0 ;
}
/* Enable watchdog if necessary */
static int __maybe_unused sbsa_gwdt_resume ( struct device * dev )
{
struct sbsa_gwdt * gwdt = dev_get_drvdata ( dev ) ;
if ( watchdog_active ( & gwdt - > wdd ) )
sbsa_gwdt_start ( & gwdt - > wdd ) ;
return 0 ;
}
static const struct dev_pm_ops sbsa_gwdt_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS ( sbsa_gwdt_suspend , sbsa_gwdt_resume )
} ;
static const struct of_device_id sbsa_gwdt_of_match [ ] = {
{ . compatible = " arm,sbsa-gwdt " , } ,
{ } ,
} ;
MODULE_DEVICE_TABLE ( of , sbsa_gwdt_of_match ) ;
static const struct platform_device_id sbsa_gwdt_pdev_match [ ] = {
{ . name = DRV_NAME , } ,
{ } ,
} ;
MODULE_DEVICE_TABLE ( platform , sbsa_gwdt_pdev_match ) ;
static struct platform_driver sbsa_gwdt_driver = {
. driver = {
. name = DRV_NAME ,
. pm = & sbsa_gwdt_pm_ops ,
. of_match_table = sbsa_gwdt_of_match ,
} ,
. probe = sbsa_gwdt_probe ,
. id_table = sbsa_gwdt_pdev_match ,
} ;
module_platform_driver ( sbsa_gwdt_driver ) ;
MODULE_DESCRIPTION ( " SBSA Generic Watchdog Driver " ) ;
MODULE_AUTHOR ( " Fu Wei <fu.wei@linaro.org> " ) ;
MODULE_AUTHOR ( " Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> " ) ;
MODULE_AUTHOR ( " Al Stone <al.stone@linaro.org> " ) ;
MODULE_AUTHOR ( " Timur Tabi <timur@codeaurora.org> " ) ;
MODULE_LICENSE ( " GPL v2 " ) ;