linux/drivers/mmc/host/bfin_sdh.c

694 lines
16 KiB
C
Raw Normal View History

/*
* bfin_sdh.c - Analog Devices Blackfin SDH Controller
*
* Copyright (C) 2007-2009 Analog Device Inc.
*
* Licensed under the GPL-2 or later.
*/
#define DRIVER_NAME "bfin-sdh"
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/proc_fs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/gfp.h>
#include <asm/cacheflush.h>
#include <asm/dma.h>
#include <asm/portmux.h>
#include <asm/bfin_sdh.h>
#if defined(CONFIG_BF51x) || defined(__ADSPBF60x__)
#define bfin_read_SDH_CLK_CTL bfin_read_RSI_CLK_CTL
#define bfin_write_SDH_CLK_CTL bfin_write_RSI_CLK_CTL
#define bfin_write_SDH_ARGUMENT bfin_write_RSI_ARGUMENT
#define bfin_write_SDH_COMMAND bfin_write_RSI_COMMAND
#define bfin_write_SDH_DATA_TIMER bfin_write_RSI_DATA_TIMER
#define bfin_read_SDH_RESPONSE0 bfin_read_RSI_RESPONSE0
#define bfin_read_SDH_RESPONSE1 bfin_read_RSI_RESPONSE1
#define bfin_read_SDH_RESPONSE2 bfin_read_RSI_RESPONSE2
#define bfin_read_SDH_RESPONSE3 bfin_read_RSI_RESPONSE3
#define bfin_write_SDH_DATA_LGTH bfin_write_RSI_DATA_LGTH
#define bfin_read_SDH_DATA_CTL bfin_read_RSI_DATA_CTL
#define bfin_write_SDH_DATA_CTL bfin_write_RSI_DATA_CTL
#define bfin_read_SDH_DATA_CNT bfin_read_RSI_DATA_CNT
#define bfin_write_SDH_STATUS_CLR bfin_write_RSI_STATUS_CLR
#define bfin_read_SDH_E_STATUS bfin_read_RSI_E_STATUS
#define bfin_write_SDH_E_STATUS bfin_write_RSI_E_STATUS
#define bfin_read_SDH_STATUS bfin_read_RSI_STATUS
#define bfin_write_SDH_MASK0 bfin_write_RSI_MASK0
#define bfin_write_SDH_E_MASK bfin_write_RSI_E_MASK
#define bfin_read_SDH_CFG bfin_read_RSI_CFG
#define bfin_write_SDH_CFG bfin_write_RSI_CFG
# if defined(__ADSPBF60x__)
# define bfin_read_SDH_BLK_SIZE bfin_read_RSI_BLKSZ
# define bfin_write_SDH_BLK_SIZE bfin_write_RSI_BLKSZ
# else
# define bfin_read_SDH_PWR_CTL bfin_read_RSI_PWR_CTL
# define bfin_write_SDH_PWR_CTL bfin_write_RSI_PWR_CTL
# endif
#endif
struct sdh_host {
struct mmc_host *mmc;
spinlock_t lock;
struct resource *res;
void __iomem *base;
int irq;
int stat_irq;
int dma_ch;
int dma_dir;
struct dma_desc_array *sg_cpu;
dma_addr_t sg_dma;
int dma_len;
unsigned long sclk;
unsigned int imask;
unsigned int power_mode;
unsigned int clk_div;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
};
static struct bfin_sd_host *get_sdh_data(struct platform_device *pdev)
{
return pdev->dev.platform_data;
}
static void sdh_stop_clock(struct sdh_host *host)
{
bfin_write_SDH_CLK_CTL(bfin_read_SDH_CLK_CTL() & ~CLK_E);
SSYNC();
}
static void sdh_enable_stat_irq(struct sdh_host *host, unsigned int mask)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->imask |= mask;
bfin_write_SDH_MASK0(mask);
SSYNC();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdh_disable_stat_irq(struct sdh_host *host, unsigned int mask)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->imask &= ~mask;
bfin_write_SDH_MASK0(host->imask);
SSYNC();
spin_unlock_irqrestore(&host->lock, flags);
}
static int sdh_setup_data(struct sdh_host *host, struct mmc_data *data)
{
unsigned int length;
unsigned int data_ctl;
unsigned int dma_cfg;
unsigned int cycle_ns, timeout;
dev_dbg(mmc_dev(host->mmc), "%s enter flags: 0x%x\n", __func__, data->flags);
host->data = data;
data_ctl = 0;
dma_cfg = 0;
length = data->blksz * data->blocks;
bfin_write_SDH_DATA_LGTH(length);
if (data->flags & MMC_DATA_STREAM)
data_ctl |= DTX_MODE;
if (data->flags & MMC_DATA_READ)
data_ctl |= DTX_DIR;
/* Only supports power-of-2 block size */
if (data->blksz & (data->blksz - 1))
return -EINVAL;
#ifndef RSI_BLKSZ
data_ctl |= ((ffs(data->blksz) - 1) << 4);
#else
bfin_write_SDH_BLK_SIZE(data->blksz);
#endif
bfin_write_SDH_DATA_CTL(data_ctl);
/* the time of a host clock period in ns */
cycle_ns = 1000000000 / (host->sclk / (2 * (host->clk_div + 1)));
timeout = data->timeout_ns / cycle_ns;
timeout += data->timeout_clks;
bfin_write_SDH_DATA_TIMER(timeout);
SSYNC();
if (data->flags & MMC_DATA_READ) {
host->dma_dir = DMA_FROM_DEVICE;
dma_cfg |= WNR;
} else
host->dma_dir = DMA_TO_DEVICE;
sdh_enable_stat_irq(host, (DAT_CRC_FAIL | DAT_TIME_OUT | DAT_END));
host->dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma_dir);
#if defined(CONFIG_BF54x) || defined(CONFIG_BF60x)
dma_cfg |= DMAFLOW_ARRAY | RESTART | WDSIZE_32 | DMAEN;
# ifdef RSI_BLKSZ
dma_cfg |= PSIZE_32 | NDSIZE_3;
# else
dma_cfg |= NDSIZE_5;
# endif
{
struct scatterlist *sg;
int i;
for_each_sg(data->sg, sg, host->dma_len, i) {
host->sg_cpu[i].start_addr = sg_dma_address(sg);
host->sg_cpu[i].cfg = dma_cfg;
host->sg_cpu[i].x_count = sg_dma_len(sg) / 4;
host->sg_cpu[i].x_modify = 4;
dev_dbg(mmc_dev(host->mmc), "%d: start_addr:0x%lx, "
"cfg:0x%lx, x_count:0x%lx, x_modify:0x%lx\n",
i, host->sg_cpu[i].start_addr,
host->sg_cpu[i].cfg, host->sg_cpu[i].x_count,
host->sg_cpu[i].x_modify);
}
}
flush_dcache_range((unsigned int)host->sg_cpu,
(unsigned int)host->sg_cpu +
host->dma_len * sizeof(struct dma_desc_array));
/* Set the last descriptor to stop mode */
host->sg_cpu[host->dma_len - 1].cfg &= ~(DMAFLOW | NDSIZE);
host->sg_cpu[host->dma_len - 1].cfg |= DI_EN;
set_dma_curr_desc_addr(host->dma_ch, (unsigned long *)host->sg_dma);
set_dma_x_count(host->dma_ch, 0);
set_dma_x_modify(host->dma_ch, 0);
SSYNC();
set_dma_config(host->dma_ch, dma_cfg);
#elif defined(CONFIG_BF51x)
/* RSI DMA doesn't work in array mode */
dma_cfg |= WDSIZE_32 | DMAEN;
set_dma_start_addr(host->dma_ch, sg_dma_address(&data->sg[0]));
set_dma_x_count(host->dma_ch, length / 4);
set_dma_x_modify(host->dma_ch, 4);
SSYNC();
set_dma_config(host->dma_ch, dma_cfg);
#endif
bfin_write_SDH_DATA_CTL(bfin_read_SDH_DATA_CTL() | DTX_DMA_E | DTX_E);
SSYNC();
dev_dbg(mmc_dev(host->mmc), "%s exit\n", __func__);
return 0;
}
static void sdh_start_cmd(struct sdh_host *host, struct mmc_command *cmd)
{
unsigned int sdh_cmd;
unsigned int stat_mask;
dev_dbg(mmc_dev(host->mmc), "%s enter cmd: 0x%p\n", __func__, cmd);
WARN_ON(host->cmd != NULL);
host->cmd = cmd;
sdh_cmd = 0;
stat_mask = 0;
sdh_cmd |= cmd->opcode;
if (cmd->flags & MMC_RSP_PRESENT) {
sdh_cmd |= CMD_RSP;
stat_mask |= CMD_RESP_END;
} else {
stat_mask |= CMD_SENT;
}
if (cmd->flags & MMC_RSP_136)
sdh_cmd |= CMD_L_RSP;
stat_mask |= CMD_CRC_FAIL | CMD_TIME_OUT;
sdh_enable_stat_irq(host, stat_mask);
bfin_write_SDH_ARGUMENT(cmd->arg);
bfin_write_SDH_COMMAND(sdh_cmd | CMD_E);
bfin_write_SDH_CLK_CTL(bfin_read_SDH_CLK_CTL() | CLK_E);
SSYNC();
}
static void sdh_finish_request(struct sdh_host *host, struct mmc_request *mrq)
{
dev_dbg(mmc_dev(host->mmc), "%s enter\n", __func__);
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
mmc_request_done(host->mmc, mrq);
}
static int sdh_cmd_done(struct sdh_host *host, unsigned int stat)
{
struct mmc_command *cmd = host->cmd;
int ret = 0;
dev_dbg(mmc_dev(host->mmc), "%s enter cmd: %p\n", __func__, cmd);
if (!cmd)
return 0;
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
cmd->resp[0] = bfin_read_SDH_RESPONSE0();
if (cmd->flags & MMC_RSP_136) {
cmd->resp[1] = bfin_read_SDH_RESPONSE1();
cmd->resp[2] = bfin_read_SDH_RESPONSE2();
cmd->resp[3] = bfin_read_SDH_RESPONSE3();
}
}
if (stat & CMD_TIME_OUT)
cmd->error = -ETIMEDOUT;
else if (stat & CMD_CRC_FAIL && cmd->flags & MMC_RSP_CRC)
cmd->error = -EILSEQ;
sdh_disable_stat_irq(host, (CMD_SENT | CMD_RESP_END | CMD_TIME_OUT | CMD_CRC_FAIL));
if (host->data && !cmd->error) {
if (host->data->flags & MMC_DATA_WRITE) {
ret = sdh_setup_data(host, host->data);
if (ret)
return 0;
}
sdh_enable_stat_irq(host, DAT_END | RX_OVERRUN | TX_UNDERRUN | DAT_TIME_OUT);
} else
sdh_finish_request(host, host->mrq);
return 1;
}
static int sdh_data_done(struct sdh_host *host, unsigned int stat)
{
struct mmc_data *data = host->data;
dev_dbg(mmc_dev(host->mmc), "%s enter stat: 0x%x\n", __func__, stat);
if (!data)
return 0;
disable_dma(host->dma_ch);
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
host->dma_dir);
if (stat & DAT_TIME_OUT)
data->error = -ETIMEDOUT;
else if (stat & DAT_CRC_FAIL)
data->error = -EILSEQ;
else if (stat & (RX_OVERRUN | TX_UNDERRUN))
data->error = -EIO;
if (!data->error)
data->bytes_xfered = data->blocks * data->blksz;
else
data->bytes_xfered = 0;
bfin_write_SDH_STATUS_CLR(DAT_END_STAT | DAT_TIMEOUT_STAT | \
DAT_CRC_FAIL_STAT | DAT_BLK_END_STAT | RX_OVERRUN | TX_UNDERRUN);
bfin_write_SDH_DATA_CTL(0);
SSYNC();
host->data = NULL;
if (host->mrq->stop) {
sdh_stop_clock(host);
sdh_start_cmd(host, host->mrq->stop);
} else {
sdh_finish_request(host, host->mrq);
}
return 1;
}
static void sdh_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdh_host *host = mmc_priv(mmc);
int ret = 0;
dev_dbg(mmc_dev(host->mmc), "%s enter, mrp:%p, cmd:%p\n", __func__, mrq, mrq->cmd);
WARN_ON(host->mrq != NULL);
spin_lock(&host->lock);
host->mrq = mrq;
host->data = mrq->data;
if (mrq->data && mrq->data->flags & MMC_DATA_READ) {
ret = sdh_setup_data(host, mrq->data);
if (ret)
goto data_err;
}
sdh_start_cmd(host, mrq->cmd);
data_err:
spin_unlock(&host->lock);
}
static void sdh_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdh_host *host;
u16 clk_ctl = 0;
#ifndef RSI_BLKSZ
u16 pwr_ctl = 0;
#endif
u16 cfg;
host = mmc_priv(mmc);
spin_lock(&host->lock);
cfg = bfin_read_SDH_CFG();
cfg |= MWE;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_4:
#ifndef RSI_BLKSZ
cfg &= ~PD_SDDAT3;
#endif
cfg |= PUP_SDDAT3;
/* Enable 4 bit SDIO */
cfg |= SD4E;
clk_ctl |= WIDE_BUS_4;
break;
case MMC_BUS_WIDTH_8:
#ifndef RSI_BLKSZ
cfg &= ~PD_SDDAT3;
#endif
cfg |= PUP_SDDAT3;
/* Disable 4 bit SDIO */
cfg &= ~SD4E;
clk_ctl |= BYTE_BUS_8;
break;
default:
cfg &= ~PUP_SDDAT3;
/* Disable 4 bit SDIO */
cfg &= ~SD4E;
}
host->power_mode = ios->power_mode;
#ifndef RSI_BLKSZ
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
pwr_ctl |= ROD_CTL;
# ifndef CONFIG_SDH_BFIN_MISSING_CMD_PULLUP_WORKAROUND
pwr_ctl |= SD_CMD_OD;
# endif
}
if (ios->power_mode != MMC_POWER_OFF)
pwr_ctl |= PWR_ON;
else
pwr_ctl &= ~PWR_ON;
bfin_write_SDH_PWR_CTL(pwr_ctl);
#else
# ifndef CONFIG_SDH_BFIN_MISSING_CMD_PULLUP_WORKAROUND
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
cfg |= SD_CMD_OD;
else
cfg &= ~SD_CMD_OD;
# endif
if (ios->power_mode != MMC_POWER_OFF)
cfg |= PWR_ON;
else
cfg &= ~PWR_ON;
bfin_write_SDH_CFG(cfg);
#endif
SSYNC();
if (ios->power_mode == MMC_POWER_ON && ios->clock) {
unsigned char clk_div;
clk_div = (get_sclk() / ios->clock - 1) / 2;
clk_div = min_t(unsigned char, clk_div, 0xFF);
clk_ctl |= clk_div;
clk_ctl |= CLK_E;
host->clk_div = clk_div;
bfin_write_SDH_CLK_CTL(clk_ctl);
} else
sdh_stop_clock(host);
/* set up sdh interrupt mask*/
if (ios->power_mode == MMC_POWER_ON)
bfin_write_SDH_MASK0(DAT_END | DAT_TIME_OUT | DAT_CRC_FAIL |
RX_OVERRUN | TX_UNDERRUN | CMD_SENT | CMD_RESP_END |
CMD_TIME_OUT | CMD_CRC_FAIL);
else
bfin_write_SDH_MASK0(0);
SSYNC();
spin_unlock(&host->lock);
dev_dbg(mmc_dev(host->mmc), "SDH: clk_div = 0x%x actual clock:%ld expected clock:%d\n",
host->clk_div,
host->clk_div ? get_sclk() / (2 * (host->clk_div + 1)) : 0,
ios->clock);
}
static const struct mmc_host_ops sdh_ops = {
.request = sdh_request,
.set_ios = sdh_set_ios,
};
static irqreturn_t sdh_dma_irq(int irq, void *devid)
{
struct sdh_host *host = devid;
dev_dbg(mmc_dev(host->mmc), "%s enter, irq_stat: 0x%04lx\n", __func__,
get_dma_curr_irqstat(host->dma_ch));
clear_dma_irqstat(host->dma_ch);
SSYNC();
return IRQ_HANDLED;
}
static irqreturn_t sdh_stat_irq(int irq, void *devid)
{
struct sdh_host *host = devid;
unsigned int status;
int handled = 0;
dev_dbg(mmc_dev(host->mmc), "%s enter\n", __func__);
spin_lock(&host->lock);
status = bfin_read_SDH_E_STATUS();
if (status & SD_CARD_DET) {
mmc_detect_change(host->mmc, 0);
bfin_write_SDH_E_STATUS(SD_CARD_DET);
}
status = bfin_read_SDH_STATUS();
if (status & (CMD_SENT | CMD_RESP_END | CMD_TIME_OUT | CMD_CRC_FAIL)) {
handled |= sdh_cmd_done(host, status);
bfin_write_SDH_STATUS_CLR(CMD_SENT_STAT | CMD_RESP_END_STAT | \
CMD_TIMEOUT_STAT | CMD_CRC_FAIL_STAT);
SSYNC();
}
status = bfin_read_SDH_STATUS();
if (status & (DAT_END | DAT_TIME_OUT | DAT_CRC_FAIL | RX_OVERRUN | TX_UNDERRUN))
handled |= sdh_data_done(host, status);
spin_unlock(&host->lock);
dev_dbg(mmc_dev(host->mmc), "%s exit\n\n", __func__);
return IRQ_RETVAL(handled);
}
static void sdh_reset(void)
{
#if defined(CONFIG_BF54x)
/* Secure Digital Host shares DMA with Nand controller */
bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() | 0x1);
#endif
bfin_write_SDH_CFG(bfin_read_SDH_CFG() | CLKS_EN);
SSYNC();
/* Disable card inserting detection pin. set MMC_CAP_NEEDS_POLL, and
* mmc stack will do the detection.
*/
bfin_write_SDH_CFG((bfin_read_SDH_CFG() & 0x1F) | (PUP_SDDAT | PUP_SDDAT3));
SSYNC();
}
static int sdh_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct sdh_host *host;
struct bfin_sd_host *drv_data = get_sdh_data(pdev);
int ret;
if (!drv_data) {
dev_err(&pdev->dev, "missing platform driver data\n");
ret = -EINVAL;
goto out;
}
mmc = mmc_alloc_host(sizeof(struct sdh_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto out;
}
mmc->ops = &sdh_ops;
#if defined(CONFIG_BF51x)
mmc->max_segs = 1;
#else
mmc->max_segs = PAGE_SIZE / sizeof(struct dma_desc_array);
#endif
#ifdef RSI_BLKSZ
mmc->max_seg_size = -1;
#else
mmc->max_seg_size = 1 << 16;
#endif
mmc->max_blk_size = 1 << 11;
mmc->max_blk_count = 1 << 11;
mmc->max_req_size = PAGE_SIZE;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->f_max = get_sclk();
mmc->f_min = mmc->f_max >> 9;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_NEEDS_POLL;
host = mmc_priv(mmc);
host->mmc = mmc;
host->sclk = get_sclk();
spin_lock_init(&host->lock);
host->irq = drv_data->irq_int0;
host->dma_ch = drv_data->dma_chan;
ret = request_dma(host->dma_ch, DRIVER_NAME "DMA");
if (ret) {
dev_err(&pdev->dev, "unable to request DMA channel\n");
goto out1;
}
ret = set_dma_callback(host->dma_ch, sdh_dma_irq, host);
if (ret) {
dev_err(&pdev->dev, "unable to request DMA irq\n");
goto out2;
}
host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &host->sg_dma, GFP_KERNEL);
if (host->sg_cpu == NULL) {
ret = -ENOMEM;
goto out2;
}
platform_set_drvdata(pdev, mmc);
ret = request_irq(host->irq, sdh_stat_irq, 0, "SDH Status IRQ", host);
if (ret) {
dev_err(&pdev->dev, "unable to request status irq\n");
goto out3;
}
ret = peripheral_request_list(drv_data->pin_req, DRIVER_NAME);
if (ret) {
dev_err(&pdev->dev, "unable to request peripheral pins\n");
goto out4;
}
sdh_reset();
mmc_add_host(mmc);
return 0;
out4:
free_irq(host->irq, host);
out3:
mmc_remove_host(mmc);
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
out2:
free_dma(host->dma_ch);
out1:
mmc_free_host(mmc);
out:
return ret;
}
static int sdh_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
if (mmc) {
struct sdh_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
sdh_stop_clock(host);
free_irq(host->irq, host);
free_dma(host->dma_ch);
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
mmc_free_host(mmc);
}
return 0;
}
#ifdef CONFIG_PM
static int sdh_suspend(struct platform_device *dev, pm_message_t state)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
struct bfin_sd_host *drv_data = get_sdh_data(dev);
int ret = 0;
if (mmc)
ret = mmc_suspend_host(mmc);
peripheral_free_list(drv_data->pin_req);
return ret;
}
static int sdh_resume(struct platform_device *dev)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
struct bfin_sd_host *drv_data = get_sdh_data(dev);
int ret = 0;
ret = peripheral_request_list(drv_data->pin_req, DRIVER_NAME);
if (ret) {
dev_err(&dev->dev, "unable to request peripheral pins\n");
return ret;
}
sdh_reset();
if (mmc)
ret = mmc_resume_host(mmc);
return ret;
}
#else
# define sdh_suspend NULL
# define sdh_resume NULL
#endif
static struct platform_driver sdh_driver = {
.probe = sdh_probe,
.remove = sdh_remove,
.suspend = sdh_suspend,
.resume = sdh_resume,
.driver = {
.name = DRIVER_NAME,
},
};
module_platform_driver(sdh_driver);
MODULE_DESCRIPTION("Blackfin Secure Digital Host Driver");
MODULE_AUTHOR("Cliff Cai, Roy Huang");
MODULE_LICENSE("GPL");