2008-06-05 22:46:59 -07:00
pagemap, from the userspace perspective
---------------------------------------
pagemap is a new (as of 2.6.25) set of interfaces in the kernel that allow
userspace programs to examine the page tables and related information by
reading files in /proc.
2015-09-09 15:35:38 -07:00
There are four components to pagemap:
2008-06-05 22:46:59 -07:00
* /proc/pid/pagemap. This file lets a userspace process find out which
physical frame each virtual page is mapped to. It contains one 64-bit
value for each virtual page, containing the following data (from
fs/proc/task_mmu.c, above pagemap_read):
2009-06-16 15:32:25 -07:00
* Bits 0-54 page frame number (PFN) if present
2008-06-05 22:46:59 -07:00
* Bits 0-4 swap type if swapped
2009-06-16 15:32:25 -07:00
* Bits 5-54 swap offset if swapped
2013-07-03 15:01:22 -07:00
* Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
2015-09-08 15:00:13 -07:00
* Bit 56 page exclusively mapped (since 4.2)
2015-09-08 15:00:10 -07:00
* Bits 57-60 zero
2015-09-08 15:00:13 -07:00
* Bit 61 page is file-page or shared-anon (since 3.5)
2008-06-05 22:46:59 -07:00
* Bit 62 page swapped
* Bit 63 page present
2015-09-08 15:00:13 -07:00
Since Linux 4.0 only users with the CAP_SYS_ADMIN capability can get PFNs.
In 4.0 and 4.1 opens by unprivileged fail with -EPERM. Starting from
4.2 the PFN field is zeroed if the user does not have CAP_SYS_ADMIN.
Reason: information about PFNs helps in exploiting Rowhammer vulnerability.
2008-06-05 22:46:59 -07:00
If the page is not present but in swap, then the PFN contains an
encoding of the swap file number and the page's offset into the
swap. Unmapped pages return a null PFN. This allows determining
precisely which pages are mapped (or in swap) and comparing mapped
pages between processes.
Efficient users of this interface will use /proc/pid/maps to
determine which areas of memory are actually mapped and llseek to
skip over unmapped regions.
* /proc/kpagecount. This file contains a 64-bit count of the number of
times each page is mapped, indexed by PFN.
* /proc/kpageflags. This file contains a 64-bit set of flags for each
page, indexed by PFN.
2009-06-16 15:32:25 -07:00
The flags are (from fs/proc/page.c, above kpageflags_read):
2008-06-05 22:46:59 -07:00
0. LOCKED
1. ERROR
2. REFERENCED
3. UPTODATE
4. DIRTY
5. LRU
6. ACTIVE
7. SLAB
8. WRITEBACK
9. RECLAIM
10. BUDDY
2009-06-16 15:32:26 -07:00
11. MMAP
12. ANON
13. SWAPCACHE
14. SWAPBACKED
15. COMPOUND_HEAD
16. COMPOUND_TAIL
2016-04-13 11:09:21 -04:00
17. HUGE
2009-06-16 15:32:26 -07:00
18. UNEVICTABLE
2009-10-07 16:32:27 -07:00
19. HWPOISON
2009-06-16 15:32:26 -07:00
20. NOPAGE
2009-10-07 16:32:28 -07:00
21. KSM
pagemap: document KPF_THP and make page-types aware of it
page-types, which is a common user of pagemap, gets aware of thp with this
patch. This helps system admins and kernel hackers know about how thp
works. Here is a sample output of page-types over a thp:
$ page-types -p <pid> --raw --list
voffset offset len flags
...
7f9d40200 3f8400 1 ___U_lA____Ma_bH______t____________
7f9d40201 3f8401 1ff ________________T_____t____________
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000410000 511 1 ________________T_____t____________ compound_tail,thp
0x000000000040d868 1 0 ___U_lA____Ma_bH______t____________ uptodate,lru,active,mmap,anonymous,swapbacked,compound_head,thp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:58 -07:00
22. THP
2015-02-11 15:24:51 -08:00
23. BALLOON
24. ZERO_PAGE
2015-09-09 15:35:48 -07:00
25. IDLE
2009-06-16 15:32:26 -07:00
2015-09-09 15:35:38 -07:00
* /proc/kpagecgroup. This file contains a 64-bit inode number of the
memory cgroup each page is charged to, indexed by PFN. Only available when
CONFIG_MEMCG is set.
2009-06-16 15:32:26 -07:00
Short descriptions to the page flags:
0. LOCKED
page is being locked for exclusive access, eg. by undergoing read/write IO
7. SLAB
page is managed by the SLAB/SLOB/SLUB/SLQB kernel memory allocator
When compound page is used, SLUB/SLQB will only set this flag on the head
page; SLOB will not flag it at all.
10. BUDDY
a free memory block managed by the buddy system allocator
The buddy system organizes free memory in blocks of various orders.
An order N block has 2^N physically contiguous pages, with the BUDDY flag
set for and _only_ for the first page.
15. COMPOUND_HEAD
16. COMPOUND_TAIL
A compound page with order N consists of 2^N physically contiguous pages.
A compound page with order 2 takes the form of "HTTT", where H donates its
head page and T donates its tail page(s). The major consumers of compound
pages are hugeTLB pages (Documentation/vm/hugetlbpage.txt), the SLUB etc.
memory allocators and various device drivers. However in this interface,
only huge/giga pages are made visible to end users.
17. HUGE
this is an integral part of a HugeTLB page
2009-10-07 16:32:27 -07:00
19. HWPOISON
hardware detected memory corruption on this page: don't touch the data!
2009-06-16 15:32:26 -07:00
20. NOPAGE
no page frame exists at the requested address
2009-10-07 16:32:28 -07:00
21. KSM
identical memory pages dynamically shared between one or more processes
pagemap: document KPF_THP and make page-types aware of it
page-types, which is a common user of pagemap, gets aware of thp with this
patch. This helps system admins and kernel hackers know about how thp
works. Here is a sample output of page-types over a thp:
$ page-types -p <pid> --raw --list
voffset offset len flags
...
7f9d40200 3f8400 1 ___U_lA____Ma_bH______t____________
7f9d40201 3f8401 1ff ________________T_____t____________
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000410000 511 1 ________________T_____t____________ compound_tail,thp
0x000000000040d868 1 0 ___U_lA____Ma_bH______t____________ uptodate,lru,active,mmap,anonymous,swapbacked,compound_head,thp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:58 -07:00
22. THP
contiguous pages which construct transparent hugepages
2015-02-11 15:24:51 -08:00
23. BALLOON
balloon compaction page
24. ZERO_PAGE
zero page for pfn_zero or huge_zero page
2015-09-09 15:35:48 -07:00
25. IDLE
page has not been accessed since it was marked idle (see
Documentation/vm/idle_page_tracking.txt). Note that this flag may be
stale in case the page was accessed via a PTE. To make sure the flag
is up-to-date one has to read /sys/kernel/mm/page_idle/bitmap first.
2009-06-16 15:32:26 -07:00
[IO related page flags]
1. ERROR IO error occurred
3. UPTODATE page has up-to-date data
ie. for file backed page: (in-memory data revision >= on-disk one)
4. DIRTY page has been written to, hence contains new data
ie. for file backed page: (in-memory data revision > on-disk one)
8. WRITEBACK page is being synced to disk
[LRU related page flags]
5. LRU page is in one of the LRU lists
6. ACTIVE page is in the active LRU list
18. UNEVICTABLE page is in the unevictable (non-)LRU list
It is somehow pinned and not a candidate for LRU page reclaims,
eg. ramfs pages, shmctl(SHM_LOCK) and mlock() memory segments
2. REFERENCED page has been referenced since last LRU list enqueue/requeue
9. RECLAIM page will be reclaimed soon after its pageout IO completed
11. MMAP a memory mapped page
12. ANON a memory mapped page that is not part of a file
13. SWAPCACHE page is mapped to swap space, ie. has an associated swap entry
14. SWAPBACKED page is backed by swap/RAM
2015-04-10 15:00:02 -06:00
The page-types tool in the tools/vm directory can be used to query the
above flags.
2008-06-05 22:46:59 -07:00
Using pagemap to do something useful:
The general procedure for using pagemap to find out about a process' memory
usage goes like this:
1. Read /proc/pid/maps to determine which parts of the memory space are
mapped to what.
2. Select the maps you are interested in -- all of them, or a particular
library, or the stack or the heap, etc.
3. Open /proc/pid/pagemap and seek to the pages you would like to examine.
4. Read a u64 for each page from pagemap.
5. Open /proc/kpagecount and/or /proc/kpageflags. For each PFN you just
read, seek to that entry in the file, and read the data you want.
For example, to find the "unique set size" (USS), which is the amount of
memory that a process is using that is not shared with any other process,
you can go through every map in the process, find the PFNs, look those up
in kpagecount, and tally up the number of pages that are only referenced
once.
Other notes:
Reading from any of the files will return -EINVAL if you are not starting
2013-05-08 16:56:16 -07:00
the read on an 8-byte boundary (e.g., if you sought an odd number of bytes
2008-06-05 22:46:59 -07:00
into the file), or if the size of the read is not a multiple of 8 bytes.
2015-09-08 15:00:13 -07:00
Before Linux 3.11 pagemap bits 55-60 were used for "page-shift" (which is
always 12 at most architectures). Since Linux 3.11 their meaning changes
after first clear of soft-dirty bits. Since Linux 4.2 they are used for
flags unconditionally.