linux/fs/nilfs2/ioctl.c

948 lines
25 KiB
C
Raw Normal View History

/*
* ioctl.c - NILFS ioctl operations.
*
* Copyright (C) 2007, 2008 Nippon Telegraph and Telephone Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Written by Koji Sato <koji@osrg.net>.
*/
#include <linux/fs.h>
#include <linux/wait.h>
#include <linux/smp_lock.h> /* lock_kernel(), unlock_kernel() */
#include <linux/capability.h> /* capable() */
#include <linux/uaccess.h> /* copy_from_user(), copy_to_user() */
#include <linux/nilfs2_fs.h>
#include "nilfs.h"
#include "segment.h"
#include "bmap.h"
#include "cpfile.h"
#include "sufile.h"
#include "dat.h"
static int nilfs_ioctl_wrap_copy(struct the_nilfs *nilfs,
struct nilfs_argv *argv, int dir,
ssize_t (*dofunc)(struct the_nilfs *,
int, int,
void *, size_t, size_t))
{
void *buf;
nilfs2: fix problems of memory allocation in ioctl This is another patch for fixing the following problems of a memory copy function in nilfs2 ioctl: (1) It tries to allocate 128KB size of memory even for small objects. (2) Though the function repeatedly tries large memory allocations while reducing the size, GFP_NOWAIT flag is not specified. This increases the possibility of system memory shortage. (3) During the retries of (2), verbose warnings are printed because _GFP_NOWARN flag is not used for the kmalloc calls. The first patch was still doing large allocations by kmalloc which are repeatedly tried while reducing the size. Andi Kleen told me that using copy_from_user for large memory is not good from the viewpoint of preempt latency: On Fri, 12 Dec 2008 21:24:11 +0100, Andi Kleen <andi@firstfloor.org> wrote: > > In the current interface, each data item is copied twice: one is to > > the allocated memory from user space (via copy_from_user), and another > > For such large copies it is better to use multiple smaller (e.g. 4K) > copy user, that gives better real time preempt latencies. Each cfu has a > cond_resched(), but only one, not multiple times in the inner loop. He also advised me that: On Sun, 14 Dec 2008 16:13:27 +0100, Andi Kleen <andi@firstfloor.org> wrote: > Better would be if you could go to PAGE_SIZE. order 0 allocations > are typically the fastest / least likely to stall. > > Also in this case it's a good idea to use __get_free_pages() > directly, kmalloc tends to be become less efficient at larger > sizes. For the function in question, the size of buffer memory can be reduced since the buffer is repeatedly used for a number of small objects. On the other hand, it may incur large preempt latencies for larger buffer because a copy_from_user (and a copy_to_user) was applied only once each cycle. With that, this revision uses the order 0 allocations with __get_free_pages() to fix the original problems. Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 19:01:43 -07:00
size_t maxmembs, total, n;
ssize_t nr;
int ret, i;
if (argv->v_nmembs == 0)
return 0;
nilfs2: fix problems of memory allocation in ioctl This is another patch for fixing the following problems of a memory copy function in nilfs2 ioctl: (1) It tries to allocate 128KB size of memory even for small objects. (2) Though the function repeatedly tries large memory allocations while reducing the size, GFP_NOWAIT flag is not specified. This increases the possibility of system memory shortage. (3) During the retries of (2), verbose warnings are printed because _GFP_NOWARN flag is not used for the kmalloc calls. The first patch was still doing large allocations by kmalloc which are repeatedly tried while reducing the size. Andi Kleen told me that using copy_from_user for large memory is not good from the viewpoint of preempt latency: On Fri, 12 Dec 2008 21:24:11 +0100, Andi Kleen <andi@firstfloor.org> wrote: > > In the current interface, each data item is copied twice: one is to > > the allocated memory from user space (via copy_from_user), and another > > For such large copies it is better to use multiple smaller (e.g. 4K) > copy user, that gives better real time preempt latencies. Each cfu has a > cond_resched(), but only one, not multiple times in the inner loop. He also advised me that: On Sun, 14 Dec 2008 16:13:27 +0100, Andi Kleen <andi@firstfloor.org> wrote: > Better would be if you could go to PAGE_SIZE. order 0 allocations > are typically the fastest / least likely to stall. > > Also in this case it's a good idea to use __get_free_pages() > directly, kmalloc tends to be become less efficient at larger > sizes. For the function in question, the size of buffer memory can be reduced since the buffer is repeatedly used for a number of small objects. On the other hand, it may incur large preempt latencies for larger buffer because a copy_from_user (and a copy_to_user) was applied only once each cycle. With that, this revision uses the order 0 allocations with __get_free_pages() to fix the original problems. Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 19:01:43 -07:00
if (argv->v_size > PAGE_SIZE)
return -EINVAL;
buf = (void *)__get_free_pages(GFP_NOFS, 0);
if (unlikely(!buf))
return -ENOMEM;
nilfs2: fix problems of memory allocation in ioctl This is another patch for fixing the following problems of a memory copy function in nilfs2 ioctl: (1) It tries to allocate 128KB size of memory even for small objects. (2) Though the function repeatedly tries large memory allocations while reducing the size, GFP_NOWAIT flag is not specified. This increases the possibility of system memory shortage. (3) During the retries of (2), verbose warnings are printed because _GFP_NOWARN flag is not used for the kmalloc calls. The first patch was still doing large allocations by kmalloc which are repeatedly tried while reducing the size. Andi Kleen told me that using copy_from_user for large memory is not good from the viewpoint of preempt latency: On Fri, 12 Dec 2008 21:24:11 +0100, Andi Kleen <andi@firstfloor.org> wrote: > > In the current interface, each data item is copied twice: one is to > > the allocated memory from user space (via copy_from_user), and another > > For such large copies it is better to use multiple smaller (e.g. 4K) > copy user, that gives better real time preempt latencies. Each cfu has a > cond_resched(), but only one, not multiple times in the inner loop. He also advised me that: On Sun, 14 Dec 2008 16:13:27 +0100, Andi Kleen <andi@firstfloor.org> wrote: > Better would be if you could go to PAGE_SIZE. order 0 allocations > are typically the fastest / least likely to stall. > > Also in this case it's a good idea to use __get_free_pages() > directly, kmalloc tends to be become less efficient at larger > sizes. For the function in question, the size of buffer memory can be reduced since the buffer is repeatedly used for a number of small objects. On the other hand, it may incur large preempt latencies for larger buffer because a copy_from_user (and a copy_to_user) was applied only once each cycle. With that, this revision uses the order 0 allocations with __get_free_pages() to fix the original problems. Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 19:01:43 -07:00
maxmembs = PAGE_SIZE / argv->v_size;
ret = 0;
total = 0;
for (i = 0; i < argv->v_nmembs; i += n) {
n = (argv->v_nmembs - i < maxmembs) ?
argv->v_nmembs - i : maxmembs;
if ((dir & _IOC_WRITE) &&
copy_from_user(buf,
(void __user *)argv->v_base + argv->v_size * i,
argv->v_size * n)) {
ret = -EFAULT;
break;
}
nr = (*dofunc)(nilfs, argv->v_index + i, argv->v_flags, buf,
argv->v_size, n);
if (nr < 0) {
ret = nr;
break;
}
if ((dir & _IOC_READ) &&
copy_to_user(
(void __user *)argv->v_base + argv->v_size * i,
buf, argv->v_size * nr)) {
ret = -EFAULT;
break;
}
total += nr;
}
argv->v_nmembs = total;
nilfs2: fix problems of memory allocation in ioctl This is another patch for fixing the following problems of a memory copy function in nilfs2 ioctl: (1) It tries to allocate 128KB size of memory even for small objects. (2) Though the function repeatedly tries large memory allocations while reducing the size, GFP_NOWAIT flag is not specified. This increases the possibility of system memory shortage. (3) During the retries of (2), verbose warnings are printed because _GFP_NOWARN flag is not used for the kmalloc calls. The first patch was still doing large allocations by kmalloc which are repeatedly tried while reducing the size. Andi Kleen told me that using copy_from_user for large memory is not good from the viewpoint of preempt latency: On Fri, 12 Dec 2008 21:24:11 +0100, Andi Kleen <andi@firstfloor.org> wrote: > > In the current interface, each data item is copied twice: one is to > > the allocated memory from user space (via copy_from_user), and another > > For such large copies it is better to use multiple smaller (e.g. 4K) > copy user, that gives better real time preempt latencies. Each cfu has a > cond_resched(), but only one, not multiple times in the inner loop. He also advised me that: On Sun, 14 Dec 2008 16:13:27 +0100, Andi Kleen <andi@firstfloor.org> wrote: > Better would be if you could go to PAGE_SIZE. order 0 allocations > are typically the fastest / least likely to stall. > > Also in this case it's a good idea to use __get_free_pages() > directly, kmalloc tends to be become less efficient at larger > sizes. For the function in question, the size of buffer memory can be reduced since the buffer is repeatedly used for a number of small objects. On the other hand, it may incur large preempt latencies for larger buffer because a copy_from_user (and a copy_to_user) was applied only once each cycle. With that, this revision uses the order 0 allocations with __get_free_pages() to fix the original problems. Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 19:01:43 -07:00
free_pages((unsigned long)buf, 0);
return ret;
}
static int nilfs_ioctl_change_cpmode(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct inode *cpfile = NILFS_SB(inode->i_sb)->s_nilfs->ns_cpfile;
struct nilfs_transaction_info ti;
struct nilfs_cpmode cpmode;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&cpmode, argp, sizeof(cpmode)))
return -EFAULT;
nilfs_transaction_begin(inode->i_sb, &ti, 0);
ret = nilfs_cpfile_change_cpmode(
cpfile, cpmode.cm_cno, cpmode.cm_mode);
if (unlikely(ret < 0)) {
nilfs_transaction_abort(inode->i_sb);
return ret;
}
nilfs_transaction_commit(inode->i_sb); /* never fails */
return ret;
}
static int
nilfs_ioctl_delete_checkpoint(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct inode *cpfile = NILFS_SB(inode->i_sb)->s_nilfs->ns_cpfile;
struct nilfs_transaction_info ti;
__u64 cno;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&cno, argp, sizeof(cno)))
return -EFAULT;
nilfs_transaction_begin(inode->i_sb, &ti, 0);
ret = nilfs_cpfile_delete_checkpoint(cpfile, cno);
if (unlikely(ret < 0)) {
nilfs_transaction_abort(inode->i_sb);
return ret;
}
nilfs_transaction_commit(inode->i_sb); /* never fails */
return ret;
}
static ssize_t
nilfs_ioctl_do_get_cpinfo(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
return nilfs_cpfile_get_cpinfo(nilfs->ns_cpfile, index, flags, buf,
nmembs);
}
static int nilfs_ioctl_get_cpinfo(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct the_nilfs *nilfs = NILFS_SB(inode->i_sb)->s_nilfs;
struct nilfs_argv argv;
int ret;
if (copy_from_user(&argv, argp, sizeof(argv)))
return -EFAULT;
down_read(&nilfs->ns_segctor_sem);
ret = nilfs_ioctl_wrap_copy(nilfs, &argv, _IOC_DIR(cmd),
nilfs_ioctl_do_get_cpinfo);
up_read(&nilfs->ns_segctor_sem);
if (ret < 0)
return ret;
if (copy_to_user(argp, &argv, sizeof(argv)))
ret = -EFAULT;
return ret;
}
static int nilfs_ioctl_get_cpstat(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct the_nilfs *nilfs = NILFS_SB(inode->i_sb)->s_nilfs;
struct nilfs_cpstat cpstat;
int ret;
down_read(&nilfs->ns_segctor_sem);
ret = nilfs_cpfile_get_stat(nilfs->ns_cpfile, &cpstat);
up_read(&nilfs->ns_segctor_sem);
if (ret < 0)
return ret;
if (copy_to_user(argp, &cpstat, sizeof(cpstat)))
ret = -EFAULT;
return ret;
}
static ssize_t
nilfs_ioctl_do_get_suinfo(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
return nilfs_sufile_get_suinfo(nilfs->ns_sufile, index, buf, nmembs);
}
static int nilfs_ioctl_get_suinfo(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct the_nilfs *nilfs = NILFS_SB(inode->i_sb)->s_nilfs;
struct nilfs_argv argv;
int ret;
if (copy_from_user(&argv, argp, sizeof(argv)))
return -EFAULT;
down_read(&nilfs->ns_segctor_sem);
ret = nilfs_ioctl_wrap_copy(nilfs, &argv, _IOC_DIR(cmd),
nilfs_ioctl_do_get_suinfo);
up_read(&nilfs->ns_segctor_sem);
if (ret < 0)
return ret;
if (copy_to_user(argp, &argv, sizeof(argv)))
ret = -EFAULT;
return ret;
}
static int nilfs_ioctl_get_sustat(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct the_nilfs *nilfs = NILFS_SB(inode->i_sb)->s_nilfs;
struct nilfs_sustat sustat;
int ret;
down_read(&nilfs->ns_segctor_sem);
ret = nilfs_sufile_get_stat(nilfs->ns_sufile, &sustat);
up_read(&nilfs->ns_segctor_sem);
if (ret < 0)
return ret;
if (copy_to_user(argp, &sustat, sizeof(sustat)))
ret = -EFAULT;
return ret;
}
static ssize_t
nilfs_ioctl_do_get_vinfo(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
return nilfs_dat_get_vinfo(nilfs_dat_inode(nilfs), buf, nmembs);
}
static int nilfs_ioctl_get_vinfo(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct the_nilfs *nilfs = NILFS_SB(inode->i_sb)->s_nilfs;
struct nilfs_argv argv;
int ret;
if (copy_from_user(&argv, argp, sizeof(argv)))
return -EFAULT;
down_read(&nilfs->ns_segctor_sem);
ret = nilfs_ioctl_wrap_copy(nilfs, &argv, _IOC_DIR(cmd),
nilfs_ioctl_do_get_vinfo);
up_read(&nilfs->ns_segctor_sem);
if (ret < 0)
return ret;
if (copy_to_user(argp, &argv, sizeof(argv)))
ret = -EFAULT;
return ret;
}
static ssize_t
nilfs_ioctl_do_get_bdescs(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
struct inode *dat = nilfs_dat_inode(nilfs);
struct nilfs_bmap *bmap = NILFS_I(dat)->i_bmap;
struct nilfs_bdesc *bdescs = buf;
int ret, i;
for (i = 0; i < nmembs; i++) {
ret = nilfs_bmap_lookup_at_level(bmap,
bdescs[i].bd_offset,
bdescs[i].bd_level + 1,
&bdescs[i].bd_blocknr);
if (ret < 0) {
if (ret != -ENOENT)
return ret;
bdescs[i].bd_blocknr = 0;
}
}
return nmembs;
}
static int nilfs_ioctl_get_bdescs(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct the_nilfs *nilfs = NILFS_SB(inode->i_sb)->s_nilfs;
struct nilfs_argv argv;
int ret;
if (copy_from_user(&argv, argp, sizeof(argv)))
return -EFAULT;
down_read(&nilfs->ns_segctor_sem);
ret = nilfs_ioctl_wrap_copy(nilfs, &argv, _IOC_DIR(cmd),
nilfs_ioctl_do_get_bdescs);
up_read(&nilfs->ns_segctor_sem);
if (ret < 0)
return ret;
if (copy_to_user(argp, &argv, sizeof(argv)))
ret = -EFAULT;
return ret;
}
static int nilfs_ioctl_move_inode_block(struct inode *inode,
struct nilfs_vdesc *vdesc,
struct list_head *buffers)
{
struct buffer_head *bh;
int ret;
if (vdesc->vd_flags == 0)
ret = nilfs_gccache_submit_read_data(
inode, vdesc->vd_offset, vdesc->vd_blocknr,
vdesc->vd_vblocknr, &bh);
else
ret = nilfs_gccache_submit_read_node(
inode, vdesc->vd_blocknr, vdesc->vd_vblocknr, &bh);
if (unlikely(ret < 0)) {
if (ret == -ENOENT)
printk(KERN_CRIT
"%s: invalid virtual block address (%s): "
"ino=%llu, cno=%llu, offset=%llu, "
"blocknr=%llu, vblocknr=%llu\n",
__func__, vdesc->vd_flags ? "node" : "data",
(unsigned long long)vdesc->vd_ino,
(unsigned long long)vdesc->vd_cno,
(unsigned long long)vdesc->vd_offset,
(unsigned long long)vdesc->vd_blocknr,
(unsigned long long)vdesc->vd_vblocknr);
return ret;
}
bh->b_private = vdesc;
list_add_tail(&bh->b_assoc_buffers, buffers);
return 0;
}
static ssize_t
nilfs_ioctl_do_move_blocks(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
struct inode *inode;
struct nilfs_vdesc *vdesc;
struct buffer_head *bh, *n;
LIST_HEAD(buffers);
ino_t ino;
__u64 cno;
int i, ret;
for (i = 0, vdesc = buf; i < nmembs; ) {
ino = vdesc->vd_ino;
cno = vdesc->vd_cno;
inode = nilfs_gc_iget(nilfs, ino, cno);
if (unlikely(inode == NULL)) {
ret = -ENOMEM;
goto failed;
}
do {
ret = nilfs_ioctl_move_inode_block(inode, vdesc,
&buffers);
if (unlikely(ret < 0))
goto failed;
vdesc++;
} while (++i < nmembs &&
vdesc->vd_ino == ino && vdesc->vd_cno == cno);
}
list_for_each_entry_safe(bh, n, &buffers, b_assoc_buffers) {
ret = nilfs_gccache_wait_and_mark_dirty(bh);
if (unlikely(ret < 0)) {
if (ret == -EEXIST) {
vdesc = bh->b_private;
printk(KERN_CRIT
"%s: conflicting %s buffer: "
"ino=%llu, cno=%llu, offset=%llu, "
"blocknr=%llu, vblocknr=%llu\n",
__func__,
vdesc->vd_flags ? "node" : "data",
(unsigned long long)vdesc->vd_ino,
(unsigned long long)vdesc->vd_cno,
(unsigned long long)vdesc->vd_offset,
(unsigned long long)vdesc->vd_blocknr,
(unsigned long long)vdesc->vd_vblocknr);
}
goto failed;
}
list_del_init(&bh->b_assoc_buffers);
bh->b_private = NULL;
brelse(bh);
}
return nmembs;
failed:
list_for_each_entry_safe(bh, n, &buffers, b_assoc_buffers) {
list_del_init(&bh->b_assoc_buffers);
bh->b_private = NULL;
brelse(bh);
}
return ret;
}
static inline int nilfs_ioctl_move_blocks(struct the_nilfs *nilfs,
struct nilfs_argv *argv,
int dir)
{
return nilfs_ioctl_wrap_copy(nilfs, argv, dir,
nilfs_ioctl_do_move_blocks);
}
static ssize_t
nilfs_ioctl_do_delete_checkpoints(struct the_nilfs *nilfs, int index,
int flags, void *buf, size_t size,
size_t nmembs)
{
struct inode *cpfile = nilfs->ns_cpfile;
struct nilfs_period *periods = buf;
int ret, i;
for (i = 0; i < nmembs; i++) {
ret = nilfs_cpfile_delete_checkpoints(
cpfile, periods[i].p_start, periods[i].p_end);
if (ret < 0)
return ret;
}
return nmembs;
}
static inline int nilfs_ioctl_delete_checkpoints(struct the_nilfs *nilfs,
struct nilfs_argv *argv,
int dir)
{
return nilfs_ioctl_wrap_copy(nilfs, argv, dir,
nilfs_ioctl_do_delete_checkpoints);
}
static ssize_t
nilfs_ioctl_do_free_vblocknrs(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
int ret = nilfs_dat_freev(nilfs_dat_inode(nilfs), buf, nmembs);
return (ret < 0) ? ret : nmembs;
}
static inline int nilfs_ioctl_free_vblocknrs(struct the_nilfs *nilfs,
struct nilfs_argv *argv,
int dir)
{
return nilfs_ioctl_wrap_copy(nilfs, argv, dir,
nilfs_ioctl_do_free_vblocknrs);
}
static ssize_t
nilfs_ioctl_do_mark_blocks_dirty(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
struct inode *dat = nilfs_dat_inode(nilfs);
struct nilfs_bmap *bmap = NILFS_I(dat)->i_bmap;
struct nilfs_bdesc *bdescs = buf;
int ret, i;
for (i = 0; i < nmembs; i++) {
/* XXX: use macro or inline func to check liveness */
ret = nilfs_bmap_lookup_at_level(bmap,
bdescs[i].bd_offset,
bdescs[i].bd_level + 1,
&bdescs[i].bd_blocknr);
if (ret < 0) {
if (ret != -ENOENT)
return ret;
bdescs[i].bd_blocknr = 0;
}
if (bdescs[i].bd_blocknr != bdescs[i].bd_oblocknr)
/* skip dead block */
continue;
if (bdescs[i].bd_level == 0) {
ret = nilfs_mdt_mark_block_dirty(dat,
bdescs[i].bd_offset);
if (ret < 0) {
BUG_ON(ret == -ENOENT);
return ret;
}
} else {
ret = nilfs_bmap_mark(bmap, bdescs[i].bd_offset,
bdescs[i].bd_level);
if (ret < 0) {
BUG_ON(ret == -ENOENT);
return ret;
}
}
}
return nmembs;
}
static inline int nilfs_ioctl_mark_blocks_dirty(struct the_nilfs *nilfs,
struct nilfs_argv *argv,
int dir)
{
return nilfs_ioctl_wrap_copy(nilfs, argv, dir,
nilfs_ioctl_do_mark_blocks_dirty);
}
static ssize_t
nilfs_ioctl_do_free_segments(struct the_nilfs *nilfs, int index, int flags,
void *buf, size_t size, size_t nmembs)
{
struct nilfs_sb_info *sbi = nilfs_get_writer(nilfs);
int ret;
BUG_ON(!sbi);
ret = nilfs_segctor_add_segments_to_be_freed(
NILFS_SC(sbi), buf, nmembs);
nilfs_put_writer(nilfs);
return (ret < 0) ? ret : nmembs;
}
static inline int nilfs_ioctl_free_segments(struct the_nilfs *nilfs,
struct nilfs_argv *argv,
int dir)
{
return nilfs_ioctl_wrap_copy(nilfs, argv, dir,
nilfs_ioctl_do_free_segments);
}
int nilfs_ioctl_prepare_clean_segments(struct the_nilfs *nilfs,
void __user *argp)
{
struct nilfs_argv argv[5];
int dir, ret;
if (copy_from_user(argv, argp, sizeof(argv)))
return -EFAULT;
dir = _IOC_WRITE;
ret = nilfs_ioctl_move_blocks(nilfs, &argv[0], dir);
if (ret < 0)
goto out_move_blks;
ret = nilfs_ioctl_delete_checkpoints(nilfs, &argv[1], dir);
if (ret < 0)
goto out_del_cps;
ret = nilfs_ioctl_free_vblocknrs(nilfs, &argv[2], dir);
if (ret < 0)
goto out_free_vbns;
ret = nilfs_ioctl_mark_blocks_dirty(nilfs, &argv[3], dir);
if (ret < 0)
goto out_free_vbns;
ret = nilfs_ioctl_free_segments(nilfs, &argv[4], dir);
if (ret < 0)
goto out_free_segs;
return 0;
out_free_segs:
BUG(); /* XXX: not implemented yet */
out_free_vbns:
BUG();/* XXX: not implemented yet */
out_del_cps:
BUG();/* XXX: not implemented yet */
out_move_blks:
nilfs_remove_all_gcinode(nilfs);
return ret;
}
static int nilfs_ioctl_clean_segments(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = nilfs_clean_segments(inode->i_sb, argp);
clear_nilfs_cond_nongc_write(NILFS_SB(inode->i_sb)->s_nilfs);
return ret;
}
static int nilfs_ioctl_test_cond(struct the_nilfs *nilfs, int cond)
{
return (cond & NILFS_TIMEDWAIT_SEG_WRITE) &&
nilfs_cond_nongc_write(nilfs);
}
static void nilfs_ioctl_clear_cond(struct the_nilfs *nilfs, int cond)
{
if (cond & NILFS_TIMEDWAIT_SEG_WRITE)
clear_nilfs_cond_nongc_write(nilfs);
}
static int nilfs_ioctl_timedwait(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
struct the_nilfs *nilfs = NILFS_SB(inode->i_sb)->s_nilfs;
struct nilfs_wait_cond wc;
long ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&wc, argp, sizeof(wc)))
return -EFAULT;
unlock_kernel();
ret = wc.wc_flags ?
wait_event_interruptible_timeout(
nilfs->ns_cleanerd_wq,
nilfs_ioctl_test_cond(nilfs, wc.wc_cond),
timespec_to_jiffies(&wc.wc_timeout)) :
wait_event_interruptible(
nilfs->ns_cleanerd_wq,
nilfs_ioctl_test_cond(nilfs, wc.wc_cond));
lock_kernel();
nilfs_ioctl_clear_cond(nilfs, wc.wc_cond);
if (ret > 0) {
jiffies_to_timespec(ret, &wc.wc_timeout);
if (copy_to_user(argp, &wc, sizeof(wc)))
return -EFAULT;
return 0;
}
if (ret != 0)
return -EINTR;
return wc.wc_flags ? -ETIME : 0;
}
static int nilfs_ioctl_sync(struct inode *inode, struct file *filp,
unsigned int cmd, void __user *argp)
{
__u64 cno;
int ret;
ret = nilfs_construct_segment(inode->i_sb);
if (ret < 0)
return ret;
if (argp != NULL) {
cno = NILFS_SB(inode->i_sb)->s_nilfs->ns_cno - 1;
if (copy_to_user(argp, &cno, sizeof(cno)))
return -EFAULT;
}
return 0;
}
int nilfs_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
unsigned long arg)
{
void __user *argp = (void * __user *)arg;
switch (cmd) {
case NILFS_IOCTL_CHANGE_CPMODE:
return nilfs_ioctl_change_cpmode(inode, filp, cmd, argp);
case NILFS_IOCTL_DELETE_CHECKPOINT:
return nilfs_ioctl_delete_checkpoint(inode, filp, cmd, argp);
case NILFS_IOCTL_GET_CPINFO:
return nilfs_ioctl_get_cpinfo(inode, filp, cmd, argp);
case NILFS_IOCTL_GET_CPSTAT:
return nilfs_ioctl_get_cpstat(inode, filp, cmd, argp);
case NILFS_IOCTL_GET_SUINFO:
return nilfs_ioctl_get_suinfo(inode, filp, cmd, argp);
case NILFS_IOCTL_GET_SUSTAT:
return nilfs_ioctl_get_sustat(inode, filp, cmd, argp);
case NILFS_IOCTL_GET_VINFO:
/* XXX: rename to ??? */
return nilfs_ioctl_get_vinfo(inode, filp, cmd, argp);
case NILFS_IOCTL_GET_BDESCS:
return nilfs_ioctl_get_bdescs(inode, filp, cmd, argp);
case NILFS_IOCTL_CLEAN_SEGMENTS:
return nilfs_ioctl_clean_segments(inode, filp, cmd, argp);
case NILFS_IOCTL_TIMEDWAIT:
return nilfs_ioctl_timedwait(inode, filp, cmd, argp);
case NILFS_IOCTL_SYNC:
return nilfs_ioctl_sync(inode, filp, cmd, argp);
default:
return -ENOTTY;
}
}
/* compat_ioctl */
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
static int nilfs_compat_locked_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
int ret;
lock_kernel();
ret = nilfs_ioctl(inode, filp, cmd, arg);
unlock_kernel();
return ret;
}
static int
nilfs_compat_ioctl_uargv32_to_uargv(struct nilfs_argv32 __user *uargv32,
struct nilfs_argv __user *uargv)
{
compat_uptr_t base;
compat_size_t nmembs, size;
compat_int_t index, flags;
if (get_user(base, &uargv32->v_base) ||
put_user(compat_ptr(base), &uargv->v_base) ||
get_user(nmembs, &uargv32->v_nmembs) ||
put_user(nmembs, &uargv->v_nmembs) ||
get_user(size, &uargv32->v_size) ||
put_user(size, &uargv->v_size) ||
get_user(index, &uargv32->v_index) ||
put_user(index, &uargv->v_index) ||
get_user(flags, &uargv32->v_flags) ||
put_user(flags, &uargv->v_flags))
return -EFAULT;
return 0;
}
static int
nilfs_compat_ioctl_uargv_to_uargv32(struct nilfs_argv __user *uargv,
struct nilfs_argv32 __user *uargv32)
{
size_t nmembs;
if (get_user(nmembs, &uargv->v_nmembs) ||
put_user(nmembs, &uargv32->v_nmembs))
return -EFAULT;
return 0;
}
static int
nilfs_compat_ioctl_get_by_argv(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct nilfs_argv __user *uargv;
struct nilfs_argv32 __user *uargv32;
int ret;
uargv = compat_alloc_user_space(sizeof(struct nilfs_argv));
uargv32 = compat_ptr(arg);
ret = nilfs_compat_ioctl_uargv32_to_uargv(uargv32, uargv);
if (ret < 0)
return ret;
ret = nilfs_compat_locked_ioctl(inode, filp, cmd, (unsigned long)uargv);
if (ret < 0)
return ret;
return nilfs_compat_ioctl_uargv_to_uargv32(uargv, uargv32);
}
static int
nilfs_compat_ioctl_change_cpmode(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct nilfs_cpmode __user *ucpmode;
struct nilfs_cpmode32 __user *ucpmode32;
int mode;
ucpmode = compat_alloc_user_space(sizeof(struct nilfs_cpmode));
ucpmode32 = compat_ptr(arg);
if (copy_in_user(&ucpmode->cm_cno, &ucpmode32->cm_cno,
sizeof(__u64)) ||
get_user(mode, &ucpmode32->cm_mode) ||
put_user(mode, &ucpmode->cm_mode))
return -EFAULT;
return nilfs_compat_locked_ioctl(
inode, filp, cmd, (unsigned long)ucpmode);
}
static inline int
nilfs_compat_ioctl_delete_checkpoint(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
return nilfs_compat_locked_ioctl(inode, filp, cmd, arg);
}
static inline int
nilfs_compat_ioctl_get_cpinfo(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
return nilfs_compat_ioctl_get_by_argv(inode, filp, cmd, arg);
}
static inline int
nilfs_compat_ioctl_get_cpstat(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
return nilfs_compat_locked_ioctl(inode, filp, cmd, arg);
}
static inline int
nilfs_compat_ioctl_get_suinfo(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
return nilfs_compat_ioctl_get_by_argv(inode, filp, cmd, arg);
}
static int
nilfs_compat_ioctl_get_sustat(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct nilfs_sustat __user *usustat;
struct nilfs_sustat32 __user *usustat32;
time_t ctime, nongc_ctime;
int ret;
usustat = compat_alloc_user_space(sizeof(struct nilfs_sustat));
ret = nilfs_compat_locked_ioctl(inode, filp, cmd,
(unsigned long)usustat);
if (ret < 0)
return ret;
usustat32 = compat_ptr(arg);
if (copy_in_user(&usustat32->ss_nsegs, &usustat->ss_nsegs,
sizeof(__u64)) ||
copy_in_user(&usustat32->ss_ncleansegs, &usustat->ss_ncleansegs,
sizeof(__u64)) ||
copy_in_user(&usustat32->ss_ndirtysegs, &usustat->ss_ndirtysegs,
sizeof(__u64)) ||
get_user(ctime, &usustat->ss_ctime) ||
put_user(ctime, &usustat32->ss_ctime) ||
get_user(nongc_ctime, &usustat->ss_nongc_ctime) ||
put_user(nongc_ctime, &usustat32->ss_nongc_ctime))
return -EFAULT;
return 0;
}
static inline int
nilfs_compat_ioctl_get_vinfo(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
return nilfs_compat_ioctl_get_by_argv(inode, filp, cmd, arg);
}
static inline int
nilfs_compat_ioctl_get_bdescs(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
return nilfs_compat_ioctl_get_by_argv(inode, filp, cmd, arg);
}
static int
nilfs_compat_ioctl_clean_segments(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct nilfs_argv __user *uargv;
struct nilfs_argv32 __user *uargv32;
int i, ret;
uargv = compat_alloc_user_space(sizeof(struct nilfs_argv) * 5);
uargv32 = compat_ptr(arg);
for (i = 0; i < 5; i++) {
ret = nilfs_compat_ioctl_uargv32_to_uargv(&uargv32[i],
&uargv[i]);
if (ret < 0)
return ret;
}
return nilfs_compat_locked_ioctl(
inode, filp, cmd, (unsigned long)uargv);
}
static int
nilfs_compat_ioctl_timedwait(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct nilfs_wait_cond __user *uwcond;
struct nilfs_wait_cond32 __user *uwcond32;
struct timespec ts;
int cond, flags, ret;
uwcond = compat_alloc_user_space(sizeof(struct nilfs_wait_cond));
uwcond32 = compat_ptr(arg);
if (get_user(cond, &uwcond32->wc_cond) ||
put_user(cond, &uwcond->wc_cond) ||
get_user(flags, &uwcond32->wc_flags) ||
put_user(flags, &uwcond->wc_flags) ||
get_user(ts.tv_sec, &uwcond32->wc_timeout.tv_sec) ||
get_user(ts.tv_nsec, &uwcond32->wc_timeout.tv_nsec) ||
put_user(ts.tv_sec, &uwcond->wc_timeout.tv_sec) ||
put_user(ts.tv_nsec, &uwcond->wc_timeout.tv_nsec))
return -EFAULT;
ret = nilfs_compat_locked_ioctl(inode, filp, cmd,
(unsigned long)uwcond);
if (ret < 0)
return ret;
if (get_user(ts.tv_sec, &uwcond->wc_timeout.tv_sec) ||
get_user(ts.tv_nsec, &uwcond->wc_timeout.tv_nsec) ||
put_user(ts.tv_sec, &uwcond32->wc_timeout.tv_sec) ||
put_user(ts.tv_nsec, &uwcond32->wc_timeout.tv_nsec))
return -EFAULT;
return 0;
}
static int nilfs_compat_ioctl_sync(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
return nilfs_compat_locked_ioctl(inode, filp, cmd, arg);
}
long nilfs_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct inode *inode = filp->f_dentry->d_inode;
switch (cmd) {
case NILFS_IOCTL32_CHANGE_CPMODE:
return nilfs_compat_ioctl_change_cpmode(
inode, filp, NILFS_IOCTL_CHANGE_CPMODE, arg);
case NILFS_IOCTL_DELETE_CHECKPOINT:
return nilfs_compat_ioctl_delete_checkpoint(
inode, filp, cmd, arg);
case NILFS_IOCTL32_GET_CPINFO:
return nilfs_compat_ioctl_get_cpinfo(
inode, filp, NILFS_IOCTL_GET_CPINFO, arg);
case NILFS_IOCTL_GET_CPSTAT:
return nilfs_compat_ioctl_get_cpstat(inode, filp, cmd, arg);
case NILFS_IOCTL32_GET_SUINFO:
return nilfs_compat_ioctl_get_suinfo(
inode, filp, NILFS_IOCTL_GET_SUINFO, arg);
case NILFS_IOCTL32_GET_SUSTAT:
return nilfs_compat_ioctl_get_sustat(
inode, filp, NILFS_IOCTL_GET_SUSTAT, arg);
case NILFS_IOCTL32_GET_VINFO:
return nilfs_compat_ioctl_get_vinfo(
inode, filp, NILFS_IOCTL_GET_VINFO, arg);
case NILFS_IOCTL32_GET_BDESCS:
return nilfs_compat_ioctl_get_bdescs(
inode, filp, NILFS_IOCTL_GET_BDESCS, arg);
case NILFS_IOCTL32_CLEAN_SEGMENTS:
return nilfs_compat_ioctl_clean_segments(
inode, filp, NILFS_IOCTL_CLEAN_SEGMENTS, arg);
case NILFS_IOCTL32_TIMEDWAIT:
return nilfs_compat_ioctl_timedwait(
inode, filp, NILFS_IOCTL_TIMEDWAIT, arg);
case NILFS_IOCTL_SYNC:
return nilfs_compat_ioctl_sync(inode, filp, cmd, arg);
default:
return -ENOIOCTLCMD;
}
}
#endif