2023-07-28 23:50:44 +05:30
/* SPDX-License-Identifier: GPL-2.0 */
# ifndef _TRACEFS_INTERNAL_H
# define _TRACEFS_INTERNAL_H
2023-07-28 23:50:46 +05:30
enum {
2023-09-06 22:47:11 -04:00
TRACEFS_EVENT_INODE = BIT ( 1 ) ,
TRACEFS_EVENT_TOP_INODE = BIT ( 2 ) ,
2023-07-28 23:50:46 +05:30
} ;
2023-07-28 23:50:44 +05:30
struct tracefs_inode {
unsigned long flags ;
void * private ;
struct inode vfs_inode ;
} ;
2023-11-01 13:25:45 -04:00
/*
* struct eventfs_attr - cache the mode and ownership of a eventfs entry
* @ mode : saved mode plus flags of what is saved
* @ uid : saved uid if changed
* @ gid : saved gid if changed
*/
struct eventfs_attr {
int mode ;
kuid_t uid ;
kgid_t gid ;
} ;
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
/*
* struct eventfs_inode - hold the properties of the eventfs directories .
* @ list : link list into the parent directory
* @ entries : the array of entries representing the files in the directory
* @ name : the name of the directory to create
* @ children : link list into the child eventfs_inode
* @ dentry : the dentry of the directory
* @ d_parent : pointer to the parent ' s dentry
* @ d_children : The array of dentries to represent the files when created
2023-11-01 13:25:45 -04:00
* @ entry_attrs : Saved mode and ownership of the @ d_children
* @ attr : Saved mode and ownership of eventfs_inode itself
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
* @ data : The private data to pass to the callbacks
2023-11-01 13:25:42 -04:00
* @ is_freed : Flag set if the eventfs is on its way to be freed
2023-11-01 13:25:44 -04:00
* Note if is_freed is set , then dentry is corrupted .
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
* @ nr_entries : The number of items in @ entries
*/
struct eventfs_inode {
struct list_head list ;
const struct eventfs_entry * entries ;
const char * name ;
struct list_head children ;
2023-11-01 13:25:44 -04:00
struct dentry * dentry ; /* Check is_freed to access */
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
struct dentry * d_parent ;
struct dentry * * d_children ;
2023-11-01 13:25:45 -04:00
struct eventfs_attr * entry_attrs ;
struct eventfs_attr attr ;
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
void * data ;
/*
* Union - used for deletion
2023-11-01 13:25:47 -04:00
* @ llist : for calling dput ( ) if needed after RCU
2023-10-24 13:10:24 -04:00
* @ rcu : eventfs_inode to delete in RCU
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
*/
union {
2023-11-01 13:25:47 -04:00
struct llist_node llist ;
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
struct rcu_head rcu ;
} ;
2023-11-01 13:25:42 -04:00
unsigned int is_freed : 1 ;
eventfs: Fix file and directory uid and gid ownership
It was reported that when mounting the tracefs file system with a gid
other than root, the ownership did not carry down to the eventfs directory
due to the dynamic nature of it.
A fix was done to solve this, but it had two issues.
(a) if the attr passed into update_inode_attr() was NULL, it didn't do
anything. This is true for files that have not had a chown or chgrp
done to itself or any of its sibling files, as the attr is allocated
for all children when any one needs it.
# umount /sys/kernel/tracing
# mount -o rw,seclabel,relatime,gid=1000 -t tracefs nodev /mnt
# ls -ld /mnt/events/sched
drwxr-xr-x 28 root rostedt 0 Dec 21 13:12 /mnt/events/sched/
# ls -ld /mnt/events/sched/sched_switch
drwxr-xr-x 2 root rostedt 0 Dec 21 13:12 /mnt/events/sched/sched_switch/
But when checking the files:
# ls -l /mnt/events/sched/sched_switch
total 0
-rw-r----- 1 root root 0 Dec 21 13:12 enable
-rw-r----- 1 root root 0 Dec 21 13:12 filter
-r--r----- 1 root root 0 Dec 21 13:12 format
-r--r----- 1 root root 0 Dec 21 13:12 hist
-r--r----- 1 root root 0 Dec 21 13:12 id
-rw-r----- 1 root root 0 Dec 21 13:12 trigger
(b) When the attr does not denote the UID or GID, it defaulted to using
the parent uid or gid. This is incorrect as changing the parent
uid or gid will automatically change all its children.
# chgrp tracing /mnt/events/timer
# ls -ld /mnt/events/timer
drwxr-xr-x 2 root tracing 0 Dec 21 14:34 /mnt/events/timer
# ls -l /mnt/events/timer
total 0
-rw-r----- 1 root root 0 Dec 21 14:35 enable
-rw-r----- 1 root root 0 Dec 21 14:35 filter
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_cancel
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_expire_entry
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_expire_exit
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_init
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_start
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 itimer_expire
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 itimer_state
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 tick_stop
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_cancel
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_expire_entry
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_expire_exit
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_init
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_start
At first it was thought that this could be easily fixed by just making the
default ownership of the superblock when it was mounted. But this does not
handle the case of:
# chgrp tracing instances
# mkdir instances/foo
If the superblock was used, then the group ownership would be that of what
it was when it was mounted, when it should instead be "tracing".
Instead, set a flag for the top level eventfs directory ("events") to flag
which eventfs_inode belongs to it.
Since the "events" directory's dentry and inode are never freed, it does
not need to use its attr field to restore its mode and ownership. Use the
this eventfs_inode's attr as the default ownership for all the files and
directories underneath it.
When the events eventfs_inode is created, it sets its ownership to its
parent uid and gid. As the events directory is created at boot up before
it gets mounted, this will always be uid=0 and gid=0. If it's created via
an instance, then it will take the ownership of the instance directory.
When the file system is mounted, it will update all the gids if one is
specified. This will have a callback to update the events evenfs_inode's
default entries.
When a file or directory is created under the events directory, it will
walk the ei->dentry parents until it finds the evenfs_inode that belongs
to the events directory to retrieve the default uid and gid values.
Link: https://lore.kernel.org/all/CAHk-=wiwQtUHvzwyZucDq8=Gtw+AnwScyLhpFswrQ84PjhoGsg@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20231221190757.7eddbca9@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Dongliang Cui <cuidongliang390@gmail.com>
Cc: Hongyu Jin <hongyu.jin@unisoc.com>
Fixes: 0dfc852b6fe3 ("eventfs: Have event files and directories default to parent uid and gid")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Tested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 19:07:57 -05:00
unsigned int is_events : 1 ;
2024-01-02 15:18:32 -05:00
unsigned int nr_entries : 30 ;
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
} ;
2023-07-28 23:50:44 +05:30
static inline struct tracefs_inode * get_tracefs ( const struct inode * inode )
{
return container_of ( inode , struct tracefs_inode , vfs_inode ) ;
}
2023-07-28 23:50:45 +05:30
struct dentry * tracefs_start_creating ( const char * name , struct dentry * parent ) ;
struct dentry * tracefs_end_creating ( struct dentry * dentry ) ;
struct dentry * tracefs_failed_creating ( struct dentry * dentry ) ;
struct inode * tracefs_get_inode ( struct super_block * sb ) ;
2023-07-28 23:50:49 +05:30
struct dentry * eventfs_start_creating ( const char * name , struct dentry * parent ) ;
struct dentry * eventfs_failed_creating ( struct dentry * dentry ) ;
struct dentry * eventfs_end_creating ( struct dentry * dentry ) ;
eventfs: Fix file and directory uid and gid ownership
It was reported that when mounting the tracefs file system with a gid
other than root, the ownership did not carry down to the eventfs directory
due to the dynamic nature of it.
A fix was done to solve this, but it had two issues.
(a) if the attr passed into update_inode_attr() was NULL, it didn't do
anything. This is true for files that have not had a chown or chgrp
done to itself or any of its sibling files, as the attr is allocated
for all children when any one needs it.
# umount /sys/kernel/tracing
# mount -o rw,seclabel,relatime,gid=1000 -t tracefs nodev /mnt
# ls -ld /mnt/events/sched
drwxr-xr-x 28 root rostedt 0 Dec 21 13:12 /mnt/events/sched/
# ls -ld /mnt/events/sched/sched_switch
drwxr-xr-x 2 root rostedt 0 Dec 21 13:12 /mnt/events/sched/sched_switch/
But when checking the files:
# ls -l /mnt/events/sched/sched_switch
total 0
-rw-r----- 1 root root 0 Dec 21 13:12 enable
-rw-r----- 1 root root 0 Dec 21 13:12 filter
-r--r----- 1 root root 0 Dec 21 13:12 format
-r--r----- 1 root root 0 Dec 21 13:12 hist
-r--r----- 1 root root 0 Dec 21 13:12 id
-rw-r----- 1 root root 0 Dec 21 13:12 trigger
(b) When the attr does not denote the UID or GID, it defaulted to using
the parent uid or gid. This is incorrect as changing the parent
uid or gid will automatically change all its children.
# chgrp tracing /mnt/events/timer
# ls -ld /mnt/events/timer
drwxr-xr-x 2 root tracing 0 Dec 21 14:34 /mnt/events/timer
# ls -l /mnt/events/timer
total 0
-rw-r----- 1 root root 0 Dec 21 14:35 enable
-rw-r----- 1 root root 0 Dec 21 14:35 filter
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_cancel
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_expire_entry
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_expire_exit
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_init
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 hrtimer_start
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 itimer_expire
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 itimer_state
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 tick_stop
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_cancel
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_expire_entry
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_expire_exit
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_init
drwxr-xr-x 2 root tracing 0 Dec 21 14:35 timer_start
At first it was thought that this could be easily fixed by just making the
default ownership of the superblock when it was mounted. But this does not
handle the case of:
# chgrp tracing instances
# mkdir instances/foo
If the superblock was used, then the group ownership would be that of what
it was when it was mounted, when it should instead be "tracing".
Instead, set a flag for the top level eventfs directory ("events") to flag
which eventfs_inode belongs to it.
Since the "events" directory's dentry and inode are never freed, it does
not need to use its attr field to restore its mode and ownership. Use the
this eventfs_inode's attr as the default ownership for all the files and
directories underneath it.
When the events eventfs_inode is created, it sets its ownership to its
parent uid and gid. As the events directory is created at boot up before
it gets mounted, this will always be uid=0 and gid=0. If it's created via
an instance, then it will take the ownership of the instance directory.
When the file system is mounted, it will update all the gids if one is
specified. This will have a callback to update the events evenfs_inode's
default entries.
When a file or directory is created under the events directory, it will
walk the ei->dentry parents until it finds the evenfs_inode that belongs
to the events directory to retrieve the default uid and gid values.
Link: https://lore.kernel.org/all/CAHk-=wiwQtUHvzwyZucDq8=Gtw+AnwScyLhpFswrQ84PjhoGsg@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20231221190757.7eddbca9@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Dongliang Cui <cuidongliang390@gmail.com>
Cc: Hongyu Jin <hongyu.jin@unisoc.com>
Fixes: 0dfc852b6fe3 ("eventfs: Have event files and directories default to parent uid and gid")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Tested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 19:07:57 -05:00
void eventfs_update_gid ( struct dentry * dentry , kgid_t gid ) ;
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 16:50:07 -04:00
void eventfs_set_ei_status_free ( struct tracefs_inode * ti , struct dentry * dentry ) ;
2023-07-28 23:50:48 +05:30
2023-07-28 23:50:44 +05:30
# endif /* _TRACEFS_INTERNAL_H */